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Abstract: We proposed the method that translates the two-dimensional CSP for minimizing the
number of cuts to the Ising model. After that, we conducted computer experiments of the proposed
model using the benchmark problem. From the above, the following results are obtained. (1) The
proposed Ising model adequately represents the target problem. (2) Acceptance rates were as low
as 0.2% to 9.8% and from 21.8% to 49.4%. (3) Error rates from optimal solution were as broad as
0% to 25.9%. For future work, we propose the following changes: (1) Improve the Hamiltonian
for constraints. (2) Improve the proposed model to adjust more complex two-dimensional CSP
and reduce the number of spins when it deals with large materials and components. (3) Conduct
experiments using a quantum annealer.

Keywords: Ising model; quantum annealer; QUBO; cutting stock problem; bin packing problem;
optimization method; manufacturing system

1. Introduction

In several industries, such as paper, steel, and textile, items of specified sizes are cut
out from the raw material placed on a flat surface. Problems aimed at minimizing the cost
of such cutting work are referred to as two-dimensional cutting stock problems (CSPs) and
two-dimensional bin packing problems (BPP), on which several studies have been carried
out so far.

In particular, when positioning the items to be cut from raw material of fixed width
W and variable height H, if the purpose of the problem is to minimize the height H, it is
formulated as the strip packing problem (SPP), and various heuristic solutions have been
proposed. E.G. Coffman Jr. et al. proposed the typical solution method, the first-fit
decreasing height (FFDH) method and the next-fit decreasing height (NFDH) method [1];
C. M. Valenzuela et al. arranged FFDH and proposed the best-fit decreasing height (BFDH)
method [2]; A. Lodi, et al., also arranged FFDH and proposed the floor–ceiling no rotation
(FCNR) method [3]. B. Baker et al., in addition to the FFDH method, proposed solutions
including the bottom-left method [4], in which items are introduced from the upper right
of a material and then stacked from the bottom left, and heuristic approaches such as the
bottom-left fill method [5], which adds an algorithm for reducing the gap between items.
There are also solutions proposed using a metaheuristic method, such as the hill-climbing
method [6], which is a typical local search method; simulated annealing [7]; the genetic
algorithm (GA) [8–10]; and the native evolution algorithm [11], which eliminates GA
crossover and evolves only by mutation. The SPP and BPP presume that all members
have been arranged as a precondition; however, solutions [12] have been proposed using
a knapsack problem approach when not all members have been arranged for selecting
members that are given gain so that their sum is maximized, although many of these deal
with materials as cost objects. These previous studies are aimed at maximizing the yield of
raw materials as the cost target.
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However, it is not just the material cost that must be considered [13]. For example,
at a manufacturing site where special sheet-like materials are cut, a setup change cost is
incurred for each cutting, which significantly impacts the total cost. Hence, a technique
that can facilitate a reduction of the setup change cost is desired. In this paper, we propose
an allocation method aimed at minimizing the number of setup changes by applying
conventional methods, such as the FFDH and binary tree methods, for manufacturing sites
that cut special sheet-like material. This method has helped achieve a reduction in the
number of setup changes while ensuring a high yield [14].

Because a two-dimensional CSP is considered NP-hard, combinatorial explosion
occurs when the complexity of the problem and, in turn, the scale of the solutions in-
creases, leading to an exponential increase in the calculation time. In contrast, the actual
problem represented by the two-dimensional CSP has a short lead time and requires a
high-speed solution.

Quantum computers are next-generation computers that use quantum mechanics and
are implemented through two types of methods: the quantum annealing and quantum
gate methods. The quantum annealer is considered to be suitable for solving combinatorial
optimization problems. Therefore, various combinatorial optimization problems have been
studied using quantum annealing. In a previous study on the BPP, Terada et al. (2018)
performed Ising modeling using sequence pairs for maximizing the yield of the rectangular
packing problem [15]. Furthermore, Kida et al. (2000) performed Ising modeling with a
formulation based on the NFDH method for the glass processing industry; they compared
the performances of the quantum annealer and the classical bifurcation machine [16].
However, Ising models aimed at reducing setup change cost (= number of cuts) in the
two-dimensional CSP have not yet been created.

Therefore, in this study, we propose an Ising model for the two-dimensional CSP that
minimizes the number of cuts, we perform simulation experiments on benchmark problems,
and we compare the results with the optimal solution determined using a solver [17].

2. Ising Model

When solving a combinatorial optimization problem using a quantum annealer, it is
necessary to transform it into an equation referred to as the Ising model. The Ising model is
a statistical mechanics model that represents the properties of a magnetic material, and the
state of the magnetic material is evaluated by calculating the upward or downward state
of the spin. Spin has two forces: a local field that acts only on that spin, and an interaction
that acts on the connected spins. The state of the spin is updated by these forces so that the
total energy is stabilized.

When the entire system is in the most stable state, the HamiltonianH, which represents
the total energy of the Ising model, is the minimum (ground state). Equation (1) expresses
this Hamiltonian. Here, it should be noted that si and sj are the directions (±1) of the spins
i and j, respectively, Jij represents the interaction, hi is the local field of spin i, E is the
number of edges, and V is the number of spins:

H = ∑
(i,j)∈E

Jijsisj − ∑
i∈V

hisi (1)

3. Target Overview

We consider a two-dimensional CSP as the target problem. However, if applied as it
is, the number of spins in the quantum annealer may be insufficient, as there are several
constraints. Hence, some simplification is required. Figure 1 presents an example of the
allocation and specific conditions.
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Figure 1. Example of allocation.

The main conditions of this model are as follows:

1. There are infinite base materials with fixed widths and lengths.
2. The items shall be allocated from the lower left of the base material.
3. The allocated items must not protrude from the base material.
4. The allocated items must not overlap.
5. All the items are allocated from one of the base materials only once.
6. The items must not be rotated.
7. Allocation in the vertical direction of the base material is known as a step, and the

length of each step is the length of the longest piece in that step.
8. Items shall not be allocated vertically in each step.
9. If there are two or more items of the same length in each step, their horizontal cutting

is carried out all at once.
10. If the allocated piece in each base material touches the upper side of the base material,

horizontal cutting is omitted.
11. If the total width of the items allocated in each step matches the width of the base

material, the vertical cutting of the rightmost piece is omitted.

4. Ising Modeling

Table 1 lists the variables used in this paper. Furthermore, there are five types of spins
as follows:

si,j,k =

{
|1 Piece k is allocated to jth step of base material i

|0 Otherwise

swi,j,l =

{
|1 Total width of items allocated to jth step of base material i is l

|0 Otherwise

shi,j,m =

{
|1 Longest piece in jth step of base material i is m

|0 Otherwise

shci,j,n =

{
|1 Piece of length n is allocated in jth step of base material i

|0 Otherwise

shti,p =

{
|1 Total length of longest items of each step of base material i is p

|0 Otherwise
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Table 1. List of variables.

Symbol Description

Bin_H Length of base material
Bin_W Width of base material
I Number of base materials
i Base material number (i = 1, . . . , I )
j Number of vertical steps in base material (j = 1, . . . , Bin_H )
K Number of items
k Piece number (k = 1, . . . , K )

l Spin number representing total width of items
(l = 0, . . . , Bin_W )

m Spin number representing longest piece length
(m = 0, . . . , Bin_H )

n Spin number representing type of piece length
(n = 1, . . . , Bin_H )

p Spin number representing total length of longest items (p = 0, . . . , Bin_H )
hk Length of piece k
wk Width of piece k
HHcut Hamiltonian representing number of horizontal cuts in base material
HWcut Hamiltonian representing number of vertical cuts in base material
HA Hamiltonian for piece allocation
HH Hamiltonian representing vertical allocation constraint of a piece
HW Hamiltonian representing horizontal allocation constraint of a piece
HHtype Hamiltonian to obtain piece length type at each step
HHlongest Hamiltonian to ensure that the longest piece in each step is indeed the longest
σ Objective function parameters
λA HA parameters
λH , µH HH parameters
λW , µW HW parameters
σt HHtype parameters
σl , λl HHlongest parameters

Figure 2 is an example of relations about the five kinds of spins. It shows the set of the
spin of Figure 1. And the spin sets in the frame have mutual interaction with connected
spins. The spin sets in the line frame have mutual interaction under the constraint condition.

Figure 2. Relations of the spins (Figure 1).

The full Hamiltonian of the proposed Ising model is expressed as follows:

H = HHcut +HWcut +HA +HH +HW +HHlongest +HHtype (2)
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whereHHcut andHWcut are Hamiltonians that represent objective functions andHA, HH ,
HW , HHlongest, andHHtype are Hamiltonians that represent constraints. HHcut andHWcut
are represented as follows:

HHcut = σ
I

∑
i=1

(
Bin_H

∑
j,n=1

shci,j,n − shti,BinH (1− shti,0)

)
(3)

HWcut = σ
I

∑
i=1

Bin_H

∑
j=1

(
K

∑
k=1

si,j,k − swi,j,BinW

(
1− swi,j,0

))
(4)

Equation (3) represents the number of cuts in the horizontal direction and satisfies
Constraints 9 and 10 listed in Section 3. For each piece length type at each step, the number
of cuts is incremented, and when the sum of lengths of the longest items at each step
matches the length of the base material, the number of cuts is omitted once.

Equation (4) expresses the number of cuts in the vertical direction and satisfies Con-
straint 11 listed in Section 3. The number of cuts is incremented for each piece at each step,
and when the total width of the items allocated to each step matches the width of the base
material, the number of cuts is omitted once.

HA is expressed as follows:

HA = λA

(
I

∑
i=1

Bin_H

∑
j=1

si,j,k − 1

)2

∀k (5)

Equation (5) expresses a constraint on the number of times items allocated, and
satisfies Constraint 5 listed in Section 3. Its value is the lowest when all the items are
allocated to one of the base materials only once.

HH andHW are expressed as follows:

HH = λH

(
1−

Bin_H

∑
p=0

shti,p

)2

+ µH

(
Bin_H

∑
p=0

p · shti,p −
Bin_H

∑
j=1,m=0

m · shi,j,m

)2

∀i (6)

HW = λW

(
1−

Bin_H

∑
l=0

swi,j,l

)2

+ µW

(
Bin_W

∑
l=0

l · swi,j,l −
K

∑
k=1

wk · si,j,k

)2

∀i, j. (7)

Equation (6) represents the constraint for preventing the items from protruding verti-
cally from the base material, and its value is the lowest when there is only one spin with
sht = 1 in each base material and the subscript p of the spin with sht = 1 matches the sum
of the subscripts m of the sh at each step.

Equation (7) expresses the constraint for preventing the items from protruding hor-
izontally from the base material, and its value is the lowest when there is only one spin
with sw = 1 at each step for each base material, and the subscript l of the spin with sw = 1
matches the total width of the items allocated to the target step.

Equations (6) and (7) satisfy Condition 3 listed in Section 3. HHtype is expressed
as follows:

HHtype = −σt

Bin_H

∑
n=1

(
1− shci,j,n

)1− 2 ∑
k|hk=n

si,j,k

∀i, j (8)

Although Equations (3)–(7) can be used to represent a two-dimensional CSP that
minimizes the number of cuts, the spin shc cannot always correctly represent the piece
length type at each step. Therefore, a constraint is set on shc by Equation (8). This equation
yields the minimum value when the values of all the variables si,j,k with hk = n become 0
at each step for each base material, leading to shc = 0, and when one of these values
becomes 1, leading to shc = 1.
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HHlongest is expressed as follows:

HHlongest = λl

(
1−

Bin_H

∑
m=0

shi,j,m

)2

− σl

Bin_H

∑
n=1

n · shci,j,nshi,j,m|m=n ∀i, j (9)

Similar to shc, the spin sh cannot always correctly represent the longest piece at each
step only through Equations (3)–(8). Therefore, a constraint is set on sh by Equation (9). This
equation yields the minimum value only when the sh with the subscript m that matches
the longest of the items allocated at each step for each base material becomes 1.

5. Computer Experiment

• Experimental conditions

To confirm the validity of the proposed Ising model, we performed a computer
experiment. Because the target problem is a benchmark problem [18], it is considered as an
instance that satisfies the conditions specified in Table 2.

Table 2. Experimental conditions for the benchmark problem.

Name Value

Bin_H 10
Bin_W 10

K 20

However, for the sake of simplicity, the length of the base material Bin_H is considered
as a variable, and it is assumed that a cut is always made in line with the longest piece
among the allocated items. Thus, the full Ising model of this experiment is represented
by Equation (10):

H = HHcut +HWcut +HA +HW +HHtype (10)

For the experiment, Equation (10) is converted into a QUBO matrix, which is known
to have a one-to-one correspondence with the Ising model. The QUBO matrix is applied
to QBsolv and neal. QBsolv can optimize calculations through tabu search, and neal can
optimize calculation using simulated annealing [19]. Table 3 shows each parameter setting
that was set by the preliminary experiment.

Table 3. Parameter settings.

Variable Identifier Value

σ 1000
σt 5000
λA 500,000
λW 500,000
µW 10,000

Number of trials 1000

Under these experimental conditions, the number of logical spins are si,j,k 10× 10× 20 =
2000, swi,j,l : 11× 10× 20 = 2200, shi,j,m : 11× 10× 20 = 2200, shci,j,n : 10× 10× 20 = 2000
and shti,p : 11× 20 = 220. Since swi,j,l and shi,j,m need a spin to express height 0, these needs
11 spins for height.

Regarding the computer environments, Intel(R) Core(TM) i7-7700HQ CPU, 2.8 GHz,
RAM 16 GB, and a programing is used Python.

• Experimental results

We now consider the acceptance rate and accuracy of the experimental results. Fur-
thermore, we calculate the optimal solution of the target benchmark problem using Google
OR-tools [20] and compare the two optimizer’s results.
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Tables 4 and 5 indicate that the relative error between the best solution using the
proposed Ising model and the optimal solution using Google OR-tools were 0–25.9%,
respectively, obtained using both QBsolv and neal. The calculation times are from 0.0 to
3.0 s in all instances. The optimal solutions were obtained in Instances 9 and 3 in QBsolv
and neal, respectively. The acceptance rates were 0.2–9.8% and 21.8–49.4%, respectively.
The difference in the acceptance rate is the algorithmic difference in each optimizer. As neal
used SA, the acceptance rate of the average became higher because the acceptance rate of the
initial search was high. About QBsolv, several solutions that violated the constraints were
calculated. These optimizers are high-performance, but there is little room for parameter
adjustment. For the improvement of the solution, the parameters can be adjusted or the
spin’s design of the Ising model can be modified. Although the parameters HHtype and
HHlongest of the Ising model are constraints, their minimum values change depending on
the problem and other parameters, and they are effectively objective functions that impose
constraints on other parameter settings. If a model could be constructed such that the
values of these Hamiltonians could reach a minimum of 0, the range of acceptable values for
the other parameters would become wider, and flexible response would become possible.

Table 4. Comparison of the experimental results obtained using QBsolv and the optimal solution.

No. Best Value Acc. Rate Av. Var. SD Opt.

1 35 3.2 37.688 1.152 1.073 32
2 34 5.7 37.702 1.613 1.270 29
3 35 0.7 37.000 1.143 1.069 34
4 34 3.1 37.839 1.361 1.167 27
5 34 0.9 34.889 0.321 0.567 31
6 34 0.2 35.000 1.000 1.000 31
7 34 2.7 37.370 1.048 1.024 27
8 35 9.8 38.622 1.357 1.165 28
9 32 1.0 36.900 3.090 1.758 32

10 35 0.9 36.778 1.284 1.133 28

Table 5. Comparison of the experimental results obtained using neal and the optimal solution.

No. Best Value Acc. Rate Av. Var. SD Opt.

1 34 36.3 37.788 1.164 1.079 32
2 34 42.4 37.807 1.081 1.039 29
3 34 26.2 37.206 0.706 0.840 34
4 34 40.0 37.800 1.040 1.020 27
5 32 27.3 35.150 0.824 0.908 31
6 33 21.8 35.459 0.459 0.678 31
7 34 46.3 37.659 1.110 1.054 27
8 34 49.4 38.690 1.340 1.160 28
9 34 30.5 37.230 0.774 0.880 32

10 32 26.5 36.758 1.157 1.076 28

Further, the reason for the difference in the acceptance rate depending on the instance,
is that if the number of items with widths exceeding 50% of the width of the base material
(number of high-width items) is high, the ratio of the solution space to the search space
becomes small. The probability of obtaining an acceptable solution within the execution
time becomes low. Figures 3 and 4 present the distribution maps of the acceptance rates
and the numbers of high-width items at each instance obtained using QBsolv and neal,
respectively. The broken lines in the figures represent the linear approximation curves.
These figures indicate that the acceptance rate of the solution decreases proportionally with
the number of high-width items.
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Figure 3. Distribution of the acceptance rates obtained using QBsolv at each instance and the numbers
of high-width items at those instances.

Figure 4. Distribution of the acceptance rates obtained using neal at each instance and the numbers
of high-width items at those instances.

6. Conclusions

In this paper, we propose an Ising model with the aim to minimizing the number
of cuts in a two-dimensional CSP. This is first trying a formulation of a Ising model. In
this study, five kinds of spins are prepared, and these change their state with interaction.
The proposed Ising model worked appropriately, and as the number of cuts decreased,
the energy consumed also reduced. However, in the experiment, the acceptance rates
were 0.2–9.8% for QBsolv and 21.8–49.4% for neal. The relative error of the optimal
solution was 0–25.9%, which indicates a wide range. Although the relative errors are
depend on an instance condition, the parameter setting and the Ising modeling have
to improve for versatility. When minimum value of parameters regarding Hamiltonian
HHtype and HHlongest become 0, the other parameter’s values are able to change more flex.
Furthermore, in the proposed method, the constraints for the allocation of items in the
vertical and horizontal directions were realized by preparing spins based on the size of the
base material. However, as the size of the base material increases, the number of spins to be
secured also increases, making it difficult to apply to the quantum annealer. The following
can be listed as future challenges:

• Improving the constraints used in the Ising model;
• Adjusting the parameters further;
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• Considering the omission of vertical cutting;
• Devising an Ising model that can be applied to situations that use large-sized base

materials;
• Application to the quantum annealer.
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