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Abstract: A communication system based on unmanned aerial vehicles (UAVs) is a viable alternative
for meeting the coverage and capacity needs of future wireless networks. However, because of the
limitations of UAV-enabled communications in terms of coverage, energy consumption, and flying
laws, the number of studies focused on the sustainability element of UAV-assisted networking in
the literature was limited thus far. We present a solution to this problem in this study; specifically,
we design a Q-learning-based UAV placement strategy for long-term wireless connectivity while
taking into account major constraints such as altitude regulations, nonflight zones, and transmit
power. The goal is to determine the best location for the UAV base station (BS) while reducing
energy consumption and increasing the number of users covered. Furthermore, a weighting method
is devised, allowing energy usage and the number of users served to be prioritized based on
network/battery circumstances. The suggested Q-learning-based solution is contrasted to the
standard k-means clustering method, in which the UAV BS is positioned at the centroid location with
the shortest cumulative distance between it and the users. The results demonstrate that the proposed
solution outperforms the baseline k-means clustering-based method in terms of the number of users
covered while achieving the desired minimization of the energy consumption.

Keywords: sustainable wireless connectivity; energy saving; UAV; communication system; 5G;
positioning; reinforcement learning

1. Introduction

It was a truism that the number of subscriptions to mobile communication networks
and the amount of data consumed per user were increasing over the years, and that the
newer generations were becoming more dominant than the legacy after a few years of their
first deployment [1]. In the fifth generation of mobile communications (5G), on the other
hand, such increase is more highlighted due to the fact that there are more demanding
emerging applications, including tactile internet, 4K video streaming, online gaming, etc.,
and the concept of Internet of Things (IoT) was seriously proliferating and pervading our
daily lives with a large inclusion in various domains, such as healthcare, manufacturing,
etc. [2]. There were various concepts and technologies proposed in the literature to address
the aforementioned capacity issues. The use of millimeter-wave (mmWave) frequencies,
massive multi-input multioutput (mMIMO), and network densification are some of the
most popular and practical ones among others [3–6]. Each of these technologies has
a different set of advantages and disadvantages, however, they mainly target capacity
enhancement in mobile communication networks. With mmWave communications, for
example, an additional spectrum added to 5G networks—it was already included in 5G
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New Radio (NR) as frequency range-2 [7]—, and thus the capacity is increased with
this additional bandwidth. The use of higher carrier frequencies also enable smaller
antenna sizes, which subsequently enables mMIMO antenna arrays, enhancing the capacity
further [3,5]. Network densification, on the other hand, offers deployments of smaller base
stations (BSs) with comparatively less antenna transmit power to reuse the frequency band,
leading to a great deal of capacity enhancement [3].

Even though all these solutions are quite beneficial in enhancing the capacity of
mobile communication networks, there is still room for improvements, since the spatio-
temporal changes in wireless networks pose another type of challenges. More specifically,
unusual circumstances, including expositions, sport competitions, and musical concerts,
where much more people than normal gather together and significantly increase the
demand for wireless communications are required to be tackled in a more sophisticated
and intelligent manner. This is mainly because such kind of events do not happen pretty
often (only few times a year); hence, it is not a good idea to design the network by taking
them into consideration. In this regard, BS mounted on UAVs (which will be referred as
to UAV BS hereafter) was a promising solution to meet the strict user requirements of
coverage, capacity, and quality of service (QoS). With the dawn of 5G network and related
technologies, the user requirements are getting diverse as the users are from a diverse
groups including conventional user equipments (UEs), IoT devices, machines, vehicles,
etc. The UAV-assisted communication system is a solid use-case for the next generation of
mobile communications given that UAVs are flexible, easy-to-deploy, and cost-efficient [8].
This provides a boost to the terrestrial cellular infrastructure as UAVs can be deployed to
provide the extra coverage, or increase the capacity in the given area.

The primary research challenges regarding the UAV-assisted communication systems
are as follows: (i) determining optimal positions of the UAVs; (ii) finding optimal UAV
trajectory; and (iii) meeting the regional regulations for UAVs. Energy efficient networking
with UAV BSs is at the core of the discussion, since the UAVs are battery operated and have
limited energy capacity. This is one of the most important limitations with UAV-assisted
communications, requiring a proper management; otherwise, the concept can get infeasible
if the the flight time of UAVs cannot be sufficiently prolonged (The sufficiency mentioned
here should be discussed according to the scenario; i.e., the conditions of the networks and
the requirements of mobile network operators as well as users, and hence, it is quite hard
to put a formal and strict definition and/or a numerical value for it. However, the main
idea is to maximize the flight time of UAVs as much as possible). Furthermore, UAV-based
communication systems represent even a more complex case, because the total energy
consumption depends on both the communication to the ground users and flying on a
predefined trajectory or simply hovering over a fixed point. Besides, to cover as much as
users as possible while maintaining the energy efficiency is an important aspect of UAV-
assisted networking, since the the main objective is to enhance the capacity of the network
to serve more users in temporally-dense networks. Put it another way, energy efficiency is
required to realize the main objective, which is capacity enhancement in this case, an thus
the idea is to keep the UAV BSs more in the air to serve more users in total. Therefore, to
capture this phenomena in our work, we consider both the energy consumption and the
total number of users covered as objective functions of our novel problem formulation.

No-fly-zones (NFZs), which are restricted or prohibited areas where UAV is not
allowed to fly—such as military bases—are considered as a practical constraint in the
deployment phase of UAV BSs. This is because the optimal UAV trajectory and positioning
are affected by NFZs given that UAVs need to avoid those places even if they are optimal
positions. In other words, UAV BSs are supposed to be positioned considering the NFZ
constraints, bringing additional challenge to the optimization process. In addition, as
aforementioned, there are also regulations on the minimum and maximum altitude of
the UAVs; such that the UAVs are supposed to be within the allowed range in terms of
their altitude (The altitude regulations vary for different countries and regions). In this
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regard, to seize this idea of NFZs and altitude regulations in this work, we consider them
as constraints in the problem formulation.

Machine learning has a considerable place in optimizing wireless communications net-
works [9–13], due to its strong capabilities in terms of convergence, dynamism, and agility.
Moreover, it is envisioned that it will play rather a more critical role in the upcoming genera-
tions of mobile communication networks, such as sixth generation of mobile communication
(6G) [14,15]. Therefore, we employed reinforcement learning (RL), a subset of machine
learning, in this study to provide more intelligent, dynamic, and effective solution.

1.1. Related Work

The literature on UAV-assisted communication systems is thoroughly evaluated in
this subsection. In recent years, numerous number of studies were done in the field of
UAV-assisted wireless networking [16–25], but only a few studies have looked at the flying
regulations [26,27]. In [8], the authors presented a survey on the most recent research
possibilities and problems in the field of UAV aided wireless networks. The key difficulties
in UAV-assisted networking are investigated, including 3D deployment, performance
analysis, channel modeling, and energy efficiency. These topics are investigated due to huge
demands in terms of network performances for 5G services, which results, among other
factors, in a considerable increase in energy consumption. Consequently, energy saving is
a fundamental design requirement for 5G networks. Although, in the case of ground base
stations, solutions as low-cost, low-complexity cell sleep scheduling algorithms may help
to minimize the energy consumption while guaranteeing the service requirements [28,29],
for UAV-assisted networks it is still an open-issue. For the coexistence of UAVs and under-
laid device-to-device (D2D) communication networks, a tractable analytical framework
is proposed in [22]. The authors showed that flying a UAV at the ideal altitude can
result in the highest system sum-rate and coverage probability. Furthermore, an optimal
trajectory design can reduce transmit power; however, networking under the UAV altitude
regulations did not receive enough attention in the literature. The lowest and maximum
authorized altitudes of flying UAVs vary by country; for example, European laws for
flying UAVs establish the limits of minimum and maximum allowed altitudes, which may
fluctuate in different regions of the world, and in [26], the authors looked at the status of
UAV-related regulations.

In the previous few years, numerous surveys and tutorials were released. The find-
ings reveal that creating air route networks is a scientifically sound and efficient way to
standardize and improve the efficiency of low-altitude UAV operations [27]. The most
significant approach for UAV regulation in urban regions, in terms of safety and efficiency,
is to enhance research that heavily relies on urban remote sensing and Geographic Informa-
tion System (GIS) technology, as well as application demonstrations of low-altitude public
air route networks [26]. In [27], the authors discussed the standardization initiatives for
UAV-assisted UEs, UAV-assisted BSs, UAV communication prototypes, and UAV-assisted
cellular communications cyber-physical security. The usage of UAV-assisted communi-
cation was suggested as a possible approach for Internet of Things (IoT) networks in the
literature [8,30–32]. In [30], it was demonstrated how to collect data in an energy-efficient
manner for IoT networks, and the best way to deploy and move several UAVs was exam-
ined. The authors developed a framework for concurrently optimizing UAV 3D positioning
and mobility, device-UAV association, and uplink power regulation in their paper. Firstly,
the ideal UAV location is identified based on the locations of active IoT devices at each
time instant. Next, the optimal UAV mobility patterns were studied to dynamically serve
the IoT devices in a time-varying network. The goal is to utilize as little energy as possible
for the UAVs’ mobility while serving IoT devices. For the coverage and rate analyses, a
tractable analytical framework is developed [21], wherein the UAV’s coexistence with a
D2D communication network is taken into account. The authors in [33], reviewed the liter-
ature of machine learning integration to UAV-assisted communications, and they discussed
various aspects including physical layer, security, resource management, and positioning.
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The interfering UAVs are considered in [34], while in [35], the authors investigated
the optimal 3D placement of multiple UAVs, that use directional antennas, to maximize
total coverage area. The authors in [36] analyzed the impact of a UAV’s altitude on the
sum-rate maximization of a UAV-assisted terrestrial wireless network. The 3D placement
of drones to achieve the goal of maximizing the number of ground users served by the
drones was investigated in [37]. The minimum number of drones needed for serving
all the ground users within a given area was determined in [38]. In [39], evolutionary
algorithms were employed to find the optimal placement of low-altitude platforms (LAPs)
and portable BSs. The optimal locations and minimum number of UAVs required to
completely cover the desired area are investigated for disaster relief scenarios. The authors
in [40] determined the optimal location of the UAV by maximizing the average rate while
ensuring that the bit error rate does not exceed a specified percentage. The UAVs are
categorized as access and gateway UAVs in [41], wherein a disaster scenario, where the
terrestrial infrastructure is completely down, was considered. The authors formulated the
problem of gateway UAV selection (gateway UAVs use mmWave backhaul) and tried to
solve it with multiarm bandit.

Different considerations, such as flight time, energy limits, ground user demands,
flying regulations, and avoiding NFZs, have a substantial impact on a UAV’s trajectory. For
maximizing the minimal average rate among ground users, the authors in [42] proposed
a simultaneous optimization of user scheduling and UAV trajectory. While a number of
jammers with unknown locations sent jamming signals, the authors in [42] presented a com-
bination UAV and ground users’ scheduling and transmit power allocation optimization
technique. The optimal trajectory of UAVs with multiple antenna for maximum sum-rate
in uplink communication was researched [43]. The throughput maximization problem in
mobile relaying systems was investigated in [44], where authors optimized the transmit
power along with the UAV trajectory considering the practical mobility constraints such as
speed and UAV’s locations. The authors in [45] proposed an E-Spiral algorithm for accurate
photogrammetry. This technique used an energy model to determine different optimal
speeds for straight parts of the road, thereby lowering energy consumption and improving
the energy model’s ability to estimate overall path energy. To characterize the practical
path planning requirements of UAVs in difficult situations, the authors in [46] developed
an energy-aware, multi-UAV, multiarea coverage path planning model. A bipartite cooper-
ative coevolution (BiCC) algorithm was suggested in this regard, which coevolves interarea
and intra-area path planning components to generate good solutions. In [47], the authors
proposed a geometric planning-based iterative trajectory optimization technique. To begin,
graph theory was used to generate all potential UAV-ground BS association sequences,
and candidate association sequences were chosen based on the topological link between
UAV and ground BSs. Following that, an iterative handover location design based on
the triangle inequality property is given to calculate the shortest flying route with quick
convergence and minimal computation complexity. After that, by comparing all of the
possible trajectories, the optimal flight trajectory can be determined. The authors presented
a tradeoff between mission completion time and flight energy usage [47].

In addition, recent research looks on multiobjective optimization of UAV-assisted
communication [48,49]. Over the course of a flight, a multiobjective optimization problem
is constructed to jointly optimize three objectives [49]: (1) maximization of cumulative
data rate, (2) maximization of total gathered energy, and (3) reduction of UAV energy
consumption. Because these goals are incompatible, the authors suggested an enhanced
deep deterministic policy gradient (DDPG) technique for learning UAV control policies
with multiple goals. In [50], the authors developed a mathematical propulsion energy
model for rotary-wing UAVs with the goal of minimizing the total energy consumption of
the UAV while keeping all ground node data rates in consideration. The authors in [51] take
the problem of UAV-based communicating systems in a more complete manner, where they
optimize both access and backhaul links simultaneously. In particular, they consider low
earth orbit (LEO) satellites as a backhauling option and try to obtain an optimal backhaul
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link through BS-satellite association. Besides, the transmit power, channel to be used, and
the trajectory of UAV BSs are also optimized with the help of RL.

1.2. Contributions

In this paper, a smart UAV positioning mechanism is proposed by taking such regula-
tion constraints into account to provide sustainable wireless coverage and services to the
ground users under more realistic conditions. In particular, we propose a Q-learning-based
approach for UAV-assisted communication systems. The optimal position of UAVs are
determined under the constraints of altitude regulations, NFZs, and transmit power. The
main contributions of the paper are as follows:

• A smart UAV positioning mechanism for a sustainable UAV communication system is
proposed, under certain constraints.

• A multiobjective optimization model is formulated, that is, minimizing the energy
consumption of UAV, while maximizing the number of users covered.

• A weighting mechanism is developed to prioritize the two objectives given in the
previous item over each other for different scenarios.

• Q-learning-based algorithm is used to find the optimal position of UAV. The conver-
gence of the developed algorithm is first tested, followed by comparing its perfor-
mance with the baseline k-means method in terms of number of users covered and
energy consumption.

1.3. Organization of the Paper

The remainder of this paper is organized as follows. Section 2 describes the system
model including propagation and energy consumption models, while Section 3 presents the
problem formulation. Section 4 presents the proposed Q-learning-based UAV positioning
mechanism, followed by discussing the simulation scenario and the results in Section 5.
Section 6 concludes the the paper.

2. System Model

In this section, we elaborate on the system modeling of the work, including the
scenario used, propagation, and energy consumption modeling.

2.1. Scenario

We consider a UAV mounted BS to provide coverage to nu ground users that are
distributed over a geographical area of size a × b square-meter, Figure 1. Let U =
{1, 2, 3, ..., nu} be a set of nu users, and the UAV can move in the (x, y, or z) direction
to cover maximum number of ground users based on user density. The total time of service
Tt (in mins) is divided into consecutive time-slots with equal duration of Td (in mins),
such that nts = Tt/Td is the number of time slots, and ~T becomes a vector containing
the consecutive time slots as ~T = [t0, t1, ..., tnts ]. The location of a user is represented by
(xu, yu, zu), where xu ∈ R+ is in the range of xu = [0, a], and similarly yu ∈ R+ is in the
range of xu = [0, b]. zu ∈ R+ is assumed to be a constant number as z = hu, since we
consider the conventional mobile handsets, which are carried around a similar height. In
this work, we assume the height of UEs to be hu = 1.5 m.

The altitude of the UAV hd ∈ R+ is in the range of [hmin, hmax] where hmin and
hmax are the minimum and maximum allowed altitude (According to the regulations
of concerning country/region) of the UAV, respectively. For instance, according to the
European regulations for flying UAV, hmin and hmax are 30 and 120 m, respectively (Easy
Access Rules for Unmanned Aircraft Systems (Regulation (EU) 2019/947 and Regulation
(EU) 2019/945) by EASA (European Union Aviation Safety Agency)).

Specifically, the association between the UAV and the ground users is based on time
division multiple access (TDMA). Although orthogonal frequency division multiple access
(OFDMA) or nonorthogonal multiple access (NOMA) are the most used approaches for
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the UAV networks, we adopt TDMA to fully exploit the above-mentioned time slots for
the total time of service.

UE

UAV BS

Ground BS

NFZ

𝑥

𝑦
𝑧

𝜃

Figure 1. Considered scenario depicting a ground macro BS that provides a wide-range coverage
and UAV BS that provides additional capacity to the cellular network. A no-fly zone (NFZ), over
which the UAV BSs are prohibited to fly, is also illustrated.

2.2. Propagation Model

The propagation model is inspired from [19,24], wherein the average path loss model
for air-to-ground communication can be given below in terms of the line of sight (LoS)
links and non-LoS (NLoS) links.

Lk
LoS = 20 log

(
4π fcdk

2

)
+ ηLoS,

Lk
NLoS = 20 log

(
4π fcdk

2

)
+ ηNLoS,

(1)

where fc is the carrier frequency and dk is the Euclidian distance between the UAV and
user k, c is the speed of light, ηLoS and ηNLoS are the mean value of the excessive path loss
for LoS and NLoS, respectively. The probability of LoS link is given as,

Pk
LoS(ϑk) =

1
1 + ψ exp(−ς(ϑk − ψ))

, (2)

where ψ and ς are constant values depend on the environment, ϑk =
180
π arcsin( hd

dk
) is the

elevation angle. Besides, the probability of NLoS link can be calculated as

Pk
NLoS(ϑk) = 1− Pk

LoS(ϑk). (3)

Therefore, the average path loss can be expressed as

Lk(hd, ϑk) = 20 log
(

4π fcdk
2

)
+ Pk

LoS(ϑk)ηLoS+

Pk
NLoS(ϑk)ηNLoS.

(4)

2.3. Energy Consumption Model

The energy consumption model is inspired from [24] where it is modeled as a combination
of the energy consumption resulting from communication, UAV hovering, and UAV mobility.
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Communication Energy Consumption

The communication energy is needed to communicate with the ground users; i.e.,
transmit/receive the signals to/from the users. As such, the communication energy
consumption of UAV EC can be calculated as follows:

EC(tj) = (nu,tj Pt + Pcu)tcm, (5)

where Pt is transmission power, Pcu is the on-board circuit power, tcm is the duration to
communication of UAV to user j, and nu,tj is the number of users served by UAV during
time slot tj.

2.4. Hovering Energy Consumption

The hovering energy is required to keep the UAV up in the air and stay at the right
altitude, and the hovering energy consumption of the UAV during time slot tj can be given as

EH(tj) = PHtH, (6)

where tH is the duration of hovering of UAV. PH (in Watts) is the instantaneous hovering
power consumption that can be determined by

PH =
RU 3

2√
2ρπβ2

, (7)

where R is the number of rotors of the helicopter, U is the thrust, ρ is the fluid density of
the air, and β is the rotor disk radius.

2.5. Mobility Energy Consumption

The mobility energy is needed to move the UAV to the optimal position to serve the
ground users. From [24], the mobility energy consumption of the UAV can be given as

EM(tj) = Ph
d(tj)

vh
+ I(∆h(tj))Pa

∆h(tj)

va

−(1− I(∆h(tj)))Pd
∆h(tj)

vd
,

(8)

where Ph is instantaneous power consumption for mobility in the horizontal direction, Pa
is the ascending power, Pd is descending power. d(tj) the horizontal moving distance at tj,
while ∆h(tj) is the changes in the altitude of the UAV at tj. vh, va, and vd are the horizontal,
vertical (ascending), and vertical (descending) velocities of the UAV, respectively (For the
details on the calculations of these velocities, please refer to [24]). I(∆h(tj)) is the indicator
function, such that [24]

I(∆h(tj)) =

{
1 ∆h(tj) > 0,
0 ∆h(tj) < 0.

(9)

Lastly, the power consumption of the horizontal direction is as follows:

Ph = PP + PI, (10)

where PP is the parasitic power for overcoming the parasitic drag due to the aircraft’s skin
friction [24].

3. Problem Formulation

The primary objective of this work is to maximize the number of connected users
while minimizing the total energy consumption of the UAV BS to prolong its flight time. In
this regard, we aim to find the optimal position of the UAV BS and associate the ground
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users, which are normally out-of-service due to the congestion in the terrestrial network, to
it so that the number of unconnected users are reduced; however, it is important to consider
the total energy consumption of the UAV BS to maximize the service duration given they
they are battery operated and have limited flight time. We also consider certain constraints,
including the NFZs (e.g., the UAV BS cannot fly over those forbidden regions), the altitude
regulations for UAVS, etc., thereby determining the optimal positioning of the UAV BS by
taken into account both the requirements and constraints becomes a nontrivial objective.

Theorem 1. The number of connected users, nc, can be controlled by the altitude of the UAV BS, hd.

Proof. Let K be a rectangular prism with the base area of AK = xKyK, xK and yK are the
x and y dimensions of the base of K that is placed on z = 0 plane. If we place the UAV
BS—with a directivity angle of θ—at any point inside K, the radius of the footprint of the
UAV BS can be calculated as follows [16]:

Rd = hd tan
(

θ

2

)
, (11)

where hd is determined by
hd = |~N|, (12)

where |~N| is the length of the normal vector, ~N, from UAV BS to the z = 0 plane. Then, the
footprint of the UAV BS can be found as

Ad = πR2
d. (13)

If a random point is selected on z = 0 plane, then the probability of falling inside the
footprint of the UAV BS can be given as

pf =
Ad
AK

=
πR2

d
xKyK

, (14)

where AK is the base area of the rectangular prism K. Let pq is the probability of receiving
sufficient signal-to-noise ratio (SNR (It is worth noting that we assumed that the UAV BS is
operating at an out-of-band spectrum, and thus it does not cause any interference to the
terrestrial networks, or vice versa.)) for a UE, such that

pq = P(Sr ≥ Tmin), (15)

where Sr is the received SNR, while Smin is the minimum required SNR value to establish a
connection between the UAV BS and the UE. We assume the ground BS uses a different
frequency band than the UAV BS, thereby it does not create any interference to the UAV
BS. Therefore, SNR is a better choice here. Moreover, note that Ts captures the receiver
sensitivity of the user equipment (UE), and pq encompasses small-scale and large-scale
fading effects. Therefore, for a UE, the probability of being served by the UAV BS can be
determined as

pc = pf pq pr, (16)

where pr is the probability of having enough resource for the UE at the UAV BS, such that
pr = P(BL ≥ BR), where BL is the remaining radio resources at the UAV BS and BR is the
required radio resources for the UE. By substituting (11), (13), and (14) into (16), we get:

pc = pq pr

πz2
d tan2

(
θ
2

)
xKyK

. (17)

Hence, it is obvious from (17) that the probability of being served by the UAV is a
function of the height of the UAV BS and they have a direct proportionality.
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Theorem 2. The total energy consumption of the UAV BS, ET, can be controlled by the altitude of
the UAV BS, hd.

Proof. Let ET be the total energy consumption of the UAV BS, EC be the communication
energy, EM be the energy consumption during the UAV mobility. Suppose UAV moves to
the optimal position and attain optimal altitude to serve the ground users.

The total energy consumption of the UAV BS can be calculated as follows:

ET = EC + EH + EM. (18)

By substituting the EM from (8) into (18), we get

ET = EC + EH + Ph
d(tj)

vh
+ I(∆h(tj))Pa

∆h(tj)

va

−(1− I(∆h(tj)))Pd
∆h(tj)

d
.

(19)

It is obvious from (19) that the total energy consumption of the UAV directly de-
pends on the changes in the height of the UAV as well as the movement in the horizontal
direction.

3.1. Optimization Problem Formulation

There are two primary objective functions considered in this work; namely, (i) maxi-
mization of the number of served users by the UAV BS (nc) and (ii) minimization of the
total energy consumption of the UAV BS (ET). Therefore, these two objective functions can
be formulated as follows:

3.1.1. Maximization of Number of Served Users

The number of served users by the UAV, nc is supposed to be maximized at each time
slot. Let F be the NFZ and a nonself-intersecting convex quadrilateral that is defined by its
vertices as ~Vi = (xi, yi, zi), where i = 1, 2, 3, 4. Moreover, let ~C3d ∈ R3 be a vector containing
the 3-dimensional (3-D) coordinates of the UAV, and C2d be a point in xy-plane, representing
the projection of the UAV on the xy-plane, and imagine we draw straight lines from each vertex
of F to the point C2d. Then, the optimization problem can be modeled as follows:

max
~C3d∈R3

f (~C)

s. t. C1 : hmin ≤ hd ≤ hmax,

C2 : ∠A1 +∠A2 +∠A3 +∠A4 < 2π,

C3 : θ < π,

C4 : Pt ≤ Ptmax ,

(20)

where ∠A1 = ∠V1C2dV2, ∠A2 = ∠V2C2dV3, ∠A3 = ∠V3C2dV4, and ∠A4 = ∠V1C2dV4.
f : R3 → R is the objective function, and f (~C) = nc in this case.

Explanations of Constraints in (20)

• C1: The altitude of the UAV (hd) is regulated in many countries and regions, such
that the maximum (hmax) and minimum (hmin) altitudes that UAVs can flight are
determined. Therefore, in this work, the UAV is supposed to obey these limitations in
terms of the altitude.

• C2: Since F is defined as the NFZ, it means that the UAV BS cannot fly over it. As such,
this constraint confirms that the UAV BS is flying out of F, such that the projection of
the UAV BS on the xy-plane, C2d, is not within F.

• C3: The directivity angle of the antenna of the UAV BS can be π at maximum (The use
of an isotropic antenna is not a good idea for UAV BSs as they are serving to the users
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under them in terms of height, and there is no sense to provide a radiation above the
UAV BS. Therefore, we assume that the maximum antenna angle for the UAV BSs
should be π), but practically it should be less than that to have a better antenna gain.
Though this could be normally not a hard constraint, in this work we deal with the
case where the antenna angle is less than π, thereby this becomes a constraint for the
optimization problem.

• C4: Given that the maximum transmit power of the BSs are regulated, this constraint
captures such regulations, meaning that the transmit power of the UAV BS has an
upper bound.

3.1.2. Minimization of Energy Consumption

It is crucial to minimize the energy consumption of the UAV BS for it to stay in the air
for a longer time so that the service that the ground users get is prolonged. Put it another
way, the optimization objective elaborated in Section 3.1.1 focuses on maximizing the
number f connected users, nc, however, such objective is instantaneous (i.e., for a duration
of a single time slot, Td) and does not aim to maximize nc for a period of time. The total
number of connected users over a period of time considered can be calculated by

nc,t =
nts

∑
i=1

nc,i, (21)

where nc,i indicated the number of served users by the UAV BS during time slot i from ~T.
In (21), nts is a function of Ts, such that nts = f (Ts), thereby although Ts is assumed to be
fixed here, normally it is dependent on the energy stored in the UAV battery (i.e., battery
capacity) as well as the energy consumption of the UAV BS. Since the battery capacity is
fixed (We acknowledge that different UAVs have different battery capacities, but here we
mean that once a UAV is selected out of various options, the battery capacity becomes
something that cannot be changed/controlled), the only way left to prolong the UAV flight
time is reducing the energy consumption. Therefore, the second objective of our problem
formulation becomes the minimization of the total energy consumption of the UAV BS (ET),
and that can be modeled as follows:

min
~C3d∈R3

g(~C)

s. t. C1 : hmin ≤ hd ≤ hmax,

C2 : ∠A1 +∠A2 +∠A3 +∠A4 < 2π,

C3 : θ < π,

C4 : Pt ≤ Ptmax ,

(22)

where g : R3 → R is the objective function, and g(~C) = ET in this case.

3.1.3. Multiobjective Problem Formulation

As detailed in Sections 3.1.1 and 3.1.2, there are two distinctive objectives included in
our problem; i.e., maximization of connected users—as given in (20)—and minimization
of the energy consumption of the UAV BSs—as given in (22). In this work, we aim at
optimizing the both objectives—(20) and (22), simultaneously. In this regard, we developed
the following optimization model:

max
~C3d∈R3

h(~C)

s. t. C1 : hmin ≤ hd ≤ hmax,

C2 : ∠A1 +∠A2 +∠A3 +∠A4 < 2π,

C3 : θ < π,

C4 : Pt ≤ Ptmax ,

(23)
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where h : R3 → R is the objective function, and h(~C) = w1 f (~C)− w2g(~C) = w1nc − w2ET
in this case. Here, w1, w2 ∈ R are coefficients used for two purposes:

• To prioritize one objective over the other. For example, a mobile network operator
may not be interested in the energy consumption much and focuses only on covering
as much as users as possible for a short duration, and it would choose w1 � w2. On
the other hand, if the operator ranks both objectives equally, then it would choose
w1 = w2. Therefore, w1 and w2 allow the operators to rank the objectives according to
their requirements.

• To make the units of both f (~C) (unitless) and g(~C) (in Joules) the same, since h(~C)
includes the summation of f (~C) and g(~C). To this end, while w1 is chosen to be
unitless, w2 is in (1/Joules).

4. Proposed Q-Learning Based UAV Positioning Mechanism

RL has a special place in machine learning, as it is structurally quite different than
supervised and unsupervised learning methods. RL consists of a set of policy-based goal-
seeking algorithms, where an agent takes actions in a given environment to maximize its
reward or minimize the penalty, and therefore RL is predominantly used in optimization
problems rather than time-series analysis, classification, or clustering as supervised and
unsupervised learning algorithms do.

RL has unique advantageous characteristics making it more preferable than other types
of optimization methodologies, including heuristics. Firstly, RL algorithms, such as Q-learning
and state–action–reward–state–action (SARSA), are predominantly model-free, meaning that
they do not require the model of the environment-of-interest in advance, they instead interact
with the environment to capture its dynamics [52]. Moreover, since RL algorithms include
learning in their body, they do not have to start from scratch every time there is a change
in the environment, they rather adapt themselves to the changes, giving them a strength of
optimization with reasonable time complexity. This is an essential feature for an optimization
algorithm especially for dynamic scenarios, where network conditions change rapidly and
frequently. To this end, we employ Q-learning, one of the most common RL algorithms, in
this work to take the benefit of above-mentioned features.

In RL, there is an agent taking actions to find the optimum policy for a given prob-
lem. Based on the action of the agent, first, corresponding state is observed, followed
by evaluating the subsequent penalty/reward function. Then, the action-value function,
storing calculated penalty/reward values for all the states and actions, is updated [52]. The
agent takes action in two different ways: explore and exploit. In the initial phases of the
implementation, the agent is expected to explore more to discover the environment better.
However, after a sufficient exploration, the agent should start exploiting the available
information to be able to focus on finding the best policy.

We adopted OpenAI Gym [53] tool for building environment for this study. It is based
on episodic RL, where experience of each agent is divided into episodes. In initial state
of each episode, we randomly localize the UAV BS and the users in a grid, and learning
proceeds until the environment reaches one of the stopping criteria (this will be detailed
in the following paragraphs). The main goal here is to maximize the total reward per
episode and to decrease the number of episodes for achieving desired performance. RL
steps in each episode are given in Algorithm 1, where st and st+1 are the current and
next states, respectively, and at is the current state while Rt+1 is the expected value of the
reward function.
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Algorithm 1: Q-learning algorithm [52]

1 Initialise Q(s, a);
2 for each episode do
3 Initialise s
4 done← False A variable is introduced for a stopping criteria check
5 for each iteration do
6 while not done do
7 Select at Action is chosen according to the adopted policy
8 Take action, at The selected action is taken within the environment
9 Determine Rt+1 Expected numeric value of the reward function is calculated

10 Obtain st+1 The next state is determined
11 Update Q(st, at) The action-value function (Q-table) is updated
12 st ← st+1 The next state is assigned as the current state Check the stopping criteria
13 if Stopping criteria then
14 done← True If the stopping criteria is met, then execute the iterations and go the next episode
15 end
16 end
17 end
18 end

In this study, states refer to the position of the UAV in the grid. The agent in the
developed Q-learning algorithm has seven action values for each state, which denote
the agent action at in UAV state of st at time t. The possible actions for each state st
are hold, move up, move down, move left, move right, move forward, and move backward. The
agent follows ε-greedy [52] policy to take random actions initially—which is referred to
as exploring— and decays ε through iterations—which is referred to as exploiting— for
decreasing random actions. Given that the main goal of this study is to optimize energy
consumption of the UAV along with maximizing user coverage, the reward function in the
proposed method is inline with the objective function in (23), and depends on the energy
consumption and coverage.

The components of the developed Q-learning algorithm for the problem of UAV BS
positioning are detailed in the following paragraphs.

4.1. Environment

We create discrete environment with finite size (grid) representing the state of UAV
in OpenAI-Gym. The size of the grids in the environment-of-interest in this study is
(25, 25, 12), which is simulated with 10 m-resolution in each axis. Therefore, the real
environment size becomes (250, 250, 120) in meters. These certain dimensions of the
environment are chosen by considering both the computational burden and the reality
of the work; such that, the environment should be in a size of some realistic area (and
the UAV BS should be able to have sufficient degree of freedom in movement) while not
bringing much computational burden (the simulation time should be reasonable for us to
make some tuning during the design of the algorithm). However, we intuitively confirm
that the developed algorithm would work in any environment size, as the UA BS can only
move slightly at one iteration thereby extending the size of the environment would not
affect the performance of the algorithm other than prolonging the simulation time.

4.2. Agent

The UAV BS in the state st corresponds to the agent in this study. It will take an action,
at, in state st, and it receives an observation and reward from the environment. Accordingly, it
updates Q-table to learn the dynamics of the environment, and adapt itself to the changes. It
is quite convenient to choose the UAV BS as the agent in the developed Q-learning algorithm,
as it is the only one taking different actions; e.g., moving in different directions.
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4.3. Actions

We consider seven different actions that agents can take. Let ~C3d = (xu, yu, zu) be the

current position of the UAV BSs and ~̂C3d be the position after an action taken, while r (in
meters) denotes the step size in any direction. Then, the set of the actions, A, that the agent
takes is as follows:

• ~̂C3d = (xu, yu, zu + r): Move up (in z direction)

• ~̂C3d = (xu, yu, zu − r): Move down (in z direction)

• ~̂C3d = (xu + r, yu, zu): Move left (in x direction)

• ~̂C3d = (xu − r, yu, zu): Move right (in x direction)

• ~̂C3d = (xu, yu + r, zu): Move forward (in y direction)

• ~̂C3d = (xu, yu − r, zu): Move backward (in y direction)

• ~̂C3d = (xu, yu, zu) : Hold

4.4. States

We denote state s as the position of the UAV in a 3D space. We divide 3D space into
grids (i.e., we discretized the state space) for having finite set of state that can be used in
Q-learning. This state selection is inline with the criterion given in [52], such that the state
should be affected by the actions that the agent takes. As such, the actions of the agent
is fundamentally altering the 3D position of the UAV BS, which changes the state of the
agent, which is also defined to be the 3D position of the agent.

4.5. Reward

To avoid the limitations of the work (or respect the constraints, in other words), a penalty
mechanism is developed, such that the agents obtains a reward of -1 when the UAV BS

• goes beyond the dimensions of the environment,
• flies on the NFZ,
• does not respect any other constraint in (23).

On the other hand, a reward function is designed for the cases where the UAV BS is
not in one of the states listed above. Since the main goal is to optimize energy consumption
along with maximizing number of user covered, the reward is defined inline with the
optimization objective in (23), such that

Rt+1 = h(~C) = w1nc − w2ET. (24)

The selection of the reward function as in (24) (i.e., making it equal to h(~C)) is a
legitimate decision, because the the objective of the developed Q-learning algorithm is to
maximize the reward, R, and the objective function in (23) is the maximization of h(~C).
Thus, making the reward equal to h(~C) is completely inline with the model in (23).

4.6. Policy

There are mainly two phases in the search of an agent to find optimal solution: (i)
exploration and (ii) exploitation. In the former, agents enhance their current knowledge
for a long-term benefit and make more accurate estimations of action-values. On the other
hand, in the latter, agents take advantage of their experiences and perform greedy actions
to obtain the most reward by exploiting the action-value estimate of agents. This behavior
may not result in getting the most award and leads to suboptimal solutions. Namely, agents
make more accurate action-values predictions when they explore, and receive more reward
when they exploit. It is not possible to perform exploration and exploitation simultaneously
which is known as exploration-exploitation dilemma. ε-greedy is a simple policy to create a
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balance between exploration and exploitation. ε identifies the probability of agent’s action
to choose explore. This method is formulated as follows:

At =

{
Qt(a) (1− ε)

κ ε,
(25)

where κ is a random variable with a discrete uniform distribution on A.
We follow an ε-greedy policy [52] to explore the environment by taking random

actions in earlier iterations (exploration phase). As the iterations proceed (e.g., the number
of the iterations get larger), we turn the exploration phase into the exploitation phase by
decreasing ε with a decay-rate of 0.95. This is done to allow the agent explore and acquire
new experiences during the exploration phase, while in the exploitation phase it uses the
obtained experience to converge to an optimal value.

4.7. Q-Table Update

We update the Q-table according the action at in the state st using:

Q(s, a) =: Q(s, a)+

α[Rt+1 + γ max(Q(st+1))−Q(s, a)]
(26)

where α is the learning-rate, and γ is the discount rate. Q-table update is crucial in storing
the obtained experience as well as modifying it with the new data.

4.8. Initialization

In each episode, the UAV BS and the users are located randomly in the grid, so that
the agent does not “memorize" (or it is called as overfitting in more technical terminology)
a certain environment, instead produce a more generic model.

4.9. Episodes

The episode is considered as a snapshot of the environment in the problem formulation.
The agent takes random actions in each episode and learn the environment using Q-table
with (26) by evaluating the reward, R, through (24). When the the agent reaches stopping
criteria, a new episode begins.

4.10. Stopping Criteria

If the predefined maximum number of iterations is reached or all the users are covered
by the UAV BS, the current episode is terminated, and the algorithm goes into a new
episode. The maximum number of iteration is set to 2000 in this work.

4.11. Complexity

The space complexity of Q-learning algorithm is the number of states times the number
of actions. In this study, the UAV BS can take 7 actions as described earlier in Section 4.
The 3D environment is discretized into (25, 25, 12), and thus the total number of states is
25 × 25 × 12 = 7500.

The time complexity of proposed algorithm is the same as Q-learning which is O(Na)
where Na is the number of actions. The current position of the UAV BS is the current state of
the UAV BS and the action is performed accordingly by looking up the Q-table after training.

5. Performance Evaluation

In this section, we present the performance evaluation of the proposed methodology.
After describing the simulation scenario, we introduce the benchmark method as well as
the performance metrics, followed by presenting the obtained results and corresponding
discussions. The parameters used in the simulation campaigns are given in Table 1.
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The speed of the UAV BS is fixed in our model, as seen in Table 1. However, it is also
an important parameter to considers, as it can have multiple impacts on the performance.
For example, if the speed of the UAV BS is less than the average speed of the ground
users, the UAV BS positions itself after the perfect time, which would degrade the overall
performance as there is a delay in finding the optimal position. In the extreme scenario
where the speed of the UAV BS is too less than the average speed of the users, a new
positioning would be needed by the time the UAV BS arrives at the optimal position, as
the users already moved, and the position of the UAV BS is not the optimal anymore. The
same principle also applies to the case where the speed of the UAV BS is more than the
average speed of the ground users, since there will be delay between the time that the UAV
BS positions to an optimal point and the time that such point becomes the optimal position
(because the users move slower than the UAV BS, which arrives the future optimal position
early). The speed of the UAV BS requires a complex and detailed discussion, which would
make this work lengthy and would also distract the main focus of the work. Therefore,
we kept that discussion for a further study and focused only on how the UAV BS can be
located in the case of moving users and NFZs.

Table 1. Simulation parameters.

Parameter Value

General

Carrier frequency, fc 1 GHz
Antenna directivity angle, θ 60◦

Minimum UAV height, hmin 30 m
Maximum UAV height, hmax 120 m

Urban Area 250 × 250 m2

Total number of users, nt 100
Height from ground for all UEs 1.5 m

Speed of light, c 3× 108 m/s
ηLoS 1.6 dB

ηNLoS 23 dB
Parameter of A2G path loss model, Ψ 12.08
Parameter of A2G path loss model, ζ 0.11

Number of rotors, M 4
Fluid density of the air, ρ 1.2 Kg/m3

Rotor disk radius, β 0.25 m
Weight of the frame 1.5 Kg

Weight of the battery and payload 2 Kg
Bandwidth 180 kHz

Transmit power, Pt 30 dBm (1 W)
On-board circuit power, Pcu 0.01 W

Duration of hovering of UAV, th 1 s
Duration to communication of UAV, tcm 1 s

Velocity of the UAV, v 30 m/s
Angular velocity, ω 40 rad/s

Drag coefficient 0.025
Rotor chord, cb 0.022 m

Reference frontal area of the UAV 0.192 m2

Q-learning

Discount rate, γ 0.9
Epsilon, ε 1

Epsilon decay, ε-decay 0.95
Learning rate, α 0.9

Learning rate decay, α-decay 1× 10−4
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5.1. Simulation Scenario

We implement a simulation scenario to evaluate the proposed Q-learning algorithm.
An urban area of 250× 250 m2—which is discretized by means of square-shaped grid—and
nt = 100 total number of users (that are normally out-of-service from the terrestrial network)
are considered. Consequently, the UAV can move in the discretized 3D space in terms of
x, y, and z coordinates. Furthermore, due to the regulations, we impose a minimum and
a maximum altitude of hmin = 30 and hmax = 120 m, respectively, and a certain number
of NFZs, corresponding to specific not allowed grids. The users in the considered model
are mobile and move at each time slot, and we consider a random walk model for the
user mobility, meaning that the users move by a certain amount of distance from their
original location in a random manner; such that the directions that they can move to have
equal probability. The height from ground for all UEs is fixed to 1.5 m. Furthermore, we
assume the directivity angle θ = 60◦ and the carrier frequency fc = 1 GHz. An initialization
procedure is performed to explicate the initial conditions. In particular, the values for all
the involved parameters are determined, considering arbitrary positions for the UAV BS
and the users. An outage threshold is calculated considering a required minimum received
power to establish and maintain with a certain QoS a connection between the UE and the
UAV BS, called Prmin . For a given transmitted power for the UAV BS, Pt—lower than the
maximum allowed value, Ptmax —, and the above-mentioned Prmin , the path loss experienced
by the UE, L, can be expressed by the following relation, L = Pt − Prmin . Considering the
2D position of the UAV BS (C2d), the QoS constraint can be expressed in terms of L lower
than Lmax [19], where Lmax is the path loss experienced by edge users. The footprint of the
UAV BS, on the other hand, can be considered as a circle centered in the 2D position of the
UAV BS (C2d).

5.2. Benchmark and Metrics

In this work, k-means algorithm is employed as a benchmark method, since it was
widely used in similar problems [16]. k-means is an unsupervised clustering algorithm,
where the data points are clustered according to certain features. In k-means, a centroid is
assigned to each cluster and the objective is to place the centroids to the position which
yields minimum cumulative distance to the data points. In particular, in the initialization
of the algorithm, the centroids are placed randomly and the data points are assigned to
each centroid to form a cluster, and the assignment is done in a way that each data point is
assigned to the cluster that is closest to it in terms of Euclidian distance. Then, the centroids
are moved towards to the center of their clusters, and this process iteratively continues
until the convergence, where the centroids cannot be moved anymore.

Therefore, as this algorithm finds the position of the centroid, where the cumulative
distance between the centroid and the data points is the minimum, it serves as a strong
benchmark for this problem. In particular, if the UAV BS is considered as the centroid,
while the ground users are the data points, the k-means algorithm positions the UAV BS
at a point where it is closest to the ground users in terms of distance. Given that the
distance is the primary parameter affecting the link quality between the transmitter and
receiver, k-means algorithm becomes a appropriate benchmark. With this algorithm, we
compute the centroid position related to the actual ground users’ positions. Consequently,
the centroid corresponds to the best 2D position for UAV, in terms of respective distances
between UAV and ground users.

Two different phases, one for training and one for testing, respectively, are performed
to demonstrate the efficiency of the proposed Q-learning algorithm in terms of coverage
and energy consumption. Regarding the coverage, we count the number of ground users,
which are normally out of service from the terrestrial network, connected to the UAV
BS, and the more users covered means a better performance in terms of the coverage. In
the energy consumption, we measure the total energy consumption, ET, of the UAV BS
while it is providing service to the users, and the less energy consumption refers to a
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better performance in terms of the energy consumption as the flight time of the UAV BS
is prolonged.

During the training phase of the developed Q-learning algorithm, the simulation
is conducted through a certain number of episodes to populate the related Q-table and
consequently achieve the needed learning. A trade-off between coverage and energy
consumption prioritization is considered both in training and testing phases. Specifically,
five different experiments are performed with different values of the weights (e.g., w1 and
w2) that are responsible of prioritizing the coverage or the energy consumption.

5.3. Simulation Results

Figure 2 demonstrates the averaged and normalized results in terms of energy con-
sumption (orange bars) and covered users (green bars) for different altitudes through
k-means algorithm. Since the k-means algorithm determines the 2D position of the UAV
BS, the altitude of the UAV BS should also be determined. Although there are different
methods to determine the altitude, such as a trigonometric approach is used in [16], those
usually do not consider the altitude regulations for the UAVs. In this work, on the other
hand, considering such regulations, we used different fixed levels for the altitude of the
UAV BS. In particular, three different altitude levels are considered: i) minimum allowed
altitude (hmin =30), maximum allowed altitude (hmax =120 m), and the middle point

between the two
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Figure 2. Single UAV positioning for different altitudes through k-means.

From (11) it is understood that the value in the second case, i.e., with maximum
allowed height of 120 m, can be assumed as the upper-bound in terms of coverage, since in
this case the UAV is placed in the best 2D position with the maximum allowed height, that
means the maximum achievable coverage area with respect to the size of the considered
urban area, consequently obtaining the maximum number of covered users. A similar
consideration can be done for this case (i.e., hmax =120 m) in terms of energy consumption.



Algorithms 2021, 14, 302 18 of 22

Since all ground users are covered at the first iteration, one of the stopping criteria is readily
matched, thereby no movement is performed by the UAV, resulting in energy consumption
due to mobility equals to zero. For the two remaining cases, with altitudes of 30 and
75 m, respectively, the results in terms of coverage can be considered as lower-bound and
median values, since as previously stated, the coverage area, and subsequently, the number
of covered user are highly dependent on the considered altitude of the UAV BS. Lastly,
considering the energy consumption results, the UAV BS exploits the maximum number of
allowed iterations attempting to match the stopping criteria for coverage, consequently
resulting in the maximum value for energy consumption due to mobility.

We acknowledge that the number of users considered in the simulation campaigns
would intuitively change the results in terms of the percentage of covered users, since the
UAV BS has a certain amount of radio resources available and cannot serve all the users in
case the number of users increased (when the total demand exceeds its available capacity).
However, the goal of the agent (the UAV BS in our case) in this design is to maximize the
number of users covered when w2 is prioritized, and the simulation results confirm that
the agent performs according to the prioritization conditions. Therefore, the scope of this
work is to prove that the UAV BS is capable of maximizing the number of users covered
and/or minimizing the energy consumption according to the prioritization policy. In the
cases where the total demand is more than the capacity of a single UAV BS, then deploying
multiple UAV BSs would be considered to accommodate more users in the system.

Figure 3 presents the results in terms of achieved rewards, after an initial phase, the
convergence of the Q-learning algorithm occurs, demonstrating the effectiveness of the
Q-learning algorithm. One of the important takeaway from the findings in Figure 3 is that,
regardless of the weighting approach (e.g., for different w1 and w2 values), the designed
Q-learning algorithm converges to the final reward. This confirms the proper design of the
algorithm, and is a clear sign that it can work in various scenarios.
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Figure 3. Q-learning algorithm convergence in terms of rewards for different set of weights for
2000 episodes.

Following the above assumptions, the efficiency of the proposed Q-learning algorithm
is verified through the testing phase, with the UAV BS positioning optimization through
k-means as a benchmark. In this phase, the UAV BS is located in the above-mentioned
simulated scenario and an arbitrary uniform distribution for the ground users is considered.
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The testing phase is conducted performing a certain number of runs, to average the results
with regard to the specified parameters. Figure 4 shows the single UAV BS position
optimization for different set of weights and the results are the normalized version of the
average values between 0 and 1. The goodness of considering a trade-off between coverage
and energy consumption, achieved by means of the two different weights, is mostly visible
in two of the five experiments. In particular, for the w1 =0.2 and w2 =0.8, the best average
energy consumption is achieved, whereas for the weights w1 =0.0 and w2 =1.0, best
overall coverage, and rewards are obtained. In other words, the proper performances of the
above-mentioned trade-off can be observed from the results in Figure 4. Effectively, when
energy consumption is not prioritized, the UAV BS finds the optimum position in fewer
episodes but at the expense of a higher energy consumption, conversely in the remaining
cases. Therefore, the designed weighting mechanism works well, as the performance of the
Q-learning algorithm is deeply affected by the numerical values of the weights. However,
these results does not only affirm that the weighting mechanism works, but also gives
superiority to the proposed approach, as it can converge to a solution according to the
requirements of the network operators.
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Figure 4. Monte Carlo test results. Single UAV position optimisation comparison for different set of weights.

6. Conclusions

In this paper, a smart UAV BS positioning mechanism was proposed by taking altitude
regulations as well as NFZs into account along with some hard constraints, including
maximum transmit power and directivity of the UAV BS antenna, to provide sustainable
wireless coverage and services to the ground users under more realistic conditions. As
such, firstly, two different optimization models were developed for the minimization of
the energy consumption and maximization of the number of users covered. Then, these
two distinctive models are combined with a weighting mechanism, and a multiobjective
optimization problem formulation was developed. With the developed weighting mecha-
nism, wireless networks operators become capable of positioning the UAV BSs according to
their requirements by relatively ranking the energy consumption and the number of users
covered. We proposed a Q-learning-based approach for UAV-assisted communication
systems, and the OpenAI Gym tool was used to build the RL environment. The objective is
to find the optimal position of the UAV and minimize the energy consumption while maxi-
mizing the number of users covered. The results demonstrate that the proposed solution
outperforms the baseline k-means method in terms of covered users, while achieving the
desired minimization of the energy consumption.

Since a single UAV BS has a certain amount of radio resources and is capable of
accommodating a limited number of users, in future we plan to investigate the UAV-
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assisted coverage extension problem in multi-UAV scenario, wherein more than one UAV
BS are deployed to serve to the ground users to further maximize the number of connected
users. That would be a more challenging problem due to the fact that the interference
between the UAV BSs will be another aspect to consider, as such interference will have an
impact on the communication performance and so the positions of the UAV BSs. Future
work would also consider to investigate the impacts of the speed of the UAV BS in the
overall performance. Moreover, as in a realistic case, having a dynamic speed for the UAV
BS, in which case the speed should also be optimized, will be also considered.
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