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Abstract: Many sharing-economy platforms operate as follows. Owners list the availability of
resources, prices, and contract-length limits. Customers propose contract start times and lengths.
The owners decide immediately whether to accept or decline each proposal, even if the contract is for
a future date. Accepted proposals generate revenue. Declined proposals are lost. At any decision
epoch, the owner has no information regarding future proposals. The owner seeks easy-to-implement
algorithms that achieve the best competitive ratio (CR). We first derive a lower bound on the CR of any
algorithm. We then analyze CRs of all intuitive “greedy” algorithms. We propose two new algorithms
that have significantly better CRs than that of any greedy algorithm for certain parameter-value
ranges. The key idea behind these algorithms is that owners may reserve some amount of capacity
for late-arriving higher-value proposals in an attempt to improve revenue. Our contribution lies in
operationalizing this idea with the help of algorithms that utilize thresholds. Moreover, we show
that if non-optimal thresholds are chosen, then those may lead to poor CRs. We provide a rigorous
method by which an owner can decide the best approach in their context by analyzing the CRs of
greedy algorithms and those proposed by us.

Keywords: online algorithms; randomized algorithms; competitive ratio; interval scheduling;
online optimization

1. Introduction

Popular web platforms, such as Airbnb and Turo, provide owners the ability to list resources
available for sharing, prices, and contract-length limits. The list of resources that may be shared is
long and getting longer, including items such as apartments, tools, clothes, and intangibles such as
the owners’ time (e.g., tutoring or handyman services). The sharing/renting process is known by
many names such as peer-to-peer renting [1], collaborative consumption [2], and sharing economy [3].
Sharing economy is growing—in mid-2019, there were 1546 sharing-economy start-ups listed on
AngelList, a US website for start-ups, with an average valuation of $3M [4]. An individual interested
in a listed resource can see its availability and place a request with the owner, indicating the desired
contract start time and length. The owner must then decide (either immediately or within a short
period of time) whether to accept or decline the request, even if the contract is for a future date.
Accepted requests earn a reward that is equal to the product of the posted price and the contract
duration. Declined requests are lost and earn nothing. A key trade-off that the owner confronts is the
reward he or she earns from the current request and the potential loss of reward from higher-value
future requests that may clash with the current one.

We assume that the owner has no information about future requests that may arise, other than
the contract-length limits. The minimum contract duration is predetermined either by the platform,
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e.g., one night on Airbnb, or by the owner, e.g., the number of hours on the car-sharing platform
Getaround. The owners usually set the maximum contract duration, e.g., two days for a wedding
gown rental [5]. In case of services such as tutoring and handyman work, such a restriction may be a
result of limited human capacity. At times, an owner may also place an upper limit on contract length
because of local laws. For example, renting an apartment for more than 30 days automatically confers
tenant rights to the customer in California [6], and this may not be acceptable to the apartment owner.
Finally, market forces may result in a de facto upper bound on the contract length. This may happen
on platforms such as Getaround whose competitive advantage comes from offering short-duration
contracts that are not offered by conventional rental agencies. Such platforms are more expensive for
longer-duration contracts. This naturally limits the length of contracts in practice.

There are many situations in which the owner may not have information about future requests,
other than the contract-length limits. This may happen when demand depends on a multitude of
frequently changing external factors that are difficult to anticipate. Additionally, the owner may
not have access to the web platform data, and the data that he or she observes may be very limited.
Because of the lack of information about future requests, the owner’s problem is an online version
of a problem that Kolen et al. [7] call the interval scheduling problem with given machines. In the
offline version, the entire sequence of requests and their attributes are known upfront. We refer to the
owner’s problem as the online reservation problem (ORP) because our motivating application is the
reservation of resources on sharing economy platforms.

Even in those instances where the owners have access to some information about future requests,
but the information is incomplete, it may be desirable to use an online algorithm because they are
robust against forecast errors [8] and distributional misspecifications [9]. Moreover, the decision-maker
will not need to customize the algorithm to exploit the type, quantity, and quality of information
available. Specifically, for the application that we have in mind, the owner is unlikely to have the
expertise and resources to develop customized approaches. Our approach is designed to be easily
implementable in practice.

The relative performance of an algorithm for a given problem instance is the ratio of the offline
optimal reward to the reward earned by the algorithm. We use worst-case relative performance of an
algorithm, also known as competitive ratio (CR), as a measure of its goodness, given that we have no
information about future requests. The smaller the CR, the more competitive the algorithm.

1.1. The Problem Statement

An instance L of the ORP is a non-empty finite sequence of requests or jobs. Each job i in L has
three attributes: arrival time ai ≥ 0, start time si (≥ ai), and length (or duration) di. Let Dmin > 0
and Dmax < ∞ be the contract-length limits. We constrain L to belong to a set L(D), where D .

=

[Dmin, Dmax]. What this means is that, while L can consist of an arbitrary number of jobs with arbitrary
arrival and start times, the length of each job must belong to the interval [Dmin, Dmax]. We also define
∆ .
= Dmax/Dmin.

Let n denote the maximum number of concurrently available identical resources or servers,
indexed 1, 2, . . . , n. Each server can only process one job at a time. Jobs in L arrive one at a time
and the attributes of each job are revealed only upon its arrival. As soon as a job arrives, the owner
must immediately assign the job to one of the servers (resources) or decline it, only knowing that the
length of any job that may arrive later will be in D. Once assigned, a job cannot be reassigned to other
servers or be preempted. Similarly, overlapping (or clashing or conflicting) jobs may not be assigned
to the same server, i.e., jobs i and j with si ≤ sj and si + di > sj cannot be assigned to the same server.
Given job i, we say that server j has no conflicts if no job already assigned to server j clashes with job i.
Without a loss of generality, we set the unit rent equal to 1. Therefore, the owner receives a reward that
is equal to the duration of the job if it is assigned to one of the n servers and zero otherwise. Declined
jobs are lost. We say that job-i ≡ job-j, i.e., i and j represent the same job, if ai = aj, si = sj, and di = dj.
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Given L, let OPT(L) denote the total value of jobs in an offline optimal set, which is an optimal
set of jobs that would be accepted if L was known entirely in advance. Let A denote an arbitrary
algorithm in the set A, where A is the set of algorithms that, upon arrival of a job, either immediately
assign it to one of the servers with no conflicts, or decline it, based only on the characteristics of the
previously-arrived jobs, the past assign/decline decisions, the number of servers n, and the set D.
Given A, let vA(L) denote the expected total value of jobs accepted by A for the problem instance L.
Given this notation, the relative performance of A for instance L is defined as OPT(L)/vA(L) and the
competitive ratio (CR) of A is defined as

rA(n, ∆) .
= sup

L∈L(D)

OPT(L)
vA(L)

.

Given n and ∆, which we will sometimes refer to as the parameters of the problem, our objective
is to find an A′ such that rA′ ≤ rA for every A ∈ A. Additionally, we say that Algorithm A is
c-competitive if c ≥ rA. Note that, although OPT(L) > 0, for any L, vA(L) can possibly be equal to 0
for some A and L. To handle such cases, throughout the paper, we will assume that a/0 = ∞ for any
a ∈ R \ {0} and ∞ > b for any b ∈ R.

We also study a special case, which is abbreviated as SORP (special ORP). The difference between
the ORP and the SORP is that si = ai for each i in the latter (see Figure 1). Such scenarios fit operations
at platforms such as Uber and Lyft, and in problems that deal with the assignment of open jobs to
reserve drivers in transit operations [10]. We use L∗(D) to denote the set of all possible non-empty
finite sequences in which jobs arrive at their start times. Subsequently, the CR of an arbitrary A ∈ A
for the SORP is defined as

r∗A(n, ∆) .
= sup

L∈L∗(D)

OPT(L)
vA(L)

.

In the remainder of this paper, we use N to denote the set {1, 2, . . .} and [k] to denote the set
{1, 2, . . . , k} for any k ∈ N. Given sets A and B, x ∈ A \ B ⇐⇒ x ∈ A and x /∈ B.
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Figure 1. Examples of problem instances with four jobs each under the online reservation problem
(ORP) and the special case of the ORP (SORP) settings.

1.2. Our Approach

We first find a lower bound on the CR of any algorithm in A in Section 2, proving that no
algorithm can have a CR better than O(ln ∆). Subsequently, in Section 3.1, we analyze the CRs of
all greedy algorithms (including those that are randomized), which are those that do not decline a
request whenever a server is available. We study greedy algorithms because they are intuitive and
have been studied in the context of other problems, such as the bin-packing problem [11]. We prove
that any greedy algorithm is Θ(∆)-competitive. The gap between the CRs of the greedy algorithms
and the best possible CR motivates the need for better algorithms. The linear dependence of the CRs
of greedy algorithms on ∆ arises because, in some instances, they end up accepting jobs with duration
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Dmin and declining those with duration Dmax. Therefore, we design two new algorithms while using
the intuition that reserving capacity for higher-value future jobs may help to improve the CR and
that this may be operationalized while using thresholds. We first propose a deterministic algorithm,
Algorithm D, in Section 3.2, which uses deterministic server-specific admission thresholds. We find
the upper bound on the CR of Algorithm D and prove that the algorithm is O(ln ∆)-competitive in
the limit n→ ∞. We also propose a randomized algorithm, Algorithm R, in Section 3.3, which uses a
randomized threshold. We prove that Algorithm R is O(ln ∆)-competitive for any n and ∆, and it is
therefore optimal in the sense that no algorithm can be better than O(ln ∆)-competitive. For the SORP,
we follow the same approach as we do for the ORP.

Although we summarized our approach and results in terms of the big O notation in the previous
paragraph, we actually derive the exact values of all the CR bounds as functions of n and ∆. Being
able to design algorithms that are O(ln ∆)-competitive is important from a theoretical point of view,
but our focus while designing Algorithms D and R is to go a step further and achieve CRs that have
small numerical values. We do so because this paper is motivated by practical applications and an
owner in a real-life setting will choose to use an algorithm for ORP/SORP only if the algorithm’s CR is
small for his/her particular n and ∆, regardless of the limiting behavior of the CR.

1.3. Related Literature

Several studies that analyze online scheduling problems that are similar to the ORP assume
that some distributional information on job arrivals and/or durations is available [12–14]. Because
the focus in these studies is on exploiting the distributional information, we do not review them.
Instead we focus on those paper related to the ORP that do not assume availability of such information
and seek algorithms with the best CR. Amongst these, there are numerous papers that allow for the
preemption of already accepted jobs. Papers in this stream propose algorithms for problems with a
variety of different features and analyze the CRs of proposed algorithms; see [15–20]. Preemption is
not allowed in our setting, and therefore, we focus on papers that do not allow preemption. Finally,
although Buchbinder and Naor [21] analyze a generic online packing problem that does not allow
preemption using the primal-dual framework, it is not possible to express ORP or SORP as their online
packing formulation. Therefore, we do not discuss [21] either.

Boyar and Larsen [22] analyze online seat reservations for a train that stops at k stations.
They study two scenarios, first where all of the tickets yield the same reward, and second where
the reward from a ticket is proportional to the number of stops in the journey. If we think of tickets as
jobs and seats as servers, it is easy to see the connection between the latter scenario and the ORP. Boyar
and Larsen [22] only consider greedy algorithms. Instead of “greedy”, they use the term “fair” for such
algorithms. They prove that CR of any greedy deterministic algorithm is Θ(k), which means that there
exist real numbers c1, c2 > 0 and integer k0 > 0 such that c1k ≤ CR ≤ c2k for all k ≥ k0. By plugging
in Dmin = 1 and Dmax = k− 1 in the expressions for CRs of greedy algorithms for the ORP, we find
that they are indeed Θ(k)-competitive. However, since we do not limit ourselves to greedy algorithms,
we are able to achieve smaller CRs. Moreover, Boyar and Larsen [22]’s formulation allows for jobs to
have durations only in the integer set {1, 2, . . . , k− 1}, whereas the ORP allows durations to belong to
the interval [1, k− 1].

Some other papers, e.g., [10,23,24], are similar to the SORP in the sense that they assume that jobs
arrive exactly at their start times. We cannot use the algorithms or other results from these papers for
the ORP because the set of allowed instances for the SORP is a proper subset of those for the ORP.
However, our approach for the ORP can be utilized to solve the SORP. We will show in Section 4 that
we can tweak our ORP algorithms to achieve even smaller CRs for the SORP.

Gupta and Li [10] study the multi-processor online fixed job scheduling problem for reserve driver
scheduling. Their problem is identical to the SORP, except that the servers in their version are only
available for specific time intervals, which model driver shifts. They propose a randomized algorithm
for their problem that is O (ln ∆)-competitive. One of our algorithms is also O (ln ∆)-competitive.
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Furthermore, the numerical values of the upper bounds on CRs of our algorithms are much smaller
than that of Gupta and Li [10]’s algorithm.

Lipton and Tomkins [23] study a problem that is identical to the SORP with a single server,
except that Dmax and Dmin are not known. They show that no algorithm can have a CR that is
O (ln ∆) or better. They also propose an algorithm that is O (ln ∆)1+ε-competitive, where ε is any
positive real number. This randomized algorithm relies on a specific converging sequence of coin-flip
probabilities. Faigle et al. [25] extend these results in two ways. First, they show that multiple
different sequences z(1), z(2), . . . can be used for constructing randomized algorithms for the problem

if
∞
∑

i=1
1/z(i) converges, and that the resulting algorithm will be O (ln (z (∆)))-competitive. Second,

the authors generalize the results to include the multiple server case. Unlike the problems that were
studied by Lipton and Tomkins [23] and Faigle et al. [25], Dmin and Dmax are known in the case of
sharing economy platforms. Therefore, we exploit this information to obtain better CRs.

Garofalakis et al. [24] consider the online scheduling of continuous media streams. This is identical
to the single server case of the SORP, except that jobs now only demand a portion of the bandwidth of
the server. They prove that no algorithm can be better than O (ln ∆/(1− γ))-competitive, where γ is
the maximum fractional bandwidth that any job can demand. They also propose an algorithm that has
CR within a constant factor of ln ∆ if γ < 1/dln ∆e. In the case of rental platforms, the customer must
demand at least one unit of resource and, therefore, the fractional bandwidth assumption of [24] does
not hold.

One might be tempted to think that the multiple server case of SORP is equivalent to the problem
that was studied by Garofalakis et al. [24]. However, in a rental platform setting, the customer must
be assigned a unique resource (such as a room or a car) throughout the duration of the contract.
The formulation studied by Garofalakis et al. [24] fails to impose such a requirement and, hence,
the supposed equivalence does not hold.

Finally, we would like to mention that Ball and Queyranne [26] study an online version of a
revenue management problem that has many similarities with the ORP. In their formulation, each job
is characterized by a fare and a maximum of n jobs can be accepted. The problem studied by Ball and
Queyranne [26] can be thought of as consisting of those instances in which the start times of all the
jobs are identical from the perspective of the framework that we established for the ORP in Section 1.1.
Therefore, each job in an arbitrary instance of the problem conflicts with every other job in the same
instance. Additionally, because of this, only n jobs can be accepted at most. Furthermore, the fares in
the formulation by Ball and Queyranne [26] can be thought of as job durations in the ORP. Therefore,
the formulation studied in [26] is equivalent to a special case of the ORP where the set of allowed
instances is a proper subset of those for the ORP.

Ball and Queyranne [26] study various versions of their problem that differ based on the set of
the possible fares and based on whether a job must be completely accepted (discrete version) or partial
acceptance is allowed (continuous version). Like the discrete version, jobs must be either accepted or
declined entirely in the ORP. However, partial acceptance of jobs in the continuous version studied
by [26] can be considered to be equivalent to an owner making accept/decline decisions that are based
on weighted coin flips. Ball and Queyranne [26] propose threshold-based algorithms for the various
versions that they study and prove optimality for some of of them. Most notably, they prove that
no algorithm for the continuous version of their problem that allows jobs to have any fare in the set
[Dmin, Dmax] can have a CR better than 1 + ln ∆. They also present an algorithm that achieves CR that
is exactly equal to the lower bound. Note that one cannot directly use the algorithms or other results
from [26] for the ORP because the set of allowed instances for the formulation studied in [26] is a
proper subset of those for the ORP. We complement the work of Ball and Queyranne [26] by studying
the ORP that does not constrain the job start times to be identical. We prove that no algorithm for
the ORP can have a CR better than O(ln ∆) and also present Algorithm R that is O(ln ∆)-competitive.
Finally, while we are unable to close the gap between the exact values of the bounds, we do provide
algorithms with CRs that are close to the lower bound.
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1.4. Contribution

Our contribution is as follows. We model problem features that many owners face when sharing
resources via web platforms. Upon doing so, we obtain an online version of the interval scheduling
problem that has not been studied before. Although similar problems have been studied, they do not
capture all of the problem features that we do. We prove a lower bound on the CR of any algorithm for
the ORP. We also establish CRs or upper bounds on CRs for greedy algorithms in the context of the ORP
for the first time. We propose two algorithms that are easy to implement and use intuitively-appealing
threshold-criteria for making accept/decline decisions. We show that the CRs of both these algorithms
are significantly better than that of any greedy algorithm for specific ranges of parameter values.
We modify our algorithms and analyses to apply to the SORP setting, and we show that the CRs of our
algorithms are smaller than those of the algorithm that was proposed in [10].

Although we study the asymptotic dependence of CR bounds on ∆, we would like to emphasize
that our contribution lies in obtaining exact values of CR bounds. This is so because the paper is
motivated by practical use cases where the value of the bounds for particular n and ∆ matter more
than the asymptotic behavior. In fact, analyzing the limiting behavior may not require the kind of
rigorous analysis that is presented in this paper.

2. A Lower Bound on CRs

We use Yao’s principle [27] to derive a lower bound on the CR of any algorithm for the ORP.
We start by stating the Yao’s principle, as applicable to the ORP, in Theorem 1 below.

Theorem 1. Yao’s Principle for the ORP: LetA be the set of all algorithms for the ORP, as defined in Section 1.1,
and let AD be the subset of deterministic algorithms in A. If K ⊆ L(D) is a set of instances and Q is a
probability distribution with K as its support, then inf

A∈AD
(E(OPT(L))/E(vA(L))) is a lower bound on the

CR of any algorithm in A. The expectations are over the probability distribution Q.

Next, in Theorem 2, we derive a lower bound on CR of any algorithm for the ORP.

Theorem 2. The CR of any algorithm for the ORP is bounded below by r, where r(n, ∆) .
= ln ∆ + 2.

Sketch of the Proof. In the detailed proof that is presented in Appendix A, we present a set of
instances K, a probability distributionQ over K, find a lower bound on inf

A∈AD
(E(OPT(L))/E(vA(L))),

and apply Theorem 1. The key challenge in this exercise is to come up with K and Q, such that a
closed-form expression for the lower bound on inf

A∈AD
(E(OPT(L))/E(vA(L))) can be derived. We also

want to construct Q and K such that the lower bound is as large as possible.

The lower bound is increasing in ∆ because the CR of every algorithm must be increasing in ∆ by
definition. This lower bound is tight for some parameter values, as we will show later. It is also tight
in the sense that we present an algorithm later (Algorithm R) that is O(ln ∆)-competitive.

3. Algorithms

We begin this section by presenting Lemma 1 that will be the basis for deriving upper bounds on
CRs of algorithms in subsequent proofs. Subsequently, in Section 3.1, we analyze CRs of all greedy
algorithms for the ORP. In Sections 3.2 and 3.3, we analyze the CRs of algorithms D and R, respectively.
Lemma 1 is based on the notions of allocation scheme and allocation, which we define next.

Definition 1. Given two sets of jobs, B and C, an allocation scheme from B to C is a function w that maps the
Cartesian product B× C to the set of non-negative real numbers such that for any job b ∈ B, ∑

c∈C
w(b, c) is less

than or equal to db, the duration of job b. Furthermore, w(b, c) is called the allocation from job b to job c.
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Lemma 1. Given Algorithm A ∈ AD and an instance L, let BL be the set of jobs accepted by A and CL be an
offline optimal set. If we are given a positive real number a and if for every instance L ∈ L(∆), we are given an

allocation scheme wL from BL to CL such that for any job c ∈ CL, dc/

(
∑

b∈BL

wL(b, c)

)
≤ a holds, then a is an

upper bound on the CR of Algorithm A.

Sketch of the Proof. The proof involves algebraic arguments, which are presented in Appendix B.
The intuition behind the lemma is that if for a given instance L, we can allocate the durations of jobs
that are accepted by Algorithm A to jobs in the offline optimal set such that each job in the offline
optimal set is allocated at least 1/a of its duration, then OPT(L)/vA(L) ≤ a. Furthermore, if we can
do the same for every instance L ∈ L(∆), then rA ≤ a.

Intuitively, Lemma 1 uses the concept of allocation scheme to check whether the algorithm
under consideration accepts jobs with enough duration vis-à-vis the offline optimal set for all possible
instances. Hence, if one comes up with appropriate allocation schemes, Lemma 1 implies an upper
bound for the algorithm. We use this idea multiple times for proving the various results in the paper.

3.1. Greedy Algorithms

A greedy algorithm is one that assigns a job to a server with no conflicts, whenever at least one
such server exists. Otherwise, it declines the job.

Theorem 3. The following statements regarding the CR of an arbitrary greedy algorithm A are true.

1. rA(1, ∆) = 2 if ∆ = 1.
2. rA(1, ∆) = 2∆ + 1 if ∆ > 1.
3. rA(n, ∆) ≤ 3 if ∆ = 1 and n ∈ N.
4. 2∆ + 1 ≤ rA(n, ∆) ≤ 2∆ + 2 if ∆ > 1 and n ∈ N.

Sketch of the Proof. The key challenge in establishing an upper bound rA is to come up with allocation
schemes from the sets of jobs tha are accepted by Algorithm A to offline optimal sets such that Lemma 1
can be applied. The detailed proof along with the allocation schemes is given in Appendix C.

The upper bound in the first statement is tight because of a matching lower bound from Theorem 2.
The lower bounds in the second and fourth statements are proved by identifying specific instances
and calculating the ratio OPT(L)/vA(L) for them. The lower bound so proved is tight for the
second statement.

The statements in theorem above provide results for cases that are based on:

• whether n = 1 or n > 1, and
• whether ∆ = 1 or ∆ > 1.

By separately considering the four cases, we are able to derive more accurate bounds. Note that,
for any given ∆, upper bounds are smaller for n = 1 when compared to those for n > 1. Intuitively,
this happens because, when n > 1, the owner must not only decide whether to accept or decline a job,
but he/she must also assign the accepted jobs to one of the multiple servers. This additional level
of decision-making causes the CR to deteriorate. Additionally, note that, for any given n, the CR is
increasing in ∆. This directly follows from the definition of CR. All of the phenomena discussed in this
paragraph also hold true for Theorems 4 and 5 that are presented in the subsequent sections and that
contain bounds on CRs of Algorithms D and R, respectively.

It follows from Theorems 2 and 3 that the CR of any greedy algorithm is optimal when n = ∆ = 1.
Additionally, just like the lower bound on CR of any online algorithm (Theorem 2), the CR is increasing
in ∆. However, the rate of increase is linear instead of logarithmic. This gap motivates the need



Algorithms 2020, 13, 241 8 of 25

for algorithms with better CRs. Intuitively, the rate of increase is linear because, in some instances,
a greedy algorithm only accepts jobs with duration close to Dmin. These decisions prevent it from
accepting overlapping jobs with duration Dmax that arrive in the future and that would have been
accepted instead if we knew the entire instance upfront.

3.2. The Deterministic-Selection Algorithm (Algorithm D)

Job j is said to be admissible to server i if it does not conflict with any previously-accepted job of
server i and if the job j’s duration, dj, is greater than or equal to the admission threshold of server i, φ(i)
(defined subsequently in Definition 2). Algorithm D assigns an incoming job to the smallest-indexed
server to which it is admissible, if at least one such server exists. Otherwise, it declines the job.
The pseudocode is provided below (Algorithm 1).

Algorithm 1: Pseudocode for Algorithm D.

initialize I = ∅;
for every incoming job j in the instance do
I ← {i ∈ [n] such that dj ≥ φ(i) and job j does not conflict with any previously-accepted
job of server i};

if I 6= ∅ then
assign job j to server min{i such that i ∈ I};

else
decline job j;

end
end

The admission thresholds serve to increase the likelihood that some longer duration jobs will be
accepted by turning away small jobs, thereby overcoming a shortcoming of the greedy algorithms.

Definition 2.

• t : N× [1, ∞) 7→ R such that t(n, y) .
= inf

{
x ≥ 1

∣∣∣∣ x
3n

⌈
3n
x

⌉ (
1 +

x
3n

)n−d 3n
x e ≥ y

}
.

• I .
= d3n/t (n, ∆)e.

• φ(i) .
=


Dmin if i ≤ I and i ∈ [n + 1], and
t (n, ∆) IDmin

3n

(
1 +

t (n, ∆)
3n

)i−I−1
if i > I and i ∈ [n + 1].

To further illustrate how Algorithm D works, we consider a numerical example where Dmin = 1,
Dmax = 2, and n = 3. Therefore, ∆ = 2. Additionally, by Definition 2, φ(1) = 1, φ(2) = 1,
and φ(3) ≈ 1.236. Consider the instance with five jobs presented in Table 1, below. The same instance
is represented pictorially in Figure 2.

Table 1. An instance of ORP with five jobs. Jobs arrive in the order of their index j.

Index j of Job Start Time (sj) Duration (dj)

1 1.0 1.0

2 1.1 1.2

3 1.2 1.2

4 1.3 2.0

5 4.0 1.0
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Figure 2. Representation of the instance presented in Table 1.

Note that, in the instance presented in Table 1, the first four jobs overlap with each other. Job 5
does not overlap with any of the other jobs. Algorithm D makes decisions as follows:

• Job 1:

– Job 1 is admissible to server 1 because the duration of job 1 is greater than or equal to
admission threshold of server 1 (d1 = 1 ≥ φ(1) = 1) and because no jobs were previously
assigned to server 1.

– Job 1 is admissible to server 2 because duration of job 1 is greater than or equal to the
admission threshold of server 2 (d1 = 1 ≥ φ(2) = 1) and because no jobs were previously
assigned to server 2.

– Job 1 is not admissible to server 3 because the duration of job 1 is smaller than the admission
threshold of server 3 (d1 = 1 < φ(3) ≈ 1.236).

Because server 1 has the smallest index amongst servers to which job 1 is admissible, Algorithm
D assigns the job to server 1.

• Job 2:

– Job 2 is not admissible to server 1 because it conflicts with job 1 that was previously assigned
to server 1.

– Job 2 is admissible to server 2 because the duration of job 2 is greater than or equal to
admission threshold of server 2 (d2 = 1.2 ≥ φ(2) = 1) and because no jobs were previously
assigned to server 2.

– Job 2 is not admissible to server 3 because the duration of job 2 is smaller than the admission
threshold of server 3 (d2 = 1.2 < φ(3) ≈ 1.236).

Since server 2 is the only server to which job 2 is admissible, Algorithm D assigns the job to
server 2.

• Job 3:

– Job 3 is not admissible to server 1 because it conflicts with job 1 that was previously assigned
to server 1.

– Job 3 is not admissible to server 2 because it conflicts with job 2 that was previously assigned
to server 2.

– Job 3 is not admissible to server 3 because duration of job 3 is smaller than the admission
threshold of server 3 (d3 = 1.2 < φ(3) ≈ 1.236).

Since there are no servers to which job 3 is admissible, Algorithm D declines the job.
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• Job 4:

– Job 4 is not admissible to server 1 because it conflicts with job 1 that was previously assigned
to server 1.

– Job 4 is not admissible to server 2 because it conflicts with job 2 that was previously assigned
to server 2.

– Job 4 is admissible to server 3 because the duration of job 4 is greater than or equal to the
admission threshold of server 3 (d4 = 2 ≥ φ(3) ≈ 1.236) and because no jobs were previously
assigned to server 3.

Because server 3 has the smallest index amongst servers to which job 4 is admissible, Algorithm D
assigns the job to server 3.

• Job 5:

– Job 5 is admissible to server 1 because duration of job 5 is greater than or equal to admission
threshold of server 1 (d5 = 1 ≥ φ(1) = 1) and because job 5 does not conflict with job 1 that
was previously assigned to server 1.

– Job 5 is admissible to server 2 because the duration of job 5 is greater than or equal to
admission threshold of server 2 (d5 = 1 ≥ φ(2) = 1) and because job 5 does not conflict with
job 2 that was previously assigned to server 2.

– Job 5 is not admissible to server 3 because the duration of job 5 is smaller than the admission
threshold of server 3 (d5 = 1 < φ(3) ≈ 1.236).

Because server 1 has the smallest index amongst servers to which job 5 is admissible, Algorithm D
assigns the job to server 1.

After all of the decisions, the assignment of jobs to servers is represented in Figure 3, below.

Server 1

Server 2

Server 3

Job 1

Job 2

Job 4

Job 5

Figure 3. Assignment of jobs in the instance presented in Table 1 by Algorithm D.

Next, we present a result on CR of Algorithm D in Theorem 4, below.

Theorem 4. The following statements regarding the CR of Algorithm D are true.

1. rD(1, ∆) = 2 if ∆ = 1.
2. rD(1, ∆) = 2∆ + 1 if ∆ > 1.
3. rD(n, ∆) ≤ 3 if ∆ = 1 and n ∈ N.
4. rD(n, ∆) ≤ t (n, ∆) + 1 if ∆ > 1 and n ∈ N.

Sketch of the Proof. The first three statements follow directly from Theorem 3 because φ(i) = Dmin
for all i, and therefore, Algorithm D is a greedy algorithm for these cases. Proof for the fourth statement
is given in Appendix D. Just like Theorem 3, the crux of this proof lies in identifying allocation schemes
from the sets of jobs accepted by the algorithm to the offline optimal sets such that Lemma 1 can be
applied to prove the proposed upper bound.

Corollary 1. lim
n→∞

rD(n, ∆) ≤ 3 ln ∆ + 4.
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The results in the first three statements of Theorem 4 are identical to those that are presented in
the first three statements of Theorem 3 because Algorithm D behaves like a greedy algorithm for those
cases. However, by cleverly setting individual thresholds for the servers, Algorithm D achieves a CR
that is O (ln ∆) in the limit n→ ∞. In terms of CR, Algorithm D outperforms any greedy algorithm
when n and ∆ are sufficiently large. Table 2 is presented in Section 3.3 and it gives values of either the
CR or the upper bound on the CR of Algorithm D, as derived in Theorem 4, for some specific n and ∆.

3.3. The Randomized-Selection Algorithm (Algorithm R)

Algorithm R also uses a threshold, but the threshold is sampled from a specified distribution.
In the beginning, Algorithm R samples the threshold x from the distribution with CDF µ (defined
subsequently in Definition 3). The same threshold x is then used for all jobs in the instance. Algorithm
R declines all incoming jobs with a duration strictly smaller than the threshold x. Any qualifying job is
assigned to the smallest-indexed server with no conflicts, if at least one such server exists. Otherwise,
the job is declined. The pseudocode is provided below (Algorithm 2).

Algorithm 2: Pseudocode for Algorithm R.

initialize x by sampling it from the distribution with CDF µ;
initialize I = ∅;
for every incoming job j in the instance do
I ← {i ∈ [n], such that job j does not conflict with any previously-accepted job of server i};
if I 6= ∅ and dj ≥ x then

assign job j to server min{i such that i ∈ I};
else

decline job j;
end

end

The idea behind the threshold in Algorithm R is the same as that in Algorithm D: to increase the
likelihood that some longer duration jobs will be accepted by turning away small jobs and thereby
overcoming a shortcoming of the greedy algorithms.

Definition 3. CDF µ : R 7→ [0, 1], such that

µ(x) .
=


0 if x < Dmin,
1 + ln(x/Dmin)

1 + ln ∆
if x ∈ [Dmin, Dmax], and

1 otherwise.

To further illustrate how Algorithm R works, we consider a numerical example where Dmin = 1,
Dmax = 2, and n = 3. Therefore, ∆ = 2. We consider the same instance that was presented in Table 1
and Figure 2. Algorithm R first samples threshold x from the distribution with CDF µ. For the purpose
of this example, we will assume that the sampled value is 1.1. Note that the decisions would be
different if the sampling resulted in a different value of x. Anyhow, for x = 1.1, Algorithm R makes
decisions as follows:

• Job 1: Because the duration of job 1 is less than threshold x (d1 = 1 < x = 1.1), Algorithm R
declines the job.

• Job 2: The duration of job 2 is greater than threshold x (d2 = 1.2 ≥ x = 1.1). Further, none of
the servers have any previously-accepted jobs that conflict with job 2. Because server 1 has the
smallest index amongst these servers, Algorithm R assigns the job to server 1.
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• Job 3: The duration of job 3 is greater than threshold x (d3 = 1.2 ≥ x = 1.1). Further, only servers
2 and 3 do not have any previously-accepted jobs that conflict with job 3. Because server 2 has the
smallest index amongst these servers, Algorithm R assigns the job to server 2.

• Job 4: The duration of job 4 is greater than threshold x (d4 = 2 ≥ x = 1.1). Further, only server
3 does not have any previously-accepted jobs that conflict with job 4. Therefore, Algorithm R
assigns the job to server 3.

• Job 5: Because the duration of job 5 is less than threshold x (d5 = 1 < x = 1.1), Algorithm R
declines the job.

After all of the decisions, the assignment of jobs to servers is represented in Figure 4, below.

Server 1

Server 2

Server 3

Job 2

Job 3

Job 4

Figure 4. Assignment of jobs in the instance presented in Table 1 by Algorithm R when sampled
threshold is equal to 1.1. Note that the decisions would be different if the sampling resulted in a
different value of the threshold.

Next, we present a result on CR of Algorithm R in Theorem 5, below.

Theorem 5. The following statements regarding the CR of Algorithm R are true.

1. rR(1, ∆) = 2 if ∆ = 1.
2. rR(1, ∆) ≤ 3 ln ∆ + 3 if ∆ > 1.
3. rR(n, ∆) ≤ 3 if ∆ = 1 and n ∈ N.
4. rR(n, ∆) ≤ 4 ln ∆ + 4 if ∆ > 1 and n ∈ N.

Sketch of the Proof. Statements 1 and 3 follow directly from Theorem 3 because the sampled threshold
is equal to Dmin with probability 1, and therefore, Algorithm R is a greedy algorithm for these cases.
For the proof of other two statements, we consider an arbitrary instance, L, and present an allocation
scheme. Using this allocation scheme, we derive a lower bound on the total duration of jobs that are
accepted by Algorithm R when the sampled threshold is equal to x. We then use this lower bound
to show that OPT(L)/vR(L) ≤ 3 ln ∆ + 3 when n = 1, and OPT(L)/vR(L) ≤ 4 ln ∆ + 4 when n ∈ N.
Appendix E provides the details.

The results in statements 1 and 3 of Theorem 5 are identical to those that are presented in the
corresponding statements of Theorem 3 because Algorithm R behaves like a greedy algorithm for
these cases. However, CR of Algorithm R is O(ln ∆), just as the lower bound on CRs derived in
Theorem 2, and is therefore optimal in this sense. In terms of CR, Algorithm R outperforms any greedy
algorithm when ∆ is sufficiently large, and it outperforms Algorithm D when n is sufficiently small
and ∆ is sufficiently large. Both Algorithm D and Algorithm R use thresholds, and we chose these
thresholds in such a way that we were able to derive small upper bounds on CRs using our proof
techniques. Although the motivation while designing Algorithm R was to consistently beat Algorithm
D, the change in ordering of upper bounds on CRs of these algorithms for different values of n and ∆
seems to primarily be an artifact of the chosen thresholds/proof techniques and nothing more.

Table 2 gives numerical values of lower bounds and upper bounds on CRs derived in
Sections 2 and 3. Note that the CRs or the upper bounds on CRs are quite large when compared
to the lower bound, r, in some cases. This might be happening because r may not be tight for these
cases. The only case in which the lower bound is provably tight happens to be when n = ∆ = 1.
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Finding a tight lower bound for every n and ∆ and finding an algorithm that achieves a CR equal to
the lower bound for every n and ∆ are both open problems.

Table 2. Numerical values of lower bound on competitive ratios (CRs) from Theorems 2 and either
CRs or upper bounds on CRs from Theorems 3–5. The formulae for calculating these values can be
found in the respective theorem statements. Algorithm A represents any greedy algorithm.

n 1 10 100

∆ 1 5 25 1 5 25 1 5 25

r 2.00 3.61 5.22 2.00 3.61 5.22 2.00 3.61 5.22
Algorithm A 2.00 11.00 51.00 3.00 12.00 52.00 3.00 12.00 52.00
Algorithm D 2.00 11.00 51.00 3.00 9.45 15.89 3.00 8.89 13.86
Algorithm R 2.00 7.83 12.66 3.00 10.44 16.88 3.00 10.44 16.88

4. Jobs Arrive at Their Start Times (SORP)

In this section, we study the special case of the ORP, abbreviated as SORP, where all of the jobs
arrive exactly at their start times, and this fact is known upfront to the decision-maker. Although we
apply Algorithm R to the SORP exactly the way we did for the ORP, we modify the server-specific
admission thresholds of Algorithm D. This is done to exploit the extra information that is known to
the decision-maker that each job will arrive at its start time.

We first derive the lower bound on the CR of any algorithm for the SORP (Theorem 6).
Subsequently, we analyze CRs of greedy algorithms and Algorithms D and R for the SORP
(Theorems 7–9). The proofs are very similar to the corresponding derivations for the ORP, and
therefore, we omit them here (proofs may be found in [28]). The lower bound on CR of any algorithm
and the CRs of the studied algorithms are smaller than those for the ORP because the set of allowed
instances for the SORP is a proper subset of those for the ORP.

Theorem 6. The CR of any algorithm for the SORP is bounded below by r∗(n, ∆) .
= ln ∆ + 1.

Theorem 7. The following statements regarding the CR of an arbitrary greedy algorithm A are true.

1. r∗A(1, ∆) = 1 if ∆ = 1.
2. r∗A(1, ∆) = ∆ + 1 if ∆ > 1.
3. r∗A(n, ∆) ≤ 2 if ∆ = 1 and n ∈ N.
4. ∆ + 1 ≤ r∗A(n, ∆) ≤ ∆ + 2 if ∆ > 1 and n ∈ N.

Gupta and Li [10] also prove Statement 2 in Theorem 7, but they do so while using arguments
different from ours. We prove all four statements using the common framework of allocation schemes
and Lemma 1.

Algorithm D works the same way for the SORP as it does for the ORP; the only difference is that
the server thresholds are given by φ∗’s (defined in Definition 4) instead of φ’s.

Definition 4.

• t∗ : N× [1, ∞) 7→ R such that t∗(n, y) .
= inf

{
x ≥ 1

∣∣∣∣ x
2n

⌈
2n
x

⌉ (
1 +

x
2n

)n−d 2n
x e ≥ y

}
.

• I∗ .
= d2n/t∗ (n, ∆)e.

• φ∗(i) .
=


Dmin if i ≤ I∗ and i ∈ [n + 1], and
t∗ (n, ∆) I∗Dmin

2n

(
1 +

t∗ (n, ∆)
2n

)i−I∗−1
if i > I∗ and i ∈ [n + 1].
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The notation that is defined above differs from that in Definition 2 in that each occurrence of 3 in
Definition 2 is replaced by 2 here.

Theorem 8. The following statements regarding the CR of Algorithm D are true.

1. r∗D(1, ∆) = 1 if ∆ = 1.
2. r∗D(1, ∆) = ∆ + 1 if ∆ > 1.
3. r∗D(n, ∆) ≤ 2 if ∆ = 1 and n ∈ N.
4. r∗D(n, ∆) ≤ t∗ (n, ∆) + 1 if ∆ > 1 and n ∈ N.

Corollary 2. lim
n→∞

r∗D(n, ∆) ≤ 2 ln ∆ + 3.

Theorem 9. The following statements regarding the CR of Algorithm R are true.

1. r∗R(1, ∆) = 1 if ∆ = 1.
2. r∗R(1, ∆) ≤ 2 ln ∆ + 2 if ∆ > 1.
3. r∗R(n, ∆) ≤ 2 if ∆ = 1 and n ∈ N.
4. r∗R(n, ∆) ≤ 3 ln ∆ + 3 if ∆ > 1 and n ∈ N.

Table 3 gives numerical values of lower bounds and CRs or upper bounds on CRs as derived in
this section. We also compare our results with Gupta and Li [10], who study a variant of the SORP
in which the servers are available only for specific time intervals. By making these time intervals
arbitrarily long, we get back the SORP. Gupta and Li [10] only consider cases where ∆ > 1 and propose
an O(ln ∆)-competitive algorithm for it. The algorithm requires two additional parameters as input
(in addition to n and ∆) that can be tuned as desired by the owner (see Appendix F). We tune the two
additional parameters in order to achieve the smallest value of this upper bound, which is presented in
the last row of Table 3. Note that the CRs or upper bounds on CRs of our algorithms are significantly
smaller than those of the algorithm presented in [10].

Table 3. Numerical values of lower bound on CRs from Theorem 6 and either CRs or upper bounds on
CRs from Theorems 7–9, and [10]. The formulae for calculating values related to results derived in this
paper can be found in the respective theorem statements. The formulae for upper bounds on CR for
algorithm from [10] are provided in Appendix F. Algorithm A represents any greedy algorithm.

n 1 10 100

∆ 1 5 25 1 5 25 1 5 25

r∗ 1.00 2.61 4.22 1.00 2.61 4.22 1.00 2.61 4.22
Algorithm A 1.00 6.00 26.00 2.00 7.00 27.00 2.00 7.00 27.00
Algorithm D 1.00 6.00 26.00 2.00 6.64 10.93 2.00 6.26 9.57
Algorithm R 1.00 5.22 8.44 2.00 7.83 12.66 2.00 7.83 12.66

Gupta and Li [10] – 54.96 56.37 – 109.93 112.74 – 109.93 112.74

5. Take-Aways

Owners may intuitively realize that using thresholds to reserve capacity for high value jobs that
may arrive in the future will help to improve the CR relative to the greedy algorithms. Algorithms D
and R use precisely this intuition. However, the choice of thresholds is important. In fact, the CR may
deteriorate depending upon the choice of thresholds. For example, if all of the thresholds are strictly
greater than Dmin, then the CR for that algorithm will be ∞. Because, in general, the owners will not
have the technical expertise to set the thresholds optimally by analyzing the relationship between
thresholds and the resultant CRs, we provide specific threshold values (see Definitions 2 and 3) and
specific ways of applying them in the form of Algorithms D and R, which result in good CRs.
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We present a rigorous method to help the owner choose an appropriate algorithm by deriving the
CRs of greedy algorithms and the two algorithms proposed by us. Upon knowing the CRs, the owner
will be more confident in his or her choice of algorithm, whether it be a greedy algorithm or one of
the algorithms that we propose. Our analysis makes it easy to trade off performance and ease of
implementation.
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Appendix A. Proof of Theorem 2

Proof. We begin by defining some notation. Let β > 0 an arbitrarily large real number, k and b arbitrary
positive integers, α

.
= ∆

1
k , and ε > 0 arbitrarily small. Let qi

.
=
(
1/αi−1)− (1/αi) for i ∈ [k] and

qk+i
.
= 1/

(
bαk
)

for i ∈ [b]. Let s1, s2, . . . , sk+b and s′k+1, s′k+2, . . . , s′k+b be sequences of jobs, each with
n jobs, as shown in Table A1. Each 2-tuple in Table A1 represents a job, with the first value in the tuple
being the start time of the job and the second value being the job’s duration. The jobs in the sequences
are ordered by their arrival times. Appending these sequences one after another, we define sequences
(instances) L1, L2, . . . , Lk+b as described in Table A2. The arrival times of the jobs are such that the
jobs in each of L1, L2, . . . , Lk+b are ordered by their arrival times. A specific example of L1, L2, . . . , Lk+b
for the case when b = k = 3 and n = 1 is depicted in Figure A1. Define K .

= {L1, L2, . . . , Lk+b}.
The probability distribution Q over the set K is shown in the Table A2.

Table A1. Sequences s1, s2, . . . , sk+b and s′k+1, s′k+2, . . . , s′k+b. Each sequence has n jobs. Each 2-tuple
represents a job, with the first value in the tuple being the start time of the job and the second value
being the job’s duration. The jobs in the sequences are ordered by their arrival times.

Notation Sequence of Jobs

s1 (β, Dmin), (β, Dmin), . . . , (β, Dmin)

s2 (β, αDmin), (β, αDmin), . . . , (β, αDmin)

...
...

sk (β, αk−1Dmin), (β, αk−1Dmin), . . . , (β, αk−1Dmin)

sk+1 (β + ε, αkDmin), (β + ε, αkDmin), . . . , (β + ε, αkDmin)

s′k+1 (β + ε− αkDmin, αkDmin), (β + ε− αkDmin, αkDmin), . . . , (β + ε− αkDmin, αkDmin)

sk+2 (β + 2ε, αkDmin), (β + 2ε, αkDmin), . . . , (β + 2ε, αkDmin)

s′k+2 (β + 2ε− αkDmin, αkDmin), (β + 2ε− αkDmin, αkDmin), . . . , (β + 2ε− αkDmin, αkDmin)

...
...

sk+b (β + bε, αkDmin), (β + bε, αkDmin), . . . , (β + bε, αkDmin)

s′k+b (β + bε− αkDmin, αkDmin), (β + bε− αkDmin, αkDmin), . . . , (β + bε− αkDmin, αkDmin)
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Table A2. Probability distribution Q over K. {s1, s2, . . .} represents a sequence with jobs from s1

placed first, then from s2, and so on. The arrival times of the jobs are such that the jobs in each of
L1, L2, . . . , Lk+b are ordered by their arrival times.

Instance Probability

L1 = {s1} q1

L2 = {s1, s2} q2

...
...

Lk = {s1, s2, . . . , sk} qk

Lk+1 = {s1, s2, . . . , sk, sk+1, s′k+1} qk+1

Lk+2 = {s1, s2, . . . , sk, sk+1, sk+2, s′k+2} qk+2

...
...

Lk+b = {s1, s2, . . . , sk, sk+1, sk+2, sk+3, . . . , sk+b, s′k+b} qk+b
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Figure A1. L1, L2, . . . , Lk+b when b = k = 3 and n = 1. M > 0 is a very large real number.
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Then, OPT(Li) = nDminαi−1 if i ∈ [k] and OPT(Li) = 2nDminαk if i ∈ [k + b] \ [k]. Therefore,

E(OPT(L)) =
k+b

∑
i=1

qiOPT(Li) =
k

∑
i=1

qknDminαi−1 +
b

∑
i=1

qk+i2nDminαk

= nDmin

(
k

∑
i=1

(
1

αi−1 −
1
αi

)
αi−1 + 2

)
= nDmin

(
2 + k

(
1− 1

α

))
. (A1)

We next find an upper bound on E(vA(L)) for any A ∈ AD. Consider an arbitrary deterministic
Algorithm A ∈ AD. When the instance is Lk+b(= {s1, s2, . . . , sk, sk+1, sk+2, sk+3, . . . , sk+b, s′k+b}), let ni

denote the number of jobs accepted by Algorithm A from the subsequence si, i ∈ [k + b].
k+b
∑

i=1
ni ≤ n

holds because each job in the sequence {s1, s2, . . . , sk, sk+1, sk+2, sk+3, . . . , sk+b} overlaps with every
other job in the same sequence and because only non-overlapping jobs can be assigned to the same
server. Since A is a deterministic online algorithm, it will accept exactly n1 jobs when faced with
the instance L1(= {s1}). Similarly, when faced with L2(= {s1, s2}), it will accept n1 jobs from the

subsequence s1 and n2 jobs from the subsequence s2. And so on. Therefore, vA(Li) =
i

∑
j=1

njα
j−1Dmin for

i ∈ [k]. Further, vA(Li) ≤
k
∑

j=1
njα

j−1Dmin +
i

∑
j=k+1

njα
kDmin +

(
n−

i−1
∑

j=1
nj

)
αkDmin for i ∈ [k + b] \ [k]

because n−
i−1
∑

j=1
nj is an upper bound on the number of jobs that can be accepted from the last n jobs

in instance Li. n−
i−1
∑

j=1
nj is a valid upper bound because every job in the subsequences s1, s2, . . . , si−1

overlaps with each of the last n jobs in Li when i ∈ [k + b] \ [k] and because only non-overlapping jobs

can be assigned to the same server. Since E(vA(L)) =
k+b
∑

i=1
qivA(Li), we have

E(vA(L)) ≤
k

∑
i=1

qi

i

∑
j=1

njα
j−1Dmin+

k+b

∑
i=k+1

qi

(
k

∑
j=1

njα
j−1Dmin +

i

∑
j=k+1

njα
kDmin +

(
n−

i−1

∑
j=1

nj

)
αkDmin

)

= Dmin

(
k

∑
i=1

niα
i−1

(
k

∑
j=i

qj

)
+

1
bαk

(
k+b

∑
i=k+1

k

∑
j=1

njα
j−1 +

k+b

∑
i=k+1

(
i

∑
j=k+1

nj + n−
i−1

∑
j=1

nj

)
αk

))

= Dmin

k

∑
i=1

niα
i−1
(

1
αi−1 −

1
αk

)
+

Dmin

bαk

(
b

k

∑
j=1

njα
j−1 +

(
k+b

∑
i=k+1

ni(k + b− i + 1) + bn− b
k

∑
i=1

ni −
k+b

∑
i=k+1

ni(k + b− i)

)
αk

)

= Dmin

k

∑
i=1

ni + Dmin

(
k+b

∑
i=k+1

ni
b
+ n−

k

∑
i=1

ni

)
≤ Dmin

(n
b
+ n

)
= nDmin (1 + 1/b) .

(
Using

k+b

∑
i=1

ni ≤ n

)
(A2)
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Since Algorithm A was arbitrary, Inequality (A2) holds for all algorithms in AD, and therefore,
by Equation (A1) and Theorem 1, for any randomized online Algorithm B for the ORP,

rB(n,D) ≥ inf
A∈AD

E(OPT(L))
E(vA(L))

≥
nDmin

(
2 + k(1− 1

α )
)

nDmin (1 + 1/b)
(A3)

Since Equation (A3) holds for any k, b ∈ N,

rB(n,D) ≥ sup
k,b∈N

(
2 + k(1− 1

α )
)

(1 + 1/b)
= sup

k,b∈N

(
2 + k(1− (1/∆)(1/k))

)
(1 + 1/b)

. (A4)

Because the RHS in Equation (A4) is increasing in both k and b,

rB(n,D) ≥ lim
k,b→∞

(
2 + k(1− (1/∆)(1/k))

)
(1 + 1/b)

= 2 + ln ∆. (Some algebra and L’Hospital’s Rule)

Since Algorithm B was arbitrary, the result is proved.

Appendix B. Proof of Lemma 1

Proof. Let L ∈ L(n, ∆) be an arbitrary instance of the ORP. By definition, OPT(L)/vA(L) =

∑
c∈CL

dc/ ∑
b∈BL

db. By Definition 1, ∑
c∈CL

wL(b, c) ≤ db for any job b ∈ BL. Therefore,

OPT(L)
vA(L)

=

∑
c∈CL

dc

∑
b∈BL

db
≤

∑
c∈CL

dc

∑
b∈BL

∑
c∈CL

wL(b, c)
=

∑
c∈CL

dc

∑
c∈CL

(
∑

b∈BL

wL(b, c)

) ≤ max
c∈CL

 dc

∑
b∈BL

wL(b, c)

 ≤ a.

Since L was arbitrary, sup
L∈L(n,∆)

(OPT(L)/vA(L)) ≤ a =⇒ rA(n, ∆) ≤ a.

Appendix C. Proof of Theorem 3

Before proceeding with the proof for Theorem 3, we present Lemma A1 that we will use to
substantiate some intermediate claims in the theorem’s proof.

Lemma A1. Given an instance L, define BL be the set of jobs accepted by Algorithm A and CL be an offline
optimal set. Then, following statements hold true:

1. If n = 1, any job b ∈ BL ∩ CL does not overlap with any other job in CL except itself. Also, any job
c ∈ CL ∩ BL does not overlap with any other job in BL except itself.

2. If Dmax = Dmin, then any job b ∈ BL overlaps with at most 2n jobs in the set CL.
3. If Dmax > Dmin, then for any job b ∈ BL, the jobs in CL that overlap with job b have total duration strictly

less than n (2Dmax + db).

Proof of Lemma A1. Statement 1. Follows directly from the fact that set BL contains only
non-overlapping jobs and that the same holds for set CL.

Statement 2. Set CL contains jobs that would have been selected if we knew the instance L upfront,
and therefore, it can be partitioned into n subsets such that each subset consists only of non-overlapping
jobs. Now, any job in BL can overlap with at most 2 jobs in any one of these subsets. Therefore, any job
b ∈ BL overlaps with at most 2n jobs in the set CL.

Statement 3. Set CL contains jobs that would have been selected if we knew the instance L upfront,
and therefore, it can be partitioned into n subsets such that each subset consists only of non-overlapping
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jobs. Now, for any job b ∈ BL, the total duration of jobs that overlap with job b in any one of the
subsets must be strictly less than 2Dmax + db. Therefore, the total duration of jobs in CL that overlap
with a given job b ∈ BL is strictly less than n (2Dmax + db).

Proof of Theorem 3. We begin by noting that although other well-known arguments may be used
to prove the result for some specific values of n and ∆, but we prove all four statements using the
common framework of allocation schemes and Lemma 1. Given an instance L, define BL to be the set
of jobs accepted by Algorithm A and CL to be the offline optimal set. Then, the individual proofs of
the four statements are as follows.

Statement 1. Given instance L, define function wL : BL × CL 7→ R as follows:

wL(b, c) .
=


Dmin if b ∈ BL ∩ CL and b ≡ c;

Dmin/2 if b and c overlap, b ∈ BL \ CL, and c ∈ CL \ BL; and

0 otherwise.

Claim 1: wL is an allocation scheme from the set BL to the set CL.

Proof of Claim 1. If job b ∈ BL ∩ CL, then it does not overlap with any other job in CL except itself
(Lemma A1), and therefore, ∑

c∈CL

wL(b, c) = wL(b, b) = Dmin ≤ db. Otherwise if job b ∈ BL \ CL,

it cannot overlap with more than 2 jobs in CL \ BL (Lemma A1), and therefore, ∑
c∈CL

wL(b, c) ≤

2 (Dmin/2) = Dmin ≤ db. Therefore, by Definition 1, wL is a valid allocation scheme.

Claim 2: dc/ ∑
b∈BL

wL(b, c) ≤ 2 for any job c in CL.

Proof of Claim 2. If job c ∈ CL ∩ BL, then it does not overlap with any other job in BL except itself
(Lemma A1), and therefore, dc/ ∑

b∈BL

wL(b, c) = wL(c, c)/dc = Dmin/Dmin ≤ 2. Otherwise if job

c ∈ CL \ BL, it must overlap with at least one job in BL \ CL because Algorithm A could not have
declined job c otherwise. Therefore, dc/ ∑

b∈BL

wL(b, c) ≤ dc/ (Dmin/2) = 2.

Since instance L was arbitrary, by Lemma 1 and Theorem 2, the result is proved.

Statement 2. Given instance L, define function wL : BL × CL 7→ R as follows:

wL(b, c) .
=


Dmin if b ∈ BL ∩ CL and b ≡ c;

dc

2∆ + 1
if b and c overlap, b ∈ BL \ CL, and c ∈ CL \ BL; and

0 otherwise.

Claim 3: wL is an allocation scheme from the set BL to the set CL.

Proof of Claim 3. If job b ∈ BL ∩ CL, then it does not overlap with any other job in CL except itself
(Lemma A1), and therefore, ∑

c∈CL

wL(b, c) = wL(b, b) = Dmin ≤ db. Otherwise if job b ∈ BL \ CL,

the total duration of jobs in CL that can overlap with it is strictly less than 2Dmax + db (Lemma A1),

and therefore, ∑
c∈CL

wL(b, c) <
2Dmax + db

2∆ + 1
=

2Dmax + db
2Dmax + Dmin

Dmin ≤
db

Dmin
Dmin = db. Therefore,

by Definition 1, wL is a valid allocation scheme.

Claim 4: dc/ ∑
b∈BL

wL(b, c) ≤ 2∆ + 1 for any job c in CL.
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Proof of Claim 4. If job c ∈ CL ∩ BL, then it does not overlap with any other job in BL except itself
(Lemma A1), and therefore, dc/ ∑

b∈BL

wL(b, c) = dc/wL(c, c) = Dmin/Dmin ≤ 2∆ + 1. Otherwise if job

c ∈ CL \ BL, it must overlap with at least one job in BL \ CL because Algorithm A could not have

declined job c otherwise. Therefore, dc/ ∑
b∈BL

wL(b, c) ≤ dc/
(

dc

2∆ + 1

)
= 2∆ + 1.

Since instance L was arbitrary, by Lemma 1, rA ≤ 2∆ + 1. We will now prove a matching lower
bound. Let β > 0 be arbitrarily large and ε > 0 be arbitrarily small. Consider instance L in which
the jobs arrive in following sequence: (β, Dmin + 2ε), (β + ε − Dmax, Dmax), (β + ε, Dmin), (β + ε +

Dmin, Dmax). Each 2-tuple represents a job, with first value being the start time and the second being the
duration. Then, OPT(L)/vA(L) = (Dmin + 2Dmax)/(Dmin + 2ε). Therefore, (Dmin + 2Dmax)/(Dmin +

2ε) ≤ rA. Since ε was arbitrary, this inequality holds for every ε, letting ε→ 0 gives us the matching
lower bound, 2∆ + 1 ≤ rA.

Statement 3. Given instance L, define function wL : BL × CL 7→ R as follows:

wL(b, c) .
=


Dmin/3 if b ∈ BL ∩ CL and b ≡ c;

Dmin/(3n) if b and c overlap, and b 6≡ c; and

0 otherwise.

Claim 5: wL is an allocation scheme from the set BL to the set CL.

Proof of Claim 5. For any job b in BL, at most 2n jobs from CL \ {b} can overlap with it (Lemma A1),
and therefore, ∑

c∈CL\{b}
wL(b, c) ≤ 2nDmin/3n = 2Dmin/3. Further, if b ∈ BL ∩ CL, wL(b, b) = Dmin/3.

Therefore, for any job b ∈ BL, ∑
c∈CL

wL(b, c) ≤ 2Dmin/3 + Dmin/3 = Dmin = db. Hence, by Definition 1,

wL is an allocation scheme.

Claim 6: dc/ ∑
b∈BL

wL(b, c) ≤ 3 for any job c in CL.

Proof of Claim 6. If job c ∈ CL ∩ BL, then dc/ ∑
b∈BL

wL(b, c) ≤ dc/wL(c, c) = Dmin/ (Dmin/3) = 3.

Otherwise if job c ∈ CL \ BL, it must overlap with at least n jobs in BL because Algorithm A could not
have declined job c otherwise. Therefore, dc/ ∑

b∈BL

wL(b, c) ≤ Dmin/ (nDmin/(3n)) = 3.

Since instance L was arbitrary, by Lemma 1, the result is proved.

Statement 4. Given instance L, define function wL : BL × CL 7→ R as follows:

wL(b, c) .
=


dc

2∆ + 2
if b ∈ BL ∩ CL and b ≡ c;

dc

n(2∆ + 2)
if b and c overlap, and b 6≡ c; and

0 otherwise.

Claim 7: wL is an allocation scheme from the set BL to the set CL.

Proof of Claim 7. For any job b in BL, jobs from CL \ {b} that overlap with it have total duration
strictly less than n(2Dmax + di) (Lemma A1), and therefore,

∑
c∈CL\{b}

wL(b, c) <
n(2Dmax + db)

n(2∆ + 2)
=

2∆ + 1
2∆ + 2

2Dmax + db
2∆ + 1

=
2∆ + 1
2∆ + 2

2Dmax + db
2Dmax + Dmin

Dmin

≤ 2∆ + 1
2∆ + 2

db
Dmin

Dmin =
2∆ + 1
2∆ + 2

db.
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Further, if b ∈ BL ∩ CL, wL(b, b) = db/ (2∆ + 2). Therefore, for any job b ∈ BL, ∑
c∈CL

wL(b, c) ≤ db.

Hence, by Definition 1, wL is an allocation scheme.

Claim 8: dc/ ∑
b∈BL

wL(b, c) ≤ 2∆ + 2 for any job c in CL.

Proof of Claim 8. If job c ∈ CL ∩ BL, then dc/ ∑
b∈BL

wL(b, c) ≤ dc/wL(c, c) = 2∆ + 2. Otherwise if job

c ∈ CL \ BL, it must overlap with at least n jobs in BL because Algorithm A could not have declined
job c otherwise. Therefore, dc/ ∑

b∈BL

wL(b, c) ≤ dc/ (ndc/ (n(2∆ + 2))) = 2∆ + 2.

Since instance L was arbitrary, by Lemma 1, rA ≤ 2∆ + 2. We will now prove the lower bound.
Let β > 0 be arbitrarily large and ε > 0 be arbitrarily small. Consider instance L in which the jobs
arrive in following sequence: (β, Dmin + 2ε), . . . , (β, Dmin + 2ε)︸ ︷︷ ︸

n

,

(β + ε− Dmax, Dmax), . . . , (β + ε− Dmax, Dmax)︸ ︷︷ ︸
n

, (β + ε, Dmin), . . . , (β + ε, Dmin)︸ ︷︷ ︸
n

,

(β + ε + Dmin, Dmax), . . . , (β + ε + Dmin, Dmax)︸ ︷︷ ︸
n

. Each 2-tuple represents a job, with first value being the

start time and the second being the duration. Then, OPT(L)/vA(L) = n(Dmin + 2Dmax)/(n(Dmin +

2ε)). Therefore, (Dmin + 2Dmax)/(Dmin + 2ε) ≤ rA. Since ε was arbitrary, this inequality holds for
every ε, letting ε→ 0 gives us the lower bound, 2∆ + 1 ≤ rA.

Appendix D. Proof of Statement 4 in Theorem 4

Before presenting the proof for Theorem 4, we present Lemma A2 that is required for supporting
intermediate claims in the proof for Theorem 4 and other subsequent proofs.

Lemma A2. Consider job i that overlaps with k > 0 jobs, none of which overlap with each other. Let a be
the duration of the smallest of the k + 1 jobs under consideration, and let b be the duration of the largest.
Then, di/k ≥ a/2 if a = b and di/k ≥ a/3 if a < b.

Proof of Lemma A2. If a = b, then all the jobs are of the same duration, and therefore, job i cannot
overlap with more than two jobs. Thus, k ≤ 2 and di/k ≥ a/2. Otherwise, a < b. When k ≤ 2,
di ≥ a =⇒ di/k ≥ a/2 ≥ a/3. Otherwise, if k ≥ 3, then at least k− 2 jobs start after si, the start
time of job i, and end before si + di, the end time of job i. Therefore, di ≥ (k − 2)a =⇒ di/k ≥
((k− 2)a) /k ≥ a/3.

Proof of Statement 4 in Theorem 4. Given n and D, denote t (n, ∆) by t. Given an instance L, define
BL to be the set of jobs accepted by Algorithm D and CL to be the offline optimal set. Define function
wL : BL × CL 7→ R as follows:

wL(b, c) .
=


dc/(t + 1) if b ∈ BL ∩ CL and b ≡ c;

tφ(i)/((t + 1)3n) if b and c overlap, b 6≡ c, b is assigned to server i, φ(i) ≤ dc; and

0 otherwise.

Claim 9: wL is an allocation scheme from the set BL to the set CL.

Proof of Claim 9. For any given job b ∈ BL that is placed assigned to server i by Algorithm D,
a non-zero allocation from job b was made to jobs in the set CL \ {b} that have duration greater than
or equal to φ(i), and also to job b itself if it belongs to BL ∩ CL. Set CL contains jobs that would
have been selected if we knew the instance L upfront, and therefore, the sets CL and CL \ {b} can
be partitioned into n subsets such that each subset consists only of non-overlapping jobs. Let D
denote one of such n subsets of CL \ {b}, and let M be the number of jobs in D with duration
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greater than or equal to φ(i). Then, ∑
d∈D

wL(b, d) ≤ Mtφ(i)/((t + 1)3n). If M > 0, by Lemma A2,

db/M ≥ φ(i)/3 =⇒ ∑
d∈D

wL(b, d) ≤ tdb/((t + 1)n). This also holds true if M = 0. Since there are n

subsets in the partition of CL \ {b}, we have ∑
c∈CL\{b}

wL(b, c) ≤ tdb/(t + 1). The only other non-zero

allocation from job b could have been to itself if job b ∈ BL ∩ CL, and this allocation is less than or
equal to db/(1 + t). Thus, ∑

c∈CL

wL(b, c) ≤ tdb/(t + 1) + db/(t + 1) = db. Therefore, by Definition 1,

wL is an allocation scheme.

Claim 10: dc/ ∑
b∈BL

wL(b, c) ≤ t + 1 for any job c in CL.

Proof of Claim 10. Consider any job c in CL and let m be the largest integer in [n] such that φ(m) ≤ dc.
By definition of t, dc ≤ φ(m + 1). If job c belongs to the set CL \ BL, then it was rejected by Algorithm
D. Therefore, it must overlap with at least one job assigned to each one of the servers 1, 2, . . . , m,

where I ≤ m ≤ n. Therefore, ∑
b∈BL

wL(b, c) ≥
m
∑

i=1
tφ(i)/((t + 1)3n) = φ(m + 1)/(t + 1) ≥ dc/(t + 1).

Otherwise, if job c belongs to the set CL ∩ BL, ∑
b∈BL

wL(b, c) ≥ wL(c, c) = dc/(t + 1). Therefore, for any

job c in CL, dc/ ∑
b∈BL

wL(b, c) ≤ t + 1.

Since instance L was arbitrary, by Lemma 1, the result is proved.

Appendix E. Proof of Statements 2 and 4 in Theorem 5

Proof. We begin by presenting some notation. L denotes an arbitrary instance, CL denotes offline
optimal set for L, NL(x) denotes the total number of jobs with duration equal to x in CL, Lx denotes
the sequence of jobs obtained by removing all jobs with duration strictly less than x from L, Cx

L denotes
the subset of jobs obtained by removing all jobs with duration strictly less than x from CL, Bx

L denotes
the set of jobs accepted by Algorithm R from instance L when sampled threshold is x, g(x) denotes the
total duration of jobs in the set Bx

L, and E denotes the set {distinct durations of jobs in L} ∪ {Dmin}
such that E = {x1, x2, . . . , xk} and Dmin = x1 < x2 < . . . < xk ≤ Dmax. Define p1

.
= µ(x1) and

pi
.
= µ(xi)− µ(xi−1) for i = 2, . . . , k.

Statement 2. Algorithm R effectively chooses xi as threshold with probability pi for i ∈ [k]. Consider the
run of algorithm when R chooses xi as the threshold. Define function wxi

L : Bxi
L × Cxi

L 7→ R as follows:

wxi
L (b, c) .

=


dc if b ∈ Bxi

L ∩ Cxi
L and b ≡ c;

xi/3 if b and c overlap, b ∈ Bxi
L \ Cxi

L , and c ∈ Cxi
L \ Bxi

L ; and

0 otherwise.

Claim 11: wxi
L is an allocation scheme from the set Bxi

L to the set Cxi
L .

Proof of Claim 11. If job b ∈ Bxi
L ∩ Cxi

L , then it does not overlap with any other job in CL except
itself (Lemma A1), and therefore, ∑

c∈C
xi
L

wxi
L (b, c) = wxi

L (b, b) = db. Otherwise if job b ∈ Bxi
L \ Cxi

L ,

the only non-zero allocations from job b are to jobs in Cxi
L \ Bxi

L . Let M be the number of jobs in
Cxi

L \ Bxi
L that overlap with job b. Therefore, ∑

c∈C
xi
L

wxi
L (b, c) ≤ Mxi/3. If M > 0, by Lemma A2,

db/M ≥ xi/3 =⇒ ∑
c∈C

xi
L

wxi
L (b, c) ≤ db. This also holds true if M = 0. Therefore, by Definition 1, wxi

L is

a valid allocation scheme.
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Now, any job c ∈ Cxi
L either belongs to Bxi

L ∩ Cxi
L , in which case ∑

b∈B
xi
L

wxi
L (b, c) ≥ wxi

L (c, c) = dc ≥

xi ≥ xi/3, or belongs to Cxi
L \ Bxi

L , in which case it is rejected because it overlaps with at least one job in
Bxi

L \ Cxi
L and hence, ∑

b∈B
xi
L

wxi
L (b, c) ≥ xi/3. Therefore, for any job c ∈ Cxi

L , ∑
b∈B

xi
L

wxi
L (b, c) ≥ xi/3. Hence,

g(xi) = ∑
b∈B

xi
L

db ≥ ∑
b∈B

xi
L

∑
c∈C

xi
L

wxi
L (b, c) = ∑

c∈C
xi
L

∑
b∈B

xi
L

wxi
L (b, c) ≥ ∑

c∈C
xi
L

xi/3 =
k

∑
j=i

N(xj)xi/3

=⇒

k
∑

i=1
pig(xi)

OPT(L)
≥

k
∑

i=1
pixi

k
∑
j=i

N(xj)

3OPT(L)
=

k
∑

i=1
N(xi)

i
∑

j=1
pjxj

3OPT(L)
=

k
∑

i=1
N(xi)p1x1 +

k
∑

i=2
N(xi)

i
∑

j=2
pjxj

3OPT(L)

For any i = 2, . . . , k,
i

∑
j=2

pjxj ≥
∫ xi

x1

dµ

dx
xdx =

∫ xi
x1

x dx
x(1 + ln ∆)

=
xi − x1

(1 + ln ∆)
. Further,

k
∑

i=1
pig(xi) =

vR(L). Therefore,

OPT(L)
vR(L)

≤ 3(1 + ln ∆)OPT(L)
k
∑

i=1
N(xi)x1 +

k
∑

i=2
N(xi)(xi − x1)

=
3(1 + ln ∆)

k
∑

i=1
xi N(xi)/OPT(L)

= 3(1 + ln ∆)

because OPT(L) =
k
∑

i=1
xi N(xi). Since L was arbitrary, the result is proved.

Statement 4. Algorithm R effectively chooses xi as threshold with probability pi, i ∈ [k]. Consider the
run of algorithm when R chooses xi as the threshold. Define function wxi

L : Bxi
L × Cxi

L 7→ R as follows:

wxi
L (b, c) .

=


dc/4 if b ∈ Bxi

L ∩ Cxi
L and b ≡ c;

xi/(4n) if b and c overlap, and b 6≡ c; and

0 otherwise.

Claim 12: wxi
L is an allocation scheme from the set Bxi

L to the set Cxi
L .

Proof of Claim 12. For any given job b ∈ Bxi
L , a non-zero allocation from job b was made to jobs in

Cxi
L \ Bxi and also to job b itself if it belongs to Bxi

L ∩ Cxi
L . Now, the set of jobs in Cxi \ Bxi that overlap

job b can be partitioned into n subsets such that no two jobs overlap in each subset. This is possible
because a valid assignment of jobs in C ⊇ Cxi

L \ Bxi
L to the n servers must exist by definition of C. Let D

denote one of these subsets, and let M be the number of jobs in it. Then ∑
d∈D

wxi
L (b, d) ≤ Mxi/(4n).

If M > 0, by Lemma A2, db/M ≥ xi/3 =⇒ ∑
d∈D

wxi
L (b, d) ≤ 3db/(4n). This also holds true if M = 0.

Because there are n subsets in the partition, ∑
c∈c

xi
L \{b}

wxi
L (b, d) ≤ n3db/(4n) = 3db/4. Also, if job

b ∈ Bxi
L ∩ Cxi

L , wxi
L (b, b) = db/4. Therefore, ∑

c∈c
xi
L

wxi
L (b, d) ≤ 3db/4 + db/4 = db. Hence, by Definition 1,

wxi
L is a valid allocation scheme.

Now, any job c ∈ Cxi
L either belongs to Bxi

L ∩Cxi
L , in which case ∑

b∈B
xi
L

wxi
L (b, c) ≥ wxi

L (c, c) = dc/4 ≥

xi/4, or belongs to Cxi
L \ Bxi

L , in which case it is rejected because it overlaps with at least n jobs in Bxi
L and

hence, ∑
b∈B

xi
L

wxi
L (b, c) ≥ nxi/(4n) = xi/4. Therefore, for any job c ∈ Cxi

L , ∑
b∈B

xi
L

wxi
L (b, c) ≥ xi/4. Hence,
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g(xi) = ∑
b∈B

xi
L

db ≥ ∑
b∈B

xi
L

∑
c∈C

xi
L

wxi
L (b, c) = ∑

c∈C
xi
L

∑
b∈B

xi
L

wxi
L (b, c) ≥ ∑

c∈C
xi
L

xi/4 =
k
∑
j=i

N(xj)xi/4. We then

follow steps similar to those for the proof of Statement 2 to get the desired result.

Appendix F. Upper Bound on CR of the Algorithm Presented in [10]

The algorithm proposed by Gupta and Li [10] has two additional parameters α and DT that can
be tuned as desired by the owner. Note that any value of α and DT is permissible as long as α > 1,
Dmin < DT < Dmax, and DT/Dmin > α.

Gupta and Li [10] prove that the CR of their algorithm when n = 1 is bounded from above by the

largest value amongst
(α3 − 1)α2[(α− 1) logα(DT/Dmin) + 1])

(α− 1)3 ,
2α2[(α− 1) logα(DT/Dmin) + 1]

(α− 1)2 , and

2[(Dmax/DT) + (α/(α− 1))][(α− 1) logα(DT/Dmin) + 1]
α− 1

. They further prove that the bound is twice

as large when n > 1.
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