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Abstract: Wind offers an environmentally sustainable energy resource that has seen increasing
global adoption in recent years. However, its intermittent, unstable and stochastic nature hampers
its representation among other renewable energy sources. This work addresses the forecasting
of wind speed, a primary input needed for wind energy generation, using data obtained from
the South African Wind Atlas Project. Forecasting is carried out on a two days ahead time
horizon. We investigate the predictive performance of artificial neural networks (ANN) trained
with Bayesian regularisation, decision trees based stochastic gradient boosting (SGB) and generalised
additive models (GAMs). The results of the comparative analysis suggest that ANN displays
superior predictive performance based on root mean square error (RMSE). In contrast, SGB shows
outperformance in terms of mean average error (MAE) and the related mean average percentage
error (MAPE). A further comparison of two forecast combination methods involving the linear and
additive quantile regression averaging show the latter forecast combination method as yielding lower
prediction accuracy. The additive quantile regression averaging based prediction intervals also show
outperformance in terms of validity, reliability, quality and accuracy. Interval combination methods
show the median method as better than its pure average counterpart. Point forecasts combination
and interval forecasting methods are found to improve forecast performance.

Keywords: additive quantile regression averaging; forecasts combination; machine learning; point
and interval forecasting; renewable energy; wind energy

1. Introduction

1.1. Background

The reduction in conventional energy sources, skyrocketing prices of fossil fuels, along with
the attendant effect on environmental degradation and pollution from the emission of greenhouse
gases (GHG), as well as global warming, necessitates the use of renewable energy sources [1,2].
Amongst various forms of renewable energy sources, the wind is an efficient, affordable, pollution-free,
renewable and abundant energy source [3,4]. Recently, wind energy generated in the world has
increased to a 250-GW cumulative wind power capacity as of 2012, and it is projected to increase to
800 GW by 2021 according to world wind energy association (WWEA) [3,4]. Wind energy generation
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with many promising prospects, however, is faced with the challenge of the variability of the wind
speed. The fluctuating, intermittent and stochastic nature of the wind makes predicting power
generation a huge task [5]. In addition, the non-linear, non-stationary characteristics of the wind speed
temporal series make accurate forecasting of power generation difficult [4]. Wind speed is the main
wind information amongst others. Its predictability is essential for assessing wind energy exploitation
purpose such as wind power generation. Hence, accurate wind speed prediction helps in maximising
wind power generating facilities by reducing mistakes and economic cost involved in the planning
and effective running of such facilities [6].

Wind speed prediction methods for electrical energy exploitation purpose gained attention in
recent research. Most literature lists different methods for wind speed/power forecasting some of
which are the persistence, numerical, statistical and hybrid methods [7,8]. The statistical methods
are seen as including the artificial intelligence (AI) methods, especially the artificial neural networks
(ANN) method. ANN is a black-box statistical method and non-ANN methods are seen as grey-box
statistical methods [8]. Other authors, however, classify the AI methods as being non-statistical and
broadly classify wind speed/power forecasting methods into conventional statistical methods and AI
methods [2,4,9]. Statistical methods are based on statistical time series using the previous history of
wind data to forecast over the next short period, say, 1h. Models based on statistical methods are easy
to use and develop. They adjust their parameters through the difference between their predicted and
actual wind speed [4]. AI methods, on the other hand, make use of machine learning (ML) models such
as neural networks (NN) and gradient boosting machines (GBMs) [2]. ML-based models make use of
non-statistical approaches in knowing the relationship between input and output [4,10]. Statistical
methods and ML methods, especially the NN methods, are both suited for short-term forecasting.
The persistence method is used for very short-term predictions in the operation of wind turbines.
The physical models make use of mathematical models of the atmosphere (such as numerical weather
prediction (NWP)) and statistical distributions on physical quantities such as barometric pressure for
forecasting. The hybrid models use a combination of any of these models especially the statistical
models and machine learning models for forecasting [4,7].

Several forecasting techniques have been studied and further classified based on time scales
and the type of model. While some authors used different time horizons in classifying forecast
time scales into ultra short-term (few seconds or minutes), short-term (from minutes into hours),
medium-term (hours and days) and long-term (weeks, month and year) [2,4], others classify forecasts
ranging from hours to few days as short-term forecasting time horizon [8,9]. On the other hand,
wind forecasting models are classified into deterministic and probabilistic forecasting models [11].
Moreover, an investigation into techniques for forecasting wind speed useful for wind power
generation is herein reported. Our approach involves two days ahead wind speed forecasting, using
both deterministic and probabilistic approaches on a dataset containing wind meteorology data from a
wind farm in Western Cape province, South Africa.

Statistical and ML methods are used for point and interval forecasting of wind speed.
These methods are evaluated individually and combined to improve the forecasts. Statistical methods,
such as statistical learning, make use of models such as autoregressive (AR), moving average
(MA) or both (ARMA) and for non-stationary data makes use of autoregressive integrated moving
average models (ARIMA). The conventional statistical learning techniques are the ARIMA models [2].
Other statistical learning techniques involving generalised additive models (GAMs) can also be used
for wind speed forecasting [12]. Furthermore, a combination of forecasts from these methods, with the
evaluated level of certainty using various point and interval forecasting metrics are discussed in
this paper.

1.2. Review of Literature on Forecasting Techniques and Research Highlights

The approach employed in this paper only uses other covariates in a wind meteorology dataset to
forecast wind speed and does not extend to wind power forecasting using the power curve and other
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methods, as discussed in [8,11]. In light of this, the authors present an account of forecasting techniques,
the dataset used and conclusions based on the evaluation metrics used from relevant literature.
The work of Chen and Folly [2] has the same source of wind meteorology dataset used for this research,
using the ARIMA model, ANN and the adaptive neuro-fuzzy inference systems (ANFIS). The results
show that ANN and ANFIS performed better for the ultra-short-term, while the ARIMA model
performed better for the short-term, 1 h ahead wind speed and wind power forecasting using RMSE
and MAE. A comparison of four wind forecasting models was done by Barbosa de Alencar et al. [4]
involving ARIMA, hybrid ARIMA with a NN, ARIMA hybridised with two NNs and a NN on a
SONDA dataset in all time scale forecast horizons. Using four evaluation metrics, the hybridised
ARIMA with two neural networks outperformed the rest of the models.

In [5], a wavelet-based NN forecast model, applicable to all seasons of the year, is used to
predict the short-term wind power. Accurate forecasts using the normalised MAE (NMAE) and
normalised RMSE (NRMSE) were recorded from the use of less historical data and a less complex
model. A statistical approach to the wind power grid forecasting is discussed in [13]. The authors used
wind scale forecasting modelling technology involving correlation matrix of output power and forecast
accuracy coefficients. RMSE and MAE were used to evaluate the accuracy of the forecasts. A short-term
wind farm power output prediction model using fuzzy modelling derived from raw data of wind farm
is presented in [14]. This model was validated using the RMSE of the train set and the test set. The fuzzy
model outperformed the NN model and was also able to provide an interpretable structure which
reveals rules for the qualitative description of the prediction system. An investigation into accurate
wind speed prediction using mathematical models is reported in [6]. The mathematical models used
were the Holt–Winters, ANN and hybrid time series models on SONDA and SEINFRA/CE data.
Using MAE and RMSE for model evaluation, the hybrid model presented lesser errors amongst the
other models.

An investigation comprising three types of backpropagation NN variants, Levenberg–Marquardt,
Scaled conjugate gradient (SCG) and Bayesian regularisation, for a feed-forward multilayer perceptron
was carried out by Baghirli [15]. Using the statistical metrics of MAPE, SCG was found to outperform
the rest. The Levenberg–Marquardt algorithm was used to train ANN ensembled with NWP to
form a hybrid approach [7]. This outperformed the benchmark quantile regression (QR) based
probabilistic method for wind power forecasting evaluated using NNAE and NRMSE [7]. The work
of Mbuvha [16] on the use of Bayesian regularisation backpropagation algorithm to short-term wind
power forecasting was seen as a viable technique for reducing model over-fitting. Quantifying
uncertainty in forecasts due to variability drives the work of Liu et al. [17]. Quantile regression
averaging (QRA) method for generating prediction intervals (PIs) from combined point load forecasts
generated from regression models on a publicly available dataset from Global Energy Forecasting
Competition 2014 (GEFC0m2014) was used. Pinball loss function and Wrinkler score were used to
evaluate the performance of this model for a day ahead forecast and recorded better PIs than did the
benchmark vanilla methods [17].

Wang et al. [18] combined probabilistic load forecasts using a constrained quantile regression
averaging (CQRA) method, an ensemble, formulated as a linear programming (LP) problem. In this
study, an ISO NE and CER dataset were used. The CQRA method outperformed the individual
models [18]. Nowotarski and Weron [19] investigated interval forecasting using QRA to construct PIs
on a dataset from GDF Suez website. The QRA method outperformed the 12 constituent models using
PI coverage percentage (PICP) and PI width (PIW) in forecasting electricity spot prices. Using extreme
learning machine, optimised with a two-step symmetric weighted objective function and particle
swarm optimisation, a deterministic forecast with a quantifiable prediction uncertainty was used
by Sun et al. [20]. This was carried out on benchmark datasets and real-world by-product gas datasets.
The results using PICP, prediction interval normalised average width (PINAW) and prediction interval
normalised average deviation (PINAD) showed high-quality PIs constructed for by-product gas
forecasting application.
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Using wavelet neural networks (WNN), Shen et al. [21] quantified the potential uncertainties of
wind power forecasting via constructing prediction intervals using wind power data on an Alberta
interconnected electric system. The prediction intervals constructed were evaluated using PICP and PI
covered-normalised average width (PICAW). Indices such as coverage width-based criterion (CWC)
and PI multi-objective criterion (PIMOC) including PINAW, PICAW and PICP were also used to
evaluate their models. The PIs constructed from PIMOC were the most accurate compared to those
based on the other prediction interval methods. The EKMOABC optimised WNN is the proposed
method compared with WNN optimised with multi-objective particle swarm optimisation (MOPSO)
and non-dominated sorting genetic algorithm II (NSGAII) [21]. The need to quantify the uncertainty
and risk associated with point forecasts through probabilistic forecasting drives the work of Abuella
and Chowdhury [22]. Using an ensemble learning tool, the random forest for combining individual
models and hourly-ahead combined point forecasts were obtained. This was used for obtaining
the ensemble based probabilistic solar power forecasts. The comparison carried out on one year of
Australian year data showed that the ensemble-based and analogue ensemble-based probabilistic
forecast have similar accuracy using the pinball loss function. For extensive reviews on probabilistic
wind power forecasting, wind power generation and wind energy forecasting management and
operational challenges, see [3,8,23], respectively.

GAMs are suitable for exploring the dataset and visualising the relationship between the
dependent and independent variables [24]. Goude et al. [25] used GAMs in modelling electricity
demand for the French distribution network at both short- and medium-term time scales for more
than 2200 substations. Drivers of the load consumption were modelled using GAM and compared
with the operational one in [26]. GAM is good for interpretability, regularisation, automation and
flexibility [24]. It finds a balance between the biased and yet interpretable algorithm, linear models and
extremely flexible black-box learning algorithm composing the movement, seasonality and climate
change variables. GAM was fitted on weekly load demand in [27]. The existence of functional form
trend between two variables and their shape whether linear or non-linear, should it exist, was examined
using GAMs by Shadish et al. [28].

Given the approaches used in existing literature for various kinds of forecasting, it is evident
that the methods employed in this study have been used on different datasets around the world and
evaluated, mostly using the same metrics we employ. The approach involves a comparative use of
three such methods for point forecasting and two other methods for combining forecasts in which one
of these two methods were used for interval forecasting using a dataset created and curated in South
Africa. This was done to ascertain the viability of our methods for point forecasting of wind speed and
interval forecasting. Another highlight in this paper is the use of GAMs for wind speed forecasting.
We observe a dearth of GAM for wind speed forecasting in literature. To the best of our knowledge,
we present the first-time use of GAM for wind speed forecasting. The rest of this paper is organised as
follows. Section 2 presents the various models employed. Section 3 presents the results. A discussion
of the results is presented in Section 4. We conclude the paper in Section 5.

2. Models

2.1. Artificial Neural Network

Artificial Neural networks (ANNs) are mathematical means of computation inspired by the
field of biology, especially the nervous system. They simulate the biological neuron in the human
brain [1,29]. ANNs can learn, be taught and generalise to new experiences. They are characterised
as robust and self coordinating and are popularly useful in most areas. The architecture is built
of many neurons organised in three major layers of input, hidden and output layers, respectively.
Mathematically, ANNs can be formulated as:
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Yk = ϕ(Σ(x1w1 + x2w2 + x3w3 + · · ·+ xkwk) + βk)

Yk = ϕ(uk − θk)

uk =
k

∑
i=1

xiwi

βk = −θk.

(1)

From Equation (1), a composite formulation of an ANN can be inferred. While the first two lines give
the overall formulation for ANN, the last two lines explain the unit terms. The symbol ϕ denotes the
activation or transfer function, which can be sigmoid, threshold, piece-wise and identity function; βk is
the bias; θk is the threshold; uk is the weighted sum; wi is the weight at neuron i; and xi are data points.

The training algorithm used for this research is the backpropagation algorithm (Bayesian
regularised), used for training the multilayer perceptron neural networks. This algorithm is chosen
because it generalises well with small and messy datasets and therefore reduces over fitting [2,16].
In Equation (2), wij interconnects the ith output Oi from neuron i to its jth input neuron, if the neuron
at layer k is not an input neuron then its state can be formulated mathematically as:

Ok = f (∑
i

wijOi), (2)

where f (x) = 1/(1 + e−x) is the sigmoid activation function, the summation is done in all neurons in
all the layers. The backpropagation training algorithm works in the following order:

1. Select the paired input-target vectors from the training dataset and apply to the ANN input nodes.
2. Process the network output.
3. Compute the errors between the network output and the target.
4. Minimise the errors by adjusting the neuron weights connection.
5. Repeat Steps 1–4 for all the paired input–target vectors in the training set until a reasonable error

is reached for the entire set or terminating criterion is satisfied.

The resulting mathematical formulation of the backpropagation algorithm is seen in Equation (3).

∆Wk
ij(n + 1) = εδjOi + α∆Wk

ij(n), (3)

where n represents the number of iterations, ε represents the learning rate, α is the momentum term
and δj checks if neuron j is an output layer. In this study, ANN trained with Bayesian regularised
algorithm is the main model whose accuracy was measured against SGB and GAM as bench mark
models in point forecasting of wind speed.

2.2. Benchmark Models

2.2.1. Stochastic Gradient Boosting (SGB)

The gradient boosting machine and gradient tree-boost were the terms previously used for
gradient boosting when it was implemented newly by Friedman [30]. Gradient boosting is a machine
learning model used for classification and regression problems [31]. It stage-wisely builds weak
predictive models generalised by optimisation of an arbitrary differentiable function. The statistical
framework of gradient boosting describes it as an optimisation problem which minimises the loss
in a model by a stage-wise addition of weak learners to the models using a gradient descent
procedure [30,31]. Gradient descent traditionally minimises a set of parameters such as coefficients
of covariates or ANN weights through loss or error calculation and weight update [32]. The weak
learners are organised in substructures or decision trees that replace the parameters. Parameterised
tree is added to the model, thereby reducing the error and the residual losses using the parameters of
the trees following the direction of the gradient [32]. The gradients spot the error in the weak learners.
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The major drawback to the gradient boosting is that it is a greedy algorithm that can easily over fit
training data [32,33]. One of the variants of gradient boosting is the stochastic gradient boosting (SGB)
formed by taking a random sample of the training dataset without replacement [30,32]. Its general
formulation is given in Equation (4).

F(x) =
M

∑
m=1

βmh(x; γm), (4)

where h(x; γm) ∈ R are functions of x with parameters γm and βm which limit over fitting [32,33].

2.2.2. Generalised Additive Models (GAMs)

GAMs are models which allow for an additive relationship between its dependent and
independent variables [34]. GAMs are more flexible compared to the Generalised linear models (GLMs)
which allow for a functional relationship between response and predictor variables. GAMs make use
of non-linear forms and smooth functions of predictor variables in modelling that is applicable in
different forms. A GAM can be formulated in its simplest form as given in [34]:

g(µt) = Aθ +
p

∑
j=1

f j(xjt) + εt, Yt ∼ EF(ut, φ) t = 1, · · · , n, (5)

where Yt represents the univariate response variable from an exponential family distribution having
mean ut, φ is the scale parameter, g represents the smooth monotonic link function, A is a design
matrix, θ represents an unknown parameter vector, f j is an unknown smooth function of the predictor
variable xj that may have a vector value and εt denotes independent identical distribution random
errors [34,35].

2.3. Forecasts Combination

Wind speed forecasting presented in this paper requires prediction of very accurate forecasts.
One way to do this is through forecast combination of forecasts from individual models, ANN, SGB
and GAM. Combining of forecasts was first introduced by Bates and Granger [36] as a viable way of
achieving improved forecasts. Forecasts combination is an approach for ensuring increased forecast
accuracy and error variability [36]. The theoretical justification for forecasts combination involves
testing and averaging individual forecast models according to their probabilities when the problem is
viewed from the perspectives of Bayesian model average (BMA) [37].

Forecast combination is important because it provides a means of compensating for the drawbacks
in component forecasts. It helps to avoid the risk involved in using one forecast and also provides
a way of benefiting from various interactions among component forecasts [18]. The motivation for
forecasts combination lies in the following: possibility for insufficiency of forecasts from individual
component models, forecasts from the components are from different and complementary perspectives,
considerable grounds are covered from component forecasts which gives a complete picture of the
forecasts when combined, improved forecasts accuracy due to the effects of model uncertainties,
structural breaks and model mis-specification being forestalled by forecasts combination [18].
Depending on the forecasting intervals, the loss function is an important parameter in forecasts
combination. It is the main performance evaluation criterion and the sole ingredient in forecasts
combination formulae [38]. Forecasts combination schemes, involving adaptive forecast combination
schemes and regression-based combinations make use of a loss function for combining forecasts [38].
While convex combination of models make use of various algorithms based on minimising losses
from pinball, absolute error, percentage error and square losses, a regression-based approach on the
other hand is quantile regression averaging (QRA), used for combining forecasts and computing
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prediction intervals [38]. The forecasts combination method presented in this paper is according to
those discussed in [31,38] and given in Equation (6)

yi,q =
K

∑
k=1

wi,k,qŷi,k + εi,q q ∈ (0, 1) i = 1, · · ·, m, (6)

where yi,q is the combined forecast for the wind speed; k is the number of forecasting methods used to
predict the next observation i of yi,q, in our case k = 3, since forecasts combination method employed
combines three methods; m is the total number of points used for each of the forecast models; wi,k,q is
the weight assigned to each forecast model ŷi,k; and εi,q is an error term.

2.3.1. Quantile Regression Averaging

Simple average methods of forecast combination from individual point forecasts use equal weight
and have proven to be a viable means of improving forecast accuracy [37]. However, the inability of
the interval forecasts resulting from point forecasts of simple average combined models to ensure a
nominal coverage rate requires the application of unequal weights in the forecast combination [19].
The estimation of interval forecasts follow a complex process and involves applying weights based
on the quantiles [39]. Quantile regression (QR) thus processes and applies quantile-based weights to
individual point forecasts from a number of forecasting models to give interval forecasts with nominal
coverage rate that can be used to ascertain the uncertainties in the combined forecasts as well as in the
individual forecasting models. To combine point forecasts from individual models, we present the use
of QRA methods to generate interval forecasts for the forecasting process. Along with the combined
interval forecasts, we also generate interval forecasts from individual forecast models by using QRA to
assess the uncertainties in each constituent model comparable to that of the combined model. The QR
problem can be expressed as Equation (7), as given by Nowotarski and Weron [19]:

Qy(q|Xi) = Xiβq, (7)

where Qy(q|.) stands as the conditional qth quantile of the actual wind speed (yi), Xi are the
independent variables and βq is a vector of quantile q parameters estimated by minimising a loss
function for a qth quantile using Equation (8).

min
βq

{
∑

(nyi≥Xi βq)

q|yi−Xiβq|+ ∑
(nyi<Xi βq)

(1− q)|yi−Xiβq|
}
= min

βq

{
∑

i
(q− Iyi<Xi βq)(yi−Xiβq)

}
, (8)

where yi is the actual wind speed and Xi = [1, ŷ1, · · · ŷk, i] is the vector of point forecasts from K
individual forecasting models and I is an indicator function.

2.3.2. Linear Quantile Regression Averaging

Linear quantile regression averaging (LQRA) is a specific type of QR averaging defined in
Section 2.3. It contains a model involving the response variable and the independent variables of the
combined forecasts. Let yiq be the wind speed forecast for the next two days, with K total number of
methods for predicting the next observation, yi+1, yi+2··· of yi+Kq ; the combined forecasts are expressed
by Equation (9), as given in [12].

ŷLQRA
iq = β0 +

K

∑
k=1

βk ŷik + εiq, (9)

where ŷik represents the forecast from kth method, ŷLQRA
iq is the combined forecast and εiq is the error

term. We seek to minimise Equation (10)
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arg min
β

( N

∑
i=1

ρq(ŷ
LQRA
i − β0 −

K

∑
k=1

βi ŷik)
)
. (10)

We express Equation (10) in reduced matrix form [40] analogous to Equation (8), as seen in
Equation (11):

arg min
β∈Aρ

[
∑

i:ŷLQRA
i >xT

i β

q(ŷLQRA
i − xT

i β) ∑
i:ŷLQRA

i <xT
i β

(1− q)(ŷLQRA
i − xT

i β)
]
. (11)

2.3.3. Additive Quantile Regression Averaging

A hybrid regression model based on Additive Quantile Regression (AQR) model consists of GAM
and QR. Its first use was seen in the work of Gallard et al. [41], extended by Fasiolo et al. [42], used in
the work of Sigauke et al. [12] and given in Equation (12).

yiq =
p

∑
k=1

sk,q(xik) + εik q ∈ (0, 1), (12)

where xik are p covariate terms, from xi1, xi2,···, xip, Sk,q are smooth functions and εiq are the error terms.
Smooth function (s) can be expressed as given in Equation (13)

sk(x) =
j

∑
q=1

βq,kbsqk(xik), (13)

where bsqk represents the kth basis function with j dimension and βqk is the kth parameter. Parameters
of Equation (12) are estimated by minimising the expression in Equation (14):

Qy|x(q) =
N

∑
i=1

ρq
(
yi,q −

p

∑
k=1

sk,q(xik)
)
, (14)

where ρq is the pinball loss function; however, the loss function it minimises is that of Equation (8).

2.4. Forecast Evaluation Metrics

This section discusses the three evaluation metrics for the individual and combined point forecasts.
The mathematical formulations for these evaluation metrics are presented. Three main accuracy metrics
for evaluation of the point forecasts made from the prediction models and their combination (ANN,
SGB, GAM and QRA) are the mean absolute error (MAE), mean absolute percentage error (MAPE)
and the root mean squared error (RMSE). They are as formulated in Equations (15)–(17), where m is
the number of observations in the test dataset, yt is the estimated values of the response variables and
εt is the residual of the ith observation given as εt = yt − ŷt

MAE =
1
m

m

∑
i=1
|εt| (15)

MAPE =
100
m

m

∑
i=1
| εt

ŷt
| (16)

RMSE =

√
1
m

m

∑
i=1
|ε2

t | (17)
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2.5. Prediction Intervals Formulation and Evaluation Metrics

To ascertain the uncertainty in point forecasts, it is necessary to provide the prediction intervals
(PIs) so as to quantify these uncertainties [31]. This section gives the formulation of the PIs and various
metrics for evaluating the performance of estimated PIs:

2.5.1. Prediction Interval Formulation

Given a dataset containing point forecasts from different models at certain quantiles (e.g., 0.90, 0.95
and 0.99) along with the actual prediction value such that D = {(xi, yi), i = 1, 2, · · ·m}. xi represents
an input vector corresponding to a particular variable in D and yi represents the actual value. The PI
with nominal confidence (PINC) 100(1− α)% for the yi is given in Equation (18)

Qα(xi) =
[
Lα(xi), Uα(xi)

]
, (18)

where Qα(xi) represents the range of PI values within the actual yi having Lα(xi) and Uα(xi) as its
lower and upper bound estimate (LUBE) values, respectively. Thus, the probability that Qα(xi) lies
within yi is expected to be 100(1− α)% can be expressed in Equation (19) [20].

PINC = Pr(Qα(xi) ∈ yi) = 100(1− α)% (19)

2.5.2. Prediction Interval Width (PIW)

The first index for estimating PI is the PIW. It is estimated using lower and upper bound estimates
(LUBE), as seen in [21]. The difference between the content of Qα(xi), i.e., the upper limit and the
lower limit, gives PIW, as expressed in Equation (20) [31].

PIWi = Uα(xi)− Lα(xi) i = 1, · · · , m (20)

2.5.3. Prediction Interval Coverage Probability (PICP)

PICP is an important index that evaluates the reliability of the formulated PIs. It can be expressed
as Equation (21)

PICP =
1
m

m

∑
i=1

qi, (21)

where m is the number of observations in the dataset and qi is defined in Equation (22):

qi =

{
1, if yi ∈ Qα(xi),

0 if yi 6∈ Qα(xi)
(22)

2.5.4. Prediction Intervals Normalised Average Width (PINAW)

PINAW is one of the indices for assessing the PI. It gives quantitative width of the PIs and is given
in Equation (23)

PINAW =
1

mR

m

∑
i=1

PIWi, (23)

where R = ymax − ymin represents the range of the highest and lowest values of the actual yi.

2.5.5. Prediction Interval Normalised Average Deviation (PINAD)

PINAD is an index for describing the deviation of the PIs from the actual values
quantitatively [21,31]. It is expressed as given in Equation (24)

PINAD =
1

mR

m

∑
i=1

dvi (24)
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dvi is defined in (25)

dvi =


Lα

i − yi, if yi < Lα
i ,

0, if Lα
i ≤ yi ≤ Uα

i ,

yi −Uα
i if yi > Uα

i

(25)

2.5.6. Prediction Interval Covered-Normalised Average Width (PICAW)

The indices described above are only about the PIs covered by the actual values. PICAW estimate
involves the PIs not covered by the actual values, since this affects the PI widths negatively; it is
therefore a new evaluation index for the width given in Equation (26) [21].

PICAW =
1
R
( 1

mp+

mp+

∑
i=1

PIWi + λ
1

mp−

mp−

∑
i=1

PIWi
)
, (26)

where mp+, mp−, respectively, represent the number of the actual values that the PIs does or does not
cover. A control parameter that widens the difference between the PIs and the actual values is λ > 1
else if λ = 1, PICAW becomes PINAW. PICAW gives more accurate PI construction evaluation when
actual values are farther off from the PIs.

2.6. Combining Prediction Intervals

Combining point forecasts has the tendency to improve accuracy, as shown in [19,43].
The combined point forecasts can also be improved in terms of their prediction intervals by combining
their prediction limits. A comparison of the combined PI and the PIs from constituent models is
presented in this section. Lower and upper prediction limits from K number of forecasting models
can be represented as [Lt, Ut]t = 1, · · · , K to denote the resulting 100(1− α)% PI. The researchers used
two prediction interval combination methods, which are the simple averaging and the median method
combining PIs, as applied in [31].

2.6.1. Simple Averaging PI Combination Method

This method makes use of the arithmetic means of the prediction limits from the forecasting
models. This can be expressed as Equation (27)

LAv =
1
m

m

∑
t=1

Lt UAv =
1
m

m

∑
t=1

Ut (27)

A robust interval is known to be produced from this fairly simple approach [31].

2.6.2. Median PI Combination Method

A method that is less sensitive to outliers and has a considerable ease of use is expressed as
Equation (28) given in [31].

LMd = Median(L1, · · · , Lm) UMd = Median(U1, · · · , Um) (28)

2.7. The Least Absolute Shrinkage and Selection Operator, (Lasso) for Variable Selection

Selecting relevant features from a dataset needed for the forecasting task is the process of variable
selection. Not all variables are necessary predictors; among such predictors, there is a need for selecting
the best predictor variables. There are many methods for variable selection. We present the use of least
absolute shrinkage and selection operator (Lasso) for variable selection in this study [44]. Suppose we
have an N pair of predictor variables x and response variables y, i.e., {xi, yi}N

i=1. The aim is to give an
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approximate value for the response variable yi from the predictors linearly combined, as it is in linear
regression such as given in Equation (29)

η(xi) = β0 +
p

∑
j=1

xij β j. (29)

The vector β = (β0, β1, · · · , βp ∈ R p of regression weights parameterises the model along with an
intercept term β0 ∈ R . An estimation for (β) using least-squares method is based on minimising
squared error loss using Equation (30)

β̂ = min
β

{ 1
2N

N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j
)2}. (30)

Due to the problems of interpretability and prediction accuracy associated with least squares method,
the need for the Lasso thus emerged [45]. Lasso performs better in prediction accuracy measured in
terms of the mean squared error by shrinking regression coefficient values or setting some of them to
zero thereby introduces bias and reduces the variance of predicted values. Lasso also helps with an
improved interpretability by identifying smaller subsets of predictors with stronger effect from a large
set of predictors. Lasso provides an automatic way for variable selection in linear regression problems
because it solves a convex, quadratic program with convex constraint optimisation problem. It works
by combining the least square loss of Equation (30) and the `1 − constraint or bounded on sum of the
absolute values of the coefficient [45].

The Lasso solves β̂ using the optimisation problem of Equation (30) subject to ∑
p
j=1 |β j| ≤ t

which is the `1 − norm constraint written as ||β||1 ≤ t. A comparable method before the Lasso is the
ridge regression which solves Equation (30) subject to ∑

p
j=1 β2

j ≤ t2. The best form for estimating
the Lasso problem is by having the predictors xi standardised, making all the columns centred such
that ( 1

N ∑N
i=1 xij = 0) with unit variance ( i

N ∑N
i=1 x2

ij = 1) and the response values yi centred such that

( 1
N ∑N

i=1 yi = 0) with an omitted intercept term β0 produces the optimal solution in which Equation (30)
becomes Equation (31)

min
β∈R p

{ 1
2N

N

∑
i=1

(
yi −

p

∑
j=1

xijβ j
)2

+ λ
p

∑
j=1
|β j|
}

. (31)

Equation (31) is known as the Lagrangian form which produces an effective, convenient and simple
computational algorithm for the numerical computation of Lasso using coordinate descent procedure
among other methods [45].

The complexity of Lasso is controlled by the value of its constraint, t. Smaller values of t produce
sparse and easily interpretable models less closely fitted to the training data, whereas larger values
of t free up more parameters, more closely fitted to the data. These two extremes of t hamper the
generalisation ability of the Lasso model by recording a large error value in the prediction error test set.
A trade off between over-fitting and sparsity is desirable for the Lasso generalisation ability. This is
carried out by the cross-validation procedure which strikes a balance in the value of t that gives the
accurate model for predicting individual test dataset. Hastie et al. [45] gave more details concerning
the theoretical framework of the Lasso, whereas Plan and Vershynin [46] explained how Lasso is used
for non-linear observations as used for this study.

2.8. Computational Tools and Summary

This study implemented models using Python and R Software packages. The ANN trained with
Bayesian regularised algorithm and the uncertainty metrics were implemented using Python while
the benchmark models along with the forecasts combination were implemented in R. Both Software
packages were used for data exploration and analysis. These mathematical formulae herein presented
fits into our study because these formulae are either implemented in the computational tools employed
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or they are explicitly programmed in order to measure the accuracy and the uncertainties in predicting
wind speed. The results from these metrics are reported in Section 3. A summary of these models,
description and motivations for their use is presented in Table 1.

Table 1. Summary of models, description and motivations,

Model Description Motivation

ANN, SGB and GAM
Machine and Statistical learning,
Deterministic methods Point forecasting

LQRA and AQRA Statistical and Probabilistic Methods
Forecasts combination and Prediction interval
construction

The LASSO Mathematical Variable/feature selection

MAE, RMSE, and MAPE Mathematical Point forecast evaluation metrics

PIW, PICP, PINAW, PINAD and
PICAW

Mathematical formulations and
Interval forecasting metrics To quantify uncertainties in the forecasts

Simple Average and Median PI Mathematical Prediction Interval combination (Improves forecast)

This section presents the methodology employed for the study. Various theoretical underpinnings
of our models are herein presented and summarised in Table 1. This work entails the use of two
machine learning methods (ANN and SGB) along with GAM, a statistical learning method for point
forecasting of wind speed. Lasso was used to select predictor variables from the dataset. The point
forecasts from these models were combined using LQRA and AQRA, statistical methods for forecasts
combination and evaluated using MAE, RMSE, and MAPE. However, AQRA was retained for PI
construction in order to quantify the uncertainties in the forecasts from the models. Interval forecasting
metrics such as PIW, PICP, PINAW, PINAD and PICAW were used to quantify the uncertainties in the
forecasts. Finally, prediction interval limits were combined using the simple average and median PI
combination methods.

3. Analysis of the Forecasting Results

3.1. Source and Description of Case Study

The dataset contains meteorological data with features such as wind speed, wind direction,
humidity, barometric pressure and air temperature recorded from different wind turbine (WT) hub
heights [47,48]. The response variable is the mean wind speed measured at 62-m altitude of the WT
(i.e., WS_62_mean); all other measured quantities from the wind power plant at varying heights were
fed into the variable selection model. The data were obtained from the Wind Atlas South Africa
website (http://wasadata.csir.co.za/wasa1/WASAData). Many data for various locations where
readings were carried out are available on this website. The data corresponding to Location 3 (WM03),
which is the Vredendal in the Western Cape province of South Africa, were used for this research.
WM03 was picked because it has a small amount of null and nan values, also known as missing data.
The missing values were imputed and cleaned up during the data pre-processing stage. Another
reason for choosing WM03 is because the needed properties for time series forecasting, such as trend,
periodic seasonality and residuals, were observed in the visualisation of the decomposition of its
response variable (mean wind speed measured at 62 m, i.e., WS_62_mean) compared to those of the
other points (see Appendix A, Figure A2 for the visualisation of the decomposition for the response
variable of the dataset). Vredendal is located at longitude 18.419916◦ E and latitude 31.730507◦ S.
The data were curated from 1 January 2018 to 1 March 2019. The dataset contains 61,057 rows of
observations and was reduced to 60,769 by the final two days lagged variable added to the selected
variables making a total of 48 variables. The data were divided into training and testing data. While
training data correspond to data for 1 January–30 November 2018, taking 45,576 observations of 10-min
recordings, testing data span 1 December–1 March 2019 with 15,193 observations of 10-min interval
recordings. A map of the point location of Vredendal is shown in Figure 1.

http://wasadata.csir.co.za/wasa1/WASAData
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Figure 1. Vredendal map location (Source: https://www.weather-forecast.com/locationmaps/
Vredendal.10.gif).

3.2. Data Exploration and Analysis

The meteorological dataset thus obtained contains dirty data. The messy data were cleaned
up using data cleaning approaches in Python and R used for implementing the models. The first
exploratory data analysis focused on various methods of cleaning up data. The summary statistics of
the response variable (WS_62_mean) is shown in Table 2.

Table 2 shows that the distribution of the wind speed measured at 62 m WT hub is right skewed
and platykurtic, as seen in the skewness and kurtosis values, hence not normally distributed. Another
reason for the non-normality assertion is that the mean and median have different values. Time series
plot, density, QQ (normal quantile to quantile) and box plots in Figure 2 all show that the response
variable (wind speed at 62 m) distribution is not normally distributed.

Figure 2. Diagnostic plots for the response variable, WS_62_mean.

https://www.weather-forecast.com/locationmaps/Vredendal.10.gif
https://www.weather-forecast.com/locationmaps/Vredendal.10.gif
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Table 2. Summary statistics of the response variable WS_62_mean (m/s).

Min 1st Qu Median Mean 3rd Qu Max Std. Skewness Kurtosis

0.2134 4.3674 6.8670 7.1725 9.6473 20.8555 3.475177 0.3963677 −0.4654862

We also visualised the variations in the wind speed measured at 62 m altitude of the WT to
envisage the possibility of forecasting it. The visualisation was carried out using box plots, shown in
Figure 3. As shown in Figure 3, various patterns that are expected from the unpredictable nature of the
wind speed are visible. There are no clear patterns visible when visualised in terms of the weeks in the
year and the days of the month, other than the availability of the wind speed. However, the hours of
the day and the months of the year show some clear patterns. Seasonal variation can be inferred from
the months of the year box plots, and a trend can be seen from the hours of the day box plots. The 10th
month corresponding to the peak of the spring season (in South Africa) has the largest wind speed,
as seen in the month of the year box plots. The wind speed is seen to progress from the early hours of
the day to the later hours of the day. The box plots show that wind speed is available throughout the
days, however in varying and unpredictable quantity. This further shows how viable the wind speed
is for generating renewable energy.

Figure 3. Distribution of Wind Speed (m/s) across the week, month, day and year in the dataset.

3.3. Results of Variable Selection

The needed predictor variables from the 48 variables in the dataset were selected using the
least absolute shrinkage and selector operator (Lasso). Lasso in the Python 3 programming tool was
implemented using the standard Lasso (Lasso) and the cross validation Lasso (Lassocv). Lassocv
proved more robust than Lasso because it selected more variables for its variable selection. Lasso using
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the R programming tool on the other hand was implemented using the “glmnet” library for the
benchmark models’ variable selection. A comparison of variable selection for the models is summarised
in Table 3.

Table 3. Variables and their coefficients from the Lasso.

Variable ANN Lasso ANN Lassocv BMLasso

WS_62_min 0.088897 0.314418 3.643221 × 10−1

WS_62_max 0.410781 0.337446 2.614169 × 10−1

WS_60_mean 0.253464 0.120781 1.454732 × 10−1

WD_60_mean 0.000287 0.000134 9.436018 × 10−5

WD_60_min – 0.000068 –
WD_60_max −0.000591 0.000007 –
WD_60_stdv −0.015175 −0.005907 −4.402683 × 10−3

WD_20_mean 0.000834 0.000048 –
WD_20_stdv −0.001630 — –

RH_min −0.000793 0.000169 –
lag1 0.119809 0.094290 8.940951 × 10−2

WS_40_mean – 0.148194 1.581057 × 10−1

WD_20_min – −0.000036 –
WD_20_max – 0.000082 –
WS_60_stdv – – 2.898686 × 10−1

Tair_min – 0.000590 −7.744566 × 10−5

Tair_mean – – −2.311307 × 10−4

Total No of Variables 10 14 10

Table 3 gives the selected variables along with their coefficients from these two programming
tools. For Lassocv from the Python 3 kernel, the selected 14 variables were added with the other lagged
variables and used for the ANN model. In addition, the benchmark (BMLasso) model from the R
kernel selected 10 variables; the lagged variables were added to the selected variables and used for
both the GAM and SGB models, respectively. The lagging was done for 10-min lag, 1-h lag, one-day
lag and two-day lag. In all variable selection processes, only 10-min lag was selected by the various
Lasso variable selection processes.

SGB, being one of the benchmark models, ensures a form of variable selection in its working
principle. Out of the 10 variables selected by Lasso, this model selected variables based on their relative
importance for its computation. Table 4 shows the selected variables from SGB.

Table 4. Variable selection by the SGB model.

Selected Variable Relative Importance

WS_40_mean 4.379310 × 101

WS_60_mean 4.117128 × 101

WS_62_max 1.411519e × 101

WD_60_mean 4.687078 × 10−1

WD_60_stdv 3.892787 × 10−1

WS_60_stdv 6.227314e × 10−2

Tair_min 1.768753 × 10−4

Tair_mean 0.000000 × 100

3.4. Point Forecasting Results

3.4.1. Benchmark Models’ Point Forecasts

The benchmark models used the same set of variables selected by Lasso for their computation
on R. The Libraries “caret” and “gbm” were used for the SGB while the “mgcv” library was used for
fitting the GAM. A visualisation of the point forecasts produced from the test set given the training set
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using these models is shown in Figure 4. The dataset was split into training and test set in the ratio of
75%/25% for all three individual forecasting models.

Figure 4. Benchmark density and point forecasts plots.

In Figure 4, the highest wind speed (at 62 m hub height of the WT) values for both the actual
and forecasts hovers around 20 m/s. We can also infer that the wind speed very close to 5 m/s is the
densest plot of the wind speed with a density value very close to or a bit above 0.10. In the density plot,
the lines showing the actual point forecast values and the lines showing the benchmark models’ point
forecasts values are very close, indicating the performance of the models in forecasting. This reflects a
considerable acceptable performance for the two benchmark models. Table 5 presents a summary of
the accuracy metrics.

3.4.2. Artificial Neural Network and Additive Quantile Regression Averaging

This section presents the results of using the ANN and the main forecasts combination algorithm
(AQRA) for point forecasting. ANN was implemented using the computational tool known as the
Python 3 programming language. Following the steps from data curation to data explorations and
visualisations along with data normalisation, this model is ready to carry out predictions from the
variables selected by the LassoCV model. The ANN model was constructed from the SKLearn Library
by importing MLPRegressor. The major determinants of an ANN are the number of layers in the
network, the number of hidden layers and the number of nodes used for the hidden layer. ANN was
constructed using three layers of input, hidden and output. The number of the hidden layers was
made to be 1 by default, and the number of nodes in the hidden layer was given as 5. This makes
the neural network thus constructed similar to the Bayesian Neural Network (BNN) in the work of
Mbuvha [16]. In a BNN, the values of the α and β are very crucial, which are between 0 and 1 for a
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BNN. We thus performed hyper-parameter tuning to find the best α values, best parameter and best
accuracy making use of the GridSearchCV from the SKLearn model selector library.

AQRA, on the other hand, is a model formed from combining point forecasts from the other
models. This model was fitted with forecasts from the BNN and the benchmark models (GAM and
SGB) as its predictor variables, while the response variable is the point forecasts of the AQRA model.
It was implemented using “qgam” library developed by Fasiolo et al. [42] on the R computational
tool. The AQRA model was set at a seed of 1000 and functions such as tune-learn-fast as its
object containing the actual forecasts and the point forecasts from the other three models fitted
at a quantile value of q = 0.5. Plots of the point forecasts from ANN and AQRA models are shown in
Figure 5. Other necessary visualisations from these two models and the rest are shown in Appendix A
(Figures A1, A3 and A4).

Figure 5. ANN and AQRA density and point forecasts plots.

In Figure 5, it is noticed that the highest wind speed forecast lie between 15 and 20 m/s and the
highest dense plot for the wind speed is at a position very close to 5 m/s with a density of a little
above 0.10. These two density plots also present these two models as viable models for wind speed
forecasting because of the proximity of the actual and point forecasts values as represented by the two
lines in the density plots. The density plot shows the densest point of the air in which an increasing
wind speed gives a decline in its density until it returns to zero. The air density relates proportionally
to the power realisable from the wind turbine [2,49].

The forecasts from these four models show the wind speed values lie in the range of 5–20-m/s.
This corresponds to the linearly progressing and constant power region of the power curve of a wind
turbine in [4]. This shows that both the actual values and the values from forecasts are within the range
of values where electric power is being generated from the WT. A strong, increasing and constant
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electrical energy can thus be realised from the wind speed values, which depicts the richness of this
renewable energy for generating electrical power.

3.5. Forecasts Accuracy Measures

3.5.1. Point Forecasts Accuracy Measures

This section presents the accuracy measures for our point forecasting models. This study made
use of five forecasting models. The main model is the ANN model and compared with two benchmark
models, SGB (a machine learning model) and GAM (a statistical learning model). The other two models
are statistical models called additive quantile regression averaging and linear quantile regression
averaging (LQRA). They are used to generate results from the point forecasts combination of the
other three models. We present three accuracy metrics to evaluate these five point forecasting models.
The various accuracy of point forecasts from these models are presented in Table 5.

Table 5. Accuracy measures for the point forecasting models.

Model No of Used Variables RMSE MAE MAPE

BNN 14 0.2091 0.1526 2.7437
SGB 8 0.2553 0.1397 2.3754

GAM 10 0.2468 0.1579 3.0356
AQRA 3 0.1888 0.1167 2.0330
LQRA 3 0.1928 0.1204 2.0986

In Table 5, model BNN is the first model whose forecasts is from the ANN, the second model
is the SGB forecasts, the third model is the GAM forecasts, while the fourth and fifth models are the
forecasts combination models, which are the AQRA forecasts and the forecasts corresponding to the
LQRA model, respectively. Our discussion evaluates Table 5 with regards to individual and combined
models, respectively.

BNN made use of 14 variables from its Lassocv variable selection model to fit the neural networks.
It recorded the lowest RMSE value followed by GAM amongst the individual point forecasting
methods. SGB, on the other hand, recorded the lowest MAE value followed by BNN while GAM
recorded the highest MAPE value followed by BNN. Hence, accuracy measures using MAE and
MAPE present SGB as the best individual point forecasting model followed by BNN while the GAM
performed the least amongst these three models.

Considering the combined forecasting models, the fourth model, which is AQRA, performed
better than its counterpart fifth model, which is LQRA, in all accuracy metrics axis. AQRA also
outperformed all of the individual point forecasting models, as shown in Table 5. This is in tandem with
most literature findings that combining point forecasts presents forecasts whose accuracy measures
are lower than the individual forecasting models [19–21]. These findings hold sway for both methods
of forecasts combination, as can be seen from their accuracy metrics’ values, which are lower than
that of the three individual accuracy metrics’ values for the point forecasting models. When we
combine forecasting models, the resultant combined forecasts perform better than the individual point
forecasting models. Hence, the authors retain AQRA as the main forecast combination model for
interval forecasting, while we drop LQRA going forward.

3.5.2. Prediction Interval Width

The analysis of the prediction interval width (PIW) at 95th quantile is presented in this section.
Table 6 gives the summary statistics of the generated PIW, which gives the nature of the PI generated.
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Table 6. Summary statistics for PIW at 95th quantile.

Model Min Max Mean Median St.Dev Skewness Kurtosis

BNN 0.3281 0.9217 0.8148 0.8613 0.1016 −0.7914 −0.7346
SGB 0.4378 0.8313 0.7099 0.7487 0.1124 −1.0610 −0.0271

GAM 0.2461 1.1725 0.8762 0.8744 0.1952 −0.2188 −0.7905
AQRA 0.3843 0.7759 0.6277 0.6399 0.1213 −0.5330 −0.9302

Figure 6. PIW of BNN-AQRA.

In Table 6, BNN has the least standard deviation followed by SGB, hence, PIW from these two
models are narrower than those from AQRA and GAM, respectively. The skewness measures the
distribution of a model and shows in the table that PIWs are not normally distributed, although close
to a normal distribution (except SGB), because a normal distribution has a skewness value of 0. All of
the models are also negatively skewed, showing that they are left-skewed. The kurtosis value for
distribution is expected to be 3 and all kurtosis values for the models show them to be negative and
less than 3, and they are therefore said to be platykurtic. The visualisation for PIW is presented in
Figure 6. The figure presents PIW from AQRA as the most symmetrical and best model followed by
SGB. BNN and GAM are skewed and much narrower than the other two. The PIW visualisation using
the density plots in Figure 7, shows model BNN as the model with the narrowest intervals.
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Figure 7. Density plots for PIW of BNN through AQRA.

3.6. Prediction Intervals Evaluation

Forecasting using models is known to be filled with much uncertainties given good point forecasts
performance evaluation. In this section, the methods for quantifying the uncertainties in point
forecasting models as well as in the combined point forecasting model are described. To measure
uncertainties, the needed feature to be used is the prediction interval. Along with making use of
AQRA for forecast combination, it was also used to construct prediction intervals through the lower
and upper bound estimates for the models and at different quantiles [21]. The quantiles considered are
the 90th, 95th and 99th quantiles, respectively.

To quantify uncertainties, five prediction interval evaluation metrics were used in this study and
the results are summarised in Table 7. The five metrics are the prediction interval nominal coverage
(PINC), the prediction interval coverage percentage (PICP), the prediction interval normalised average
width (PINAW), the prediction interval normalised average deviation (PINAD) and the prediction
interval coverage average normalised width (PICAW). The theoretical formulations of these metrics
are given in Section 2 (Equations (19) and (21)–(26)). These uncertainty metrics relating to quantifying
the uncertainty in wind speed forecasting, using the individual point forecasting models and the
AQRA forecasting combination model through the use of AQRA to construct prediction intervals
whose values according to these metrics, are presented in Table 7.
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Table 7. Prediction Interval Evaluation.

PINC% Model %PICP %PINAW %PICAW %PINAD ABLL AAUL

90 BNN 90.4956 3.7853 8.3489 0.0130 717 727
SGB 90.6997 3.8336 8.4560 0.1101 701 712

GAM 90.6334 3.8259 8.4432 0.1109 702 721
AQRA 90.7194 2.8583 6.3140 0.0650 707 703

95 BNN 95.2807 4.7673 10.5152 0.0388 358 359
SGB 95.4058 4.1536 9.1076 0.0659 348 341

GAM 95.3992 5.1263 11.3586 0.0665 345 354
AQRA 95.3926 3.6725 8.1101 0.0534 342 358

99 BNN 99.0654 7.3491 16.1999 0.0083 72 70
SGB 99.0983 7.8238 17.9690 0.0298 66 71

GAM 99.0259 8.8693 19.6512 0.0198 78 70
AQRA 99.0588 7.1009 15.8021 0.0133 70 73

In Table 7, five metrics are used to evaluate PIs from individual and the combined models.
Four models in total are evaluated using these metrics. PICP is used to ascertain the reliability of the
constructed PIs. Therefore, the more the actual values are covered by the PI, the higher are the PICP
values [21]. Furthermore, PICP value is expected to be greater or equal to the PINC or confidence
value else deemed as invalid [20]. Accurate and satisfactory PI performance is indicative of higher
PICP values and lower PINAW values [20,21]. Both PICP and PICAW values indicate the quality of
the constructed PI. Hence, a high PICP value with small PICAW value is required for a quality PI
construction [21]. In addition, given a high PICP, the deviation value of the PIs from the actual value is
expressed by PINAD. Hence, a higher PICP should give a lower PINAD value, showing less deviation
from the actual value [31].

The discussion for Table 7 follows from the foregoing theoretical and literature findings.
Using PICP at 90% PINC, all forecasts are valid and AQRA has the highest value and presents
more coverage than the rest of the models. SGB is next and the last is BNN showing that the PI
from BNN covers less actual values than the rest. Taking PICP and PINAW, AQRA presents both
the highest PICP value and the lowest PINAW, thus the most reliable model at this confidence level.
This is followed by BNN and the least is GAM. Although the PI from BNN covers fewer actual values,
the covered values present a more closely fit weight than SGB and GAM. Taking PICP and PICAW,
AQRA is the model with the best quality PI since it has the lowest PICAW value and the highest PICP
value followed by BNN and the least is SGB. The degree of deviation from the actual value is shown by
PINAD and BNN has the least degree of deviation followed by AQRA; GAM has the highest degree of
deviation from the actual value. The ABLL and AAUL columns represent the number of actual values
that are not within the range of PIW. They represent the number of actual values that are below the
lower limit and the actual values that are above the upper limit, respectively.

For the 95% confidence value, SGB recorded the highest PICP value, GAM is next and then AQRA,
while BNN has the lowest PICP value. At the 99% confidence values, SGB and BNN give higher
PICP values than GAM and AQRA. The PICAW and PINAW values present AQRA as the best model
followed by an interchange of SGB and BNN, respectively, while GAM remains constantly the least
considering these two confidence values. Using PINAD, BNN has the best degree of deviation, and
then AQRA followed by an interchange between SGB and GAM, respectively. The number of target
values outside of the lower and upper limit range keeps reducing as the confidence level increases.
AQRA is thus the best model at 90% confidence value; however, best models are evaluated based on
what these metrics measures such as validity, reliability, quality and degree of deviation at a particular
confidence value.
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3.6.1. Evaluation of Combined Prediction Intervals

Just as point forecasts can be combined and estimate the evaluation of its accuracy, prediction
intervals can also be combined and estimate the accuracy of the resultant combined PI. In this study,
we made use of two prediction interval combination methods, the simple average and the median
method, to produce a combined PI. Simple average gets the arithmetic mean of the PIs from individual
models using the lower and upper bound estimate. A row-wise summation of the lower and upper
limits is carried out and averaged by taking each model at the three quantiles considering the total
number of models used. The mathematical formulation is given in Equation (27). The median method
also follows the simple average method. We take the median values of all the models considered at
a particular quantile. The mathematical expression is given in Equation (28). Table 8 presents the
combined prediction interval evaluation using the same metrics as the individual PI model evaluation.

Table 8. Combined prediction interval evaluation.

PINC% Model %PICP %PINAW %PICAW %PINAD ABLL AAUL

90 SAverage 93.1743 3.5780 7.9661 0.0250 513 524
Median 92.3978 3.5510 7.8617 0.0250 579 576

95 SAverage 97.1500 4.4299 9.9499 0.0370 198 235
Median 96.8012 4.2181 9.3775 0.0330 235 251

99 SAverage 98.4137 7.7858 11.2930 0.0110 198 43
Median 99.3148 7.2292 16.7254 0.0044 52 48

In Table 8, the simple average prediction interval combination method gives better PI than the
median method at the 90% and 95% confidence values using PICP. However, it gives an invalid PI at
the 99% confidence level recording a value smaller than the confidence level value, while the median
method gave a satisfactory coverage value for its PICP. The median method provided reliable and
better quality PI than the simple average method since it records lower values for its PINAW and
PICAW at the 90% and 95% confidence levels. The 99% confidence value presents the median method
as better than the average method using PINAW, while PICAW shows the opposite. The PINAD value
for the 90% confidence level records a tie for the two combination methods, while the median method
recorded the best value for its degree of deviation using PINAD at the 95% and 99% confidence levels.
Lastly, an increment was seen in the number of PI, not within the lower and upper limit range for the
two methods at the 90% and 95% confidence values. The 99% confidence value shows more number of
actuals below the lower limit. These present the median method as the best PI combination method
over the simple average method.

3.6.2. Residual Analyses

The summary statistics of errors or residuals for the models are shown in Table 9. The table shows
model AQRA as having the least standard deviation, which means that its error distribution is the
narrowest of all the models, as can also be seen in the box plot of Figure 8. This shows that the best
model is AQRA in comparison to the others. The minimum values are all negative and the skewness
values are far from being normally distributed. The kurtosis value shows erratic patterns; however,
since they are all more than 3, they are termed leptokurtic data. The density plot in Figure 9 shows
similar patterns and not much information can be inferred from these plots, except that they are all in
between the −1 and +1 regions in the forecast error axis.
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Figure 8. Box plots of residuals.

Figure 9. Density Plots of Residuals.

Table 9. Summary statistics for the residuals.

Model Min Max Mean Median St.Dev Skewness Kurtosis

BNN −1.2156 4.8961 0.0235 −0.0304 0.2077 1.4241 29.9048
SGB −1.1015 8.4607 −0.0128 −0.0180 0.2550 11.4720 273.8021

GAM −1.4350 6.4689 0.0028 0.0045 0.2468 4.0097 72.3618
AQRA −0.9845 4.5838 0.0061 0.0004 0.1887 4.9086 78.1724
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4. Discussion

This study was geared towards investigating methods useful for forecasting short-term
unpredictable and intermittent wind speed for power generation. The method with smaller errors
indicates the most accurate and desirable method. Two approaches were investigated: individual
forecasting models and forecast combination models. Amongst the individual models, the Bayesian
NN for the ANN was compared with two benchmark models involving SGB (ML method) and GAM
(SL method). The evaluation of these three methods presented ANN as the best using RMSE while SGB
is the best from MAE and MAPE forecast accuracy measures. On the other hand, two forecast
combination methods, both of which are statistical methods, were investigated for the forecast
combination and AQRA performed better than LQRA. It further outperformed the individual forecasts
containing three methods (ANN and the two benchmark models) using all three forecast accuracy
metrics involving RMSE, MAE and MAPE. Therefore, the authors present AQRA from forecasts
combination as the best method for point forecasting of wind speed having lesser error values and the
most accurate model.

Moving on to the prediction interval uncertainty measure, using only AQRA, the first uncertainty
measure was the prediction interval width. Using this metric, our analysis at 95% confidence level
shows that the model AQRA was the most symmetrical and the best model followed by SGB,
even though ANN and GAM presented narrower prediction intervals than the others. None of
these models gave a normal distribution and were all platykurtic. The research investigated further on
interval forecasts, checking prediction intervals against the target values. Three confidence levels were
considered: 90%, 95% and 99%. All the interval forecasts were checked for their validity, reliability,
quality and degree of deviation from the actual values. All the models were valid models since
PICP values were greater than the predetermined confidence levels. AQRA presented more reliable
prediction intervals at 90%, having the highest coverage value. In addition, this constructed prediction
interval at this level of confidence was deemed accurate and having satisfactory performance and
quality since the lowest PINAW and PICAW values were recorded by AQRA followed by ANN.
However, PINAD value shows ANN as the model with the least deviation. Actual values below and
above the lower and upper limit kept decreasing, showing AQRA with the least values.

Forecasts from the SGB model have the highest coverage at the 95% confidence level followed
by GAM. Using PINAW and PICAW for quality, accurate and satisfactory performance evaluation
presented AQRA as the best model, while ANN and AQRA have the least degree of deviation. Constant
reduction was noticed with the actual values below and above the lower and upper limits, respectively.
The 99% confidence level shows SGB as the most reliable from its highest PICP value followed by GAM
while the quality, accurate and satisfactory performance PI was seen to be AQRA from its PINAW
and PICAW values. The least deviation was noticed in ANN followed by AQRA. The actual values
below and above the lower and upper limit showed no consistency at this confidence level. The best
model is AQRA followed by SGB. Analysis from the interval combination method is also reported.
We used the simple average method and the median method. The simple average gave an invalid
PICP at the 99% confidence level. The median method outperformed the simple average method in all
prediction interval (accuracy measurement) metrics considered and, thus, the best interval combination
method. The residual analysis also presents AQRA as the best, having the narrowest error non-normal
distribution along with the other models.

5. Conclusions

This paper proposes a comparative analysis of statistical and machine learning methods along
with their combination to two days ahead short-term wind speed point and interval forecasting.
Various techniques that have been used for diverse forms of forecasting and forecast combinations
along with uncertainty measures were explored. The use of GAM for other forms of forecasting but not
for wind speed forecasting is the main gap filled by this work. Different mathematical underpinnings of
these models and accuracy metrics along with uncertainty metrics serve as the methods and materials
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employed in this paper. Accuracy measures and uncertainty metrics were used to select the best
models. In most of the discussions, it was found that the model AQRA, which is the additive quantile
regression average method, is the best model for wind speed forecasting using both the point forecasts
accuracy metrics (such as MAE, RMSE and MAPE) and the prediction intervals uncertainty measures
involving PIW, PINC, PICP, PICAW, PINAW and PINAD. Hence, forecasts combination tends to
improve short-term wind speed forecasting. Quantifying uncertainty in forecasts can assist the grid’s
proper planning for scheduling of resultant power incorporation and dispatch. Future areas of study
involve exploring other machine learning or deep learning algorithms for point forecasting, forecasts
combination, prediction interval construction, and combination in wind speed/power forecasting.

Author Contributions: Conceptualisation, L.O.D. and C.S.; methodology, L.O.D., and C.S.; software, L.O.D., C.S.
and R.M.; validation, L.O.D., C.S., C.C. and R.M.; formal analysis, L.O.D. and C.S.; investigation, L.O.D., C.S.,
C.C., and R.M.; resources, L.O.D., and C.C.; data curation, L.O.D.; writing—original draft preparation, L.O.D.
and C.S.; writing—review and editing, C.S., C.C. and R.M.; visualisation, L.O.D. and C.S.; supervision, C.S., C.C.
and R.M.; project administration, C.S., C.C.; and funding acquisition, L.O.D., and C.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the DST-CSIR National e-Science Postgraduate Teaching and Training
Platform (NEPTTP) (www.escience.ac.za).

Acknowledgments: The support of the DST-CSIR National e-Science Postgraduate Teaching and Training Platform
(NEPTTP) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are
those of the authors and are not necessarily to be attributed to the NEPTTP. In addition, we are grateful to the
Wind Atlas South Africa (WASA) for providing the data (http://wasadata.csir.co.za/wasa1/WASAData).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN /NN Artificial Neural Network / Neural Network
BNN Bayesian Neural Network
ML Machine Learning
SL Statistical Learning
SGB Stochastic Gradient Boosting
GAM Generalized Additive Model
L/QR/A Linear/ Quantile Regression / Averaging
Lasso Least Absolute Shrinkage and Selector Operator
LassoCV Least Absolute Shrinkage and Selector Operator with Cross validation
AQRA Additive Quantile Regression Averaging
ARIMA Auto-Regressive Integrated Moving Average
SARIMA/X Seasonal Auto-Regressive Integrated Moving Average/for Exogenous Variable
PI Prediction Interval
PIW Prediction interval Width
PICP Prediction Interval Coverage Probability
PINC Prediction Interval Nominal Coverage
PINAW Prediction Interval Normalised Average Width
PICAW Prediction Interval Coverage Average -Normalised Average
PINAD Prediction Interval Normalised Average Deviation
N/RMSE Normalized / Root Mean Square Error
N/MAE Normalized / Mean Average Error
MAPE Mean Average Percentage Error
ABLL Actual Below Lower Limit
AAUP Actual Above Upper Limit

www.escience.ac.za
http://wasadata.csir.co.za/wasa1/WASAData


Algorithms 2020, 13, 132 26 of 30

WASA Wind Atlas South Africa
WT Wind Turbine

Appendix A. Visualizations for the BNN and AQRA

Figure A1 shows a comparison of the scores for different simple forecasting models and our BNN
represented with MLPregressor using the forecast evaluation metrics. Figure A2 shows the extended
plot of the period in the decomposition for the response variable (WS_62_mean) along some other
necessary time series plots such as observed, trend, seasonal, and residuals. All these plots informed
the choice of the dataset for location WM03 on WASA.

The plot of the actual forecast and the Additive quantile regression average model (AQRAM) is
displayed in Figure A3 while the observation of the actual and the other four models used in the study
is shown in Figure A4. The y-axis is the wind speed, the x-axis is the date_time of the test set. They all
show a complete forecast with the colour representing the GAM forecasts more pronounced than that
of the other models.

Figure A1. Scores for the simple forecasts and BNN.

Figure A2. Decomposition of the Response Variable (WS_62_mean).
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Figure A3. Test set plot of wind speed (m/s) (y-axis) and the date_time (x-axis) for the AQRAM.

Figure A4. Test set plot of wind speed (m/s) (y-axis) and the date_time (x-axis) for all the Models.

Appendix B. Variable Selection Metrics Using Lasso for BNN and SGB

Various Model variable selection evaluation metrics are presented in this appendix. The Lasso
and the Lassocv from the Python kernel are compared in Table A1 while the SGB model variable
selection was also evaluated using some known statistical evaluation metrics, as shown in Table A2.

Table A1. Comparison between Lasso and Lassocv for the BNN.

Metric Lasso Lassocv

Data Split ratio 0.75/0.25 0.75/0.25
Number of Variables selected 10 out of 47 14 out of 47

Training Score 0.9859 0.9964
Testing Score 0.98565 0.9963

Training data MSE 0.1704 0.0431
Testing data MSE 0.1736 0.0447
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Table A2. SGB computational model evaluation.

Interaction.depth n.trees RMSE R-2quared MAE

1 50 0.5661520 0.9800269 0.3959074
1 100 0.3781487 0.9883580 0.2662815
1 150 0.3302557 0.9908337 0.2339422
2 50 0.3850630 0.9885786 0.2712526
2 100 0.2699944 0.9938029 0.1930438
2 150 0.2418027 0.9949749 0.1750470
3 50 0.3110675 0.9922893 0.2177381
3 100 0.2260250 0.9956210 0.1625230
3 150 0.2000053 0.9965582 0.1454654
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