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Abstract: The field of explainable artificial intelligence (XAI) aims to build explainable and inter-
pretable machine learning (or deep learning) methods without sacrificing prediction performance.
Convolutional neural networks (CNNs) have been successful in making predictions, especially in
image classification. These popular and well-documented successes use extremely deep CNNs such
as VGG16, DenseNet121, and Xception. However, these well-known deep learning models use tens
of millions of parameters based on a large number of pretrained filters that have been repurposed
from previous data sets. Among these identified filters, a large portion contain no information
yet remain as input features. Thus far, there is no effective method to omit these noisy features
from a data set, and their existence negatively impacts prediction performance. In this paper, a
novel interaction-based convolutional neural network (ICNN) is introduced that does not make
assumptions about the relevance of local information. Instead, a model-free influence score (I-score)
is proposed to directly extract the influential information from images to form important variable
modules. This innovative technique replaces all pretrained filters found by trial-and-error with
explainable, influential, and predictive variable sets (modules) determined by the I-score. In other
words, future researchers need not rely on pretrained filters; the suggested algorithm identifies only
the variables or pixels with high I-score values that are extremely predictive and important. The
proposed method and algorithm were tested on real-world data set and a state-of-the-art prediction
performance of 99.8% was achieved without sacrificing the explanatory power of the model. This
proposed design can efficiently screen patients infected by COVID-19 before human diagnosis and
can be a benchmark for addressing future XAI problems in large-scale data sets.

Keywords: explainable artificial intelligence; convolutional neural networks; deep learning; Chest
X-ray Image; I-score

1. Introduction
1.1. AI Systems for COVID-19 Chest X-rays

In the sixteen months since the WHO Emergency Committee declared a global health
emergency on 30 January 2020 based on the outbreak of novel coronavirus SARS-Cov-2
(previously 2019-nCov, also known as COVID-19), the disease has spread to nearly every
country in the world [1–3]. Globally, as of 25 April 2021, there have been 146,054,107
confirmed cases of COVID-19, including 3,092,410 deaths, reported to the World Health
Organization (Source: https://covid19.who.int/ (accessed on 2 November 2021)). The ini-
tial clinical sign of the disease that allowed case detection was pneumonia [1]. Pneumonia
mostly occurs in the second or third week of a symptomatic infection, with an average
incubation period of five days [1,4]. Prominent signs of viral pneumonia include decreased
oxygen saturation and blood gas deviations, as well as changes visible in the lungs through
chest X-rays and other imaging techniques [1].

Since the start of the pandemic, the top priority for controlling the spread of COVID-19
has been monitoring suspected cases for appropriate quarantine measures and treatment.
Pathogenic laboratory tests are the standard procedure (RT-PCR, collected with the invasive
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nasal swab most readers will be familiar with), but the accuracy of this test suffers from
significantly occurring false negatives [1]. According to a study conducted early in the
pandemic consisting of 1014 patients in Wuhan, China [5], the authors concluded that
chest CT has a high sensitivity for diagnosis of COVID-19. Moreover, chest CT may be
considered a primary tool for the current COVID-19 detection in epidemic areas [5]. This
innovation, if used earlier, could have revolutionized the initial screening procedure of
COVID-19 and might have prevented many unnecessary deaths. Looking forward, we
theorize that other related diseases could use similar detection methods to prevent future
epidemics and pandemics. Creating these methods now will ensure the development of
testing procedures with the speed, accuracy, and explainability that will be required to
deploy such artificial untelligence (AI) systems into future testing environments.

AI-centered medical-imaging-based deep learning systems have already been devel-
oped for image feature extraction, including shape and spatial relation features. Specifically,
the convolutional neural network (CNN) has shown promising results in feature extraction
and learning [3]. However, traditional CNNs heavily rely on pretrained filters (also known
as kernels) that are designed to extract certain features from images, and are trained with
past data sets that may or may not be relevant to the data at hand [6–8]. This traditional
design has little ability to extract only the useful information, and creates noisy features
that must be sifted. CNN models have many convolutional layers, and each convolutional
layer uses many pretrained filters with no feature selection methods. Hence, any and all
information created using pretrained filters, noisy or not, is included in those convolutional
layers for later analysis. This architecture does nothing to further refine the features, which
can therefore negatively affect the prediction performance. Moreover, there is no known
CNN architecture that uses model-free (well-selected) feature selection methods designed
to screen for the actually influential features used in the construction of each convolutional
layer. In addition, common practices tend to increase the number of layers of CNN archi-
tectures to frustratingly large numbers [8–11]. Therefore, these deep CNNs consist of tens
and sometimes hundreds of millions of parameters, so it is almost impossible to explain
these models.

Although the advantage of the I-score is shown using a CNN in image classification
tasks in this paper, the application of the I-score can be adapted to any large-scale data set
in any supervised learning research task. The proposed methodology can be applied in a
variety of different fields such as human computer interaction using brain waves [12,13],
brain–computer interfaces [14], PEBL-based attention tests [14], and potentially advanced
eye-tracking based evaluation that assist human–computer interaction [15].

To better assist the medical community by providing and deploying explainable
artificial intelligence (XAI) systems for analyzing chest scans to save critical time that
is necessary for disease control, we call for immediate attention to developing a self-
interpretable and explainable convolutional beural network architecture capable of early
disease detection.

1.2. What Is XAI?

In 2016, DARPA initiated the explainable artificial intelligence (XAI) challenge. The goal
is to build suites of machine learning algorithms that are interpretable without sacrificing
prediction performance (Figure 1). The trade-off between learning performance and the
effectiveness of explanation is illustrated in Figure 1. The work in this paper delivers
a novel interaction-based methodology that produces the power of interpretability and
explainability while maintaining state-of-the-art learning performance.

A popular description of interpretability states the essential element for XAI is the
ability to explain or to present in understandable terms to a human [16]. Another popular
version defines interpretability as the degree to which a human can understand the cause
of a decision [17]. Though intuitive, these definitions lack mathematical formality and
rigorousness as certain perspectives [18].
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Figure 1. DARPA document (DARPA-BAA-16-53) proposed this figure to illustrate a basic Explain-
able AI problem [19,20]. It presents the relationship between learning performance (usually measured
by prediction performance) and effectiveness of explanations (also known as explainability). The pro-
posed method in our work aims to take any deep learning method and provide explainability without
sacrificing prediction performance. In the diagram, the proposed method is the orange dot on the
upper right corner of the relationship plot.

In this paper, we regard the core issue of an XAI problem to be how features or
variables are used to produce the prediction performance. In other words, the effectiveness
of explanations in the DARPA document (Figure 1) is innately a variable set assessment
and selection problem. This means the explainability and interpretability of a machine
learning algorithm directly refer to what measures statisticians use to assess how the
features or variables affect the final prediction results. In order to establish accountability,
responsibility, and transparency in an AI system, one must first address an explainable
and interpretable measure to assess feature importance. We define the following three
dimensions, D1, D2, and D3, for a measure to be interpretable and explainable. In other
words, these three dimensions serve as the key premises of the definition of an explainable
and interpretable measure. This means that a measure that assesses the importance of a
variable set needs to satisfy all three dimensions in order to be considered interpretable
and explainable. We regard AI systems that explain features using an explainable measure
such as explainable AI frameworks. This can be regarded as a heuristic framework for the
existing concepts of interpretability and explainability.

D1: A quantifiable measure for interpretability and explainability does not need to
rely on the knowledge of correct specification of the underlying model. In other words,
any interpretable explanation of features used in making predictions should be directly
associated with the response variable. If a model is used in explaining the feature im-
portance and mistakes are carried over from model fitting to providing explanations, it
is exceptionally challenging to differentiate the mistakes occurring in feature selection
from mistakes created in the fitted model. Suppose a data set has input variables X and
response variable Y, let us assume we use a fitted model f (·), an ultra-deep neural network,
to compute estimated label Ŷ = f (X). Then, the conventional approach is to compute
the loss between Ŷ and ground truth Y, i.e., L(Ŷ, Y). In this case, the explanations of how
input variables X affect the response variable Y have contributions from both the input
variables X and the fitted model f (·). In the cases of using ultra-deep neural networks as
the fitted model, there are hundreds of millions of parameters, which makes expressing f (·)
exceedingly challenging or an almost impossible task. This implies that the explanation
is clouded by this fitted model and we cannot explicitly establish how the explanatory
variables X affect the outcome variable (or response variable) Y. The requirement for this
dimension D1 is to directly create an understanding between X and outcome variable Y
without searching for the fitted model f (·). The notion of model-free is essential because it
specifies a procedure such that any error calculated is solely dependent on the explanatory
variables X and its labels Y (and thus independent of the model f (·)). Therefore, a measure
that is model-free and nonparametric is extremely crucial, and it is necessary to be defined
as the first dimension D1.
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D2: Any desirable measure for interpretability and explainability should clearly state
how a combination of explanatory variables influence the response variable. Moreover,
it is optimal if any audience can directly compute a score for a set of variables in order
to perform reasonable comparisons. This means that any additional influential variables
should raise this measure, whereas any existence of redundant or noisy variables should
decrease the value of this measure. Hence, this second dimension, D2, states that a
necessary condition for any measure to be interpretable and explainable is to allow its users
to conduct comparisons and, potentially, select features.

D3: A measure appropriate for interpretability and explainability needs to clearly
state the impact of the influential explanatory variables on the predictivity of the response
variable. In other words, this measure should directly represent the predictivity (see
Equation (2) of [21]) of the explanatory variables. This allows us to associate the importance
of a set of variables with the learning performance (measured by prediction rate) of a
set of variables. With the above three dimensions defined, research agendas toward
searching for a criterion to locate highly predictive variables using an interpretable measure
are imminent.

We regard a measure to be explainable and interpretable only when all three dimen-
sions described above are satisfied. We illustrate in the next subsection why common
practices involving deep CNNs are not satisfactory as an explainable methodology. To shed
light on this problem, we recommend a fundamentally different approach, using the in-
fluence score (I-score), as an explainable and interpretable measure to extract features
from image data, and construct important modules as input variables for neural network
classifier. The proposed approach fulfills the requirement of all three dimensions (D1, D2,
and D3), and hence can be regarded as an explainable and interpretable CNN framework.

1.3. Problems in Image Classification and Deep CNNs

In the field of image classification, CNNs are well-known for their accurate pre-
diction performance in image classification. This developing field of CNN architecture
originated from LeNet-style [22], which consists of stacks of convolutional operation for
feature extraction. In 2012, the procedure was improved by Krizhevsky et al. [8] using
AlexNet. The refined architecture involves using convolutional operations many times in
between max-pooling operations. Afterward, researchers constructed many deep CNNs.
Amongst the family of these models, ultra-deep CNNs, including VGG16 [11], VGG19 [11],
DenseNet121 [10], DenseNet169 [10], DenseNet201 [10], ResNet [9], and Xception [23],
have produced good performance.

Though CNNs are successful in their application areas, no theoretical proof explains
why they perform so well [6]. In addition, Khan et al. stated that a major challenge for
the family of ultra-deep CNNs is the large size of the filters [7]. Another challenge is
the underlying assumption of using learned feature maps due to the large filter size [7,8].
The issues to these problems described, above all, are related to the attempt to guess
the feature map among many convolutional layers by using trial and error. Specifically,
the procedure of building convolutional layers in the literature relies heavily on many
different filters with each one designed to capture certain information that was previously
discovered in other data sets that may or may not be related to the current practice. In other
words, there is no comparison or any feature selection procedure adapted among the filters
used or identified in constructing these ultra-deep CNNs. Because no feature selection
is conducted amongst the filters, all useful and noisy filters remain in the operation to
construct convolutional features, which are later used in many deep hidden layers of the
neural network classifier to perform predictions. Thus, we cannot easily trace back to the
original variables and observe which variables have a large impact on the response variable.
We regard this as the major drawback and disadvantage of using too many pretrained
filters that are uninformative and noisy.

This doctrine is problematic because it is challenging for human decision makers
to directly investigate the data and interpret the information that is locally preserved in
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the image data. In other words, we still face difficulties to explain feature importance
using models when the statistician has no knowledge of the ground truth of the real
situation. Any mistake in searching for this model would be carried over when explaining
the features. Because the procedure seeks the correct specification of the underlying model
when it tries to explain the features, the explainability of the feature importance fails to
check the first dimension. In other words, this does not satisfy the condition in D1, which
fails to serve as the rightful candidate to address XAI problems.

In ResNet [9], questions arise in its many layers of convolutional architecture, with an
astounding number of over 25 million parameters that may or may not contribute any
information to making predictions. In the same architecture, the procedure recommends
relearning of feature maps when making interpretable predictions [7]. The same issues
also appear in DenseNet [10]. The DenseNet family has many versions in their design.
The simpler one has approximately one million parameters for DenseNet121 and some
upgraded versions of DenseNet have 40 million parameters [10]. Another related drawback
is its heavy computational cost in training and tuning these ultra-deep CNNs [7]. A short
summary of the number of parameters for some well-known architectures is provided in
Table 1. Due to the large number of parameters, it is difficult to explain how every param-
eter contributes to the prediction performance and to delivering the explainability that
satisfies the three dimensions (D1,D2, and D3) defined above. Some may also consider
background information when the algorithm is making predictions. This problem arises
because many convolutional layers are built in the network architecture and there is no
procedure of screening for noisy variables that hinder the explainability power. In other
words, it cannot be explained how a certain feature or a combination of features can assist
us in classifying the target variable. Hence, this does not satisfy the second dimension D2,
and it is complicated for users to understand the exact information that needs to be used
for making predictions. Since it is difficult to search for an understanding to discriminate
important variables from noisy ones, the second dimension D2 is not met and, hence, it is
suboptimal to use these ultra-deep CNNs when building interpretable models.

Table 1. Summary of some well-known CNNs and their number of parameters.

Name Number of Parameters

LeNet [22] 60,000
AlexNet [8] 60 million
ResNet50 [9] 25 million
DenseNet [10] 0.8–40 million
VGG16 [11] 138 million

Thus far, we do not have an ideal deep CNN architecture that can satisfy all three di-
mensions (D1, D2, and D3) of the definition of interpretability. Due to the above reasoning,
the conventional methodologies cannot serve as good candidates to address XAI problems.

1.4. An Interaction-Based Convolutional Neural Network (ICNN) to Address XAI Problems

Chernoff, Lo, and Zheng [24] presented a general intensive approach, based on a
method pioneered by Lo and Zheng [25] for detecting which, out of many potential
explanatory variables, have an influence (impact) on a dependent variable Y. This paper
presents an interaction-based feature selection methodology incorporating the notion of
an influence score (I-score) as a major technique to detect the higher-order interactions
in complex and large-scale data sets. In our work, we investigated the potential usage
of the I-score and a novel deep learning framework. The executive diagram is shown in
Figure 2, which outlines the road map of the proposed methodology and the architecture
of a novel interaction-based convolutional neural network (ICNN). This novel architecture
takes full advantage of the I-score and the backward dropping algorithm. In other words,
it produces convolutional layers that are self-interpretable, which provides explainability
power to the features of image data at any convolutional layer if this design is implemented.
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In the following section, we discuss the contribution of our work and why the proposed
method satisfies the three dimensions defined in Section 1. With all three dimensions
satisfied (D1, D2, and D3), the proposed design of an ICNN is the ideal candidate to
address XAI problems.

Figure 2. This executive diagram summarizes the key components of the methods proposed in this
paper. We start with the COVID-19 image data. With a small rolling window defined, we execute
the backward dropping algorithm to select the important features within this window. For example,
the rolling window may cover 4 variables, {X1, X2, X3, X4}, and the BDA could select {X1, X2}
as a variable module. Then, we can construct a new variable using the interaction-based feature
engineer technique (see the construction of X† in Equation (6) to appreciate this new design). In other
words, using the selected variables X1 and X2, we construct X†. The procedure of the BDA is
illustrated in the bottom left corner of the figure (we use a 2 × 2 window for simplicity). We set
the starting point to be 12 (i.e., start from the pixel in the 12th row and the 12th column). From the
data (size of 128 × 128) to the 1st layer (58 × 58), this gives us a new dimension that is computed
by b(128− 12− 2 + 1)/2 + 1c = 58 (see Equation (18)). We can repeat the process in the 2nd layer
and the 3rd layer. After the 3rd layer, we shrink the dimension to 14 × 14 (which gives us 196 new
variable modules, i.e., the new X†). We fully connect these 196 variable modules with the 10 neurons
in the hidden layer (in practice, the number of hidden layers and the number neurons are tuning
parameters). This novel design is fundamentally different than the conventional practice of using
pretrained filters because it proposes to use an explainable measure, the I-score, to extract and build
information directly from images in the training data. For each local variable (in the data, this refers
to pixels; in the layers, it is referred to as variables), we compute the I-score values and the AUC
(see Section 4.4 for a detailed discussion of AUC values) for that variable (using this variable as a
predictor alone). We observe that the I-score value fully represents the predictivity of each local
variable, which can be confirmed by the variable’s AUC value. The color spectrum of both the I-score
and AUC are presented in the bottom part of the diagram. We observe I-score values exhibiting
behavior parallel to AUC values. This means the variables with high I-score values have high AUC
values, which indicates strong predictive power for the information in that location. This design
heavily relies on the I-score and has an architecture that is interpretable at each location of the image
at each convolutional layer. More importantly, the proposed design satisfies all three dimensions
(D1, D2, and D3 in the Introduction) of the definition of interpretability and explainability.

2. Contributions of the Paper

The contributions of the proposed work are as follows. We remark here that the three
contributions listed above meet the three dimensions outlined in the previous section (D1,
D2, and D3).
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First, we introduce a model-free and interaction-based learning methodology, the in-
fluence score (I-score). We illustrate how to use the I-score to select and measure features
that are directly linked to the predictivity of the response variable [21,26]. Moreover, this
quantifiable measure does not rely on any specification of the underlying model. Hence,
this meets the first and the third requirements, i.e., D1 and D3 of interpretability and
explainability. We apply this measure along with a greedy search algorithm called the
backward dropping algorithm (see Section 3.2 for a detailed discussion to appreciate this
method) locally to image data. In other words, instead of using a set of predefined filters (or
kernel) that are applicable to various kinds of deep CNNs on image data by trial and error,
we propose using the I-score and the backward dropping algorithm on a local window to
extract important and influential features from image data.

Second, we show that the selection of explanatory variables relying heavily on the
proposed I-score method can produce robust prediction performance. The removal of
these influential features produces subpar performance along with a reduced I-score.
The phenomenon of reduced I-score allows us to compare the explanatory power of any
combination of variables. This desired property of the I-score allows us to directly compare
any variables or any combination of variables. Furthermore, this makes the I-score the
ideal candidate for feature selection and for removing noisy variables in the data. This
satisfies the requirement of the second dimension D2.

Third, we propose and implement a novel method of combining features from any
combination of variables in order to construct interpretable and explainable convolutional
layers to represent the information in image data. This methodology heavily relies on the
usage of the I-score, which satisfies all three dimensions D1, D2, and D3.

The key novelty of our proposed approach (see the executive design in Figure 2) rests
on the collection of features identified by the I-score. Based on the contributions described
above, the proposed method is model-free and hence meets the first requirement D1. It
describes a quantifiable measure of how much a combination of explanatory variables
impacts the outcome variable, which allows statisticians to perform comparisons and screen
for influential features. This phenomenon meets the second requirement D2. In addition,
the statistics, the I-score, provides a measurement for explanatory variables that is directly
associated with the predictivity of the explanatory variables on the outcome, variable
which satisfies the third condition D3. With all three conditions (D1, D2, and D3) satisfied,
the design of the proposed architecture produces an interaction-based convolutional neural
network (ICNN) that is innately interpretable and explainable. It extracts influential
information from the image data and generates explanatory features that directly associate
with the predictivity of the data. Because all three conditions are met, the proposed design
of CNN is interpretable and it serves as a touchstone in the field of XAI.

2.1. Why the Proposed Methodology Satisfies XAI Dimensions

The illustration of the proposed ICNN is presented in Figure 2. This executive dia-
gram describes the step-by-step procedure of how the proposed network architecture was
designed and why it satisfies the three dimensions (D1, D2, and D3) in the definition of
interpretability and, hence, can be the benchmark in addressing XAI problems.

Proposed Architecture. The executive diagram of the proposed architecture is pre-
sented in Figure 2. First, the architecture starts with image data that consists of X-ray
pictures sized 128 × 128 (see detailed discussion of COVID-19 data set in Section 4). The ar-
chitecture proposes using a 2 ×2 rolling window (we use a 2 × 2 window for simplicity;
larger sizes can be applicable as well in practice depending on the data). Since the win-
dow size is 2 × 2, this means there are four variables every time the window rests on a
certain location of the image. Within this subset of variables, we execute the proposed
backward dropping algorithm (BDA). This procedure finely selects a subset of variables
that is highly predictive by omitting the noisy variables in this small neighborhood on
the image. Next, the selected variables (which can be any subset of the original four)
undergo a proposed procedure called interaction-based feature engineer (see (6) for a
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definition). The BDA procedure is illustrated in the bottom left corner of Figure 2 (we use
a 2 × 2 window for demonstration purpose). In addition, we set the starting point to be
12 which means we start from the pixel in the 12th row and the 12th column. From data
(size of 128 × 128) to the 1st layer (58 × 58), this procedure produces a new feature matrix
with size b(128− 12− 2 + 1)/2 + 1c = 58 on both edges, which means the new feature
matrix has 58 × 58 variables (the formula is presented in Equation (18)). This feature
matrix constitutes the first interaction-based convolutional layer. We can then use the same
methodology to construct the second and third interaction-based convolutional layers.
The third interaction-based convolutional layer can be used as the input layer for a neural
network classifier. For each layer, we can compute the proposed I-score and the AUC value
(see Section 4.4 for a detailed discussion of AUC values) for each variable (assuming using
this variable as a predictor when computing the AUC value). The paths of the I-score and
AUC values have parallel behavior, which is shown in the color palette of the spectrum
in Figure 2.

Why the Proposed I-score Satisfies XAI Dimensions. The design of the proposed
architecture in Figure 2 mainly focuses on using the I-score and the BDA to extract and
engineer features from the original images. The proposed I-score is nonparametric (see
Section 3.1 for a definition of this measure). This means the impact of the explanatory
variables on the response variable measured by the I-score does not rely on the knowledge
of the correct specification of the underlying model. In other words, the computation of
the I-score does not rely on any model fitting procedure. This characteristic satisfies the
first dimension, D1, defined in Section 1 about interpretable measures.

Next, the proposed architecture is transparent at disclosing to its human users what
locations of the image are important in making decisions about prediction and what
locations are noisy. In every interaction-based convolutional layer, we can compute the
proposed I-score for any single variable. We can also compute the I-score and finely select
predictive variables from any combination of variables. The larger the I-score, the more
important the variables in making predictions. With the simple visualization presented in
Figure 2, we are able to use a spectrum of different colors to illustrate this phenomenon. We
can code high I-score values as one side of the color spectrum and the low I-score values
as the opposite side. The areas that are informative have high I-score values and have
very different colors than the areas that are noisy. This characteristics of the I-score allows
the statistician to perform comparisons and variable selection assessment. Therefore, it
satisfies the second dimension, D2, defined in Section 1.

Third, the proposed architecture has a direct association with the predictivity (see
Equation (2) in [21]) of a variable set. This means that the important features screened by
the I-score describe to the statistician how much impact this variable set has on the response
variable. In addition, it is beneficial to be able to compute the I-score for any variable in any
interaction-based convolution layer, which implies that the association with the predictivity
is well-stated in each step of the architecture. This can be visualized using the AUC values
(see Section 4.4 for a detailed discussion of AUC values) that are coded onto the same
spectrum location of the I-score values. Moreover, the paths of the I-score and AUC values
show parallel behavior. This implies that the values of the I-score and AUC increase and
decrease together, which means each variable with a high I-score measure would have a
high AUC value and vice versa. This interesting yet powerful phenomenon allows this
architecture to satisfy the third criteron, D3, stated in the definition of an interpretable
measure, which is novel in the literature.

As a summary, we identified that the proposed ICNN relies on the I-score, which is a
measure that satisfies the three criteria of an explainable and interpretable measure. We
regard the proposed ICNN as an explainable and interpretable deep learning algorithm.
Thus far, we have not been able to identify other methods and procedures that satisfy all
three dimensions defined in Section 1.
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2.2. Organization of the Paper

Section 2 starts with introduction of two adopted techniques: the influence score
(I-score) and the backward dropping algorithm. In addition, we introduce an interaction-
based convolutional neural network that is different than any previously designed CNN
architecture. The key advantages of this proposed approach add autonomy and flexibility
when seeking for the variable set, which are powerfully influential on outcome variable.
Another advantage is that the selection of these variables is automatically dependent on the
combined essential tools that were developed in previous papers [24,25,27], which revolve
the usage of the I-score and the backward dropping algorithm. With simulation, we present
examples of how the proposed methodology operates. In the last section, Experimental
Results, we introduce our laboratory procedure including model training, parameters’ and
hyper-parameters’ tuning, evaluation metrics, performance, and visualizations.

3. Proposed Method

The proposed methodology involves three stages. First, we investigate variables to
identify those with high potential to form influential modules. Secondly, we generate highly
influential variable modules from variables selected in the first stage, where variables of the
same module interact with each other to produce a strong effect on Y. Lastly, we combine
the variable modules to perform the prediction process.

From prior simulation experience, we demonstrated that the two basic tools, the I-
score and backward dropping algorithm, can extract influential variables from data sets
with regard to modules and interaction effect. However, questions remain on how to
determine the input to the backward dropping algorithm and how to use the output
from the algorithm results to construct prediction estimates. Unless we can appropriately
use the input to and output from the backward dropping algorithm, the strength of the
algorithm cannot be fully used. In this sense, the innovation of the proposed method
manifests in three ways. First, if we directly apply the backward dropping algorithm on
high-dimensional data sets, we may miss some useful information. We propose a two-
stage feature selection procedure: interaction-based variable screening (this is called the
interaction-based convolutional layer, see Section 3.3) and variable module generation via
the backward dropping algorithm (which is called the interaction-based feature engineer,
see Section 3.4). Since the impurity of features is largely enhanced by the interaction-based
variable selection algorithm in the first stage, we were able to construct variable modules
that have higher-order interactions with large amounts of information in the second stage.
These variable modules provide support as building blocks for us to form classification
rules. These schools of thoughts produce results significantly better than directly applying
the backward dropping algorithm.

The statistics, the influence score (I-score), works better with discrete variables. If some
explanatory variables are continuous, we first convert them into discrete ones for feature
selection purpose. After we have selected the important variables, we use the original
values to estimate their effects. We rely on the influence score when we convert continuous
variables into discrete variables. For example, if a random variable is drawn from normal
distribution, then one optimal cutoff is to use the one that has the largest marginal I-score.
There is a trade-off induced from this process: the information loss due to discretizing
variables from continuous to discrete forms versus the information gain from robust
detection of interactions by discretization. Wang et al. [27] demonstrated that the gain from
robust detection of interactions is much more than enough to offset possible information
loss due to discretization. Wang et al. [27] used the two-mean clustering algorithm to
convert the gene expression level into a variable with two categories: high and low. As an
additional piece of evidence supporting the proposed preprocessing step, the authors tried
more than two categories, i.e., three categories of high, medium, and low. The empirical
results showed that the more the categories used, the worse the classification error rates.
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3.1. Influence Score (I-Score)

Assume that we have a binary response variable Y (taking values of 0 and 1) and all
explanatory variables are discrete. Consider the partition Pk generated by a subset of k
explanatory variables {Xb1 , . . . , Xbk

}. Assume all variables in this subset are binary. Then,
we have 2k partition elements; see the first paragraph of Section 3 in Chernoff et al. [24]. Let
n1(j) be the number of observations with Y = 1 in partition element j. Let n̄(j) = nj × π1
be the expected number of Y = 1 in element j. Under the null hypothesis, the subset of
explanatory variables has no association with Y, where nj is the total number of observa-
tions in element j and π1 is the proportion of Y = 1 observations in the sample. In Lo and
Zheng [25], the influence score is defined as

I(Xb1 , . . . , Xbk
) = ∑

j∈Pk

[n1(j)− n̄1(j)]2. (1)

The I statistic is the summation of the squared deviations of the frequency of Y from
what is expected under the null hypothesis. There are two properties associated with the I
statistic. First, the measure I is nonparametric, which does not require the specification
of a model for the joint effect of {Xb1 , . . . , Xbk

} on Y. This measure I is created to describe
the discrepancy between the conditional means of Y on {Xb1 , . . . , Xbk

}, disregarding the
form of the conditional distribution. Secondly, under the null hypothesis that the subset
has no influence on Y, the expectation of I remains nonincreasing when dropping variables
from the subset. The second property makes I fundamentally different from Pearson’s
χ2 statistic, the expectation of which is dependent on the degrees of freedom and, hence,
on the number of variables selected to define the partition. We can rewrite the I statistic in
its general form when Y is not necessarily discrete:

I = ∑
j∈P

n2
j (Ȳj − Ȳ)2, (2)

where Ȳj is the average of Y observations over the jth partition element (local average),
and Ȳ is the global average. Under the same null hypothesis, Chernoff et al. [24] showed
that the normalized I, I/nσ2 (where σ2 is the variance of Y), is asymptotically distributed
as a weighted sum of independent χ2 random variables of one degree of freedom each
such that the total weight is less than one. It is precisely this property that serves as the
theoretical foundation for the following algorithm.

3.2. Backward Dropping Algorithm (BDA)

The BDA is a greedy algorithm that searches for the optimal subsets of variables that
maximizes the I-score through step-wise elimination of variables from an initial subset
sampled using in some method from the variable space. The steps of the algorithm are
as follows:

1. Training Set : Consider a training set {(y1, x1), . . . , (yn, xn)} of n observations, where
xi = (x1i, . . . , xpi)} is a p-dimensional vector of explanatory variables. The size p can
be very large. All explanatory variables are discrete.

2. Sampling from Variable Space: Select an initial subset of k explanatory variables Sb =
{Xb1 , . . . , Xbk

}, b = 1, . . . , B
3. Compute Standardized I-score: Calculate I(Sb) =

1
nσ2 ∑j∈Pk

n2
j (Ȳj − Ȳ)2. For the rest of

the paper, we refer o this formula as the influence measure or influence score (I-score).
4. Drop Variables: Tentatively drop each variable in Sb and recalculate the I-score with

one variable less. Then drop the one that produces the highest I-score. Call this new
subset S′b, which has one variable less than Sb.

5. Return Set: Continue to the next round of dropping variables in S′b until only one
variable is left. Keep the subset that yields the highest I-score in the entire process.
Refer to this subset as the return set, Rb. This will be the most important and influential
variable module from this initial training set.
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3.3. Interaction-Based Convolutional Layer

This section proposes an interaction-based convolutional neural network. This action
is presented in Figure 3. In this diagram, we start with an image that is sized 64 × 64 and
suppose we use a window that has a size of 4 × 4. Thus, this small window has 16 pixels
locally. This set of 16 pixels can be converted into binary variables, which hence provides a
well-defined partition. For example, we can discretize these pixels into black and white.
In other words, each pixel takes value 1 or 0 (two levels) and the set of 16 pixels would
create a partition that is sized 216. This is the set up for us to run the BDA. Based on the
definition of the BDA, in each round, we take turns dropping one variable iteratively. Every
time we drop a variable, we compute the I-score. We drop the variable at each step such
that the I-score is the highest if that variable is dropped. Using this procedure, we are able
to select a subset of variables out of the original 16 pixels.

Panel A Panel B

Figure 3. This is the architecture of the interaction-based convolutional neural network (ICNN).
In Panel A, the input matrix is 64 × 64. Suppose the small rolling window is 4 × 4. By rolling this
small window from the top left corner to the bottom right corner of the input matrix, we create a
61 × 61 output matrix. These 61 × 61 variables are then used to build a neural network classifier
with a hidden layer that has 32 units. The number of hidden layers and number of units per layer are
tuning parameters. Panel B depicts an architecture that is much deeper, with each layer adopting the
design in Panel A.

A deeper but similar architecture can be constructed using the following diagram.
In Figure 3, we propose a deep interaction-based convolutional neural network. Instead of
building a single ICNN, multiple such layers can be constructed using the same procedure.
Suppose we start with an image that is sized 64 × 64. Further suppose we use a window
that is sized 5 × 5. This provides 25 pixels to work with locally and to run the BDA. We
start rolling this small window from the first row and the first column. Next, we shift
this small window to the right and then to the bottom until we hit the 60th row and the
60th column (this can be understood as rolling a small window from the top left corner
to the bottom right corner of the image). After constructing the first interaction-based
convolutional layer, we shrink the size from 64× 64 to 60× 60. In the next step, we operate
with the same procedure by using a window of size 4 × 4, which allows us to further
shrink the dimension to 57× 57. After constructing the interaction-based convolutional
layers, the number of hidden layers and the number of units per hidden layer are both
tuning parameters.

3.4. Interaction-Based Feature Engineer

This subsection defines a procedure to mechanically engineer an interaction-based
feature.

For a 3 × 3 image (that is, an image that has 9 pixels), we write these pixels as
X1, X2, . . . , X9. Consider a small window of 2× 2 passing from the first row and the first
column of this 3× 3 image. This means we start with {X1, X2, X4, X5} within this small
2 × 2 window in this example. We use the BDA to narrow down to {X1, X2} because we
observed that this subset of variables delivers the highest I-score. Since both X1 and X2 are
discretized into two partitions, we have partition Π{X1,X2} well-defined (see Equation (3)).
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In other words, assume X1 and X2 both only take values of 0 and 1. Then, the partition
Π{X1,X2} is defined as:

Π :=


π1 if X1 = 1, X2 = 1
π2 if X1 = 1, X2 = 0
π3 if X1 = 0, X2 = 1
π4 if X1 = 0, X2 = 0

(3)

In this case, each partition πj, while j ∈ {1, 2, 3, 4}; we can compute the local mean of
response variable Y from observations in the training set. Hence, a new interaction-based
feature can be constructed:

X† := ȳj while ȳj is the local mean of Y
based on the jth partition ∈ Π

(4)

In the general situation, let us consider an input matrix with size sin by sin. Suppose
the window size is w× w and the stride level is l (notice in the above example that w = 2
and l = 1). Using Equation (5), which is defined below,

sout = b
sin − w

l
+ 1c (5)

we can compute an output matrix with size sout × sout (which coincides with the X† matrix).
In this case, we define running index b to take values {1, 2, 3, . . . sout× sout}. In the example
in the previous paragraph, b can take value {1, 2, 3, 4} because
sout = b sin−w

l + 1c = b(3 − 2)/1 + 1c = 2, thus sout × sout = 4. For each round b of
the backward dropping algorithm (b takes a value from {1, 2, 3, 4} in this example), we can
construct a new variable module that takes Formula (6), defined below,

X†
b := ȳj while ȳj is the local mean of Y

based on the jth partition ∈ Π
(6)

whereas X†
b is defined as ȳj using observations in training set, and j indicates the jth

partition of Π that is formed by the variables selected from the b round of the BDA.
Hence, the relationship of the input matrix and output matrix can be visualized using the
following diagram.

input:

X1 X2 X3
X4 X5 X6
X7 X8 X9


3 by 3

→ output:
[

X†
1 X†

2
X†

3 X†
4

]
2 by 2

where the input matrix is 3 × 3 and the output matrix is 2 × 2. In the output matrix, X† is
defined using Equation (6) with observations in the training set.

3.5. Simulation with Artificial Examples

In this section, we illustrate the proposed methodologies on the following artificial
examples.

3.5.1. Artificial Example I: Variable Investigation

In the first artificial example, we demonstrate the procedure followed to construct the
interaction-based convolutional layer and the engineer interaction-based features.

Let us consider the following experiment. We create an artificial data set with 500 data
points in he training set and 10,000 data points in the testing set. These observations are
randomly drawn from Bernoulli(1/2) independently. In other words, we independently



Algorithms 2021, 14, 337 13 of 34

generate Xi ∼ Bernoulli(1/2), where i = {1, 2, 3, . . . , 36}. We define the underlying model
to be the following (here known as Model (7)),

Y =

{
X1 + X2 (mod 2) with prob. 0.5
X3 + X4 + X5 (mod 2) with prob. 0.5

(7)

Model (7) is a two-module example. The first module is a two-way interaction in
modulo 2. The second module is a three-way interaction in modulo 2. The response variable
Y is defined as 50% first module and 50% second module. In this setup, the individual
explanatory variable does not have any predictive power on the response variable Y.

Scenario I. Assume the statistician knows the model in this simulation. This means
they are fully aware of S1 = {X1, X2} as an important variable set and S2 = {X3, X4, X5} as
the other. In other words, they can use the first module as a predictor to make predictions
on response variable Y. They are able to compute the theoretical prediction rate of the first
variable set as 75%. This is because the response variable is defined as the first variable
module S1 = {X1, X2} exactly 50% of the times, so S1 is able to guess Y correctly at least
50% of the time. The other 50% of the time, the response variable is defined as the second
variable module S2 = {X3, X4, X5}. Since there is no marginal signal, the performance
is exactly like random guessing, so the rest of the occurrences are only correct 50% of
the time. In other words, assuming training sample size has n data points, we can write
the following:

θc(S1) = θc({X1, X2})
= 1

n ∑n
i 1(Ŷ = Y)

= 1
n ∑n

i 1((X1 + X2)︸ ︷︷ ︸
(mod 2)

= Y)

= 50% + 50% · 50%
= 75%

(8)

This result can be extended to the other variable module as well. If this statistician uses
the second variable module S2 = {X3, X4, X5}, then a similar calculation can be carried out
in the following.

θc(S2) = θc({X3, X4, X5})
= 1

n ∑n
i 1(Ŷ = Y)

= 1
n ∑n

i 1((X3 + X4 + X5)︸ ︷︷ ︸
(mod 2)

= Y)

= 50% + 50% · 50%
= 75%

(9)

The theoretical prediction rate for Model (7) is the maximum percentage accuracy
delivered by S1 and S2. In this case, we have max(θc(S1), θc(S2)) = 0.75.

Scenario II. In practice, it is often the case that we do not exactly observe the un-
derlying model in a given data set. The recommendation is to use the I-score to select
the important local information and then create an interaction-based feature based on the
selected variable. The diagram for this action is depicted in Figure 4.

The classical procedure of a convolutional neural network starts with many predefined
filters (or kernels) from a previous data set. The size of this filter can be 2× 2, 3× 3, or any
other higher dimension. The procedure starts with the first row and the first column. Then,
the process passes the filter over and across rows and columns in the image. The proposed
methodology shares similar characteristics. However, instead of using a pretrained filter,
we apply the BDA in this local area.

Constructing the Proposed Convolutional Layer. In the proposed artificial example,
we have a data set with 36 variables. This means each observation can be reshaped into
a 6× 6 grid structure. In other words, each observation can be considered as an image.
The first row and the first column is variable X1. The first row and the last column is
variable X6, so we can arrange these variables into the following structure:
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{X1, X2, ..., X36} −→

X1 X2 X3 . . . X6
X7 X8 X9 . . . X12
...

...
. . .

X31 X32 X33 . . . X36︸ ︷︷ ︸
6 by 6

and the 4 red-colored variables are the first used in the BDA. If the window size is 2× 2,
we would use {X1, X2, X7, X8} and execute the BDA on the variables within this window.

Notice that in the diagram (Figure 4), the blue region indicates a local area where we
run the backward dropping algorithm. The pink region indicates the engineering workflow
of building interaction-based features using Equation (4). For each window, we run the
BDA. The procedure adopts the steps introduced in Section 2.2. The steps are listed in
Table 2. First, we start with all 4 variables, which are {X1, X2, X7, X8}. For each step, we
take turns dropping one variable and compute the I-score for the remaining variables. It
can be seen that X8 should be dropped because the I-score raises from 160.18 in step 1 to
319.65 to step 2. We conduct the same procedure in step 2 and realize that X7 needs to be
dropped. Then, the I-score increases to 638.17. We can keep dropping variables, but the
statistician realizes that the I-score is the highest when there are only two variables left:
{X1, X2}. Hence, we place an up-arrow at the step to indicate the optimal variable selection
(see the up-arrow in Table 2). In this experiment, the most optimal selection is the variable
module {X1, X2} with an I-score of 638.17.

Figure 4. The network architecture with simulated data. The artificial data has 6× 6 = 36 variables,
which can be arranged in a grid structure with shape of 6 × 6. We use a window size that is 2 × 2.
By passing this window from the top left corner of the original 6 × 6 matrix, we create a new
5 × 5 matrix. The number 32 is the number of units in the hidden layer. In this example, there is one
hidden layer, which is sufficient for the dimension of the data in the example.

Table 2. The steps of the backward dropping algorithm in a 2× 2 window.

Step 1 2 3 4
Drop Start X8 X7 X2

I-score 160.18 319.65 638.17 0.65

Investigation by iterative dropping

X1 X1 X1 X1
X2 X2 X2
X7 X7
X8

Best result: {X1, X2}

For each local area with a window size of 2× 2, we discussed in the above how to
finely select the important variable. Similar to the standard procedure of convolutional
neural networks using a filter on a local area of an image, the proposed method also inves-
tigates local information. However, instead of relying on many filters that are predefined,
the proposed approach uses the I-score, a model free influence measure that directly asso-
ciates with predictivity. After the variable module is selected within a local window, we
adopt Formula (4) to create interaction-based features. For example, in the local window



Algorithms 2021, 14, 337 15 of 34

above, we narrow down to variable module {X1, X2}. This means we can create the first
interaction-based feature as the following:

X†
1 :=


ȳ1 if obs. falls in X1 = 1, X2 = 1
ȳ2 if obs. falls in X1 = 1, X2 = 0
ȳ3 if obs. falls in X1 = 0, X2 = 1
ȳ4 if obs. falls in X1 = 0, X2 = 0

where j = {1, 2, 3, 4}, which corresponds to the 22 = 4 partitions generated by {X1, X2}.
This provides the first predictor to allow us to build classifier and to make predictions.

The experimental results from the first artificial example are listed in Tables 3–5.
Suppose a statistician knows the model. The theoretical prediction rate is 75% (which
is derived using Formulas (8) and (9)). In reality, we suppose that a statistician has no
knowledge of the data set. In this case, they can directly proceed using a neural network
or even CNN to make predictions. However, without the correct model specification,
the performance for these models is subpar. We can see that the neural network and CNN
both performed 50% on he test set. This performance is rather like random guessing.
Alternatively, this statistician can perform the experiment using the proposed methods.
First, we can generate an interaction-based convolutional layer. Instead of using many
pretrained filters for feature mapping, the proposed method adopts the I-score and the
backward dropping algorithm to construct X†

{X1,X2}, X†
{X8,X9,X21}, and so on. The proposed

methodology also has an exact I-score that is associated to each variable module, which
allows us to rank feature importance. With the I-score, the first variable module X†

{X1,X2} is
much more influential than the other variable modules.

Table 3. Interaction-based convolutional layer. Foran artificial data set with 62 = 36 variables and a window size of 2× 2, we
pass the window from the top left corner down to the bottom right corner. For each particular location, we have 4 variables
to run the BDA. Before each observation had 36 features that could be sized 6× 6. Afterward, each observation has
25 new features that have the shape of 5× 5. In other words, we create X†

b , where b = {1, 2, . . . , 25}. The asterisk indicates
extremely influential variable module(s). For each variable module, we also present the AUC value (see Section 4.4 for a
detailed discussion of AUC values) assuming a classifier is built using this variable module alone.

New Mod. Variables I-Score AUC New Mod. Variables I-Score AUC

X†
1* X1, X2 638.17 0.75 X†

14 X28 1.3729 0.50
X†

2 X7 1.2162 0.50 X†
15 X28 1.3729 0.50

X†
3 X13, X20 2.3597 0.51 X†

16 X11 0.2347 0.50
X†

4 X19, X20, X26 0.7218 0.50 X†
17 X11 0.2347 0.50

X†
5 X26, X31 2.6751 0.50 X†

18 X16, X22 0.0777 0.51
X†

6 X8, X9 0.5067 0.49 X†
19 X28 1.3729 0.51

X†
7 X8, X9 0.5067 0.50 X†

20 X28 1.3729 0.51
X†

8 X15, X21 1.8013 0.50 X†
21 X6, X12 0.4378 0.49

X†
9 X20, X21, X26, X27 0.7554 0.50 X†

22 X11, X12 0.6184 0.51
X†

10 X27, X32 1.017 0.50 X†
23 X18, X24 1.3814 0.51

X†
11 X9, X10 0.6894 0.50 X†

24 X23, X24, X29 0.8788 0.51
X†

12 X9, X10, X15 0.9346 0.51 X†
25 X30, X35 1.2105 0.51

X†
13 X15, X16, X21, X22 1.0933 0.50

We proceed using a window size of 2× 2. In a data set with 62 = 36 variables, this
produces (6− 2+ 1)2 = 25 variable modules. Using these 25 variable modules, we are able
to build a classifier and achieve a performance of 76% AUC (see Section 4.4 for a detailed
discussion of AUC values) on the test set, much higher than the previous 50%. We can
also use a window size of 3× 3. This produces (6− 3 + 1)2 = 16 variable modules. These
16 modules allow us to build another classifier using a neural network and delivers a 76%
AUC on the test set as well.



Algorithms 2021, 14, 337 16 of 34

The detailed variable modules and their corresponding I-scores are exhibited in
Table 3. In this table, we present four columns: New Modules, Variables, Associated I-
score, and Corresponding AUC. The new module is constructed using (6). The variables
were obtained from the BDA. The I-score of a variable set is computed using Equation (2).
For computation of the AUC, please see Section 4.4 In the artificial data set that has
6× 6 = 36 variables, a window size of 2× 2 allows us to generate (6− 2 + 1)2 = 25
variable modules. Each module is created using the selected variables from a local 2× 2
window after using the BDA, and the module is generated using Formula (4). We observe
that the variable module X†

1 that is formed based on {X1, X2} is the most influential
candidate because it directly links to predictivity. This can be confirmed using the AUC
value if this module is used to build a classifier by itself.

A different window size can be selected. In this artificial example, we attempt
3× 3. For data with 6× 6 = 36 variables, a window size of 3× 3 allows us to create
(6− 3 + 1)2 = 16 variable modules. The results of this experiment are listed in Table 4.
In Table 4, we observe a slightly different set of variable modules selected. We notice
that the most influential variable module X†

1 that is based on {X1, X2} remains the same.
In other words, if a local section of the data has real predictive power, the proposed method
will almost always identify the information.

Table 4. Interaction-based convolutional layer. For an artificial data set with 62 = 36 variables and a window size of 3× 3,
we create 16 new features that can be shaped into 4× 4. The procedure of generating these 16 new features follows the same
procedure as in Table 3. The only difference is the window size, i.e., here, we use 3× 3. In other words, we are able to create
X†

b while b = {1, 2, . . . , 16}. The asterisk indicates extremely influential variable module(s). For each variable module, we
also present the AUC value (see Section 4.4 for a detailed discussion of AUC values) assuming a classifier built using this
variable module alone.

New Mod. Variables I-Score AUC New Mod. Variables I-Score AUC

X†
1* X1, X2 638.17 0.75 X†

9* X3, X4, X5 350.2429 0.75
X†

2 X8, X9, X13, X15, X21 0.6344 0.50 X†
10 X11 0.2347 0.51

X†
3 X19, X21, X25 1.4386 0.50 X†

11 X16, X17, X21, X22 0.8097 0.51
X†

4 X19, X21, X25 1.4386 0.50 X†
12 X28 1.3729 0.51

X†
5 X8, X9 0.5067 0.51 X†

13 X11 0.2347 0.51
X†

6 X10, X15, X21 0.9883 0.50 X†
14 X18, X24 1.3814 0.51

X†
7 X14, X15, X21, X22, X26 0.9816 0.50 X†

15 X18, X24 1.3814 0.51
X†

8 X20, X32, X33 2.0205 0.50 X†
16 X22, X23, X24, X29, X34 1.5684 0.51

This can be verified using the AUC value associated with the variable module. Since
we pass a 3× 3 window, we are able to sometimes screen for higher-order interactions.
As discussed above, we have the I-score presented in Table 4, so that feature ranking
is possible if desired. From this table, we observe that another module X†

9 , that was
constructed using {X3, X4, X5}, is also important. Though it has a lower I-score than the
first module X†

1 , it has a higher I-score than any other candidates in the data set.
Prediction. After the variable modules (the variables named X†’s) are constructed,

we can proceed with building the neural network classifier. In Table 3, there are 25 variable
modules, i.e., {X†

1 , . . . , X†
25}. We use these variable modules as the input layer of a neural

network architecture. In other words, the input layer has 25 neurons (these neurons are the
exact 25 variable modules named X†’s). For the variable modules in Table 4, the input layer
consists of 16 neurons, which are {X†

1 , . . . , X†
16}. Since we are dealing with a rather small

input layer (only 25), no hidden layer is recommended. The output layer can simply be one
neuron, and the final outcome Ŷ can be computed using a sigmoid function as follows:

Ŷ := 1/(1 + exp(−
25

∑
j
(wjX†

j )) (10)
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assuming we use the 25 variable modules (the X†) in Table 3. Alternatively, suppose we use
the 16 variables modules, {X†

1 , . . . , X†
16}, in Table 4. We can compute Ŷ using the following:

Ŷ := 1/(1 + exp(−
16

∑
j
(wjX†

j )) (11)

assuming the same activation function to be sigmoid (the same as (10)). This architecture
is called forward propagation ( standard architecture widely used in neural network).
This is discussed in Section 4.2 and review the architecture in Figure 5 for a detailed
description. We assume there is no bias term. Then, the objective is to minimize the loss
between Y and Ŷ. Hence, we write min~w L(Y, Ŷ). We can simply choose the loss function
to be square-error, which means L(Y, Ŷ) = ∑n

i=1(Yi − Ŷi)
2. In order to minimize this loss

function, an optimizer algorithm is required and we can choose the standard gradient
descent algorithm.
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X†
1 w1

Weights

X†
2 w2 Σ ŷ := a(·)

Activation function:
“sigmoid”

X†
3 w3

Inputs

Figure 5. The above architecture presents a feed forward neural network with three input variables.
The input variables are {X†

1 , X†
2 , X†

3}, which are variable modules created using Equation (6).

The results for the first artificial example are presented in Table 5. We discussed
in Scenario I that the theoretical prediction rate is 75% if a statistician knows the model.
In practice, we assume that the statistician has no knowledge of the model. In this case,
the standard approach is to directly work with all variables. This means we can build a
classifier by, e.g., using a neural network. In this example, we observe the data set has
6× 6 = 36 variables. This means we can also adopt a convolutional neural network by
reshaping the input dimension for an observation from 1× 36 into 6× 6. Both the neural
network and CNN perform poorly, i.e., an AUC of approximately 50%. This is because the
underlying model is in binary form and there is no marginal signal. In addition, the in-
sample training set has only 500 observations, which further increases the difficulty for
complex architectures such as deep learning models. However, this issue can be resolved
if we have the correct model specification. Based on the proposed methodology, we are
able to create the variable modules presented in Tables 3 and 4. Their performance on
the test set is presented in Table 5. A window size of 2× 2 produces 25 variable modules
and achieves an AUC of 75%. A window size of 3× 3 produces 16 variable modules and
achieves an AUC of 76%. These results approximate to a 75% theoretical prediction rate.

Figure 5. The above architecture presents a feed forward neural network with three input variables.
The input variables are {X†

1 , X†
2 , X†

3}, which are variable modules created using Equation (6).

The results for the first artificial example are presented in Table 5. We discussed
in Scenario I that the theoretical prediction rate is 75% if a statistician knows the model.
In practice, we assume that the statistician has no knowledge of the model. In this case,
the standard approach is to directly work with all variables. This means we can build a
classifier by, e.g., using a neural network. In this example, we observe the data set has
6× 6 = 36 variables. This means we can also adopt a convolutional neural network by
reshaping the input dimension for an observation from 1× 36 into 6× 6. Both the neural
network and CNN perform poorly, i.e., an AUC of approximately 50%. This is because the
underlying model is in binary form and there is no marginal signal. In addition, the in-
sample training set has only 500 observations, which further increases the difficulty for
complex architectures such as deep learning models. However, this issue can be resolved
if we have the correct model specification. Based on the proposed methodology, we are
able to create the variable modules presented in Tables 3 and 4. Their performance on
the test set is presented in Table 5. A window size of 2× 2 produces 25 variable modules
and achieves an AUC of 75%. A window size of 3× 3 produces 16 variable modules and
achieves an AUC of 76%. These results approximate to a 75% theoretical prediction rate.

3.5.2. Artificial Example II: Four Modules with Discrete Variables

For a more complex example, we designed an experiment that is similar to the one
before but with more high-order interactions. We create a data set with 49 variables,
{Xi : 1 ≤ i ≤ 49}. Each Xi takes binary form, 0 or 1. We define dependent variable Y as
the following form, namely Model (12),

Y =


X1 + X2 (mod 2) w/ prob. 1

2
X2 + X3 + X4 (mod 2) w/ prob. 1

4
X6 · X7 (mod 2) w/ prob. 1

8
X8 · X9 · X10 (mod 2) w/ prob. 1

8

(12)

which is a more complicated problem than Model (7). The complexity is higher since there
are four modules instead of two modules in Model (12).
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Table 5. The performance of a simulation. In this simulation, we defined the underlying model to be
(7). The theoretical prediction rate is 75%. A conventional model such as Net-3 and LeNet-5 does
not perform well in this example [28,29]. The proposed method that uses the I-score has prediction
performance that is close to the theoretical prediction rate (see Section 4.4 for a detailed discussion of
AUC values). NN, neural network. This is discussed in Section 4.2 and please review the architecture
in Figure 5 for a detailed description.

Algorithm Test AUC

Theoretical Prediction 0.75

Net-3 0.50
LeNet-5 0.50

Interaction-based Conv. Layer:
Window size: 2× 2
(25 modules listed in Table 3)
Using Ŷ defined in Equation (10)
Interaction-based Conv. Layer + NN 0.75

Interaction-based Conv. Layer:
Window size: 3× 3
(16 modules listed in Table 4)
Using Ŷ defined in Equation (11)
Interaction-based Conv. Layer + NN 0.76

Scenario I. Suppose we know the model formulation. We see that the first module
occurs with a probability of 0.5. In this case, by correctly identifying the first module, we
achieve a 50% accuracy rate. Additionally, this module is able to determine half of the rest
of the occurrences in the data. Hence, the theoretical Bayes’ rate for model is 75%, which
is computed below. Consider the first correct module identified as S1 = {X1, X2}. In this
case, the theoretical prediction rate θc(S1) can be calculated, assuming n samples in the
training data,

θc(S1) = θc({X1, X2})
= 1

n ∑n
i 1(Ŷ = Y)

= 1
n ∑n

i 1((X1 + X2)︸ ︷︷ ︸
(mod 2)

= Y)

= 50% + 50% · 50%
= 75%

(13)

The second correct module, though informative, occurs less frequently than the first
module. Consider this second variable module S2 = {X2, X3, X4}, then we can compute
the theoretical prediction rate θc(S2) as the following:

θc(S2) = θc({X2, X3, X4})
= 1

n ∑n
i 1(Ŷ = Y)

= 1
n ∑n

i 1((X2 + X3 + X4)︸ ︷︷ ︸
(mod 2)

= Y)

= 25% + (1− 25%)︸ ︷︷ ︸
remains

·50%

= 62.5%

(14)

which means the correct identification of the second variable module should be 62.5%.
In this case, this second variable module {X2, X3, X4} together occurs 25%, so these appear-
ances S2 should correctly make the prediction. For the remaining observations that occur
1− 25% = 75% of the times, the second variable module only makes correct guesses half of
the time. Hence, this computation takes the form of Equation (14), which results in 62.5%.
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Though not as high as θc(S1) = 75%, it is better than random guessing. Similarly, we can
compute the theoretical prediction rate for the remaining modules as θc(S3) = θc(S4) =
12.5% + (1− 12.5%) ∗ 50% = 56.25%, which is only slightly higher than random guess-
ing. All together, we should expect θc({S1, S2, S3, S4}) = max(0.75, 0.625, 0.5625) = 75%.
In other words, the derivation for the theoretical prediction of each variable module in the
underlying Model (12) helps us to understand that with correct model specification, we
should expect simulation results to be approximately 75% on average.

Scenario II. In practice, we assume we do not have the knowledge of the underly-
ing model. To illustrate the performance of the I-score as a feature selection methodol-
ogy, we conducted the following simulation: We created data with 49 variables drawn
from Bernoulli(1/2) random variables independently. We allowed the number of in-
sample training size to be {50, 100, 1000}. For each value of the training sample size,
we conducted experiments using machine learning algorithms such as bagging (We
used the statistical package called ipred: Improved Predictors. Source: https://cran.
r-project.org/web/packages/ipred/index.html (2 November 2021)), logistic, random for-
est (RF) (We used the statistical package called randomForest. Source: https://www.
rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest (2
November 2021)), iterative random forest (iRF) (We use the statistical package irf. Source:
https://www.rdocumentation.org/packages/vars/versions/1.5-3/topics/irf (2 Novem-
ber 2021)), and neural network (NN) (We used the Keras package and produced a neural
network with no hidden layer and one output neuron. Source: https://github.com/yiqiao-
yin/YinsLibrary__/blob/9822f36ca097b1e19f7b669e4f42ca39ea9aa608/r/KerasNN.R#L50-
L57 (2 November 2021)). We used default values from the packages for the first four al-
gorithms. For the NN, we used the variables modules (i.e., X†) as the input layer and the
architecture takes the form shown in Figure 5, which states the classification rules using
a forward propagation structure (as shown in Section 4.2, Figure 5, there is a linear trans-
formation using weights ~w and a nonlinear transformation using an activation function
a(·)). The performance was measured using out-of-sample test set with 1000 data points.
The metric for performance is area under the curve (AUC) from the receiver operating char-
acteristic (ROC) curve (see Section 4.4 for a detailed discussion of AUC values). An AUC
value of 50% indicates that the area under the curve mapped from a list of precision and
recall rates has no prediction power of the ground truth. An AUC value of 100% indicates
that the predictor can perfectly guess the ground truth. For each machine learning algo-
rithm with each value in the training size, we conducted experiments using all variables as
the benchmark. We also ran the same experiments using variable modules selected by the
I-score.

From the results in Table 6, we can observe that with an insufficient sample size in
the training set, the performance is poor overall. However, the I-score is able to identify
important signals to increase performance into the 60% range. This is a good signal that
the I-score is less affected by a small sample size. As we increased the sample size in
the training set to 100 or even 1000 data points, we observed that performance improved.
However, to achieve the theoretical prediction rate, we still needed the I-score as the feature
selection methodology. This is important because with 100 data points, the performance
of common machine learning algorithms was still around 50%, but with the proposed
module selected, we were able to achieve approximately 75% performance. The NN uses
the data much more than the other algorithms, which can be observed with 100 data points
because it is the only algorithm that did not reach theoretical prediction rate. We can
further increase the data points in the training set, i.e., to 1000 data points for the in-sample
training. This is somewhat helpful because even without the I-score, we observed that
bagging and iRF are both able to identify some signals. However, they still do not produce
performance near to the theoretical rate. With the help of the I-score, we were able to
increase the performance of all machine learning algorithms to approximately 75% with a
sufficient sample size.

https://cran.r-project.org/web/packages/ipred/index.html
https://cran.r-project.org/web/packages/ipred/index.html
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
https://www.rdocumentation.org/packages/vars/versions/1.5-3/topics/irf
https://www.rdocumentation.org/packages/vars/versions/1.5-3/topics/irf
https://github.com/yiqiao-yin/YinsLibrary__/blob/9822f36ca097b1e19f7b669e4f42ca39ea9aa608/r/KerasNN.R#L50-L57
https://github.com/yiqiao-yin/YinsLibrary__/blob/9822f36ca097b1e19f7b669e4f42ca39ea9aa608/r/KerasNN.R#L50-L57
https://github.com/yiqiao-yin/YinsLibrary__/blob/9822f36ca097b1e19f7b669e4f42ca39ea9aa608/r/KerasNN.R#L50-L57
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With the above understanding, we show that the I-score can help us to achieve
near-perfect performance even with a very small sample size relative to the number of
features. In the following, we further explore its capabilities with a fixed a sample size but
with varying numbers of variables. In the experiments, we fixed the in-sample training
size to 1000 and we changed the number of variables in the data to 100 and then 200.
The underlying model remained the same and took the form of Equation (12). In other
words, we increasingly inserted noisy variables. If we have 100 variables in the data, there
are only 9 important variables, while the other 92 variables are noisy and noninformative.
The challenge here was to test the performance of using all variables in the data versus the
informative modules to make predictions.

Table 6. Simulation results for Model (12). The theoretical prediction rate was calculated using Equation (13) as 75%.
In other words, we expected prediction performance on th out-of-sample test set to be approximately 75% on average.
For each experiment below, the out-of-sample test set had 1000 sample data points and the performance was calculated
using the area under the curve (AUC) from the receiver operating characteristic (ROC). For each experiment, we changed
the in-sample training size to be 50, 100, or 1000, and we fixed all data to have 49 variables. For each pair of in-sample
training size and number of variables, we ran experiments using all original variables, i.e., “All Var.”, with a variety of
different classifiers. Alternatively, we used the proposed method to construct new variable modules, which were used as
new features on the same classifier. The table shows that the proposed method provides improved prediction performance
regardless of sample size or classifier used.

Variables: 7 × 7 Algorithm Test AUC Logistic RF iRF NNTraining Sample Size: Bagging

50
All Var. 0.52 0.52 0.51 0.51 0.51
3× 3 window, 25 mod. 0.56 0.57 0.54 0.55 0.55
4× 4 window, 16 mod. 0.60 0.60 0.57 0.59 0.57

100
All Var. 0.53 0.52 0.50 0.51 0.52
3× 3 window, 25 mod. 0.60 0.58 0.55 0.55 0.55
4× 4 window, 16 mod. 0.64 0.62 0.58 0.59 0.58

1000
All Var. 0.60 0.54 0.53 0.59 0.53
3× 3 window, 25 mod. 0.76 0.75 0.69 0.74 0.80
4× 4 window, 16 mod. 0.77 0.76 0.71 0.75 0.77

This idea is illustrated using the following experiments (Table 7). We created data
fixing the in-sample training size to 1000 data points. Then, we set the number of variables
in the data to 100 or 200. For each number of variables, we ran experiments using common
machine learning algorithms such as bagging, logistic, random forest (RF), iterative random
forest (iRF), and neural network (NN). For each experiment, we usedvall variables as
covariates. Then we used variables selected by the I-score instead of all variables to make
predictions using the exact same procedure and machine learning algorithms. We tested
the performance on the out-of-sample test set. We use the AUC from the ROC as the metric
(see Section 4.4 for a detailed discussion of AUC values).

From the results in Table 7, we can observe that the overall performance is slightly
lower when we increased the number of variables from 12× 12 to 14× 14 while fixing
the in-sample training set size to 1000 data points. This is not entirely surprising because
we used the same underlying Model (12) when increasing the number of noisy variables.
In other words, we injected noninformative features in the data set on purpose to increase
the difficulty of learning and searching for the correct variable set. For the experiments
with 12× 12 variables, we had 122 − 9 = 135 noisy variables. Assume a statistician has
no knowledge of the model. The basic procedure involves using all the features in the
neural network architecture. To facilitate comparison, we also used some common machine
learning algorithms outside the neural network family: bagging, logistic model, RF, and iRF.
The overall performance was around 51–54% AUC on the out-of-sample test set for all
algorithms. Alternatively, we recommend using the I-score to construct the interaction-
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based convolutional layer (explained in Section 3.3). We used a window size of 2× 2,
3× 3, and 4× 4, which produced different numbers of variable modules. We can observe
from Table 7 that the amount of noisy variables is quite challenging for common machine
learning algorithms. For 100 variables, there are over 90 noisy variables. Without the
I-score, we are only able to feed all variables without any selection into the algorithms,
which results in poor performance. With the top variable module selected by the I-score,
we are able to approximately achieve the theoretical prediction rate at around 75%. When
we further injected more noisy variables, performance worsened for the common machine
learning algorithms using all of the features including noisy variables, which reduced the
prediction power when the algorithm was building its classifier. However, such limitation
can be overcome by the usage of the I-score. Even with 200 variables, which means over
190 noisy variables, we are able to achieve a near-perfect prediction rate.

Table 7. The simulation results for Model (12). The theoretical prediction rate was calculated using Equations (13) as 75%.
In other words, we expected the prediction performance on the out-of-sample test set to be approximately 75% on average.
For each experiment below, the out-of-sample test set had 1000 sample data points and the performance was calculated
using the AUC from the ROC (see Section 4.4 for detailed discussion of AUC values). Continuing from Table 6, we fixed
the in-sample training size to 1000 data points and we allowed the of variables in the toy data to be 100 or 200. From
49 variables, this is a more challenging situation because it lowers the chance of finding the correct variable modules.

Training Sample Size: 1000 Algorithms Test AUC Logistic RF iRF NNVariables: Bagging

12× 12

All Var. 0.54 0.52 0.51 0.53 0.51
I-score Modules
2× 2 window, 121 mod. 0.77 0.68 0.61 0.72 0.74
3× 3 window, 100 mod. 0.78 0.69 0.63 0.72 0.76
4× 4 window, 81 mod. 0.78 0.72 0.64 0.72 0.76

14× 14

All Var. 0.54 0.52 0.50 0.52 0.51
I-score Modules
2× 2 window, 169 mod. 0.77 0.64 0.59 0.70 0.72
3× 3 window, 144 mod. 0.77 0.70 0.60 0.70 0.73
4× 4 window, 121 mod. 0.77 0.70 0.62 0.71 0.73

4. Application

This section presents the results of the experiments.

4.1. Background

The COVID-19 pandemic has been the top concern and roadblock since 2019 in more
than 150 countries around the world. This disease has had extreme impacts on the health
and lives of many on a global scale. In the fight to overcome COVID-19, it is essential to
quickly detect the infected patients. Investigation through radiography images is the basic
procedure used for diagnosing abnormalities in infected patients. Several deep learning
algorithms have been proposed for the detection of COVID-19 on CT scans. Bai et al.
provided the model output to radiologists, and demonstrated that AI assistance signifi-
cantly improves radiologist diagnostic accuracy from 85% to 90% in distinguishing COVID
classes from non-COVID classes [30]. Minaee et al. [31] demonstrated the possibility of
using deep CNNs including ResNet18, ResNet50, and DenseNet-121 to classify COVID-19
disease using X-ray images. They achieved a sensitivity of 98% and a specificity of 90% on
5000 chest X-ray images.

In this study, the data were sourced from [31]. We downloaded 576 COVID images
directly from their work. We also collected 2000 chest X-ray images of healthy individuals
from their database and used these images as non-COVID cases. The database created
by Minaee et al. [31] also includes other diseases such as pneumonia. The goal in our
work was to understand the difference between COVID and healthy chest X-ray images.



Algorithms 2021, 14, 337 22 of 34

Therefore, we did not consider other diseases. We present the summary of these data in
Table 8. We first randomly selected 60 images each from the COVID and non-COVID class
and used these images as the out-of-sample test set. We did not use the images in the test
set until the end after training and validation were complete. For the remaining images, we
used data augmentation technique by adding noise drawn from normal distribution. This
produced a total of 5000 COVID cases and 5000 non-COVID cases. These 10,000 images
composed the training and validating sets (tr. and val. in Table 8, repsectively). These
10,000 images have two classes: COVID and non-COVID.

Table 8. The dimensions of the data. We downloadeed the COVID data from Minaee et al. [31].
This totalled 576 COVID images and 2000 non-COVID images. First, we split the test set from the
total images. The test consisted of 60 COVID cases and 60 non-COVID cases. Then, we were left
with 516 images for the COVID class and 1940 images for the non-COVID class. This was our in-
sample set, which we used for training and validating (Tr. and Val., respectively). For the in-sample
set, we upsampled the images by adding noise drawn from normal distribution. This produced
5000 COVID images and 5000 non-COVID images for training and testing. The out-of-sample test set
had 120 observations, which wre only used in the end to verify the learning performance.

Data COVID Non-COVID

Total Data Downloaded from [31] 576 2000
Out-of-Sample: Test 60 60
In-Sample: Tr. and Val. 516 1940
In-Sample: Tr. and Val. 5000 5000
(upsampled)

Figure 6 shows that for healthy individuals, the chest areas are clear in the X-ray
images. However, the images for COVID cases are not as clear. This is an indication
that there are inflammatory cells or other related body fluids in the chest. Instead of air,
which shows up on the X-rays as clear areas, these areas in COVID cases tend to be cloudy
and unclear.

(A) (B)

Figure 6. A total of 16 images randomly sampled from each of the (A) COVID class and (B) non-
COVID class. The images for the COVID class appear cloudier and more unclear than the images for
the non-COVID class. This is because in the X-ray images for the COVID class contain substances
that are not air. These substances may be liquid, germs, or inflammatory fluid, which causes the
images to have cloudy, unclear, and shady areas.

4.2. Model Training

For the neural network classifier adopted in this paper, we used a standard neural
network architecture with some basic designs (see the diagram after Equation (15)). This
procedure has input variables (known as the input layer), an optional hidden layer, and an
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output layer. The input layer contains sets of variables ready to be fed into the machine to
build the classifier. The hidden layer consists of any number of units and it is an optional
to deepen the network architecture. The output layer is constructed in order for comparing
the output variables. This comparison can be quantified by a loss function. The path from
the input layer to output layer completes the procedure of forward propagation. Based on
the loss function, we are able to compute the gradient that allows us to conduct optimize
the weights of the architecture backward by using gradient descent (or some upgraded
version of gradient descent). This completes backward propagation. The training of a
neural network model is based on many iterations of forward and backward propagation.

Forward Propagation. To illustrate the procedure of model training, let us consider
a set of input variables {X†

1 , X†
2 , X†

3}. In the proposed work, this refers to the variable
modules, also notated as X†, that we created using the interaction-based feature engineer
(see Equation (6)). For this discussion, we define a set of weights {w1, w2, w3} to construct
a linear transformation. The symbol Σ in the following diagram represents this linear
transformation that takes the form X†

1 w1 + X†
2 w2 + X†

3 w3. For simplicity of notation, we
write Σ = ∑3

j=1 wjX†
j . Then, we denote a(·) as an activation function. We chose sigmoid

to be this activation function a(·). This means we have output ŷ to be defined as a(Σ).
In other words, we can write the following:

ŷ := a(Σ) = a(
3

∑
j=1

wjX†
j ) = 1/(1 + exp(−(

3

∑
j=1

wjX†
j ))) (15)

The general form (assuming there are p variable modules) is expressed as:

ŷ := a(Σ) = a(
p

∑
j=1

wjX†
j ) = 1/(1 + exp(−(

p

∑
j=1

wjX†
j ))) (16)

Architecture. This architecture of a neural network is presented below. For simplicity
when drawing this picture, we assume there are 3 input variable modules: {X†

1 , X†
2 , X†

3}.
In practice, the number of variable modules (the total number of X†) depends on image
data dimensions, window size, stride level, and starting point (please see Section 4.3 and
Equation (18) for the exact calculation).

For the loss function, we used the binary cross-entropy loss function. This loss
function is designed to minimize the distance between a target probability distribution P
and an estimated target distribution Q when the task is a two-class classification problem.
The cross-entropy loss function is defined as:

L(yi, ŷi) = − 1
n ∑n

i=1 yi log(ŷi) + (1− yi) log(1− ŷi) (17)

where yi is the ground truth of the response variable for the ith observation and ŷi is
the predicted value of response variable for the ithe observation. The linear transforma-
tion, nonlinear transformation, and the computation of the loss function complete the
forward propagation.

Backward Propagation. To search for the optimal weights, we used an optimizer
algorithm called root mean square propagation (RMSprop), a named suggested by Geoffrey
Hinton. With the loss function computed above, we derive the gradient of the loss function
as ∇L := ∂L(y, ŷ)/∂w. At each iteration t, we compute vt,∇L := βvt−1,∇L + (1− β)∇L2,
where β is a tuning parameter. Note that the square term on ∇L is element-wise multipli-
cation. Then, we can update the weights using wt := wt−1 − η · ∇L/√vt,∇L, where η is
learning rate. The value of learning rate η is a tuning parameter, which is usually a very
small number. This process starts with the loss function and returns to the beginning to
update the weights w = {w1, w2, w3}. Hence, it earned the name backward propagation.
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4.3. Model Parameters

This section investigates the tuning of the parameters of the proposed method. In the
design of the interaction-based convolutional neural network (ICNN), the window size
and the level of stride are hyper-parameters.

Window Size. Window size is the size of the local area that we focus on run the
backward dropping algorithm. For example, in the first artificial example in Section 3.3,
the data size is 6× 6. A 2× 2 window means that we start with a local area that investigates
the first row and the first two columns and the second row and the first two columns.
For each row i and each column j in this 6× 6 grid structure, a window size of 2× 2 means
a local area of the following 2× 2 matrix:[

(i, j) (i, j + 1)
(i + 1, j) (i + 1, j + 1)

]
For a 2× 2 matrix, the BDA iteratively drops a variable amongst these four variables

to compute the I-score. The result is a subset of this four variables.
We can also change the size of this window to 3× 3, which means we investigate the

following matrix:  (i, j) (i, j + 1) (i, j + 2)
(i + 1, j) (i + 1, j + 1) (i + 1, j + 2)
(i + 2, j) (i + 2, j + 1) (i + 2, j + 2)


This means that the BDA will start with nine variables. After omitting the noisy

variables within this set, the resulting predictive set is a subset of these nine variables.
Stride Level. The level of stride is the number of rows or columns that is skipped.

This tuning parameter allows the algorithm to move faster but its disadvantage is that
some variables are skipped. For example, we investigate a stride level of one starting from
row i and column j. Assume we use a 2× 2 window and let us start from (i, j). We can
visualize this action using the following diagram:

Original matrix:
[

(i, j) (i, j + 1)
(i + 1, j) (i + 1, j + 1)

]
stride=1−→

[
(i, j + 1) (i, j + 2)

(i + 1, j + 1) (i + 1, j + 2)

]
If we are at the end of the column for a row, we move down by moving to the first

column of the next row. For example, in a 6× 6 grid structure, assume we are in the
last position in a certain row i. The action of a stride level of one can be taken using
the following:

Original matrix
in the end of a row:[

(i, 5) (i, 6)
(i + 1, 5) (i + 1, 6)

]
stride=1−→

[
(i + 1, 1) (i + 1, 2)
(i + 2, 1) (i + 2, 2)

]
Again assume we are at row i and column j. Suppose we set the stride level to two and

we want to move down. This means we proceed by an increment of two on the number of
rows; the action is as follows:

Original matrix:[
(i, j) (i, j + 1)

(i + 1, j) (i + 1, j + 1)

]
stride=2−→

[
(i + 2, j) (i + 2, j)
(i + 3, j) (i + 3, j)

]
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If this window is located in the final position of a row, then we move down by skipping
one row and we start with the first column. If we have a 6× 6 grid structure, this action is
as follows:

Original matrix
in the end of a row:[

(i, 5) (i, 6)
(i + 1, 5) (i + 1, 6)

]
stride=2−→

[
(i + 2, 1) (i + 2, 2)
(i + 3, 1) (i + 3, 2)

]
Starting Point. Another tuning parameter that we recommend to adjust is the starting

point. The starting point represents the location of the first pixel in the proposed operation.
The most common point is starting the rolling window from the pixel located in the first
row and the first column. This is illustrated in the following matrix:

Starting point = 1 :

[
X1 . . .
...

. . .

]
where the starting point is colored in red.

Alternatively, we can initiate the starting point at a higher level such as two or three.
This allows algorithms to run more efficiently in large-scale data sets. For a simple example,
in a 6× 6 matrix (see Section 3.3 for the first artificial example), the first row of variables is
{X1, X2, . . . , X6} and the second row of variables is {X7, X8, . . . X12}. At a starting point
of two, we start with X8 to pass over with the rolling window, because this variable
sits at the position in the second row and the second column. This is illustrated in the
following matrix;

Starting point = 2 :

 X1 X2 . . .
X7 X8 . . .

X13
...

. . .


6×6

where the starting point is colored in red.
This tuning parameter is particularly useful when the edge of the images is noisy

and noninformative. For example, in Section 4.1, we notice from training images of the
COVID-19 chest X-ray data set that the margins of the X-ray images are dark and do not
contain the human body for a few pixels in length. This is an example of when this tuning
parameter can be helpful as it speeds up the training process.

Computation of Dimensions. The above discussion introduced the tuning param-
eters: window size, stride level, and starting point. These parameters update our input
matrix and generate a new matrix with different sizes. Let us denote window size as w,
stride level as l, and starting point as p. Given a sin by sin input matrix, the output matrix
has new dimensions computed as:

b sin − p− w + 1
l

+ 1c × b sin − p− w + 1
l

+ 1c (18)

For simplicity in this investigation, we assume the input matrices are a square. In other
words, in the application in this paper, we process the input images to have the same width
and height, i.e., 128 by 128 pixels. In future work, this can be extended to different shapes.

4.4. Evaluation Metrics

This paper focuses on using the AUC as the main evaluation metric. The AUC value is
obtained from the ROC curve, which is a path constructed using different pairs of specificity
and sensitivity.

Sensitivity and Specificity. The notion of sensitivity is interchangeable with recall or
true positive rate. In a simple two-class classification problem, the goal is to investigate
covariate matrix X in order to produce an estimated value of Y. From the output of a NN
model, the predicted values are always between zero and one, which acts as a probabilistic
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statement to describe the chance an observation is class one or zero. Given a threshold
between zero and one, we can compute sensitivity as:

Sensitivity =
True Positive

Positive
=

# of Images Classified COVID-19 Correctly
# of COVID-19 Images

(19)

Specificity is also used to create a ROC curve. Given a certain threshold between zero
and one, we can compute specificity as:

Specificity =
True Negative

Negative

=
# of Images Classified Non-COVID Correctly

# of Non-COVID Images

(20)

Given different thresholds, a list of pairs of sensitivity and specificity can be created.
The AUC is the area under the path plotted using pairs of sensitivity and specificity that is
generated using different thresholds. An example of using Specificity and Sensitivity to
draw Receiver Operating Curve (ROC) is presented in Figure 7.

Figure 7. Two paths of ROC curves: ROC1 and ROC2. For each ROC curve, we can compute the
AUC value. From ROC1, we can compute AUC1. From ROC2, we can compute AUC2. The mistake
discussed in this section is reflected by a reduction in AUC values from path 1 to path 2.

Area under the curve (AUC). The AUC value is a single number derived from a
predicted probability by a classification rule and the true label [32]. Given a vector of the
true label Y and a vector of the predicted probability Ŷ, we can use statistical package
pROC (The package is called Display and Analyze ROC Curves. Source: https://github.
com/xrobin/pROC (2 November 2021)) to assist this computation. The package uses
automatically generated thresholds to convert Ŷ into binary format. For example, we
can use a threshold of t1 = 0.3 to convert a vector of the predicted probabilities Ŷ =
[0, 0.2, 0.4, 0.8] into binary form by writing Ŷt1 = 1(Ŷ > t1) = [0, 0, 1, 1]. Let us assume
the true label to be Y = [0, 0, 1, 1]. Thus, we can compute specificity as one and sensitivity
as one1. We can then change threshold to a different value to compute another pair of
specificity and sensitivity. By tracking all pairs of specificity and sensitivity, we can generate
a curve called the ROC curve [32]. The value of the AUC is exactly the area under the
ROC. Assume the predicted probability contains some mistakes. In other words, let us
assume the predicted probability vector is Ŷ = [0, 0.2, 0.2, 0.8]. It is not possible for two
observations to have the same prediction probability when they come from different classes.
Therefore, there must be a mistake in one of them. This information is reflected using the
same procedure (Table 7).

4.5. Performance: Proposed Models and AUC Values

This subsection presents the experimental results. A brief summary of a comparison
of the conventional methods in the literature with the proposed method is presented in

https://github.com/xrobin/pROC
https://github.com/xrobin/pROC
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Table 9. A detailed report of the proposed methodology is presented in Table 10. We also
plot the AUC values for the proposed models in Figure 8.

Table 9 shows results of previous work on this data set. Minaee et al. [31] used a 50-
layer CNN, ResNet50, and achieved an AUC value of 99%. They also proposed SqueezeNet,
which delivered an even higher performance at 99.2% [31]. This near-perfect performance
is largely due to the design of the convolutional layers and fine tuning. Their work shows
that modern-day AI technology such as deep CNNs can perform the initial screening of
patients infected by COVID-19 with a single scan of an image, which could reduce the
workload of radiologists in practice. However, the number of parameters still far exceeds
what humans can interpret. Moreover, it is unclear how these conventional methodologies
can satisfy the three critria (D1, D2, and D3) of the definition of interpretable measures
introduced in Section 1 in this paper.

Table 9. The experimental results on the COVID-19 data set from the literature. A number of different
ultra-deep CNNs were used to classify COVID patients from non-COVID people. The performance
is summarized below. * Minaee et al.disclosed that SqueezeNet has approximately 50 times fewer
parameters than AlexNet. The proposed architecture achieves AUC values ranging from 98% to
99.8%. For details, please refer to Figure 8 and Table 10. The average number of parameters of the
ultra-deep CNNs can exceed 25 million parameters with a top AUC value of 99.2%. The proposed
method has an average number of parameters of less than 100,000 with a top AUC valu of 99.8%.
This is a 99% reduction in th number of parameters without sacrificing prediction performance.

Previous Work Number of Param. AUC

DenseNet161 [31] 0.8–40 M param. 97.6%
ResNet18 [31] 11 M param. 98.9%
ResNet50 [31] 25 M param. 99.0%
SqueezeNet [31] ∼1.2 M param. * 99.2%
Average >25 M 97–99.2%

Proposed Methods
Average 100,000 param.

98.3–99.8%(a 99% reduction
in no. of param.)

Figure 8. The AUC path for all six models in the proposed work. These models are listed in
Table 10 with detailed information including the parameters from each layer and the out-of-sample
prediction performance.

We read the experimental results of the proposed model in the following order.
As stated in Section 3.3, the proposed architecture can be designed as deep or wide as de-
sired by the user. All models start with 128 by 128 input images. In other words, the input
data has 128× 128 = 16, 384 pixels. For simplicity of notation, let us denote4 as the set of
parameters with the starting point of six, window size of 2× 2, and a stride level of two.
Let us further denote � as the collection of parameters of starting point of on, window size
of 2× 2, and a stride level of two.
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Table 10. A summary of the statistics of the design of the proposed network: interaction-based convolutional neural network
(ICNN), for Models 1–6. Each model can take one or two interaction-based convolutional layers (i.e., 1st Conv. or 2nd Conv.
Layer). The model can be designed to directly proceed from the interaction-based convolutional layer to the output layer.
For example, Models 1 and 3 proceed directly from the convolutional layer to the output layer, i.e., no hidden layer.

Proposed Work 1st Conv. 2nd Conv. Hidden Output Layer Num. of Param. AUC

Model 1 4 None None 2 7442 98.5%
Model 2 4 None 1L (64 units) 2 238,272 99.7%
Model 3 4 � None 2 1800 97.0%
Model 4 4 � 1L (64 units) 2 57,728 99.6%
Model 5 4+� None None 2 9242 98.3%
Model 6 4+� None 1L (64 units) 2 295,872 99.8%

Remark 4: �:
Starting Point = 6 Starting Point = 1
Window Size: 2 by 2 Window Size: 2 by 2
Stride = 2 Stride = 2
Output: 61 by 61 Output: 30 by 30

Model 1. This model starts with input images that are sized 128 × 128. Using the
parameter in set4, we create the first interaction-based convolutional layer (i.e., 1st Conv.
Layer in Table 10). This new matrix has dimension b(128− 6− 2+ 1)/2+ 1c × b(128− 6−
2 + 1)/2 + 1c = 61× 61 = 3721. These 3721 variables are directly used to create the output
layer with two units (assuming using SoftMax as the loss function). Therefore, the total
number of parameters for the network architecture 3721× 2 = 7442 parameters. The test
set performance, measured by the AUC, is 98.5% for Model 1.

Model 2. This model builds upon the architecture of Model 1. The only difference is
that there is one hidden layer with 64 units (or neurons). We fully connect each variable in
the 1st Conv. Layer with each neuron in the hidden layer; afterward, we fully connect the
hidden layer with the output layer. This means that from the 1st Conv. Layer to the hidden
layer, there are 3721× 64 = 238, 144 parameters. From the hidden layer of 64 neurons to
output layer with two units, there are 64× 2 = 128 parameters. This means that, in total,
there are 238, 144 + 128 = 238, 272 parameters. The performance of this architecture is
99.7%. The design of this one hidden layer with 64 units reduced the error rate from 1.5%
in Model 1 to 0.3% in Model 2, which is an 80% error reduction.

Model 3. This model has two interaction-based convolutional layers. The 1st Conv.
Layer uses the set of parameters in4 and the 2nd Conv. Layer uses the set of parameters
in �. From the 1st Conv. Layer in Model 1, we are left with 61× 61 = 3721 variables. Using
the parameters in �, we have new matrix with size b(61− 1− 2 + 1)/2 + 1c × b(61− 1−
2+ 1)/2+ 1c = 30× 30 = 900 variables. These 900 variables can be the input layer and we
can directly pass these 900 variables into the output layer for making predictions. In other
words, the output layer has 900× 2 = 1800 parameters. The test set AUC value is 97.0%.

Model 4. This model is the deepest amongst all six models. Model 4 has two
interaction-based convolutional Llyers and one hidden layer. From the 2nd Conv. Layer
in Model 3, we are left with 900 variables. The architecture has one hidden layer with
64 units. The 900 variables are fully connected with the hidden layer, which creates
900× 64 = 57, 600 variables. From the hidden layer with 64 units to the output layer
with 2 units, there are 64× 2 = 128 parameters. In total, there are 57, 600 + 128 = 57, 728
parameters. The prediction performance is 99.6% on the test set.

Model 5. Both Models 5 and 6 have wider convolutional layers instead of aiming for
depth. Model 5 has a concatenated of features from both convolutional layers. This means
the architecture takes the 7442 variables from the 1st Conv. Layer and 900 variables from
the 2nd Conv. Layer from the previous models together as one large convolutional layer.
In other words, Model 5 has a 1st Conv. Layer with 3721 + 900 = 4621 variables. These
4621 variables can be directly used to be fed into the output layer with two units. In total,
this architecture creates 4621× 2 = 9242 parameters with a test set performance of 98.3%.

Model 6. The last model, Model 6, is just as wide as the previous Model 5. Model 6 also
has a first convolutional layer that is a concatenation of features. It has 3721 + 900 = 4621
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variables. In addition to Model 5, it has one hidden layer with 64 units. We fully connect
the convolutional layer of 4621 variables with the hidden layer of 64 variables. This results
in 4621× 64 = 295, 744 parameters. The hidden layer with 64 units are then fully connected
with the output layer, which produces 64× 2 = 128 parameters. In total, the model has
295, 744 + 128 = 295, 872 parameters. This model has the highest AUC value on test set,
i.e., 99.8%.

The proposed method was also tested on a larger data set [30,31]. Previous researchers
have used portions of this data set [30,31] and sought to create high-performance CNNs.
However, most of these models use millions of parameters and there is no explanation
regarding why and what filters (kernels) are used in their CNNs. As a comparison,
the proposed method was tested on this multiclass data set as well. The number of sample
sizes for training, validating, and test set are summarized in Table 11. While the previous
application investigated a data set with binary classes (COVID-19 versus non-COVID-19),
this dataset investigates four different classes. These classes are the different variants in
lung cancer diseases, which are COVID-19, pneumonia, and tuberculosis. Hence, this data
set is a four-class classification task. The response variable for this data set is defined as:

Y =


0 if Healthy
1 if COVID-19
2 if Pneumonia
3 if Tuberculosis

(21)

Since the target variable Y takes four values, the computation of the I-score needs
to computed class-wise. In other words, Y is set to one or zero for each class in order
to compute the I-score and to generate the proposed convolutional features. A one-hot
encode can allow computation in parallel and can reduce computation cost for end users.
The data set has a total 994 images with four classes (three types of lung cancer variants
and the healthy class). It is a challenging data set in that there is no number of observations
required for standard deep learning algorithms. This is another reason why previous
scholars have used many convolutional layers in order to extract high-dimensional features
in the data [30,31]. Whereas the previous model delivered relatively good performance,
the explainability is somewhat lost throughout the architecture due to many hidden lay-
ers. The proposed method was tested on this data set as well and it delivered similar
state-of-the-art performance while reducing the number of parameters by almost 99%.
With the proposed convolutional features based on the I-score, backward dropping al-
gorithm, and the interaction-based features, the extremely predictive information can be
extracted in as little as one layer. In addition, a single hidden layer is recommended to
boost performance to the level of its peers; this design has approximately 12,000–13,000
parameters, which is much less than the millions of parameters needed for deep CNNs.
The results of this multiclass experiment is summarized in Table 12.

Table 11. Multiclass prediction data summary of the number of training set, validating set, and testing
set samples in the multiclass X-ray image classification.

Classes Train Validate Test

Healthy 437 44 52
Tuberculosis 422 41 52
Pneumonia 88 9 1
COVID-19 88 9 11

Total 994 99 121
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Table 12. Multiclass lung cancer variants diagnosis: the experiment results for multiclass lung cancer variants classification.
In total, there are 4 classes (0: healthy, 1: COVID-19, 2: pneumonia, and 3: tuberculosis). The table summarizes the
benchmark performance as well as the prediction performance of the proposed method. All results are measured in area
under the curve (AUC). Multiclass AUC values are the average of the AUC values from the 4 different classes, which
were calculated using a statistical software package named pROC, which requires the same computation of sensitivity
and specificity (these definitions are discussed in Equations (19) and (20)). The average prediction performance for 4-class
diagnosis is 89% with 26 million parameters in a variety of different neural networks designs. The average prediction
performance for 4-class diagnosis is 97.5% with only 13,000 parameters in the proposed network architecture.

Model AUC (Test Set) No. of Parameters

Proposed:
ICNN (Parameters: {starting point: 6, window size: 2 by 2, stride: 2}) 0.97 12,000
ICNN (Parameters: {starting point: 4, window size: 3 by 3, stride: 3}) 0.98 13,000
Average 0.975 12,500

4.6. Visualization: Images and Convolutional Layer

This section presents a visualization of the proposed architecture. These visualizations
are presented in Figure 9. Unlike Figure 2, which is an executive summary with each
position representing many samples, the visualizations in Figure 9 are sample-wise plots.
In other words, the 10 original images that are sized 128 by 128 in panels A and B are the
same samples in the second row (1st Conv. Layer) and the third row (2nd Conv. Layer).

Original Images in the 1st Conv. Layer. The input images are sized 128 by 128.
With the 1st Conv. Layer constructed, we have 61× 61 = 3721 new variables. We return
to the same samples as shown in the first row in Figure 9 and use these 3721 variables
only. When we plot these samples with these new variables, we resize them back in a
61 by 61 matrix form. Panel A represents the COVID class and panel B represents the
non-COVID class. In addition, we use Model 1 in Table 10 to produce the texts that state
the predicted probability of the COVID class. The red indicates the ground truth as COVID
class (panel A) and the green indicates ground truth as non-COVID class (panel B).

1st Conv. Layer. to 2nd Conv. Layer. From the resulting matrix of the 1st Conv. Layer,
we are left with 3721 variables. We apply the proposed design in Table 10 and we create
a new convolutional layer, i.e., the 2nd Conv. Layer. This new layer has 30× 30 = 900
variables. We take the same 10 sampled images from before and use these 900 variables
to present these images. In this presentation, we resize these 900 variables into 30 by 30.
In other words, we obtain a smaller matrix that is a smaller version with similar patterns
as before. We use Model 4 to generate the predicted probabilities. These probabilities are
printed on the top left corner of each image and they are color-coded similar as before (red
probabilities indicate the ground truth of COVID class and green probabilities indicate the
ground truth of non-COVID class).

Visualization Interpretation. The plot in Figure 9 of the original images for patients
infected by COVID-19 has grey and cloudy textures in the chest area. Because an X-ray is at
its brightest when most of the light beams emitted bounce back from the object, bones show
as white and the margin is completely black. For muscle and organs inside the human
body, X-rays that are emitted can only be partially collected; this causes the greyscale on
the X-ray images in the chest area. For COVID-19 patients, there are grey and shaded areas
in the chest X-rays. This is due to the inflammatory fluid produced when patients exhibit
pneumonia-like symptoms. The fluid inside the chest area is a consequence of the human
immune system fighting outside diseases. This shaded area (as seen in panel A in Figure 9)
prevents us from observing clear areas in lungs. This is different in panel B, where the lung
areas are dark and almost black, because a healthy lung is filled with air (i.e., the black
present in normal cases’ X-ray images). The black and white contrast in the two panels is
directly related to how much inflammatory fluid is present in human lungs. This contrast
translates to greyscale on pictures and is directly related to COVID and non-COVID cases
(i.e., response variable Y). The same contrast can be seen using the new variables (these are
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X† based on Equation (6)) in the 1st Conv. Layer (sized 61 by 61). For COVID-19 patients,
the lung area is cloudy and unclear, whereas for the healthy cases, it is clearly visible.
This is not a surprising coincidence because the proposed new variable modules, X†, are
engineered using Equation (6), which relies on the response variable ȳj in the training set.
The 61 by 61 images from the proposed algorithm are a direct translation of not only the
original pixels but also the response variable. In other words, this visualization presents
how the I-score considers image data.

Panel A Panel B
True Label: COVID True Label: Non-COVID
Input Images: 128 by 128 Input Images: 128 by 128
(Randomly select 10 samples) (Randomly select 10 samples)

1st Conv. Layer: 61 by 61 1st Conv. Layer: 61 by 61
(Starting Point = 6, Window 2 by 2, Stride = 2) (Starting Point = 6, Window 2 by 2, Stride = 2)
Remark: 61× 61 = 3721 variables Remark: 61× 61 = 3721 variables
Same 10 images above with 3721 variables Same 10 images above with 3,721 variables
Labels predicted using Model 1 Labels predicted using Model 1

2nd Conv. Layer: 30 by 30 2nd Conv. Layer: 30 by 30
(Starting Point = 6, Window 2 by 2, Stride = 2) (Starting Point = 6, Window 2 by 2, Stride = 2)
Remark: 30× 30 = 900 variables 30× 30 = 900 variables
Same 10 images above with 900 variables Same 10 images above with 900 variables
Labels predicted using Model 4 Labels predicted using Model 4

Figure 9. A summary of randomly sampled images from the COVID and non-COVID classes
(10 each). Panel A represents COVID patients and panel B represents non-COVID individuals.
The first row plots the original 128 by 128 images. The 1st Conv. Layer generates 61× 61 = 3721 new
variables. We plot the same 10 images from both classes using these 3721 variables in the second row.
We also provide the predicted COVID probabilities on top left corner of each image. The 2nd Conv.
Layer generates 30× 30 = 900 variables. We plot the same 10 images from both classes using these
900 variables in the third row. We also provide the predicted COVID probabilities in the top left
corner of each image assuming only these 900 variables are used as predictors. The plot of the original
images for patients infected by COVID-19 has grey and cloudy textures in the chest area, which
are due to inflammatory fluid produced when patients exhibit pneumonia-like symptoms. This
shaded area (as seen in panel A) prevents us from clearly observing the lungs. This is different in
panel B, where the lung areas are dark and almost black, which means the lung is filled with air (i.e.,
normal cases). The black/white contrast in the two panels is directly related to the amount of much
inflammatory fluid in human lungs, which translates to greyscale on pictures. The same contrast can
be seen using the new variables (these are X† based on Equation (6)) in the 1st Conv. Layer (sized 61
by 61). For COVID-19 patients, the lung area is cloudy and unclear, whereas for the healthy cases, it
is clearly visible.
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5. Conclusions

Explainable AI System for Early COVID-19 Screening. As the most important
contribution of this paper, an explainable artificial intelligence (XAI) system is proposed to
assist radiologists in the initial screening of COVID-19 and other related diseases using
chest X-ray images for treatment and disease control. This innovation can revolutionize
the application of AI systems in hospitals and healthcare systems. We anticipate that other
related diseases with viral pneumonia signs can use the same detection methods proposed
in our paper, which ensure the development of testing procedures with accountability,
responsibility, and transparency for human users and patients. A Heuristic and Theoreti-
cal Framework of XAI. This paper introduced a heuristic and theoretical framework for
addressing the XAI problems in large-scale and high-dimensional data sets. We provided
three criteria as necessary conditions and premises for a measure to be regarded as explain-
able and interpretable. The first dimension, D1, states that an interpretable measure does
not need to rely on the knowledge of the true model, because any mistakes made in model
fitting would be carried over in explaining the features. The second dimension, D2, states
that an interpretable measure should be able to indicate the impact of a combination of vari-
ables on the response variable. This means that any inclusion of influential variables would
increase this measure, whereas any injection of noisy and useless variables would decrease
this measure. This desirable property allows human users to directly compare the impact
of the features when any classifier is trained to make prediction decisions. Though we
provided detailed work with an arbitrary image data set, the proposed method can be
generalized and adapted to any big data problem. Moreover, it opens up future possibilities
for feature selection and dimension reduction in any large-scale and high-dimensional data
set. Last, the third dimension, D3, associates an interpretable measure with the predictivity
of a set of features. This property benefits human users because it allows us to establish
connections and foresee the potential prediction performance (such as AUC values) that a
set of features can deliver before any model fitting procedure.

An ICNN. To address the XAI problems heuristically described above, this paper
introduced a novel design of an explainable and self-interpretable interaction-based con-
volutional neural network (ICNN). We provided a flexible approach to contribute to the
major issues regarding explainability, interpretability, transparency, and trustworthi-
ness in black-box algorithms. We introduced and implemented a nonparametric and
interaction-based feature selection methodology and used this as a replacement for
predefined filters that are widely used in ultra-deep CNNs. Under this paradigm, we
presented an ICNN that extracts important features. The proposed architecture uses
these extracted features to construct influential and predictive variable modules that
are directly associated with the predictivity of the response variable. The proposed de-
sign and its many characteristics provide an extremely flexible pipeline that can learn,
extract useful information, and identify the hidden potential from any large-scale or
high-dimensional data set. The proposed methods were presented with both artificial
examples and real data applications to COVID-19 chest X-ray image data. We conclude
from both simulation and empirical application results that the I-score has unparalleled
potential to explain informative and influential local information in large-scale data sets.
High I-score values suggest that local information possesses the capability to have higher
lower bounds of the predictivity, which thus leads not only to highly accurate prediction
performance but also strong explanatory power. By arranging features according to the
I-score from high to low, we are able to cater the dimensions of our model to any neural
network architecture. Furthermore, we also show potential applications of the interaction-
based neural network architecture, which can help us advance the field of explainable
artificial intelligence. We think that the proposed design can be adapted to any type of
CNN. Thus, any CNN architecture that adopts the proposed technology can be regarded
as in interaction-based convolutional neural network (ICNN or interaction-based network).
We encourage both the statistics and computer science communities to further explore
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this area to increase the transparency, trustworthiness, and accountability of deep learning
algorithms and to build a world with truly responsible A.I.
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