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Abstract: In this paper, we present a new framework dedicated to the robust detection of repre-
sentative variables in high dimensional spaces with a potentially limited number of observations.
Representative variables are selected by using an original regularization strategy: they are the center
of specific variable clusters, denoted CORE-clusters, which respect fully interpretable constraints.
Each CORE-cluster indeed contains more than a predefined amount of variables and each pair of
its variables has a coherent behavior in the observed data. The key advantage of our regularization
strategy is therefore that it only requires to tune two intuitive parameters: the minimal dimension of
the CORE-clusters and the minimum level of similarity which gathers their variables. Interpreting the
role played by a selected representative variable is additionally obvious as it has a similar observed
behaviour as a controlled number of other variables. After introducing and justifying this variable
selection formalism, we propose two algorithmic strategies to detect the CORE-clusters, one of them
scaling particularly well to high-dimensional data. Results obtained on synthetic as well as real data
are finally presented.

Keywords: feature selection; representative variable detection; interpretable machine learning;
regularization; complex data; graph clustering

1. Introduction

Discovering representative variables in high dimensional and complex systems with a
limited number of observations is a recurrent problem of machine learning. Heterogeneity
between the variables behavior and multiple similarities between variable subsets often
make this process ambiguous. A convenient strategy to solve this task is to associate
each representative variable of the complex system to a cluster of variables, and to model
the relations between variables in a graph [1]. The complex systems are indeed typically
modeled as undirected weighted graphs [2,3], where the nodes (vertices) represent the
variables and the edge weights are a measure of the observed similarity between the
variables of the dataset. The choice of a specific clustering algorithm over the wide variety
of traditional methods often depends on the nature of the data (e.g., their structure or
size). Determining the granularity level of the clusters is also a common issue in high
dimensional data clustering. If the clustering granularity is high, some clusters have a
high similarity rate between the nodes/variables they contain, but potentially, many other
clusters only contain noisy relations. A large amount of selected representative variables
can then be meaningless. Conversely, a low granularity leads to few large clusters with
high internal heterogeneous behaviors, which makes it hard to identify the representative
variables of the system in each cluster. Importantly, this issue is particularly critical when
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the number of observations n is lower than the observations dimension p, because of the
instability related to high dimensionality and high complexity.

As in k-means clustering algorithms [4], we will use, in this paper, the notion of cores
to address with an interpretable strategy the choice of the granularity level. Based on a
distance function, the k-means algorithms indeed form a controlled number of clusters.
This notion of core is also used in [5,6], where the graph is partitioned into a maximal group
of entities, which are connected to at least k other entities in the group. The method of [7]
is also related to the notion of coreness, as it hierarchically calculates the core number
for each node with a complexity in the order of O(p). Strong connections also exist
between the issues we address and the notion of coresets [8]. This notion has recently
gained significant interest in the machine learning community, as it deals with finding
representative observations, and not variables, in large datasets. As described in [9],
it can be used in supervized learning to reduce the size of large training sets. In a similar
vein, it can also be used to robustify the generalisation of the trained decision rules [10],
for neural network compression [11] or for unsupervized learning [12]. Note that [12]
is also particularly close to core methods, as it specifically deals with k−clustering, i.e.,
finding at most k cluster centers. The proposed method however does not address explicit
interpretability issues.

The challenge of high dimensionality is clearly raised in [13–15], where the authors
proposed different feature selection techniques with an explicit regularization in order to
speed up a data mining algorithm and to improve mining performance. In this spirit, [16]
recently developed an approach based on an iterative spectral optimization technique that
improves the quality, computation time and scalability to high dimension of an existing
alternative clustering method (kernel dimension alternative clustering). In [17], the authors
also used a multinomial regression model to learn automatically the number of clusters, and
then to limit strong assumptions required by the model in high dimension. Note that [18]
also defined a strategy for the detection of representative variables in high-dimensional
data, but did not explored a regularization strategy when the number of observations
is much lower than the problem dimension. Those strategies require as well to make a
decision about the number of clusters to determine.

Motivated by the above issues, we propose a new formalism to robustly and intuitively
estimate the representative variables of complex systems. This is first made through a
graph clustering strategy for which the clusters do not necessarily cover all nodes/variables.
This clustering strategy specifically estimates CORE-clusters, which are connected subsets
of variables having (1) a minimum number of nodes/variables, and (2) a minimal similarity
level between all their variables. The representative variables are then those having the
lowest average distance to all other variables in each CORE-cluster. The detection of
representative variables is therefore regularized using a control on the minimal CORE-
cluster size and not the number of representative variables to be detected, or a LASSO-
derived penalty term. This point of view has been originally considered in [19,20], We present
here a totally reformulated version of this initial idea, which makes fully interpretable
the selection of the representative variables by introducing the notion of CORE-clusters.
Fine algorithmic improvements, described in this paper, also make the original clustering
algorithm more efficient. A greedy version of this original algorithm, which turns out to
scale particularly well to high dimensional data, is additionally proposed. New results
on synthetic data as well as comparisons with other methods now shed light on how the
proposed strategy is robust and explainable. Finally, we now demonstrate the validity of
our formalism on two high dimensional datasets representing the expression of genes and
a road network.

Our methodology is described in Sections 2 and 3 and is then tested both on simulated
and real data in Section 4.
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2. Statistical Methodology
2.1. Graph-Based Representation of the Observations

Let us consider a complex system of p quantitative variables X = (X1, · · · , Xp) and
n observations (X j

1, · · · , X j
n), j ∈ {1, · · · , p} of these p variables. The driving motivation

of our work is to detect representative variables out of X when n � p. As mentioned in
Section 1, the detection of these representative variables is regularized using a graph-based
approach. We then model the relations between the variables using an undirected weighted
graph G(N, E), where N = (N1, · · · , Np) is the nodes set corresponding to the p variables,
and E is the edges set. We also denote ei,j ∈ E the edge joining the nodes Ni and Nj with
weight wi,j.

In order to handle the properties of application-specific similarity measures that can
be encoded in the edge weights wi,j, we will consider in the remainder of the paper that all
wi,j ≥ 0 and that the higher wi,j the closer the observed behavior of the variables Xi and
X j. The weights therefore represent a notion of similarity between the variables Xi and
X j. For instance, if the empirical correlations cor(Xi, X j) are measured between the pairs
of variables Xi and X j, with (i, j) ∈ {1, . . . , p}2, then wi,j = |cor(Xi, X j)| can reasonably
be used.

2.2. Coherence of a Variable Set

To define a notion of distance between two variables Xi and X j, which are not directly
connected in the graph, we use the notion of capacity (see [21,22]) of a path P between the
corresponding nodes Ni and Nj in G(N, E). A path P of a graph G from Xi to X j of length
Λ is a list of indices {d1, . . . , dΛ} ⊂ {1, . . . , p} such that Xi = Xd1 , X j = XdΛ , and wdl ,dl+1

is
known and is not equal to 0, for all l = 1, . . . , Λ− 1. The capacity cap(P) of path P is then
the minimal weight of its edges, i.e.,

cap(P) = min
l=1,...,Λ−1

wdl ,dl+1
(1)

We also denote by Pi,j the set of all possible paths connecting Xi to X j. The coherence
c(Xi, X j) between Xi and X j is then defined by considering the path P having the maximum
capacity among the paths of Pi,j [22], i.e.,

c(Xi, X j) = max
P∈Pi,j

cap(P)

= max
P∈Pi,j

min
l=1,...,Λ−1

wdl ,dl+1
(2)

If the weight wi,j is known, it is interesting to remark that the coherence c(Xi, X j) is
not necessarily equal to its value. For instance, both Xi and X j may be very similar to
a third variable Xk, but not similar to each other. From a computational point of view,
the similarity in wi,j may also be unknown if the edge ei,j is not stored in a sparsified
version of the complete graph. Since n� p, pertinent relations may finally be lost in wi,j

but recovered in c(Xi, X j) thanks to other relations that would be captured. We believe
that these points are particularly important to define coherent variable sets in the complex
data case.

We now denote by S a connected subset of the variable set X. The coherence c(S) of
this variable subset is the minimal coherence between the variables it contains:

c(S) = min
(Xi ,X j)∈S2

c(Xi, X j) (3)

If all the variables of S have a coherent observed behavior, then c(S) is high. The use
of this notion on synthetic data is illustrated in Appendix A. The coherence of a subset mea-
sures the strength of the variables it contains. The more coherent S, the more sense it makes
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to consider that its variables share common features measured by the chosen similarity.
Decomposing the graph into maximal groups sharing a strong similarity, i.e., finding all the
groups of variables with a large enough coherence is the core of the following subsections
on CORE-clusters selection.

2.3. CORE-Clusters

We recall that the goal of our formalism is to detect the representative variables of
complex systems. In our formalism, each representative variable is extracted out of a
CORE-cluster, defined as:

Definition 1. A CORE-cluster Sξ,τ ⊂ X is a connected variable subset with a size higher than τ
and a coherence c(Sξ,τ) higher than a threshold ξ.

The parameters τ and ξ ensure that each representative variable has a non-negligible
coherence with at least τ − 1 other variables, which directly regularizes its selection: Large
values of τ indeed lead to the detection of large sets of coherent variables. In that case,
the representative variables are likely to be meaningful even if n < p. If τ is too large,
each CORE-cluster may however contain several variables that would have been ideally
representative. On the contrary, too small values of τ are likely to detect all meaningful
representative variables, but also a non-negligible number of false positive representative
variables, especially if the observations are noisy or if n < p. A good trade-off, which
depends on n, p and the level of noise in the observations has then to be found when
tuning τ.

2.4. CORE-Clustering

CORE-clustering consists of estimating an optimal set of CORE-clusters, so that
the representative variables they contain explain as much information as possible in the
observed complex system. We use the following definition:

Definition 2. CORE-clustering with parameters ξ and τ consists of finding Û variable subsets
Ŝ = {Ŝu}u∈{1,...,Û}, where Û is not fixed, by optimizing:

(
Ŝ, Û

)
= arg max

(S,U)

U

∑
u=1

c(Su) , (4)

under the two constraints:

1. All Su are connected variable sets having a size higher than τ and a coherence c(Su
ξ,τ) > ξ.

They therefore correspond to CORE-clusters and can be denoted Su
ξ,τ .

2. There is no overlap between the clusters, i.e., Su1 ∩ Su2 = ∅ for all (u1, u2) ∈ {1, . . . , U}2.

It may first seem that Û should be as high as possible, so that the union of all Su
ξ,τ

contains all the variables of X. Each CORE-cluster Su
ξ,τ must however have a coherence

higher than the threshold ξ. As illustrated in Appendix A, the variables of X which are
not coherent with at least τ other variables should ideally not be contained in any CORE-
cluster, as they would make their coherence drop. The CORE-clusters in S should then
only contain pertinent variables so that the optimal value for U is implicitly defined during
the CORE-clustering procedure.

It is also important to remark that the potential number of subsets of X to find good
CORE-cluster candidates is huge, even for moderate values of p. Moreover, computing
Equation (4) is particularly demanding. The two optimization algorithms of Section 3
are then aggregative and divisive algorithms designed to optimize Equation (4) without
explicitly computing it.
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2.5. Representative Variables Selection

We now present how each representative variable is extracted out of a CORE-cluster
Sξ,τ . As mentioned in Section 2.2, the pertinent relations between two variables Xi and
X j may be lost in wi,j, since n � p and recovered by their coherence c(Xi, X j) using
other relations. In this example, the similarity s captures true positive and false negative
relations and the notion of coherence makes robust the detection of relations. For the
same reasons, it may however also capture false positive relations, so the CORE-clusters
may contain undesirable variables. The variables captured by CORE-clusters using false
positive relations should however be located at the cluster boundaries if the data are not
too noisy. False positive connections are indeed less common and on average weaker than
true positive connections in this case.

In order to limit the impact of the false positive relations, we then define the rep-
resentative variables as the CORE-cluster centers. More specifically, each representative
variable minimizes an average distance with the other variables of a CORE-cluster Sξ,τ .
Instead of using distances based on the maximum capacity Equation (2), we use a more
standard notion of distance calculated as sums of weighted edges traversed by the optimal
paths. This limits the phenomenon of having multiple variables with the same optimal
distance due to the min-max strategy. The graph weights wi,j, which represent a similarity
level, must however be converted into distances, which can be simply done by using
di,j = 1/(wi,j + ε), where ε > 0. The representative variable of a CORE-cluster Sξ,τ is then
the one that has the lowest average distance to the other variables of Sξ,τ . The impact of
selecting the representative variables as CORE-cluster centers is discussed Appendix A.

2.6. General Guidelines for the Choice of ξ and τ

The selection of the representative variables directly depends on the parameters ξ
and τ. As explained in Section 2.3, a CORE-cluster Sξ,τ is indeed a connected variable
subset with a size higher than τ and a coherence c(Sξ,τ) higher than a threshold ξ. In
order to estimate pertinent representative variables, we recommend to use the following
guidelines: (1) First compute how the edge weights wi,j of the graph G(N, E) are distributed.
The coherence c(Sξ,τ) represents the weakest connection between the variables of Sξ,τ , so
the threshold ξ should be relatively high regarding the different values of wi,j. A value of ξ
equal to the 80th percentile of the edge weights wi,j appears to be reasonable. (2) Choosing a
suitable minimal amount of variables τ in Sξ,τ is more subtle, as this choice both depends on
the complexity of the relations expressed in G(N, E), and how the number of observations
n is low compared with the observations dimension p. In all generality, tuning τ as equal
to p/10 is reasonable as a first guess. (3) If no CORE-clusters are found with the initial
parameters, the user may try to run again the CORE-clustering procedure with lower
parameters ξ and τ.

From our experience, we recommend in all cases not using values of ξ lower than
the 40th percentile of the edge weights or values of τ lower than 10. The CORE-clusters
would be likely to contain variables with strongly heterogeneous behaviors or false positive
connections in these cases. Note finally that when several connected CORE-clusters are
identified with a given parametrization, it is interesting to test whether stronger CORE-
clusters would be locally found by using higher values of ξ or τ. This is illustrated in
Section 4.3.

3. Computational Methodology
3.1. Main Interactions Estimation

The very first step of our strategy is to quantify the similarity between the different
observed variables. The similarity is first computed using the absolute value of Pearson’s
correlation and represented as a dense graph G(N, E), where N contains p nodes, each
of them representing one of the observed variables, and E contains KE = p(p − 1)/2
undirected weighted edges that model a similarity level between all pairs of variables. In
this approach, the variables with no connection are associated with a correlation coefficient
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of zero. The algorithmic cost of this estimation can be O(n2 p), but it can also be easily
parallelized using divide and conquer algorithms for reasonably large datasets, as in [23].
For large to very large datasets, correlations should be computed on sparse matrices, using
e.g., [24] to make this task computationally tractable.

3.2. CORE-Clustering Algorithms

Inspired by [22], who solved the maximum capacity problem of [21] using optimal
spanning tree, we estimate the CORE-clusters on optimal spanning trees. A spanning tree
G(N, T) is a subgraph of G(N, E) with no cycle and T ⊂ E. The maximum spanning tree
of G is then the spanning tree of G, having the maximal sum of edge weights. Using the
maximum spanning tree to detect the CORE-clusters strongly limits the potential amount
of node combinations to test, while preserving the graph edges that are likely to be good
candidates for the optimal paths of Equation (2). Conversely, it is straightforward to show
that the coherence of a variable subset in G(N, T) is lower or equal to the coherence of the
same variable subset in G(N, E). The edges of T are indeed a subset of E, so Equation (2)
between two variables Xi and X j is lower or equal on T than on E. The CORE-clusters
computed in G(N, T) are therefore eligible CORE-clusters on G(N, E). By discussing the
algorithmic cost of our algorithms, we will make it clear that this reasonable domain
reduction makes our problem scalable to large datasets. The impact of using maximal
spanning trees on the measure of a cluster coherence is also discussed in Appendix A on
synthetic examples.

3.2.1. Maximum Spanning Tree

The maximum spanning tree of G is the simple and reliable modeling of the rela-
tionship between the graph nodes (only p− 1 links). One of the most famous algorithms
developed to find such trees is called Kruskal’s algorithm [25]. The maximum spanning
tree is built by adding step by step partial associations so that there will be no cycle in the
partial graph.

We denote by G(N, T) the resulting graph, where T has a tree-like structure. Details
of the algorithm are given in Algorithm 1. The algorithmic cost of the sort procedure (row
1) is O(KE log (KE)). Then, the for loop (rows 4 to 10) only scans the edges once. In this for
loop, the most demanding procedure is the propagation of label L(Ni), row 8. Fortunately,
the nodes on which the labels are propagated are related to Nj in G(N, E). We can then use
a depth-first search algorithm [26] for that task, making the average performance of the for
loop O(KE log (p)).

Algorithm 1 Maximum spanning tree algorithm

Require: Graph G(N, E) with nodes Ni, i ∈ 1, · · · , p and edges Ek, k ∈ 1, · · · , KE.
Require: Weight of edge Ek is W(Ek).

1: Sort the edges by decreasing weights, so W(E1) ≥W(E2) ≥ · · · ≥W(EKE).
2: Assign label L(Ni) = i to each node N(i).
3: Initiate an edge list T as void.
4: for k = 1 : KE do
5: We denote Ni and Nj the nodes linked by edge Ek.
6: if L(Ni)! = L(Nj) then
7: Add edge Ek to the list T
8: Propagate the label L(Ni) to the nodes that have label L(Nj).
9: end if

10: end for
11: return Graph with a tree structure G(N, T).

3.2.2. CORE-Clustering Algorithm

In contrast with other clustering techniques, this CORE-clustering approach detects
clusters having an explicitly controlled granularity level, and only gathers nodes/variables
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with a maximal path capacity. CORE-clusters are detected from the maximal spanning
tree G(N, T) by gathering iteratively its nodes N in an order that depends on the edge
weights in T (increasing weight order). A detected CORE-cluster has a size higher than
τ, where τ is the parameter that controls the granularity level. Thus, Algorithm 2 first
generates many small and meaningless clusters and parameter τ should not be too small
to avoid considering these clusters as CORE-clusters. Then, the first pertinent clusters will
be established using the edges of T with larger weights, leading to pertinent node groups.
Finally, the largest weights of T are treated at the end of Algorithm 2 in order to split into
several CORE-clusters the nodes related to the most influential nodes/variables.

Algorithm 2 CORE-clustering algorithm

Require: Graph G(N, T) with nodes Ni, i ∈ 1, · · · , p; and edges Tk, k ∈ 1, · · · , KT .
Require: Weight of edge Tk is W(Tk).
Require: Granularity coefficient τ and threshold ξ.

1: {Initiate the algorithm}
2: Sort the edges by increasing weights;
3: Assign label L(Ni) = i to each node N(i) and set CORElabel = −1.
4: {CORE-clusters detection}
5: for k = 1 : KT do
6: We denote Ni and Nj the nodes linked by edge Ek.
7: if L(Ni)! = L(Nj) then
8: Propagate the label L(Ni) to the nodes that have label L(Nj).
9: if number of nodes with label L(Ni) ∈ {τ, · · · , 2τ − 1} then

10: Label CORElabel is given to the nodes with label L(Ni)
11: CORElabel = CORElabel − 1
12: end if
13: end if
14: end for
15: {Post-treatment of the labels}
16: for n = 1 : N do
17: If L(Nn) > 0 then L(Nn) = 0 else L(Nn) = −L(Nn)
18: end for
19: {Filter the CORE-clusters Su

ξ,τ s.t. c(Su
ξ,τ) < ξ}

20: for u = 1 : U do
21: If c(Su

ξ,τ) < ξ then Set L(Nn) = 0 to the nodes Nn of Su
ξ,τ .

22: end for
23: return Labels L.

It is worth mentioning that the Rows 20 to 25 of Algorithm 2 are the only ones that
require to compute the coherence c of the estimated CORE-clusters. Computing a coherence
Equation (3) is indeed demanding, so it is considered here as a post-treatment limited to
pre-computed CORE-clusters. In practice, it is also performed on the maximal spanning
tree G(N, T) and not on the whole graph G(N, E).

Remark too that the algorithmic structures of Algorithms 1 and 2 are similar. However,
Algorithm 2 runs on G(N, T) and not on G(N, E). The number of edges KT in G(N, T) is
much lower than KE, since T has a tree structure and not a complete graph structure. It
should indeed be slightly higher than p [27], which is much lower than KE = p(p− 1)/2.
Moreover, the propagation algorithm (rows 9 and 11) will then never propagate labels
on more than 2τ − 1 nodes. The algorithmic cost of the sort procedure (row 1) is then
O(KT log (KT)) and the average performance of the for loop O(KT log (τ)).

3.2.3. A Greedy Alternative for CORE-Clusters Detection

We propose an alternative strategy to the CORE-clusters detection algorithm: The
edge treatment queue may be ordered by following decreasing edge weights instead of
increasing edge weights. The nearest edges are then first gathered, making coherent CORE-
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clusters as in Algorithm 2, although one CORE-cluster may contain several representative
variables. To avoid gathering noisy information, the for loop on the edges (row 6 of
Algorithm 2) should also stop before meaningless edges are treated. This strategy has a key
interest: It can strongly reduce the computational time dedicated to Algorithms 1 and 2. By
doing so, Algorithm 1 and modified Algorithm 2 are purely equivalent to Algorithm 3.

Algorithm 3 Greedy CORE-clustering algorithm

Require: Graph G(N, E) with nodes Ni, i ∈ 1, · · · , p and edges Ek, k ∈ 1, · · · , KE.
Require: Weight of edge Ek is W(Ek).
Require: Granularity coefficient τ and threshold ξ.

1: Sort the edges by decreasing weights.
2: Define the number of edges γ having a weight higher than ξ.
3: Assign label L(Ni) = i to each node N(i).
4: Set CORElabel = −1.
5: for k = 1 : γ do
6: We denote Ni and Nj the nodes linked by edge Ek.
7: if L(Ni)! = L(Nj) then
8: Propagate the label L(Ni) to the nodes that have label L(Nj).
9: if number of nodes with label L(Ni) ∈ {τ, · · · , 2τ − 1} then

10: Label CORElabel is given to the nodes with label L(Ni)
11: CORElabel = CORElabel − 1
12: end if
13: end if
14: end for
15: for n = 1 : N do
16: If L(Nn) > 0 then L(Nn) = 0 else L(Nn) = −L(Nn)
17: end for
18: return Labels L.

Again, the structure of this algorithm is very similar to the structure of the maximum
spanning tree strategy in Section 3.1. The algorithmic cost of the sort procedure (row 1)
is O(KE log (KE)). Then, the loop rows 5 to 14 scans γ edges, where γ is the number of
edges having a weight higher than ξ. In most cases, γ should be much lower than KE,
which strongly limits the computational impact of this loop. Labels propagation in this
loop (rows 8 and 10) are also limited to 2τ − 1 nodes. The average performance of the for
loop is therefore O(γ log (τ)).

3.3. Central Variables Selection in CORE-Clusters

Once a CORE-cluster is identified, we use a straightforward strategy to select its central
variable: the distance between all pairs of variables in each CORE-cluster is computed
using a Dijkstra’s algorithm [28,29] in G(N, E). The central variable is then the one that has
the highest average distance to all other connected variables in the CORE-cluster. As the
computed CORE-clusters have less than 2τ nodes, the algorithmic cost of this procedure is
O(τ2) times the number of detected CORE-clusters, which should remain low, even for
large datasets.

4. Results
4.1. Core Clustering of Simulated Networks

In this section, we compare our CORE-clustering algorithms with other standard
methods on simulated scale-free networks. Such complex networks are indeed common in
the data science literature. They contain a little amount of highly connected nodes (hubs),
that we will assimilate to representative variables, and many poorly connected nodes.
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4.1.1. Experimental Protocol

To generate the synthetic networks, we first simulated the profile (observations)
of representative variables and then the profile of remaining variables around these
hubs. We then considered K different clusters of size pC1 , pC2 , . . ., pCK . A simulated
expression data set X ∈ Rn×p is then composed of p = pC1 + . . . + pCK variables. In
the cluster k, the observations are then simulated as follows: (1) Generate the observa-
tions x(1,k) = (x(1,k)

1 , . . . , x(1,k)
n )ᵀ of a representative variable using a normal distribution

N (0, 1). (2) Choose a minimum correlation rmin and a maximum correlation rmax be-
tween the representative variable and the other variables of the predefined cluster. In
this paper, we always used rmax = 1 and rmin = 0.5. (3) Generate the profiles x(j,k),
with j ∈ {2, . . . , pCk}, such that the correlation of the j-th profile with the profile of

x(1,k) is close to rj = rmin +
(

1− j
pC

)
(rmax − rmin). For i ∈ {1, . . . , n}, we then use

x(j)
i = x(rep)

i + (r−2
j − 1)

1
2 ε

(j)
i , where ε

(j)
i ∼ N (0, α).

Three different types of networks were simulated using this protocol with different pa-
rameterizations. (a) The first type of network consisted in simulating n = 100 observations
of 40 variables with K = 2 clusters of 20 variables. The additional noise was simulated
with α, ranging from 0.25 to 1.5. (b) The same protocol was used for the second type of
networks, but K = 5 clusters of 7 variables were simulated. (c) The third kind of networks
consisted in varying the number of the observations from n = 5 to n = 30, with K = 5
clusters having 50 to 100 variables.

Note finally that an amount of 30 networks of each type was generated to assess the
stability of our methodology. This will indeed make it possible to draw in Figure 1 the
box-plots of the clustering quality for each type of network.

4.1.2. Measure of Clustering Quality

There exist various criteria to measure a clustering quality. External indices such
as impurity and Gini indices measure the extent to which the clusters match externally
supplied class labels. Internal indices like the modularity and the intra-cluster to inter-
cluster distance ratio are also used to measure the quality of a clustering structure without
any external information. Such criteria are however not suitable here, as we do not
clusterize all variables, but rather extract core structures that emphasize representative
variables. Thus, we propose the following criterion for simulated data for which the block
structure of the similarity matrix is known: Let Xi, i ∈ {1, · · · , p} be the variables and Cj
(j ∈ [1, K]) be the ground-truth CORE-clusters of variables, typically on synthetic data. As
in Section 2, we also denote Ŝu

ξ,τ (u ∈ [1, U]) the CORE-clusters predicted by our algorithm.
In order to evaluate the quality of the prediction, we compute a score R defined as:

∀u ∈ {1, · · · , U}, Ru = max
j∈[1,K]

Card(Xi ∈ Cj ∩ Ŝu
ξ,τ) , (5)

where 1 ≤ i ≤ p and R = 1
p

U
∑

u=1
Ru. To compute this score, each Ru is equal to 0 if there

is no overlap between Cj and any Ŝu
ξ,τ , and is equal to the number of variables in Cj if

a Ŝu
ξ,τ contains all the variables of Cj. A score R equal to 1 then means that a perfectly

accurate estimation of the Cj was reached, and the closer to 0 its values, the less accurate
the CORE-clusters detection.

4.1.3. Results

We compared the standard and greedy CORE-clustering algorithms (Algorithms 2 and 3)
on these simulated datasets with two other graph-based clustering algorithms: the spectral
clustering [30,31], available in the R-package anocva, and Louvain method for community
detection [32], available in the R-package igraph. Note that the Louvain method requires
as input parameter a graph modeling the dataset (the correlation matrix is transformed
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upstream into a graph) but not the final number of clusters. Boxplots of the computed
scores R (see Equation (5)) are shown in Figure 1. Note that in each boxplot, the dots
represent the outlier scores, which are either lower than q0.25 − 1.5(q0.75 − q0.25) or higher
than q0.75 + 1.5(q0.75 − q0.25), where q0.25 and q0.75 are the first and third quartiles of the
scores, respectively.

Figure 1. Boxplots of the scores R (see Section 4.1.2) obtained on simulated datasets using the
standard and the greedy CORE-clustering algorithms as well as the Louvain and the Spectral
clustering algorithms. A score of 1 reflects a purely accurate detection of the simulated clusters and
the lower this score, the lower the accuracy. The boxplots were obtained by reproducing 30 times
the procedure of Section 4.1.1. (a) Two simulated clusters with noise levels ranging from 0.25 to
1.5. (b) Same as (a) with five simulated clusters. (c) Five clusters simulated using 30, 15, 10 and 5
observations and a noise level of 0.5.

The subplots of Figure 1a,b show that Algorithm 2 is more robust than Algorithm 3,
and gives slightly better results than spectral clustering and Louvain method, when the
level of noise is high. The same applies when the sample size decreases in the subplots of
Figure 1c.

4.2. Application to Real Biological Data

We now present the results obtained on the classic Yeast dataset (https://archive.ics.
uci.edu/ml/datasets/Yeast (accessed on 19 February 2021)) [33]. With a total of about
1.3× 106 weighted edges considered when representing the variables correlations in the
graph G(N, E), the CORE-clustering procedure required about 160 and 3 seconds with
Algorithms 2 and 3, respectively.

4.2.1. Yeast Dataset

The well-known synchronized yeast cell cycle data set of [33] includes 77 samples
under various time during the cell cycle and a total of 6179 genes, of which 1660 genes
are retained for this analysis after pre-processing and filtering. The goal of this analysis

https://archive.ics.uci.edu/ml/datasets/Yeast
https://archive.ics.uci.edu/ml/datasets/Yeast
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is then to detect CORE-clusters among the correlation patterns in the time series of yeast
gene expressions measured along the cell cycle. Using this dataset, a measure of similarity
between all gene pairs was measured with the absolute value of Pearson’s correlation.
A total of about 1.3 × 106 weighted edges are then considered when representing the
variables correlations in the graph G(N, E).

4.2.2. Comparison of the Two CORE-Clustering Algorithms

In order to compare the two proposed CORE-clustering algorithms described (Algo-
rithms 2 and 3) we tested them on the yeast dataset with τ = 30 and ξ = 0.75. We indeed
empirically considered that CORE-clusters containing 30 to 59 variables are reasonable to
regularize the problem, and that 0.75 is a threshold above which the absolute value of the
correlation between two variables reasonably shows that their behavior is similar.

The clustering obtained using the standard algorithm, rows 1 to 19 of Algorithm 2,
is shown in Figure 2. In this figure, the represented clusters 1 to 6 have a coherence c
(see Equation (3)) equals to (0.79, 0.73, 0.76, 0.68, 0.79, 0.82). Only the clusters 1, 3, 5 and 6 are
then considered as CORE-clusters (rows 20 to 25 of Algorithm 2) and their representative
variables are RV1 = YER190W, RV3 = YLL026W, RV5 = YDL003W and RV6 = YGL120C.
Computational time for the clustering was about 160 s on an Intel(R) Core(TM) i7-6700HQ
CPU at 2.60 GHz.

Figure 2. CORE-clusters obtained using Algorithm 2 on the yeast dataset of [33] and the granularity
coefficient τ = 30. CORE-clusters containing 30 to 59 variables are then estimated.

The computations were much faster using the greedy algorithm Algorithm 3. It indeed
required about 3 seconds. An amount of 11 CORE-clusters was found. To interpret this
result, we computed the coherence c (see Equation (2)) between the 4 representative
variables obtained using Algorithm 2 and the 11 obtained using Algorithm 3. Interestingly,
Algorithm 3 selected YLL026W = RV3 and YDL003W = RV5. Other variables very close to
RV1, RV5 and RV6 (with c > 0.83 i.e., higher that the highest c within the CORE-clusters)
were also selected: YHR219W, YLR103C, YLR276C and YLR196W. Results equal or close
to those obtained with Algorithm 2 were then obtained. The representative variables
YDR418W, YML119W, YJL038C, YNL283C and YGR167W were additionally found. In this
experiment, Algorithm 3 therefore selected more representative variables and has then
naturally a larger score (see Equation (4)) than by using Algorithm 2. However, it also
obviously captured different representative variables that would be gathered in the same
CORE-cluster using Algorithm 2. The two algorithms have therefore slightly different
properties but lead to coherent results.

4.2.3. Impact of the Number of Observations

In order to evaluate the stability of the results with respect to the number of observa-
tions, we tested again Algorithm 2 with the same parameters, but by using only the 30 first
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observations of the yeast dataset out of the 77 observations. Interestingly, YDL003W = RV5
was selected and YML093W, which is very close to RV6 (c > 0.86), was also selected.
The two other representative variables found, YER190W and YLL026W, were however not
similar to RV1 or RV3. The information lost in the 47 observation that we removed therefore
did not allowed to recover the influence of RV1 and RV3 on the complex system but the
30 remaining observations contained a sufficient amount of information to detect RV5
and RV6 as influent variables. This suggests that the strategy detects stable representative
variables, even when the number of observations is very low compared with the dimension
of the observations.

4.2.4. Comparison with Spectral-Clustering

In order to compare our CORE-clustering strategy with a standard clustering approach,
we finally estimated representative variables in the Yeast dataset as the center of clusters
estimated using spectral clustering. The standard version of the spectral clustering available
in R was used. Its main parameter is the number of seeds η used in the k-means part of the
spectral clustering. When using η seeds, an amount of 1 to η clusters (with more than one
variable) are estimated using k-means and all variables are contained in a cluster. In order
to fairly compare the spectral clustering and the CORE-clustering approaches, we then
clusterized the variables of the Yeast dataset using η = {5, 30, 50, 70, 110}. Note that we
only tested an η higher than 77, due to the fact that n = 77 observations are known. We
tested η = 110 to evaluate the spectral clustering behaviour with η slightly higher than n.

An amount of {3, 3, 6} large clusters were obtained for η = {50, 70, 110}, respectively.
For η = {5, 30}, only a single cluster gathering almost all variables was also obtained.
The average coherence of the estimated clusters was 0.44 for a standard deviation of 0.06.
The highest coherence was 0.63, which is clearly lower than the considered threshold of
ξ = 0.75 that we used with the CORE-clustering. This makes ambiguous the interpretation
of the role played by the representative variables.

Finally, it is worth mentioning that all representative variables (genes) obtained using
Algorithm 2 have a known physiological function and only two variables out of eleven
have an unknown function by using Algorithm 3. For the spectral clustering with η = 110,
four selected variables out of six have known functions. For η = 70, three variables with
unknown functions were selected. For η = 50, two variables out of three with known
functions were selected. For η = 5 and η = 30, the single selected variable was the
center of all variables with respect to the center definition in Section 3.3, and turns out
to have a known function. It therefore appears in this experiment that the representative
variables obtained using CORE-clustering are more interpretable than those estimated
using spectral clustering.

4.3. Application to the U.S. Road Network

We now assess the CORE-clustering algorithms on the U.S. road network out of the 9th
DIMACS Implementation challenge (http://users.diag.uniroma1.it/challenge9/ (accessed on
19 February 2021)). Our goal here is to discuss the pertinence of the detected CORE-clusters,
and not specifically their representative variables, on a large scale and straightforwardly
interpretable dataset. The graph contains here 2.4× 107 nodes, each of them representing a
crossing of the U.S. road/streets network, and 5.8× 107 arcs, representing the part of the
roads/streets between two crossings. Interestingly, the distance between the crossings is
also associated with each edge of the graph.

To assess the CORE-clustering algorithms on the U.S. road network, we first trans-
formed the distances between the crossings into weights that are higher and higher for
increasingly closer crossings. A weight max

(
(4× 103 − l)/(4× 103), 10−4)was specifically

given to each edge, where l is its original length in feet.
We show Figure 3, the CORE-clusters (Clusters represented using MI Map Tools: Geo-

Plotter: https://mobisoftinfotech.com/tools/plot-multiple-points-on-map/ (accessed on
19 February 2021)) obtained using the greedy algorithm with τ = 5× 104 and ξ = 10−3.

http://users.diag.uniroma1.it/challenge9/
https://mobisoftinfotech.com/tools/plot-multiple-points-on-map/
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This means that each CORE-cluster contains a road network of 5× 104 to 105 crossings,
for which one can travel from any crossing to another one by only using streets of less
than 3996 feet (about 1.2 km) between two crossings. As expected, the clusters represented
in Figure 3 correspond to the 18 largest urban areas in the U.S. Note that two of them
are made of three CORE-clusters (New York City and Los Angeles), and two other ones
(Miami and Chicago) are made of two CORE-clusters. This is due to an algorithmic choice,
discussed in Sections 3.2.2 and 3.2.3, which leads to the detection of CORE-clusters con-
taining τ to 2τ− 1 nodes by using the proposed CORE-clustering algorithms. As discussed
in Section 2.6, an interesting strategy if connected CORE-clusters are found consists in
running again the CORE-clustering algorithms with higher values of τ or ξ, to poten-
tially detect more robust CORE-clusters: By reproducing this test with τ = 105 instead of
τ = 5× 104, we now try to find CORE-clusters containing 105 to 2× 105 crossings, only 5
urban areas are found: New York City (2 CORE-clusters), Los Angeles, Chicago, Miami and
San Fransisco. Now, by using τ = 5× 104 and now ξ = 0.5, i.e., with distances between
the crossings lower than about 2000 feet (about 0.6 km) instead of 3996 feet, only 3 urban
areas are found: New York City (2 CORE-clusters), Los Angeles and Chicago.

Figure 3. Results obtained using the greedy CORE-clustering algorithm on the U.S. road network
(≈2.4 × 107 nodes) in about one minute. (a,b) CORE-clusters obtained using τ = 5 × 104 and
ξ = 10−3 represented in the U.S. and in New York City urban area. (c) CORE-clusters obtained using
τ = 1× 105 and ξ = 10−3 represented in New York City urban area only. (d) CORE-clusters obtained
using τ = 5× 104 and ξ = 0.5 represented in New York City urban area only. Background: Google
maps. Clusters represented using MI Map Tools: GeoPlotter.

What is interesting here in terms of interpretability is that we have been able to select
specific subparts of the U.S. road network by explicitly controling the size of the clusters
or a specific level of density in the network. This notion of interpretability can be further
discussed by observing the CORE-clusters obtained in the New York city urban area,
as shown in Figure 3b–d. By using τ = 5× 104 and ξ = 10−3, the three CORE-clusters split
the densest parts of the New York City urban area into the New Jersey state, Long Island
and the rest of New York state. When having larger CORE-clusters, i.e., with τ = 105, the
New Jersey cluster, expands and the densest parts of the two New York state clusters are
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merged. Now, when enforcing instead a stronger coherence inside of the clusters, i.e., with
τ = 5× 104 and ξ = 0.5, the New Jersey and Long Island CORE-clusters remain stable, but
the Manhattan/mainland New York state cluster is not large and dense enough, so it is not
captured as a CORE-cluster. Note that each CORE-cluster estimation required about 50 s
and 2.4 GB here without any parallelization.

5. Conclusions

Although complex systems in high dimensional spaces with a limited number of
observations are quite common across many fields, having efficient methods to treat the
associated problem of graph clustering is an ambiguous task. Some of these techniques,
based on assumptions in view of controlling the variables contribution to the global
clustering, often do not allow to select the best graph partition. In reply to this issue,
we developed a formalism based on an original graph clustering strategy with specific
properties. This formalism makes it possible to robustly identify groups of representative
variables of the studied system by tuning two intuitive parameters: (1) the minimum
number of variables in each CORE-cluster, and (2) a minimum level of similarity between
all the variables of a CORE-cluster. Its effectiveness was further satisfactorily assessed on
simulated data and on real datasets.

From a methodological perspective, an interesting research direction would be to mix
Algorithms 2 and 3 into a single hybrid top-down and bottom-up optimization scheme.
Our goal would be to scale well to very high dimensional datasets, as when using Algo-
rithm 3, while being as robust as Algorithm 2 when potential CORE-clusters are coarsely
identified. When the CORE-clusters found by either Algorithms 2 or 3 are very large,
a stochastic strategy could also make faster the detection of their representative variables.
Although this secondary part of our methodology has been addressed by using a standard
Dijkstra’s algorithm (see Section 3.3), it could be addressed by using an extension of [34]
where the optimal paths between all variables would not be pre-computed prior to the
central variable detection. Application of our formalism in various fields such as gene
regulatory networks, social networks or recommender systems would also be of interest.
Our formalism is indeed sufficiently flexible to incorporate different types of similarity
measures between the observed variables.

Note finally that our formalism was implemented in C++ and wrapped in a R pack-
age, which is freely available on sourceforge (https://es.sourceforge.net/projects/core-
clustering/ (accessed on 19 February 2021)), so that these results can be easily reproduced.
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Appendix A. Pertinence of the Representative Variable Detection Model

We illustrate, in this section, the notion of coherence defined in Section 2.2. We sim-
ulated an adjacency matrix that mimics the absolute values of the Pearson correlations
between 15 variables. This symmetric matrix is shown in Figure A1(top-left) and rep-
resents graph G1 following the method of Section 2.1. Each of its values is then equal
to a similarity level encoded in wi,j between two variables Xi and X j, where i and j
are in {0, · · · , 14}. We can clearly remark that it contains two blocks of related vari-
ables S1

Re f = {X0, · · · , X6} and S2
Re f = {X8, · · · , X14} and an independent variable X7.

In addition, variables X3 and X11 are slightly more related to other variables in S1
Re f and

S2
Re f ,respectively. They can then be considered as the most pertinent representative vari-

ables in these blocks. We also added to G1 undesirable relations having an intermediate
level between the variables {X1, · · · , X5} and {X9, · · · , X13} and saved the result in graph
G2, as shown in Figure A1(top-right). More quantitatively, the reference blocks S1

Re f and

S2
Re f have inner similarities sampled following the normal law N (0.75, 0.1); the back-

ground ones are sampled following N (0., 0.1), and in Figure A1, the undesirable relations
are sampled following N (0.37, 0.1). In each reference block, the relation between the
simulated reference variables and other variables are finally sampled following N (0.9, 0.1).
The norms of these similarities are then considered and the similarities higher than one are
set to one.

We will measure hereafter the coherence of different variable subsamples to illustrate
this notion and make clear its interest in the CORE-clustering context. As the CORE-
clustering algorithms proposed in Section 3 use maximal spanning trees, we will addition-
ally discuss the corresponding coherences obtained on the maximal spanning trees of G1
and G2, which are shown in Figure A1(bottom). The estimated representative variables
will finally be given in all tests to make sure that their estimation is robust.

Figure A1. Adjacency matrices of the simulated graphs G1 and G2 of Appendix A and their maximum
spanning trees (ST).

Appendix A.1. Illustration of the Coherence

We give Table A1 the coherence of four pairs of tested CORE-clusters on G1, G2 and
their maximal spanning trees. Corresponding estimated representative variables are given
in Table A2. The tested CORE-clusters are: (Test 1) The reference blocks of variables
S1

Re f and S2
Re f , i.e., S1

T1 = {X0, · · · , X6} and S2
T1 = {X8, · · · , X14}. (Test 2) Subsamples of

S1
Re f and S2

Re f of size three, i.e., S1
T2 = {X2, X3, X4} and S2

T2 = {X10, X11, X12}. (Test 3)

Samples S1
Re f and S2

Re f in which a variable was replaced with the independent variable

X7, i.e., S1
T3 = {X1, · · · , X7} and S2

T3 = {X7, · · · , X13}. (Test 4) Samples S1
Re f and S2

Re f in

which the variables X4 and X10 were swapped, i.e., S1
T4 = {X0, · · · , X3, X10, X5, X6} and

S2
T4 = {X8, X9, X4, X11, · · · , X14}.
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Table A1. Coherence of the CORE-clusters tested Appendix A on G1 and G2. Corresponding
representative variables are given Table A2.

S1
T1 S2

T1 S1
T2 S2

T2 S1
T3 S2

T3 S1
T4 S2

T4

G1 0.77 0.85 0.77 0.77 0.18 0.25 0.15 0.19
G2 0.77 0.85 0.77 0.77 0.18 0.25 0.40 0.47

Let us first interpret the results in Table A1. The coherences’ first row on G1 in tests T1
and T2 first show that similar coherences were obtained with CORE-clusters of size 7 and
3, although the coherences are slightly higher for smaller CORE-clusters. These coherences
are also clearly higher for those obtained in tests T3 and T4 where all variables are not
contained in the same simulated block. Interestingly, the results obtained on graph G2 are
similar to those obtained on G1. The only difference here is that the coherences of T4 are
slightly higher than in G1, but still relatively low. Note that the tested CORE-clusters may
lead to disconnected subgraphs when tested on the maximum spanning trees. Equation (2)
does not make sense in this case. When the simulated subgraphs were connected (12 cases
out of 16), we obtained the same coherences on the maximum spanning trees and the whole
graph. As discussed in Section 2.4, the coherence of a given CORE-cluster on a maximum
spanning tree is indeed lower or equal to the coherence of the same CORE-cluster on
the whole graph. We however computed the representative variables in all tested cases,
as the centrality measure makes sense even on disconnected subgraphs (see Section 3.3).
The results in Table A2 show that the estimated representative variables are always in
the reference sets S1

Re f and S2
Re f in the tested configurations. They also correspond to the

simulated representative variables, X3 and X11, in most cases, or are very close to these
variables. Note that slightly inaccurate reference variables were detected in S1

Re f , and we
can clearly see (Figure A1(top)) that the influence of its simulated representative variable is
less obvious than in set S2

Re f .

Table A2. Representative variables of the CORE-clusters tested Appendix A on G1 and G2. Corre-
sponding coherences are given Table A1.

X̂1
T1 X̂2

T1 X̂1
T2 X̂2

T2 X̂1
T3 X̂2

T3 X̂1
T4 X̂2

T4

G1 4 11 3 11 5 11 6 11
G2 4 11 3 11 5 11 3 11

Appendix A.2. Influence of the Undesirable Relations

We further study the influence of the undesirable relations between {X1, · · · , X5} and
{X9, · · · , X13} in graph G2 by simulating these relations with different strengths. In the pre-
vious subsection, undesirable relations were sampled following N (µ, 0.1), where µ = 0.37.
Here, we sampled 100 graphs G2 for each strength µ ∈ {0.1, 0.40, 0.60, 0.80, 0.90}. For each
graph, we then measured the portion of representative variable estimates in the true ref-
erence block of variables and the portion of representative variable estimates that are the
ground truth representative variables.

Results are given in Table A3 and show that the representative variables detection is
particularly stable in these tests, even for large values of µ. All estimated representative
variables are indeed in the true block of variables, except in Test 4 (where two variables
of the reference sets are swapped) with µ = 0.9, i.e., with the same level of similarity as
between the blocks representative variables and the other variables they contain. False esti-
mations are however uncommon even in this case. Exact estimates of the representative
variables are naturally less frequent, as this test is more strict. They are however always
clearly higher than random estimations which would have portions equal to 0.14. The esti-
mates of pertinent representative variables therefore appear as robust, even with strong
undesirable relations in the variable similarities and tested CORE-clusters which contain
undesirable variables.
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Table A3. Portion of representative variable estimates contained in the proper reference block of variables (main value) and
corresponding to the ground truth representative variables (between brackets). Each portion was computed on 100 simulated
graphs (G2) and their corresponding maximum spanning trees (ST(G2)). For each group of 100 graphs, a different strength
µ of the undesirable relations is tested.

Test 1 Test 2 Test 3 Test 4

G2 ST(G2) G2 ST(G2) G2 ST(G2) G2 ST(G2)

µ = 0.1 1. (0.88) 1. (0.82) 1. (0.79) 1. (0.80) 1. (0.40) 1. (0.75) 1. (0.59) 1. (0.79)
µ = 0.4 1. (0.87) 1. (0.79) 1. (0.78) 1. (0.83) 1. (0.46) 1. (0.80) 1. (0.75) 1. (0.84)
µ = 0.6 1. (0.88) 1. (0.79) 1. (0.78) 1. (0.84) 1. (0.44) 1. (0.74) 1. (0.88) 1. (0.78)
µ = 0.8 1. (0.92) 1. (0.72) 1. (0.75) 1. (0.69) 1. (0.47) 1. (0.62) 1. (0.93) 0.96 (0.71)
µ = 0.9 1. (0.92) 1. (0.59) 1. (0.70) 1. (0.48) 1. (0.49) 1. (0.44) 1. (0.93) 0.89 (0.59)
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