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Abstract: Fitness landscapes were proposed in 1932 as an abstract notion for understanding biological
evolution and were later used to explain evolutionary algorithm behaviour. The last ten years has
seen the field of fitness landscape analysis develop from a largely theoretical idea in evolutionary
computation to a practical tool applied in optimisation in general and more recently in machine
learning. With this widened scope, new types of landscapes have emerged such as multiobjective
landscapes, violation landscapes, dynamic and coupled landscapes and error landscapes. This survey
is a follow-up from a 2013 survey on fitness landscapes and includes an additional 11 landscape
analysis techniques. The paper also includes a survey on the applications of landscape analysis
for understanding complex problems and explaining algorithm behaviour, as well as algorithm
performance prediction and automated algorithm configuration and selection. The extensive use of
landscape analysis in a broad range of areas highlights the wide applicability of the techniques and
the paper discusses some opportunities for further research in this growing field.

Keywords: fitness landscape; landscape analysis; violation landscape; error landscape; automated
algorithm selection

1. Introduction

This survey is a follow-up from a previous survey published in Information Sciences
journal in 2013 [1]. Back then, the field of fitness landscape analysis was not very active
in the evolutionary computation community. The article states “despite extensive research
on fitness landscape analysis and a large number of developed techniques, very few techniques
are used in practice . . . It is hoped that this survey will invoke renewed interest in the field of
understanding complex optimisation problems and ultimately lead to better decision making on the
use of appropriate metaheuristics.” [1]. The hope of renewed interest in the field of fitness
landscape analysis has indeed been realised, evident in the increase in the number of
published papers on the topic as well as the appearance of tutorials, workshops and special
sessions dedicated to this topic at all the major evolutionary computation conferences.

One of the changes that has emerged in the last few years is that the notion of fitness
landscapes has been extended to include new types of landscapes such as multiobjective
fitness landscapes, violation landscapes, dynamic and coupled landscapes and error or
loss landscapes in the context of neural network training. These notions are discussed
in Section 2.

A number of new techniques for analysing landscapes have been developed and these
are described as an extension to the original survey [1] in Section 3, followed by a summary
of contributions related to sampling and robustness of measures.

Landscape analysis has been applied widely for different purposes from the under-
standing of complex problems and algorithm behaviour, to predicting algorithm perfor-
mance and automated algorithm selection. Section 4 provides a survey of these applications
and highlights the value of landscape analysis in addressing the challenge of solving com-
plex optimisation problems and Section 5 discusses some ideas for further research in
landscape analysis.
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2. Beyond Fitness Landscapes

The notion of a fitness landscape was introduced by Sewell Wright [2] at a congress on
genetics in 1932. He proposed an abstract two-dimensional contour plot of fitness values
as an intuitive picture of evolutionary processes taking place in high dimensional space.
Because fitness landscapes have been used in contexts beyond biological and computational
evolution, the fitness metaphor is no longer generally applicable and many studies have
opted for more general terms such as search space analysis, exploratory landscape analysis or
just landscape analysis.

A fitness landscape was originally defined as consisting of three elements [3]: (1)
A set X of potential solutions to the problem; (2) a notion of neighbourhood, nearness,
distance or accessibility on X, and (3) a fitness function f : X → R. Replacing f with a more
general objective function, these three basic elements can be used to describe landscapes
in a wide range of contexts such as combinatorial optimisation, continuous optimisation,
search spaces of programs (as in genetic programming) and so on. There are some contexts,
however, where these elements differ further from the original definition and these are
discussed in this section.

2.1. Multiobjective Fitness Landscapes

Multiobjective optimisation differs from single objective optimisation at both the ob-
jective level (multiple fitness functions for each conflicting objective versus a single fitness
function) and the solution-level (set of Pareto optimal solutions in the multiobjective case
versus a single optimal solution in the single objective case). Verel et al. [4] propose a
definition for multiobjective fitness landscapes where solutions are solution-sets, neigh-
bourhood is defined using set-level operators and fitness is defined using a multiobjective
quality measure. This formulation presents a completely different landscape from the
fitness landscapes of the individual objectives but is arguably a more meaningful landscape
to analyse when objectives are conflicting.

2.2. Violation Landscapes

Malan et al. [5] introduced the notion of a violation landscape as an additional view
to fitness landscapes for constrained search spaces. A violation landscape is defined us-
ing the same elements as a fitness landscape, but the fitness function is replaced by a
violation function that quantifies the extent to which a solution violates the constraints
defined on the problem. A violation landscape is therefore defined above decision variable
space and provides an additional landscape view to the fitness landscape. The features
of violation landscapes can be analysed in relation to fitness landscapes to better under-
stand constrained optimisation problems. Technique 28 in Table 1 describes metrics for
characterising violation landscapes in relation to fitness landscapes.

2.3. Dynamic and Coupled Fitness Landscapes

Most landscape analysis assumes that the environment is constant, but there are
many problems where the landscape is dynamic. Two scenarios where the dynamics of
landscapes have been studied include applications where the objective function changes
over time (due to changes in the problem environment) and in the case of coevolution,
where landscapes are coupled [6] and influence each other.

An early approach to dynamic landscape analysis involved using existing landscape
analysis techniques and simply interspersing landscape changes at set intervals during the
search space sampling [6]. As an alternative, Richter [7,8] proposed using coupled map
lattices for constructing fitness landscapes and modelling landscape dynamics. This frame-
work was used to characterise landscape features (such as ruggedness and epistasis) over
time as well as features specific to dynamic landscapes, such as change frequency and
dynamic severity. Yazdani et al. [9] proposed an online approach to dynamic landscape
analysis using a multipopulation method. In their framework, metrics are calculated based
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on information collected by subpopulations tracking peaks for quantifying changes in the
landscape (peak shift severity, height variance and fitness variance).

In the context of coevolution, there are two distinct landscapes to consider: the
objective landscape (the view of the problem to be solved) and the subjective landscape
(the coevolutionary algorithm’s view on the problem) [10]. It has been suggested that
failure of coevolutionary algorithms could be due to disassociation between these two
landscapes [11]. For coevolutionary games, Richter [12] proposed a dynamic landscape
model based on a fitness interpretation of player payoff and used existing fitness landscape
analysis techniques to analyse the game dynamics.

2.4. Error Landscapes

Part of neural network (NN) training involves optimisation, where the task is to
search for the weight values that minimise the error of the network model on the training
data. Analogous to a fitness landscape, the error or loss landscape can be analysed to
better understand the nature of a particular NN weight optimisation problem instance.
There are, however, some aspects of NN weight optimisation that make it different from
most black-box optimisation problems and this affects the way that landscape analysis can
be done.

Some of the distinguishing characteristics of NN weight optimisation are: ultra high-
dimensional search spaces (even small NN models can have thousands of weights), expen-
sive objective evaluation (evaluating the error value of a solution weight vector involves a
full run through the training data set), unbounded search spaces (weights can theoretically
take on any real value), the same solution can evaluate to different error values depending
on the subset of data instances used for training and the availability of analytical gradient
information of the objective function. In addition, there is the added complication that the
NN training landscape may differ from the NN testing landscape. Choromanska et al. [13]
theoretically and empirically analysed the loss surfaces of multilayered neural networks
and found that the training and testing error became increasingly de-correlated with the
size of the network. The implication of this is that finding the global optimum in the
training loss landscape is of limited use, because it will most likely not correspond with
the position of the global optimum in the testing loss landscape. This presents a different
picture than with most other optimisation tasks, where the focus is usually on finding the
global optimum within the landscape.

Dimension reduction techniques have been proposed for visualising portions of
error surfaces [14,15]. For example, three-dimensional visualisations of error landscapes
(https://losslandscape.com/) are based on samples of weight vectors that fall on a two
dimensional plane (a slice through the multidimensional weight space). The plane is
positioned to pass through a point in the search space around which the landscape is
visualised (such as the weight vector at the end of a training run). These visualisations
provide a limited view that may not match the experience of a training algorithm in the
high dimensional weight space. In addition, a form of numerical characterisation of error
landscapes would be more useful for further analysis.

Bosman et al. [16–19] applied and adapted standard fitness landscape analysis tech-
niques to error landscapes. Studies include: the influence of search space boundaries on the
landscape analysis [16], the influence of regularisation on error surfaces [17], the influence
of architecture settings on modality of the landscape [18], and the effect of different loss
functions on the basins of attraction [19].

3. Advances in Landscape Analysis

This section discusses contributions to landscape analysis in the form of recently
proposed techniques as well as studies in sampling and robustness of landscape analysis.
For a background to the concepts and terminology of fitness landscape analysis, the reader
is referred to earlier surveys [1,20].

https://losslandscape.com/
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3.1. Techniques for Landscape Analysis

An earlier survey of fitness landscapes in evolutionary computation [1] identified 22
techniques for analysing landscapes, from genetic algorithm (GA)-deception proposed by
David Golderg in 1987 [21] to accumulated escape probability by Xin Yao and coauthors
in 2011 [22]. The aim of the original survey was to make the techniques more accessible
to researchers by describing each technique in an understandable way and highlighting
attributes affecting their implementation in practice.

Table 1 continues where the previous survey left off, introducing a further 11 tech-
niques starting with technique 23 as local optima networks (LONs) [23]. Although LONs
were mentioned in the previous survey as a model for describing the structure of land-
scapes, they were not listed as a practical technique for analysis. Since then the LON model
has been extended and has evolved into one of the most widely used landscape analysis
techniques today. The techniques in Table 1 appear in chronological order by the year of
the first publication and are described under the following headings:

• Technique #: the name of the technique, citation and extensions (where the technique
was adapted in subsequent studies).

• Year: the year the technique was first introduced in published form.
• Focus: refers to what is measured or predicted by the technique.
• Assumptions: any significant assumptions on which the technique is based.
• Description: summary of how the technique works.
• Result: describes the form of output produced by the technique (numerical, graphi-

cal, etc.).

When the original list of landscape analysis techniques was compiled, an attempt to
classify the techniques was unsuccessful. This was because the possible dimensions on
which to base a classification did not help to distinguish between techniques. For example,
consider a distinction between local/global or exact/approximate landscape analysis
techniques. Many techniques did not fit into either of these hard classes. Even if they did
fit into one class, small adaptations would move them into a different class. Instead of a
classification of techniques, the approach used was to highlight distinguishing features to
assist practitioners in deciding which approaches could be applicable in different scenarios.

The choice of an appropriate technique (or set of techniques) to use should be guided
by the nature of the problems to be analysed as well as the purpose of the analysis.
The Assumptions field in Table 1 specifies whether the technique could be applied to the
given problems, while the Focus and Result fields specify whether the aim is likely to be met
by the technique. For example, say your aim is to understand why a particular algorithm
is failing on a vehicle routing problem (a combinatorial problem). Technique 23 (LONs)
could be applicable, since it is designed for discrete search spaces and has a focus on the
global structure of landscapes, which is known to affect search behaviour. LONs could be
generated for a range of problems to contrast the global structure of problems on which the
algorithm was successful and those on which it failed, to hopefully shed light on possible
explanations for why the algorithm is failing. In a similar way, Techniques 25, 29 (and 31
if the algorithm was population-based) could be used to provide a different view of the
problem focusing on other aspects namely variations in gradients, local fitness patterns
(and evolvability), respectively. Technique 28 would only be appropriate if the problem
was modelled as a constrained problem, while Technique 32 would only be appropriate if
the problem was modelled as a multiobjective problem. Techniques 24, 27 and 30 would
not be applicable because they assume a continuous search space, and Techniques 26 and
33 would also not be appropriate because the problem scenarios are different (coevolution
and neural networks, respectively).
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Table 1. Techniques for characterising landscapes as a continuation of Table 1 from [1].

Technique 23: Local optima networks (LONs) by Ochoa et al. [23] with extensions [24–31].
Year: 2008
Focus: Global landscape structure

Assumptions: Requires a complete enumeration of a discrete search space. Later extensions are based on samples to produce approximate LONs [32,33] and are
adapted for continuous spaces [34].

Description:

A LON is a graph-based abstraction of the search space representing the global structure, where each node of the LON is a local optimum and
edges between nodes represent adjacency of the basins of optima (the possibility of search transitioning from one local optimum to another). The
LON model is also extended to multiobjective problems to form pareto local optimal solutions networks (PLOS-nets) [30,31]. More detail and
resources on LONs can be found on the website: http://lonmaps.com.

Result: A graph visualisation showing the connectivity between local optima. Metrics can also be extracted from LONs such as number of optima, size of
basins of attraction, shortest path to the global optimum [35], as well as funnel metrics [36,37], and PageRank centrality [38].

Technique 24: Exploratory landscape analysis (ELA) by Mersmann et al. [39] with extensions [40].
Year: 2011
Focus: Low-level features based on small samples
Assumptions: Assumes a continuous search space.

Description:

Based on a small sample of random solutions (using Latin Hypercube sampling), six classes of low level features are defined: (1) convexity, (2)
y-distribution, (3) levelset, (4) meta-model, (5) local search, and (6) curvature. Features are estimations of attributes such as the probability of the
objective function being linear, the skewness of the distribution of the function values, the accuracy of fitted meta models, the number of local
optima identified by local search, estimated numerical gradient and so on. The standard ELA feature set was later extended to include features
based on general cell mapping (GCM) [40], but these are currently limited to low-dimensional spaces. ELA is supported by an online package in R,
called flacco [41,42] (https://github.com/kerschke/flacco).

Result: 50 numerical values for the standard ELA feature set and a further 44 values for GCM features.

Technique 25: Length scale distribution by Morgan and Gallagher [43] with extensions [44].
Year: 2012
Focus: Variation in gradient estimations across the search space
Assumptions: Assumes a distance metric in solution space.

Description:
Based on a sample of solutions from a random Levy walk through the search space, the length scale (the absolute difference in fitness over the
distance in space) is calculated for each pair of solutions in the sample. The length scale distribution is defined as the probability density function
of length scales and is estimated using kernel density estimation on the sample of length scales.

Result: Plot of length scale distribution and a single value for the estimated entropy of the length scale distribution.

Technique 26: Codynamic landscape measures by Richter [10].
Year: 2014
Focus: Similarity between the objective and subjective landscapes in coevolution
Assumptions: Assumes a model of coevolution for fast evaluation of subjective and objective fitness values.

Description:
Given a sample of points in the search space and two coupled and codynamic landscapes: the objective landscape (the fitness landscape of the
problem) and the subjective landscape (how the coevolution perceives the problem) landscape measures are defined to quantify differences
between the landscapes.

Result: Three numeric values at each generation, quantifying different aspects of similarity.

Technique 27: Degree of separability by Caraffini et al. [45].
Year: 2014
Focus: Nonseparability
Assumptions: Assumes a continuous search space and the use of the covariance matrix adaptation evolution strategy (CMA-ES) search algorithm.

Description:

A portion of the budget of the CMA-ES algorithm is executed on the problem. After a limited number of generations, the matrix C evolves to
estimate the covariance matrix describing the correlation between pairs of variables. The degree of separability is defined as the average of the
absolute values of the Pearson correlation matrix of C (ignoring symmetrical and diagonal elements) after discretisation of the coefficients into
classes in 0, 0.2, 0.4, 0.6, 0.8, 1.

Result: An index in the range [0, 1] where 0 indicates full separability and 1 indicates full nonseparability.

Technique 28: Constrained landscape metrics by Malan et al. [5].
Year: 2015
Focus: Constraint violation in relation to fitness
Assumptions: Assumes that the extent to which constraints are violated can be quantified for all solutions.

Description:

Given a sequence of solutions based on a progressive random walk [46], with associated fitness and level of constraint violation for each solution,
the following are estimated: (1) the proportion of feasible solutions in the search space (FsR), (2) the level of disjointedness between feasible areas,
quantified as the ratio of feasible boundary crossings (RFB×), (3) the correlation between the fitness and violation (FVC), and (4) the proportion of
solutions that are both high in fitness and low in constraint violation, in the form of two metrics: proportion of solutions in the top 50% percentile
and 20% percentile for both fitness and violation.

Result: A vector of five numerical values.

Technique 29: Bag of local landscape features by Shirakawa and Nagao [47].
Year: 2016
Focus: Relative fitness patterns in local neighbourhood
Assumptions: Assumes a distance metric in solution space.

Description:

Given a sample of solutions of size λ, the local neighbourhood of a solution is defined as the M nearest solutions in the sample, based on a distance
metric in solution space. The LLP (local landscape pattern) of a solution is a pattern number corresponding to the binary sequence characterising
the relative fitness of M nearest neighbours to the current solution. The LLP of xi is 0 (string of M 0’s) if all M neighbours are fitter than xi , and
2M − 1 (string of M 1’s) if xi is fitter than all M neighbours. The Evo (evolvability) of xi is defined as the number of better neighbours (out of M).
Histograms are constructed to characterise the distribution of LLP and Evo values of all solutions in the sample.

Result: Two vectors: BoLLP (of length 2M) and BoEvo (of length M + 1), representing the normalised histograms of LLP and Evo, respectively. Principle
component analysis is used to reduce the dimensions of the vectors for analysis.

Technique 30: Maximum entropic epistasis (MEE) by Sun et al. [48].
Year: 2017
Focus: Variable interactions (direct and indirect)
Assumptions: Assumes a continuous search space.

Description:
For each pair of decision variables xi , xj , the interaction matrix for direct interactions (IMd) is identified by calculating the maximal information
coefficient (largest mutual information at different scales) between xj and the estimated partial derivative of the objective with respect to xi . The
IMd is then used to construct an interaction graph to map the strongly connected components to identify the indirect interactions.

Result: Three measures: (1) the degree of direct variable interaction (DDVI), (2) the degree of indirect variable interactions (DIVI), and (3) the degree of
variable interactions (DVI).

http://lonmaps.com
https://github.com/kerschke/flacco


Algorithms 2021, 14, 40 6 of 16

Table 1. Cont.

Technique 31: Population evolvability metrics by Wang et al. [49].
Year: 2018
Focus: Evolvability of a population
Assumptions: Assumes a population-based algorithm for sampling.

Description:

Given a population of solutions and the set of neighbours (from one iteration of the algorithm), two metrics are defined: (1) epp is the probability
that a population will evolve and is estimated by calculating the proportion of neighbours that are fitter than the best solution of the current
population, and (2) eap is the evolutionary ability of the population, which is a quantity that increases with the absolute fitness improvement of the
neighbours and decreases with the fitness diversity of the population.

Result: A single value evp which is defined as epp× eap, with a range of [0,+∞].

Technique 32: Local multiobjective landscape features by Liefooghe et al. [50] including earlier contributions [51,52].
Year: 2019
Focus: Evolvability for multiobjective optimisation
Assumptions: Assumes a discrete search space.

Description: Given a sequence of solutions obtained through random walks and adaptive walks, features of the walk are derived from the sequence as a whole
as well as the neighbourhood of solutions in terms of dominance and hypervolume improvement by neighbours.

Result: 26 numerical values representing local features (17 from random walk sampling and 9 from adaptive walk sampling).

Technique 33: Loss-gradient clouds by Bosman et al. [19].
Year: 2020
Focus: Basins of attraction in neural network error landscapes
Assumptions: Requires the numeric gradient of the loss function.

Description:

A sample of loss values and gradient values is obtained based on a number of random, progressive gradient walks [53]. Stationary points in the
sample are determined to be local minima, local maxima or saddle points based on local curvature derived from the eigenvalues of the Hessian
matrix. Stagnant sequences on the walk are detected by tracking the deviation in a smoothing of the error. Two quantities are measured: (1) the
average number of times that stagnation was observed, and (2) the average length of the stagnant sequence.

Result: A two-dimensional scatterplot of loss values against gradient values (loss-gradient cloud) and two metrics to estimate the number and extent of
distinct-valued basins of attraction.

The first two techniques described in Table 1, LONs and ELA, are well established
and have been widely used in studies involving landscape analysis, with LONs mostly
applied in discrete optimisation and ELA in numerical optimisation. The wide adoption of
these two approaches has been facilitated by the availability of code and online resources.

The previous survey [1] included techniques for detecting variable interdependence
in binary search spaces (epistasis) but pointed out the absence of equivalent measures
for continuous search spaces. This need has been addressed in the introduction of two
techniques for quantifying nonseparability in continuous spaces (techniques 27 and 30).

A number of the new proposed techniques for landscape analysis apply to very
specific optimisation contexts, such as coevolution (technique 26), constrained optimisation
(technique 28), multiobjective optimisation (technique 32) and neural network training
(technique 33). This corresponds to the extension of the notion of fitness landscapes to
other types of landscapes discussed in Section 2.

3.2. Sampling and Robustness of Measures

Most landscape analysis techniques are based on a form of sampling of the search
space. When considering the effect of the sampling on the analysis, it is not only the size of
the sample that affects the outcome but also the sampling strategy [54,55].

Saleem et al. [56] proposed a method for evaluating landscape metrics in terms of the
ability of the metric to identify trends in ordered sets of problems with specific landscape
properties. They found that although some metrics can estimate features reliably using
a small sample size, there are others that are very sensitive to the size of the sample.
Muñoz et al. [57] proposed an experimental methodology for evaluating the reliability of
landscape analysis methods that considers aspects such as vulnerability, volatility, stability
and sensitivity to sample size. They showed that some landscape measures are highly
volatile and that there is evidence of the curse of modality, requiring the sample size to
increase with the number of local optima, rather than the dimension.

From the literature surveyed it is clear that random sampling techniques that are
biased or structured in some form are more effective than more pure forms of random
sampling for landscape analysis. For example, in the discrete domain (in the context of
quadratic assignment problems), sampling strategies such as neutral walks were found to
provide more insight into predicting problem hardness than random walks [58] and LON
samples based on iterated local search had more predictive power for heuristic optimisation
performance than samples based on random snowball sampling [37].
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Alternative approaches to traditional random sampling for landscape analysis in
the continuous domain include Latin hypercube design sampling [59], progressive ran-
dom walk sampling [46] and gradient-based walks for sampling error surfaces of neural
networks [53].

Online sampling, where the samples are based on solutions encountered by an algo-
rithm during search, has become a popular alternative to random sampling for landscape
analysis [60–62]. Enhancements to online sampling for continuous spaces include intro-
ducing a mechanism for correcting the error produced by the sampling bias [63] and the
introduction of path relinking [64].

In an experimental study, Muñoz et al. [65] explored the effect that function transla-
tions had on landscape measures and found that translations could cause abrupt and severe
changes in the values of some metrics. Škvorc et al. [66] also found that a large number
of ELA features [39] (technique 26 in Table 1) were not invariant to shifting and scaling.
Finally, Scott and De Jong [67] found that some landscape measures are very sensitive to
the presence of noise in the fitness evaluation and that the error is difficult to correct for in
an efficient way.

In some real-world optimisation scenarios, the objective function is very expensive
to evaluate (such as in simulation-based optimisation) and surrogate models are used to
approximate the fitness function. Werth et al. [68] performed a preliminary investigation
into landscape analysis on surrogate functions and found that the landscape features were
more indicative of the surrogate model than the original landscape.

4. Applications of Landscape Analysis

Landscape analysis has gained acceptance as a method for not only understanding
complex problems and algorithm behaviour but also to support the prediction of algorithm
performance and as part of automated algorithm configuration and selection.

4.1. Understanding Complex Problems

Landscape analysis has become popular as an approach to understanding complex
optimisation problems by characterising problems using measured landscape features.
When using landscape analysis to characterise problems, one of the aims is to group
problems into classes based on these features. This is based on the premise that algorithms
may behave similarly on problems that are similar. A vast array of complex classic and
real-world problems have been studied using landscape analysis. Some examples in the last
ten years are listed under three categories: (1) benchmarks or random instances of classic
optimisation problems, (2) real-world applications and (3) machine learning applications.

Many real-world problems can be reduced to variants of classic problems, such as
the quadratic assignment problem or the travelling salesman problem. Studying large
benchmarks or random instances of these classic problems using landscape analysis is
useful as general insights gained should be applicable to scenarios containing these prob-
lems as subcomponents. Examples of the application of landscape analysis to the study
of classic problems include: the quadratic assignment problem [69–71]; the maximum
satisfiability problem [72,73]; permutation flow-shop scheduling [74–76]; packing prob-
lems [77,78]; travelling salesman problems [79–82]; the dense graph-colouring problem [83];
number partitioning problem [84]; vehicle routing problems [85]; and the travelling thief
problem [86].

Landscape analysis has also been used to understand real-world problems. Examples
include: the design of wind turbines [87]; university course timetabling [88]; genetic im-
provement of software [89–91]; automated test case generation for software testing [92,93];
computational protein design [94]; design of substitution boxes in cryptography [95]; hyper-
parameter optimisation for metaheuristics [96]; and building energy optimisation [97].

Since 2017 a new trend has emerged of landscape analysis applied in the context of
machine learning. Examples include: analysis of weight search spaces in the context of
neural network training for classification [98]; analysis of the feature selection problem
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for classification [99,100]; analysis of policy search spaces in reinforcement learning [101];
analysis of machine learning pipeline configuration search spaces [102]; and analysis of
neural architecture search spaces for image classification [103,104].

In each of the studies listed above, landscape analysis provided different insights into
problem classes and the nature of the difficulty for search algorithms. To illustrate the kind
of benefits that landscape analysis can provide, one study is described in more detail. In
the field of genetic engineering, Simoncini et al. [94] analysed a computational protein
design problem. The most popular software program used for solving these problems
performed well on some instances but poorly on others. Landscape analysis revealed
structural differences between the landscapes of an instance that was successfully solved
by the software and one on which the software failed. It was observed that the algorithm
performed poorly on a landscape that consisted of several suboptimal funnels that were
disconnected from the global funnel. In this way, landscape analysis could explain why
some problem instances were harder to solve than others. With this kind of understanding,
algorithms can be adapted to be more effective on particular classes of problems.

4.2. Understanding and Explaining Algorithm Behaviour

The introduction of new metaheuristic algorithms is commonly justified on the basis
of competitive experimental results on a limited set of benchmark problems. One of the
problems with this approach is that these studies provide no scientific understanding as
to why the algorithm performs well on the given problems, and more importantly, no
understanding of when the algorithm will perform poorly.

Landscape analysis of optimisation problems provides a mechanism for explaining
algorithm behaviour and identifying classes of problems that are suited to particular algo-
rithms. Studies that describe the use of landscape analysis for understanding algorithm
behaviour include: explaining evolutionary algorithm behaviour in dynamic environ-
ments [8] and the dynamics in coevolutionary games [12]; understanding the behaviour of
local search algorithms [105,106]; explaining performance differences between search-and-
score algorithms for learning Bayesian network structures [107]; explaining the effect of
different mutation operators [108] and different function sets [109] in genetic programming;
explaining the performance of different real-valued evolutionary algorithms [87]; explain-
ing the performance of multiobjective evolutionary algorithms [52,110]; understanding
evolvability in grammatical evolution [111]; understanding the effect of funnels in the land-
scape on metaheuristic performance [112]; and explaining the performance of evolutionary
algorithms in generating unit tests for software [93].

The list above shows that landscape analysis has mostly been used to understand
different evolutionary algorithms, but there are examples where other types of algorithms
have been studied, such as local search algorithms and search-and-score algorithms.

4.3. Algorithm Performance Prediction

Although most metaheuristics can be easily understood in terms of their algorithmic
elements, the behaviour that emerges is often unpredictable. Landscape analysis can
be used to extract general features of problems to be used as input to machine learning
models for predicting algorithm performance. These models are an important component
in the wider aim of automated algorithm selection. Examples of the application of ma-
chine learning to predicting algorithm performance based on landscape features include
the following:

• Bischl et al. [113] used one-sided support vector regression to predict the best-
performing algorithm from a portfolio of four numerical optimisation algorithms
based on ELA features. They showed that the model was able to generalise on new
problem instances and predict the optimal or close to optimal algorithm from the
portfolio.

• Muñoz et al. [114] used a neural network regression model to predict the performance
of a CMA-ES algorithm based on landscape features and algorithm parameters. Per-
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formance was measured in terms of the number of function evaluation required and
they found that the model was able to predict the relative ranking values for given
algorithm-parameter combinations effectively.

• Malan and Engelbrecht [115] used decision tree models to predict failure of seven vari-
ants on the particle swarm optimisation algorithm based on landscape features. The
models of five of the algorithm variants achieved testing accuracy levels above 90%.

• Liefooghe et al. [30] used a random forest regression model to predict the performance
of multiobjective optimisation algorithms in combinatorial optimisation based on a
combination of landscape features and problem-specific features. They later devel-
oped a decision tree model for selecting the best performing algorithm out of three
multiobjective algorithms [50]. Their model was able to predict the best performing
algorithm in more than 98.4% of the cases.

• Jankovic and Doerr [116] proposed a random forest regression model for predicting the
performance of CMA-ES algorithms based on ELA features in a fixed-budget setting.
They obtained high-quality performance prediction by combining two regression
models trained to predict target precision and the logarithm of the target precision.

• Thomson et al. [117] used random forest and linear regression models to predict
algorithm performance for solving quadratic assignment problems based on landscape
features derived from LON sampling. They found that random forest trees performed
better at prediction than linear regression.

4.4. Automated Algorithm Selection

Performance complementarity is a phenomenon where different algorithms perform
the best on different types of problem instances [118]. Automated algorithm selection is the
process of deciding on the best algorithm for the problem at hand and depends on having
features for distinguishing problems from each other. The features can be problem specific
but can also be derived through landscape analysis, which can be more generally applied
across problem types.

Algorithm configuration (choosing of algorithm parameters and strategies for particu-
lar problems) is closely related to algorithm selection but differs in that the set of possible
configurations is much larger than a finite choice of algorithm candidates. The features
used for algorithm configuration and selection can, however, be the same, so studies related
to algorithm configuration are also mentioned here. Examples of algorithms that have been
configured or dynamically adapted based on landscape characteristics include:

• genetic algorithms: using the fitness distance correlation landscape measure to dynam-
ically adjust the migration period in a distributed genetic algorithm [119], selecting a
crossover operator based on fitness landscape properties [120], using fitness landscape
features to estimate the optimal population size [121];

• differential evolution algorithms: adapting the strategy and adjusting the control
parameters based on detected landscape modality [122,123], adapting the mutation
strategy based on landscape features [124,125], algorithm configuration based on
exploratory landscape features with an empirical performance model [126];

• memetic algorithms: analysis of the separability of problems to automatically select
operators [45] and the use of four fitness landscape analysis techniques to inform the
most suitable crossover operator [127];

• selection of CMA-ES algorithm configuration using a trained model for predicting
performance based on landscape features that was shown to outperform the default
setting of CMA-ES [128];

• surrogate-assisted particle swarm optimisation, where fitness landscape analysis was
used to select surrogate models [129]; and

• decomposition-based multiobjective evolutionary algorithms (MOEA/D), where the
addition of landscape information improved the behaviour of the adaptive operator
selection mechanism [130].
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There are many attempts at automated algorithm selection using landscape features
and the reader is referred to a survey by Kerschke et al. [118] for an overview of studies.
Recent contributions not included in the Kerschke et al. survey include algorithm selection
for the quadratic assignment problem [131,132], algorithm selection for the travelling
salesman problem [133], algorithm selection for the permutation flowshop problem [134]
and a form of automated algorithm selection for constraint handling techniques with
differential evolution [61].

From the above, it is clear that landscape analysis is playing an important role in both
algorithm performance prediction and automated algorithm configuration and selection.

5. Opportunities for Further Research

This survey highlights that fitness landscape analysis techniques are being applied
in contexts beyond evolutionary computation. The wider scope of landscape analysis
introduces interesting challenges and offers many opportunities for further research. Three
ideas are discussed here.

Technique 26 in Table 1 proposes an approach to analysing the search space of co-
evolution by tracking differences between the objective and subjective landscapes. This
notion of coupled landscapes, where landscapes are dynamic and a change in one effects
the other, may be applicable in contexts wider than coevolution. For example, in generative
adversarial networks (GANs), the error landscapes of the generator and discriminator
networks are coupled in a similar way to the landscapes of coevolution. It would be
interesting to investigate whether landscape analysis could be used in the context of GANs
to better understand the dynamics of adversarial training.

Most of the research in landscape analysis is restricted to single objective search spaces.
However, many real-world problems have multiple conflicting objectives. Technique 32 in
the survey [50] is an important contribution as it provides a first set of numerical features
for characterising local features of multiobjective problems. More work is needed in
applying this approach to a wider range of problems and algorithms and also adapting
the approach for use in continuous search spaces. There is still a gap in techniques for
practically characterising global features of multiobjective search spaces. PLOS-nets [30,31]
have been proposed for capturing the global structure of multiobjective landscapes, but it
is still not clear how this approach can be scaled to large-size problems.

Surrogate modelling has become an important technique for managing optimisation
problems that have computationally expensive objective functions. Initial investigations into
landscape analysis of surrogate functions [68] were not very successful and further work is
needed to identify landscape analysis techniques that are suitable for characterising surrogate
functions so that the analysis is indicative of the characteristics of the actual landscape.

6. Conclusions

Research in landscape analysis has moved from being a theoretical topic in evolution-
ary computation to being extensively applied as a practical tool in the wider context of
optimisation and has recently also been applied in machine learning. This survey describes
advances in landscape analysis in the last decade, including a number of new techniques for
landscape analysis and studies relating to sampling and robustness of measures. The sur-
vey also highlights the wide range of applications of landscape analysis in understanding
complex problems, explaining algorithm behaviour, predicting algorithm performance
and automatically configuring and selecting algorithms. Landscape analysis clearly has an
important role to play in reducing the unpredictability of algorithms and advancing the
field of optimisation and machine learning to a place where our technology can be trusted
to solve real-world problems.
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