
algorithms

Article

Knowledge-Driven Network for Object Detection

Yundong Wu, Jiajia Liao , Yujun Liu, Kaiming Ding, Shimin Li, Zhilin Zhang, Guorong Cai and Jinhe Su *

����������
�������

Citation: Wu, Y.; Liao, J.; Liu, Y.;

Ding, K.; Li, S.; Zhang, Z.; Cai, G.; Su,

J. Knowledge-Driven Network for

Object Detection. Algorithms 2021, 14,

195. https://doi.org/10.3390/

a14070195

Academic Editors: Mounim A.

El Yacoubi, Mehdi Ammi and Hui Yu

Received: 31 May 2021

Accepted: 25 June 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Engineering College, Jimei University, Xiamen 361021, China; yundongwu@jmu.edu.cn (Y.W.);
jiajialiao@jmu.edu.cn (J.L.); yujunliu@jmu.edu.cn (Y.L.); kmding@jmu.edu.cn (K.D.);
a1097736845@gmail.com (S.L.); zhangzhilin_forid@163.com (Z.Z.); guorongcai.jmu@gmail.com (G.C.)
* Correspondence: sujh@jmu.edu.cn

Abstract: Object detection is a challenging computer vision task with numerous real-world appli-
cations. In recent years, the concept of the object relationship model has become helpful for object
detection and has been verified and realized in deep learning. Nonetheless, most approaches to
modeling object relations are limited to using the anchor-based algorithms; they cannot be directly
migrated to the anchor-free frameworks. The reason is that the anchor-free algorithms are used to
eliminate the complex design of anchors and predict heatmaps to represent the locations of keypoints
of different object categories, without considering the relationship between keypoints. Therefore,
to better fuse the information between the heatmap channels, it is important to model the visual
relationship between keypoints. In this paper, we present a knowledge-driven network (KDNet)—a
new architecture that can aggregate and model keypoint relations to augment object features for
detection. Specifically, it processes a set of keypoints simultaneously through interactions between
their local and geometric features, thereby allowing the modeling of their relationship. Finally, the
updated heatmaps were used to obtain the corners of the objects and determine their positions. The
experimental results conducted on the RIDER dataset confirm the effectiveness of the proposed
KDNet, which significantly outperformed other state-of-the-art object detection methods.

Keywords: convolutional neural network; object detection; relation module; deep learning

1. Introduction

With the rapid development and remarkable achievements of convolutional neural
networks in the field of computer vision, CNNs [1–4] have penetrated many fields of
computer vision, such as image classification [5–7], object detection [8–11], and pose
estimation [12,13]. As one of the most fundamental computer vision tasks, object detection
has resulted in a surge of research interests as it can be easily applied to real-world
applications in intelligent cities, intelligent transportation, and other fields. The task of
object detection is essentially the extraction of relevant object features from an input image,
finding out the objects’ regions of interest from these object features, and classifying these
while returning to the location of the objects from the region of interest. However, there
are various kinds of objects in aerial images. These objects have different appearances,
shapes, postures, and there are some interference factors (e.g., illumination and occlusion),
which make the detection more difficult. Therefore, object detection is a challenging and
non-trivial task.

At present, most of the mainstream high-performance object detectors follow the
anchor-based frameworks [8,9]. Firstly, they generate object proposals and then classify
and regress each proposal independently. This is a general method based on the two-stage
framework, such as Fast R-CNN [9] and Faster R-CNN [8]. It is worth mentioning that
anchor-free object detectors (e.g., CornerNet [14], CenterNet [15,16], and ExtremeNet [17])
have appeared in recent years. These change the original inherent object detector that
follows the anchor-based paradigm, eliminating the need for designing anchor boxes.
These issues of detecting objects are turned into a problem of detecting a pair of keypoints.

Algorithms 2021, 14, 195. https://doi.org/10.3390/a14070195 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8562-2743
https://orcid.org/0000-0003-1707-5685
https://doi.org/10.3390/a14070195
https://doi.org/10.3390/a14070195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14070195
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14070195?type=check_update&version=3

Algorithms 2021, 14, 195 2 of 13

In addition, the methods adopt corner pooling to help the CNN locate keypoints with
more accuracy. A single convolution network is used to predict the heatmaps, and then
the embedding and the offset are performed independently for each class of channels.
The heatmaps contain the category and location information of objects. Each channel
corresponds to a category of heatmaps. The results of anchor-free methods have shown
that detecting corners is the most challenging task. Therefore, improving the accuracy of
the heatmap becomes a significant issue for an anchor-free framework. Currently, most of
the anchor-free object detection algorithms independently detect objects, but if the model
can learn the relationship between objects, this will clearly help to improve the detection
effect. Therefore, the use of the relative positional relationship concerning the object in the
anchor-free algorithm is a noteworthy direction.

For many years, researchers in the computer vision field have believed that contextual
information or relationships between objects contribute to object recognition [18–22]. The
basic idea is to take the relational features of an object as the weights of the apparent features
of other objects in the image and measure them. This method validates the advantages of
modeling objects and creates a general module, which can improve the accuracy of the
anchor-based algorithm on the original basis. However, as the anchor-free algorithm does
not have the design of an anchor, it is unable to generate a lot of proposals representing
the appearance feature of the object and cannot directly measure the relationship between
heatmaps. Therefore, it is a very challenging problem to explore the target relationship in
heatmaps. In the literature [22], there is strong evidence that object relations can be used
to support various visual tasks (e.g., image recognition and object detection). Inspired
by the relation network, KDNet proposes a new knowledge-driven network to solve the
relationship between objects, shown in Figure 1. The two objects are classified as the same
object because of the use of an anchor-free network. The reason for false detection is that
in the heatmaps, the keypoints of each object are an independent prediction, and there
is no correlation. In the task of object detection, different objects may have some kind of
connection. Therefore, we used a knowledge-driven network to establish the relationship
between the keypoints of each object and fused the information between heatmaps channels
to generate the corner maps that can enhance the characteristics of the detected object.

Algorithms 2021, 14, x FOR PEER REVIEW 3 of 15

 93

Figure 1. A deficiency of traditional anchor-free object detection framework. Shown in the first image, the anchor-free 94
network detects two riders as the same object. There are two reasons for this: 1) The process of detecting objects is 95
independent, and it is not possible to assign corresponding weight to the current detection when detecting an object; thus, 96
the network does not learn the relationship between objects. 2) In the algorithm based on keypoint detection, the 97
heatmaps are the keypoints of each object independently. Therefore, in order to better integrate the information between 98
each channel of heatmaps, we propose a knowledge-driven network (KDNet) to aggregate and model the relationship 99
between keypoints and apply the information of each channel of heatmaps to establish relationships between all 100
categories. 101

2. Related Work 102

Two-stage Approaches. The two-stage method roughly divides the object detection 103
task into two steps. Firstly, a large number of proposal boxes are generated. Secondly, the 104
object categories are classified and these proposals are regressed. In the first step, there 105
are many ways to generate proposals, such as the earliest two-stage algorithm R-CNN 106
[23], which uses a selective search [24] to extract a large number of regions of interest 107
from images. This method is inefficient and computationally expensive. The latter way of 108
Faster R-CNN [8] to generate proposals is to use a region proposal network (RPN), which 109
sets a series of anchor sizes, then uses a sliding window to generate a large number of 110
proposals on the feature map. In addition to the above methods, Mask R-CNN [25] adds 111
a mask prediction branch on the Faster R-CNN. This can not only detect objects but also 112
segment the object semantically. Cascade R-CNN [26] trains multiple cascaded detectors 113
by using different IOU thresholds; it is an efficient object detector. Moreover, in the 114
remote sensing scene field, traditional detectors for oriented objects are commonly used 115
to rotate anchors based on the RCNN architecture, which multiplies the number of 116
anchors with a variety of angles and adds with rotating NMS so that the computational 117
complexities of these models are greatly increased. The typical network is O2D-Net [27]. 118
In visual object tracking, Siam RCNN [28] proposes a two-stage re-detection architecture, 119
which combines a novel tracklet-based dynamic programming algorithm and object 120
detection method to model the full history of both the object to be tracked and potential 121
distractor objects, thereby enhancing the accuracy of current object detection and object 122
tracking. In the instance segmentation field, the Hybrid Task Cascade (HTC) [29] 123
proposes a new framework and effectively integrates the cascade into instance 124
segmentation by weaving detection and segmentation features together for joint 125
multi-stage processing. In addition, Double-Head R-CNN [30] proposes disentangling 126
the sibling head into two specific branches for classification and regression, respectively. 127
In contrast, the task-aware spatial disentanglement (TSD) [31] decouples the 128
classification and regression from the spatial dimension by generating two disentangled 129
proposals for them, which are estimated by the shared proposal. 130

One-stage Approaches. The one-stage object detectors classify and directly regress 131
the position of the objects in a single network. Typical algorithms include YOLO [10, 32, 132
33], SSD [11], and RetinaNet [34]. YOLOv3 [33] directly extracts features from images 133
through a deep neural network and produces multi-scale feature maps after fusion. 134
Finally, it generates the bounding box of the proposals with different resolutions from the 135
feature maps. The advantage of this scheme is that it can obtain more scale features and 136

Figure 1. A deficiency of a traditional anchor-free object detection framework. Shown in the first image, the anchor-free
network detects two riders as the same object. There are two reasons for this: (1) The process of detecting objects is
independent, and it is not possible to assign corresponding weight to the current detection when detecting an object; thus,
the network does not learn the relationship between objects. (2) In the algorithm based on keypoint detection, the heatmaps
are the keypoints of each object independently. Therefore, in order to better integrate the information between each category
channel of heatmaps, we propose a knowledge-driven network (KDNet) to aggregate and model the relationship between
keypoints and apply the information of each category channel of heatmaps to establish relationships between all categories.
Finally, KDNet has fused category relation information to obtain the final detection results.

In our paper, we propose a modeling corner feature and geometry feature scheme,
called a knowledge-driven network (KDNet), which is an effective plug-and-play network.
More specifically, the feature map aggregates key information of each category through the
corner pooling network and then intercepts the local information around the corner maps

Algorithms 2021, 14, 195 3 of 13

based on the keypoints of the response value top-K of each channel. In this way, the global
knowledge is constructed, the geometric features and semantic features of the keypoints
are integrated, and links between the keypoints are strengthened so that the categories
can be constrained and correct each other. Finally, the correction of the response value on
the heatmaps is implemented. Based on the prior knowledge between the categories, the
detection of the network is driven to improve the accuracy of corner detection. The code is
available at: https://github.com/jmuyjl/KDNet (accessed date 27 June 2021).

2. Related Work

Two-stage approaches. The two-stage method roughly divides the object detection
task into two steps. Firstly, a large number of proposal boxes are generated. Secondly, the
object categories are classified and these proposals are regressed. In the first step, there are
many ways to generate proposals, such as the earliest two-stage algorithm R-CNN [23],
which uses a selective search [24] to extract a large number of regions of interest from
images. This method is inefficient and computationally expensive. The second way that
Faster R-CNN [8] generates proposals is by using a region proposal network (RPN), which
sets a series of anchor sizes, then uses a sliding window to generate a large number of
proposals on the feature map. In addition to the above methods, Mask R-CNN [25] adds
a mask prediction branch on the Faster R-CNN. This can not only detect objects but also
segment the object semantically. Cascade R-CNN [26] trains multiple cascaded detectors
by using different IOU thresholds; it is an efficient object detector. Moreover, in the remote
sensing scene field, traditional detectors for oriented objects are commonly used to rotate
anchors based on the RCNN architecture, which multiplies the number of anchors with
a variety of angles and adds rotating NMS so that the computational complexities of
these models are greatly increased. The typical network is O2D-Net [27]. In visual object
tracking, Siam RCNN [28] proposed a two-stage re-detection architecture, which combines
a novel tracklet-based dynamic programming algorithm and object detection method to
model the full history of both the object to be tracked and potential distractor objects,
thereby enhancing the accuracy of current object detection and object tracking processes.
In the instance segmentation field, the hybrid task cascade (HTC) method [29] proposes
a new framework and effectively integrates the cascade into instance segmentation by
weaving detection and segmentation features together for joint multi-stage processing.
In addition, Double-Head R-CNN [30] proposes disentangling the sibling head into two
specific branches for classification and regression, respectively. In contrast, the task-aware
spatial disentanglement (TSD) method [31] decouples the classification and regression
from the spatial dimension by generating two disentangled proposals for them, which are
estimated by the shared proposal.

One-stage approaches. The one-stage object detectors classify and directly regress
the position of the objects in a single network. Typical algorithms include YOLO [10,32,33],
SSD [11], and RetinaNet [34]. YOLOv3 [33] directly extracts features from images through
a deep neural network and produces multi-scale feature maps after fusion. Finally, it
generates the bounding box of the proposals with different resolutions from the feature
maps. The advantage of this scheme is that it can obtain more scale features and reduce the
loss of information. In contrast to YOLOv3 [20], SSD [11] has no feature fusion and directly
places the anchors densely on the input image, using features of different convolutional
layers to conduct regression and classification of the anchors. RetinaNet [34] is a novel
algorithm, which focuses on the design of loss function. The designed focal loss solves the
problem of uneven positive and negative samples in a one-stage framework and achieves
the result of the state-of-the-art MS-COCO dataset [35]. In the remote sensing field, the
vehicle detection network (AVDNet) [36] proposes a new framework to robustly detect
small-sized vehicles in aerial scenes. In the AVDNet work, these authors introduced
ConvRes residual blocks at multi-scales to alleviate the problem of vanishing features
for smaller objects caused because of the inclusion of deeper convolutional layers. In
addition, AVDNet [36] proposes a recurrent-feature aware visualization (RFAV) technique

https://github.com/jmuyjl/KDNet

Algorithms 2021, 14, 195 4 of 13

to analyze the network behavior. In R3Det [37], the authors proposed an end-to-end
refined single-stage rotation detector for fast and accurate positioning of objects and
designed a feature-refinement module to improve detection performance by obtaining
more accurate features. The key idea of the feature refinement module is to re-encode the
position information of the current refined bounding box to the corresponding feature
points through feature interpolation to realize feature reconstruction and alignment.

Anchor-free approaches. The anchor-free detection method is a relatively new paradigm
in object detection [38–41], eliminating the need for anchor boxes and providing a simpli-
fied detection framework. CornerNet [14] transforms the detection of an object into the
problem of detecting a pair of keypoints; this eliminates the design trouble of the anchor.
It is worth noting that this method achieves high performance. CornerNet-squeeze [42]
focuses on detection efficiency, using lightweight backbone networks to improve efficiency
without sacrificing accuracy. CenterNet [15] notably introduces the center keypoint based
on CornerNet to reduce misjudgment and improve detection accuracy. Additionally, Ex-
tremeNet [17] detects four extreme points of the object (corresponding to the top, bottom,
left, and right, respectively) to determine the location and category of the object. The
anchor-free algorithm transforms object detection into a pure appearance-based keypoint
estimation problem without regional classification and implicit feature learning. Referring
to the idea of instance segmentation, FCOS proposes a fully convolutional one-stage object
detection structure to solve object detection in per-pixel prediction fashion. Compared to
YOLO, FCOS takes advantages of all points in a ground-truth bounding box to predict
the bounding boxes, and the low-quality detected bounding boxes are suppressed by the
proposed “center-ness” branch. In IENet, the authors proposed an interacting embranch-
ment one-stage anchor-free detector for orientational objects in aerial images. In addition,
they used the self-attention mechanisms to develop an IE module to force the orientation
prediction task to interact with the features in the classification and localization branches
to further improve the accuracy of orientation detection.

Relation for object detection. Many object detection methods based on deep neural
networks only use internal features to classify the proposals. However, it is also very
important for object detection to model the relationship between objects [43–45]. The suc-
cess of the object relation module (ORM) [22] verifies the opinion that modeling between
objects contributes to object detection. ORM is applied in the anchor-based object detectors.
The detection effect is optimized by the relationship between objects in the image and by
modeling the relationship between each ROI using geometric features and appearance
features so as to obtain global auxiliary information. Based on ORM, there are correspond-
ing extensions for different application scenarios, such as RDN [46], which can promote
object detection in the video by capturing the interaction between objects in the context of
time and space. Simultaneously, some networks focus on data relations. They make the
relationship when labeling data. In this way, supervised training makes the relationship
between objects inseparable. Another way is to use the graph convolution network to
build the knowledge map and to model the relationship among the objects [47,48]. These
methods all attempt to extend the characteristics of the object by using the relationship
information between the objects, which shows that it is meaningful and important to use
prior knowledge to drive the object detection. The above methods achieve the preset
effect for different application scenarios, but most of them are anchor-based algorithms.
We believe that the relation between corner points can also be modeled in the algorithm
based on an anchor-free detector. In this way, the relationship between all categories was
constructed to improve the accuracy of the heatmap and the accuracy of object detection.

3. Proposed Approach

By consolidating the idea of modeling object relations with appearance features and
geometry, we first propose a novel knowledge-driven network (KDNet), which is an
anchor-free object detector. In this section, we introduce the overall architecture of our
proposed method: KDNet; the detailed structure is shown in Figure 2.

Algorithms 2021, 14, 195 5 of 13

Figure 2. An overview of knowledge-driven networks (KDNet) for object detection. In KDNet, we used a 512 × 512-pixel
image as input. Firstly, the input image was downsampled to 64 × 64, and then the features were extracted through the
backbone network to generate a feature map with the same dimension as the input. Secondly, the feature map generated
a corner map through the independent corner pooling network and generated a heatmap using the corner map as its
characteristic angle. Finally, the keypoint relation module (KRM) was used to model the relationship of each keypoint,
and then, the keypoints with knowledge fusion were used to reposition the geometric position of the keypoints; thus, we
obtained a more accurate heatmap.

3.1. Backbone Parts

Input resolution. As mentioned before, the input of the network was 512 × 512 × 3 RGB
images. Before the backbone network, we reduced the image resolution by 8 times using
a 7 × 7 convolution kernel module with a stride of 2 and a channel of 128, followed by
a residual block with a stride of 2 and a channel of 256. Therefore, the resolution of the
image after data preprocessing was reduced to 64 × 64, which was in order to reduce the
resolution of the original image to facilitate extraction features.

Backbone network. The backbone network can integrate the features of different
levels of an input image and then carry out end-to-end classification. The layers of features
can be enriched by training deeper models. Detectors based on the deep neural network
typically use a classification network transmitted from the ImageNet classifications as a
backbone. Thus, using a good backbone network has a great impact on the accuracy and
efficiency of the model. Our method uses the same backbone network as SqueezeNet [49].
It was modified based on the standard SqueezeNet and adopted different convolution
methods from the traditional ones; we adopted a 3 × 3 depth-wise separable convolution
to replace the 3 × 3 standard convolution. The advantage of using this convolution is
that it can reduce the parameter and calculations when the loss accuracy is not high. The
entire feature extraction process was sampled using pooling, reducing the parameters
while retaining the main object features. It then upsampled the features back to the original
resolution by a series of upsampling layers and convolution layers. These novel modules
can extract interesting features in the image for further classification and regression.

Corner pooling layers. Most of the algorithms based on the anchor-free framework
use the method of corner pooling to aggregate the corners of the object. It is generally
believed that the corners of the object tend to fall on the outside of the object and lack local
appearance features. Corner pooling can solve this problem well. In the horizontal direction,
there are changes from right to left to the maximum value of the currently traversed row
elements. In the vertical direction, there are sequential changes from bottom to top to
the maximum value of the column elements that have been traversed. After this, the

Algorithms 2021, 14, 195 6 of 13

corresponding positions of the feature maps were added to obtain the final result. Taking
the coordinates of the top left corner as an example, the top edge associated with the top left
corner contains feature information at the top of the object; the left edge contains the feature
information on the left side of the object. By gradually spreading the maximum value of
the eigenvalues on both sides to the upper left corner area, and finally superposing, the
response of the coordinates of this point will be larger than the sum of the other neighboring
regions. The corner maps generated by this scheme can effectively aggregate the corner
information of objects. Specifically, to determine whether a pixel is a top-left corner, we
need to look horizontally towards the right for the topmost boundary of an object and look
vertically towards the bottom for the leftmost boundary. We define the bottom-right corner
pooling layer in a similar way. For example, for the top-left corner, we scanned from right to
left for the horizontal max-pooling and from bottom to top for the vertical max-pooling. For
the bottom-right corner, we scanned from left to right for the horizontal max-pooling and
from top to bottom for the vertical max-pooling. We then directly added two max-pooled
feature maps. We thus adopted corner pooling to better aggregate the top-left corner and
the bottom-right corner by encoding explicit prior knowledge.

Loss function. In the task of object detection, the principle of loss function should be
designed to optimize object localization and recognition. Our loss function for an image is
defined as Equation (1):

Loss = Lheatmap + αLpull + βLpush + γLo f f set, (1)

where Lheatmap designates a variant of focal loss, which is used to train the network to
detect corners. Lpull is a pull loss for corners, which determines whether a pair comprising
the top left corner and bottom-right corner is from the same bounding box or not. Lpush
is a push loss for corners, which aims at separating the corners from different bounding
boxes. Lo f f set is used to train the network to predict the offsets of corners and applies the
smooth L1 loss. α, β, and γ denote the weights for the corresponding losses, and we set
them as 0.1, 0.1, and 1, respectively, as we have found that if the values of α and β are set as
1 or larger, this leads to poor detection performance. Lheatmap, Lpull , Lpush, and Lo f f set are
all defined in the following:

Lheatmap =
−1
N

C

∑
c=1

H

∑
h=1

W

∑
w=1

{
(1− pchw)

λ log(pchw) i f ychw = 1
(1− ychw)

ν(pchw)
λ log(1− pchw) otherwise

, (2)

Lpull =
1
N

ΣN
k=1

[
(etk − ek)

2 + (ebk − ek)
2
]

, (3)

Lpush =
1

N(N − 1)
ΣN

k=1ΣN
j=1,j 6=kmax

(
0, ∆−

∣∣ek − ej
∣∣), (4)

Lo f f set =
1
N

ΣN
k=1SmoothL1(k, k̂) , (5)

where pchw is the score at location (h, w) for class c in the predicted heatmaps, and ychw
is the ground-truth heatmap augmented with the unnormalized Gaussians. N denotes
the number of objects in an image, and λ and ν are the hyperparameters that control the
contribution of each point. In Equation (3), etk is used to denote the embedding for the
top-left corner of object k, ebk stands for the bottom-right corner, and ek = (etk + ebk)/2.
In Equation (4), the maximum distance is 1 for two corners from different objects, and
we set ∆ to be 1 in all our experiments. In Equation (5), k is the ground-truth offset, k̂
denotes the predicted offset, and k =

(xk
n − |

xk
n | ,

yk
n − |

yk
n |
)
, where xk and yk are the x

and y coordinates for corner k.

3.2. Keypoint Relation Module

In our analysis, the existing anchor-free algorithms relied on independent detection
between instances instead of trying to exploit the relationship between them while learning.

Algorithms 2021, 14, 195 7 of 13

However, we assume that if the model can learn the relationship between different objects,
it will be very helpful for object detection. Information about other objects around it is
likely to help with the classification and positioning of an object. In summary, we have
proposed a new module, named KRM, which is embedded in the corner maps, and the
input and output of the module are unchanged. This KRM aims to model the corner
feature and geometry feature of the relationship between corners, which is relevant to the
object detection, enhancing the corner features on corner maps to produce a more accurate
heatmap. As shown in Figure 3, firstly, for each channel of the heatmap (each channel
represents a category), we selected the top-K corners as samples to construct the region.
Then, according to the coordinate information of the top-K corners, the r× r area around
each corner of the corner maps was intercepted. Therefore, not only can the region of
interest around the corner be obtained, but also the object area. Local features can also make
full use of the depth features in corner maps. Each extraction region of corners (RoC) is fully
connected to the dc dimension, which is sent to the relation module for modeling the corner
relationship and the geometric position relationship, which then outputs the dc dimension
vector. To be able to embed back to the original corner maps, the dc dimension vector
is restored to the original dimension through a full connection, thus updating the corner
maps. The entire KRM uses corner features and geometric features to model the angular
relationship between the categories. The independent corner features are weighted with
coordinate information, and the resulting corners fuse the corner features of all categories.
Based on this relationship, the generated heatmap has semantic information between the
channels, making the detection process independent.

Figure 3. The architecture of the keypoint relation module (KRM).

Geometry features. The geometric features come from the top-K corners selected by
each channel of the heatmap. The corner maps are extracted by the corner pooling, and
the corner information of the object has been enhanced so that each corner can provide
corresponding geometric coordinate information. Note that the four-dimensional features
representing fG = {x, y, c, r} contain three parts. Specifically, (x, y) is the center position
of the corner; c is the category information of each channel; and r is a hyperparameter,
which is the size of the intercepted RoC, as shown in the following:(

log
(
|xm − xn|

rm

)
, log

(
|ym − yn|

rm

)
, log

(
cn

cm

)
, log

(
rn

rm

))T
,

where xm, xn, ym, yn, rm, and rn are mentioned in the heatmaps of the keypoint relation
module (KRM) in Figure 3. n and m represent the n-th corner point and m-th corner

Algorithms 2021, 14, 195 8 of 13

point, respectively, because each corner point needs to calculate the relationship with other
corner points. This 4D feature is embedded in a high-dimensional representation, which
computes the cosine and sine functions of different wavelengths. The feature dimension
after embedding is dg (dg = 64 in this paper).

Corner features. The corner features use the above-mentioned extracted corner po-
sition, centering on the corner point and intercepting the area of size r× r on the corner
maps to obtain the depth feature in the corner maps. The advantage of doing this is that
the corner maps have more semantic information and can obtain global knowledge. Each
corner feature region (RoC) that is intercepted is fully connected to the dc (dc = 1024 in this
paper) dimension, and this corner feature is represented by fC,

fC = {top− K, dc}, (6)

where top− K denotes the first K representative points, which are used to calculate the
local and geometric features. By modeling the relationship between fC and fG, the fC and
fG weights of other corners are fused into their own fC, and a variety of local knowledge
can be obtained to drive the recognition and localization of the object.

Relation module. The relation module borrows the idea of its object relation module
(ORM) to model the corner features and geometric features of keypoints. Firstly, the
respective weights Wv and Wg are calculated according to two characteristics, and the
parameters indicate the weights of the local features and geometric features of the corner
points, respectively. The total weight ωmn (Equation (9)) is obtained from the weights of
the two features ωmn

G and ωmn
C (Equations (11) and (10)), and then each relation module is

weighted according to the total weight of the m-th keypoint to the current keypoint.

fR(n) = ∑
m

ωmn·(WV · f m
C), (7)

f n
C = f n

C + Concat
[

f 1
R(n), . . . , f Nr

R (n)
]
, f or all n, (8)

ωmn =
ωmn

G · exp
(
ωmn

C
)

∑k ωkn
G · exp

(
ωkn

C
) , (9)

ωmn
C =

dot
(
WKFm

C , WQFn
C
)

√
dc

, (10)

ωmn
G = max{0, WG · EG(Fm

G , Fn
G)}, (11)

where m and n represent the n-th corner point and m-th corner point, respectively. EG is to
map the geometric feature FG between the m-th corner point and the n-th corner point to a
high-dimensional space. Fm

G represents the geometric feature of the m-th corner point, and
Fn

G denotes the geometry of the n-th corner point feature.

4. Experiments
4.1. Datasets

To better demonstrate the correctness of our approach, we constructed a new dataset
called RIDER to evaluate our method. The dataset came from real video surveillance scenes,
covering many scenes, such as night, sunny, cloudy, and foggy scenes. Moreover, there
were many objects to be detected with different scales. Most importantly, the relationship
between categories was obvious, which was very suitable for the test difficulty of this
work. To guarantee that the distribution of training, validation, and test data were similar,
we randomly selected 46,449 images as the training set and 5162 images as the test set.
RIDER contained five categories: Rider, Motorbike, Bike, Helmet, and Pedestrian, and the
number of images per subclass is given in Table 1. The labeled Rider is characterized by
a person driving a two-wheeled vehicle, and the entire body is visible (green rectangles);
Motorbike is characterized by a two-wheeled vehicle, and the tire part is similar to a bike

Algorithms 2021, 14, 195 9 of 13

(pink rectangles); Bike is characterized by a simple structure and a narrow width (blue
rectangles); Helmet is a safety helmet, which is elliptical (purple rectangles); Pedestrian is
characterized by a person walking on the road (red rectangles). Example images are shown
in Figure 4.

Table 1. The number of per subclass on RIDER dataset.

Rider Motorbike Bike Pedestrian Helmet Total

31,996 32,956 6510 13,434 25,011 51,611

Algorithms 2021, 14, x FOR PEER REVIEW 9 of 15

휔 = max{0, 푊 ⋅ ℰ (퐅 , 퐅)}, (11)

where 푚 and 푛 represent the 푛-th corner point and 푚-th corner point, respectively. ℰ 337
is to map the geometric feature 퐅퐺 between the 푚-th corner point and the 푛-th corner 338

point to a high-dimensional space. 퐅 represents the geometric feature of the 푚-th 339

corner point, and 퐅 denotes the geometry of the 푛-th corner point feature. 340

4. Experiments 341

4.1. Datasets 342

To better demonstrate the correctness of our approach, we constructed a new dataset 343
called RIDER to evaluate our method. The dataset comes from real video surveillance 344
scenes, covering many scenes such as night, sunny, cloudy, and foggy scenes. Moreover, 345
there are many objects to be detected with different scales. Most importantly, the 346
relationship between categories is obvious, which is very suitable for the test difficulty of 347
this work. To guarantee that the distribution of training, validation, and test data were 348
similar, we randomly selected 46,449 images as the training set and 5,162 images as the 349
test set. RIDER contains five categories: Rider, Motorbike, Bike, Helmet, and Pedestrian, 350
which the number of per subclass given in Table 1. The labeled Rider is characterized by a 351
person driving a two-wheeled vehicle, and the entire body is visible (green rectangles); 352
Motorbike is characterized by a two-wheeled vehicle, and the tire part is similar to a bike 353
(pink rectangles); Bike is characterized by a simple structure and a narrow width (blue 354
rectangles); Helmet is a safety helmet, which is elliptical (purple rectangles); Pedestrian is 355
characterized by a person walking on the road (red rectangles). Example images are 356
shown in Fig.4. 357

Table 1. The number of per subclass on RIDER dataset. 358

Rider Motorbike Bike Pedestrian Helmet Total
31,996 32,956 6,510 13,434 25,011 51,611

 359

 360

Figure 4. Categories in RIDER. 361

4.2. Implementation Details 362

We demonstrated the effectiveness of our method on the RIDER dataset. In addition, 363
we chose several mainstream algorithms, including YOLOv3 [33], RetinaNet [34], and 364
Faster R-CNN [8], to test on the RIDER dataset as baselines. In YOLOv3 [33], we used 365
Darknet-53 as the backbone network. The initial learning rate was 10e-3, the dimension of 366
the input image was 608×608×3, the training batch was set to 4, and the gradient descent 367
momentum was 0.9. RetinaNet [34] used the Keras framework to implement the 368
Resnet-50 model pre-trained by Keras on ImageNet as the backbone. The initial learning 369
rate was 10e-5, the dimension of the input image was 600×1000×3, and the training batch 370

Figure 4. Categories in RIDER.

4.2. Implementation Details

We demonstrated the effectiveness of our method on the RIDER dataset. In addition,
we chose several mainstream algorithms, including YOLOv3 [33], RetinaNet [34], and
Faster R-CNN [8], to test on the RIDER dataset as baselines. In YOLOv3 [33], we used
Darknet-53 as the backbone network. The initial learning rate was 10× 10−3, the dimension
of the input image was 608 × 608 × 3, the training batch was set to 4, and the gradient
descent momentum was 0.9. RetinaNet [34] used the Keras framework to implement the
Resnet-50 model pre-trained by Keras on ImageNet as the backbone. The initial learning
rate was 10−5, the dimension of the input image was 600 × 1000 × 3, and the training
batch was set to 1. The gradient descent momentum was 0.9. In Faster R-CNN, we used
the pre-trained VGG16 model on ImageNet as the backbone network. The learning rate
was 10e-3, the dimension of the input image was 600 × 1000 × 3, and the training batch
was set to be 1. We trained the KDNet with a batch size of 27 on two 1080Ti GPUs and
implemented our proposed in the PyTorch. For all the algorithms, we used Adam for
iterations with the initial learning rate of 10 × 10−3, a weight decay of 10 × 10−4, and a
momentum of 0.9. To train a robust model and avoid over-fitting, we adopted the data
augmentation strategy, including random horizontal flipping, random cropping, random
scaling, and random color jittering, as well as adjusting the brightness, saturation, and
contrast of a training image. Finally, we used principal component analysis (PCA) on the
input image.

4.3. Overall Accuracy Evaluation

The results are summarized in Table 2, which shows the mAPs and the APs from
different categories. It can be seen that the mAP of KDNet was higher than state-of-the-art
algorithms, including YOLOv3 [33], RetinaNet [34], and Faster-RCNN [8]. The results show
that the knowledge-driven object detection strategy adopted in this paper, combined with
the anchor-free framework, can provide more reliable detection results. The results show
that the knowledge-driven strategy was adopted to fuse the adjacent spatial coordinate
information of keypoints to the process of keypoints generation. The extracted features can
fuse the characteristics of other objects, thus greatly improving the detection effect.

Algorithms 2021, 14, 195 10 of 13

Table 2. The mAP and AP of the tested algorithms.

Method mAP Rider Motorbike Bike Pedestrian Helmet

YOLOv3 0.424 0.392 0.510 0.414 0.449 0.353
RetinaNet 0.683 0.665 0.733 0.747 0.625 0.643

Faster R-CNN 0.560 0.510 0.652 0.652 0.560 0.427
KDNet (Ours) 0.709 0.718 0.783 0.737 0.703 0.603

4.4. The Evaluation on Different Categories

First, we analyzed the results on Pedestrian, Rider, and Motorbike. Figure 5 shows the
results of a typical scene that were obtained using four methods. As shown in Figure 5, the
object in the image is ambiguous and there is occlusion; it is very challenging to extract
the object region. Figure 5a–c shows the detection results of YOLOv3 [33], RetinaNet [34],
and Faster-RCNN [8], respectively. Note that YOLOv3 [33] and RetinaNet [34] failed to
distinguish between the pedestrian and the rider. As for the RPN-based method, the
number of proposals was relatively large; thus, Faster R-CNN [8] can effectively detect
objects, while the byproduct is a large number of false-positive detections. In contrast,
our proposed method in this paper combined the geometric features and corner features
between objects and successfully detected objects while using knowledge-driven methods
to effectively avoid false detection.

Algorithms 2021, 14, x FOR PEER REVIEW 11 of 15

 406

 Figure 5. The detection results of the position of Pedestrian, Rider, and Motorbike. 407

The second set of experiments was Bike and Rider, shown in Fig. 6. It can be seen that 408
this task was challenging, because the objects to be detected are very close. In this 409
complicated background, YOLOv3 [33] missed the objects, and the Faster-RCNN [8] and 410
RetinaNet [34] algorithms not only failed to detect the right objects, but also generated a 411
large number of false bounding boxes. However, KDNet (Fig. 6(d)) combined the 412
information from features that can help the detect the object more accurately. This shows 413
that adding the category information in the geometric feature can increase the semantic 414
information between the objects. After the corner feature and the geometric feature were 415
merged, it effectively avoided false detection of missing parts. 416

 417

Figure 6. The detection results of the position of Rider and Bike. 418

4.5. Typical Fail Cases 419

Although the proposed KDNet achieved the best performance, considering the 420
value of mAP, our method did not work in some cases. Fig. 7 shows the detection results 421
in which the proposed KDNet failed . For example, the Helmet in Fig. 7 has a small object 422
shape and is almost integrated with the boundary background, which poses a great 423
challenge for detection. However, for this small object, YOLOv3 has multi-scale fusion, 424
and it can be well detected; Faster R-CNN can generate a large number of proposals by 425
using an RPN strategy, and therefore the objects were also detected. The reason for our 426
proposed KDNet failing to extract the helmet is that the top-left corner of the hat is close 427
to the top-left corner of the rider. Therefore, after the relation module was completed, the 428
keypoint near the area may have been the NMS algorithm, thus causing a missed 429
detection. 430

Figure 5. The detection results of the position of Pedestrian, Rider, and Motorbike.

The second set of experiments was Bike and Rider, shown in Figure 6. It can be seen
that this task was challenging, because the objects to be detected were very close. In this
complicated background, YOLOv3 [33] missed the objects, and the Faster-RCNN [8] and
RetinaNet [34] algorithms not only failed to detect the right objects, but also generated
a large number of false bounding boxes. However, KDNet (Figure 6d) combined the
information from features that can help the detect the object more accurately. This shows
that adding the category information in the geometric feature can increase the semantic
information between the objects. After the corner feature and the geometric feature were
merged, it effectively avoided false detection of missing parts.

Algorithms 2021, 14, x FOR PEER REVIEW 11 of 15

 406

 Figure 5. The detection results of the position of Pedestrian, Rider, and Motorbike. 407

The second set of experiments was Bike and Rider, shown in Fig. 6. It can be seen that 408
this task was challenging, because the objects to be detected are very close. In this 409
complicated background, YOLOv3 [33] missed the objects, and the Faster-RCNN [8] and 410
RetinaNet [34] algorithms not only failed to detect the right objects, but also generated a 411
large number of false bounding boxes. However, KDNet (Fig. 6(d)) combined the 412
information from features that can help the detect the object more accurately. This shows 413
that adding the category information in the geometric feature can increase the semantic 414
information between the objects. After the corner feature and the geometric feature were 415
merged, it effectively avoided false detection of missing parts. 416

 417

Figure 6. The detection results of the position of Rider and Bike. 418

4.5. Typical Fail Cases 419

Although the proposed KDNet achieved the best performance, considering the 420
value of mAP, our method did not work in some cases. Fig. 7 shows the detection results 421
in which the proposed KDNet failed . For example, the Helmet in Fig. 7 has a small object 422
shape and is almost integrated with the boundary background, which poses a great 423
challenge for detection. However, for this small object, YOLOv3 has multi-scale fusion, 424
and it can be well detected; Faster R-CNN can generate a large number of proposals by 425
using an RPN strategy, and therefore the objects were also detected. The reason for our 426
proposed KDNet failing to extract the helmet is that the top-left corner of the hat is close 427
to the top-left corner of the rider. Therefore, after the relation module was completed, the 428
keypoint near the area may have been the NMS algorithm, thus causing a missed 429
detection. 430

Figure 6. The detection results of the position of Rider and Bike.

Algorithms 2021, 14, 195 11 of 13

4.5. Typical Fail Cases

Although the proposed KDNet achieved the best performance, considering the value
of mAP, our method did not work in some cases. Figure 7 shows the detection results in
which the proposed KDNet failed. For example, the Helmet in Figure 7 had a small object
shape and was almost integrated with the boundary background, which posed a great
challenge for detection. However, for this small object, YOLOv3 has multi-scale fusion, and
it can be well detected; Faster R-CNN can generate a large number of proposals by using
an RPN strategy, and therefore the objects were also detected. The reason for our proposed
KDNet failing to extract the helmet was that the top-left corner of the hat was close to
the top-left corner of the rider. Therefore, after the relation module was completed, the
keypoint near the area may have been the NMS algorithm, thus causing a missed detection.

Algorithms 2021, 14, x FOR PEER REVIEW 12 of 15

 431

Figure 7. Typical detection results in which the proposed KDNet failed. 432

4.6. Inference Time 433

The inference time between the proposed KDNet and other algorithms is compared 434
in Table 3. The average inference time of KDNet on a 1080Ti GPU is 450ms per image. We 435
found that the inference time of our proposed model was slower than other models. The 436
reason may be that we added a network (KRM) to build object relations, which contained 437
58.5M parameters and a large number of matrix operations, which caused the inference 438
time to slow down. 439

Table 3. Comparison of inference time of different algorithms. 440

Method YOLOv3 RetinaNet Faster R-CNN KDNet (Ours)
Inference Time (ms) 51 150 298 450

5. Conclusions 441

In this paper, a novel modeling corner feature and geometry feature scheme, called a 442
knowledge-driven network (KDNet), is presented. It simultaneously processes a set of 443
keypoints through their local features and coordinates and the interaction between 444
semantic information, allowing it to model their relationships. Based on this relationship, 445
the generation of an updated heatmap causes semantic information between channels; 446
thus, the detection process not independent. The experimental results conducted on the 447
RIDER dataset show that the proposed KDNet had a better mAP than mainstream 448
algorithms such as YOLOv3, RetinaNet, and Faster R-CNN. In particular, the APs of all 449
categories exceeded the state-of-the-art object detection methods. We believe that these 450
promising results pave the way to numerous further applications and developments. 451

 452
Author Contributions: Conceptualization, G.C., and Y.W.; methodology, J.S.; software, J.L.; 453
validation, Y.L., J.L., and K.D.; formal analysis, S.L.; investigation, Y.L.; resources, J.L.; data 454
curation, J.L.; writing—original draft preparation, Y.L.; writing—review and editing, Y.W.; 455
visualization, Z.Z.; supervision, Y.L.; funding acquisition, J.S., G.C. All authors have read and 456
agreed to the published version of the manuscript. 457

Funding: This research was funded by the National Natural Science Foundation of China under 458
grant no. 41971424 and no. 61701191; the Natural Science Foundation of Fujian Province, China 459
under Grant 2020J01701, and in part by the Fujian Provincial Science and Technology Program 460
Project under Grants JAT190318. 461

Conflicts of Interest: The authors declare no conflict of interest. 462

 463

Figure 7. Typical detection results in which the proposed KDNet failed.

4.6. Inference Time

The inference time between the proposed KDNet and other algorithms is compared in
Table 3. The average inference time of KDNet on a 1080Ti GPU was 450 ms per image. We
found that the inference time of our proposed model was slower than other models. The
reason may be that we added a network (KRM) to build object relations, which contained
58.5 M parameters and a large number of matrix operations, which caused the inference
time to slow down.

Table 3. Comparison of inference time of different algorithms.

Method YOLOv3 RetinaNet Faster R-CNN KDNet (Ours)

Inference Time (ms) 51 150 298 450

5. Conclusions

In this paper, a novel modeling corner feature and geometry feature scheme, called
a knowledge-driven network (KDNet), is presented. It simultaneously processes a set
of keypoints through their local features and coordinates and the interaction between
semantic information, allowing it to model their relationships. Based on this relationship,
the generation of an updated heatmap caused semantic information to spread between
channels; thus, the detection process was not independent. The experimental results
conducted on the RIDER dataset showed that the proposed KDNet had a better mAP than
mainstream algorithms such as YOLOv3, RetinaNet, and Faster R-CNN. In particular, the
APs of all categories exceeded the state-of-the-art object detection methods. We believe that
these promising results pave the way to numerous further applications and developments.

Algorithms 2021, 14, 195 12 of 13

Author Contributions: Conceptualization, G.C. and Y.W.; methodology, J.S.; software, J.L.; validation,
Y.L., J.L. and K.D.; formal analysis, S.L.; investigation, Y.L.; resources, J.L.; data curation, J.L.; writing—
original draft preparation, Y.L.; writing—review and editing, Y.W.; visualization, Z.Z.; supervision,
Y.L.; funding acquisition, J.S., G.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
grant no. 41971424 and no. 61701191; the Natural Science Foundation of Fujian Province, China
under Grant 2020J01701, and in part by the Fujian Provincial Science and Technology Program Project
under Grants JAT190318.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
3. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

5. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6,
610–621. [CrossRef]

6. Wei, Y.; Xia, W.; Lin, M.; Huang, J.; Ni, B.; Dong, J.; Zhao, Y.; Yan, S. HCP: A Flexible CNN Framework for Multi-Label Image
Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1901–1907. [CrossRef] [PubMed]

7. Hershey, S.; Chaudhuri, S.; Ellis, D.P.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.; Seybold, B.
CNN architectures for large-scale audio classification. In Proceedings of the 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 131–135.

8. Ren, S.; He, K.; Girshick, R.; Sun, J.J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,
arXiv:1506.01497.

9. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

10. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 21–37.

12. Güler, R.A.; Neverova, N.; Kokkinos, I. Densepose: Dense human pose estimation in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7297–7306.

13. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity
Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [CrossRef] [PubMed]

14. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

15. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6569–6578.

16. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
17. Zhou, X.; Zhuo, J.; Krahenbuhl, P. Bottom-up object detection by grouping extreme and center points. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 850–859.
18. Galleguillos, C.; Rabinovich, A.; Belongie, S. Object categorization using co-occurrence, location and appearance. In Proceedings

of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.
19. Torralba, A.; Murphy, K.P.; Freeman, W.T.; Rubin, M.A. Context-based vision system for place and object recognition. In

Proceedings of the Computer Vision, IEEE International Conference on IEEE Computer Society, Madison, WI, USA, 18–20 June
2003; p. 273.

20. Tu, Z. Auto-context and its application to high-level vision tasks. In Proceedings of the 2008 IEEE Conference on Computer
Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

21. Mottaghi, R.; Chen, X.; Liu, X.; Cho, N.-G.; Lee, S.-W.; Fidler, S.; Urtasun, R.; Yuille, A. The role of context for object detection
and semantic segmentation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 891–898.

http://doi.org/10.1145/3065386
http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1109/TPAMI.2015.2491929
http://www.ncbi.nlm.nih.gov/pubmed/26513778
http://doi.org/10.1109/TPAMI.2019.2929257
http://www.ncbi.nlm.nih.gov/pubmed/31331883

Algorithms 2021, 14, 195 13 of 13

22. Hu, H.; Gu, J.; Zhang, Z.; Dai, J.; Wei, Y. Relation networks for object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3588–3597.

23. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

24. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective Search for Object Recognition. Int. J. Comput. Vis. 2013,
104, 154–171. [CrossRef]

25. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

26. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162.

27. Wei, H.; Zhang, Y.; Chang, Z.; Li, H.; Wang, H.; Sun, X. Oriented objects as pairs of middle lines. ISPRS J. Photogramm. Remote
Sens. 2020, 169, 268–279. [CrossRef]

28. Voigtlaender, P.; Luiten, J.; Torr, P.H.; Leibe, B. Siam r-cnn: Visual tracking by re-detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6578–6588.

29. Chen, K.; Pang, J.; Wang, J.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Shi, J.; Ouyang, W. Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 4974–4983.

30. Wu, Y.; Chen, Y.; Yuan, L.; Liu, Z.; Wang, L.; Li, H.; Fu, Y. Rethinking classification and localization for object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 10186–10195.

31. Song, G.; Liu, Y.; Wang, X. Revisiting the sibling head in object detector. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11563–11572.

32. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Venice, Italy, 22–29 October 2017; pp. 7263–7271.

33. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
34. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
35. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Berlin/Heidelberg, Germany; pp. 740–755.

36. Mandal, M.; Shah, M.; Meena, P.; Devi, S.; Vipparthi, S.K. AVDNet: A small-sized vehicle detection network for aerial visual data.
IEEE Geosci. Remote. Sens. Lett. 2019, 17, 494–498. [CrossRef]

37. Yang, X.; Liu, Q.; Yan, J.; Li, A.; Zhang, Z.; Yu, G. R3det: Refined single-stage detector with feature refinement for rotating object.
arXiv 2019, arXiv:1908.05612.

38. Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process.
2020, 29, 7389–7398. [CrossRef]

39. Mylavarapu, S.K.; Choudhuri, S.; Shrivastava, A.; Lee, J.; Givargis, T. FSAF: File system aware flash translation layer for NAND
flash memories. In Proceedings of the 2009 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France,
9–13 March 2020; pp. 399–404.

40. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 9627–9636.

41. Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th ACM
International Conference on Multimedia, Palo Alto, CA, USA, 7–10 November 2016; pp. 516–520.

42. Law, H.; Teng, Y.; Russakovsky, O.; Deng, J. Cornernet-lite: Efficient keypoint based object detection. arXiv 2019, arXiv:1904.08900.
43. Pang, Y.; Xie, J.; Khan, M.H.; Anwer, R.M.; Khan, F.S.; Shao, L. Mask-guided attention network for occluded pedestrian

detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June
2019; pp. 4967–4975.

44. Du, X.; Shi, X.; Huang, R. Repgn: Object detection with relational proposal graph network. arXiv 2019, arXiv:1904.08959.
45. Zhou, P.; Chi, M. Relation parsing neural network for human-object interaction detection. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 843–851.
46. Deng, J.; Pan, Y.; Yao, T.; Zhou, W.; Li, H.; Mei, T. Relation distillation networks for video object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 7023–7032.
47. Yang, J.; Lu, J.; Lee, S.; Batra, D.; Parikh, D. Graph r-cnn for scene graph generation. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 670–685.
48. Xu, H.; Jiang, C.; Liang, X.; Li, Z. Spatial-aware graph relation network for large-scale object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9298–9307.
49. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

http://doi.org/10.1007/s11263-013-0620-5
http://doi.org/10.1016/j.isprsjprs.2020.09.022
http://doi.org/10.1109/LGRS.2019.2923564
http://doi.org/10.1109/TIP.2020.3002345

	Introduction
	Related Work
	Proposed Approach
	Backbone Parts
	Keypoint Relation Module

	Experiments
	Datasets
	Implementation Details
	Overall Accuracy Evaluation
	The Evaluation on Different Categories
	Typical Fail Cases
	Inference Time

	Conclusions
	References

