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Abstract: Microscopic tissue analysis is the key diagnostic method needed for disease identification
and choosing the best treatment regimen. According to the Global Cancer Observatory, approximately
two million people are diagnosed with colorectal cancer each year, and an accurate diagnosis requires
a significant amount of time and a highly qualified pathologist to decrease the high mortality rate.
Recent development of artificial intelligence technologies and scanning microscopy introduced digital
pathology into the field of cancer diagnosis by means of the whole-slide image (WSI). In this work,
we applied deep learning methods to diagnose six types of colon mucosal lesions using convolutional
neural networks (CNNs). As a result, an algorithm for the automatic segmentation of WSIs of
colon biopsies was developed, implementing pre-trained, deep convolutional neural networks of
the ResNet and EfficientNet architectures. We compared the classical method and one-cycle policy
for CNN training and applied both multi-class and multi-label approaches to solve the classification
problem. The multi-label approach was superior because some WSI patches may belong to several
classes at once or to none of them. Using the standard one-vs-rest approach, we trained multiple
binary classifiers. They achieved the receiver operator curve AUC in the range of 0.80–0.96. Other
metrics were also calculated, such as accuracy, precision, sensitivity, specificity, negative predictive
value, and F1-score. Obtained CNNs can support human pathologists in the diagnostic process and
can be extended to other cancers after adding a sufficient amount of labeled data.

Keywords: deep learning; convolutional neural networks; whole-slide image; digital pathology;
colon cancer

1. Introduction

Colorectal cancer is the third most frequently detected type of cancer among men and
the second among women [1,2]. According to WHO data, around 1.8 million new cases
and more than 800,000 deaths are detected annually [3]. Moreover, colorectal cancer is one
of the most common causes of mortality [4,5]. Currently, histological image analysis is the
standard for the clinical diagnosis of cancer [6,7].

The basis for cancer treatment is the morphological verification of the tumor process,
based mainly on the material of an endoscopic biopsy of the colon. Pathoanatomic exami-
nation is a subjective process based on the recognition of various morphological structures
on histological slides, and only specialists can deal with the problem. The limited number
of available pathologists make it difficult to establish a system of reference studies of all
biopsies. The problem can be substantially facilitated with computer technologies.

In recent years, artificial intelligence and deep learning [8–10], in particular, have
found wide application in different areas of medical research and medical imaging. Many
studies are devoted to the X-ray [11,12] and MRI [13–16] image processing. Machine
learning methods are used to analyze different types of data obtained with a colonoscopy,
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CT colonography, colon capsule endoscopy, endocytoscopy, and other techniques. The
increasing amount of available digital histological images makes it possible to use machine
learning methods to segment and classify cancer types [17,18].

Whole-slide imaging (WSI) provides extensive opportunities in this area using deep
learning. This is a segmentation task, and WSIs have been shown to be segmented into the
areas of healthy tissues and those containing cancer with high accuracy using convolutional
neural networks (CNN) [19] or autoencoders that include various CNNs [20]. The scientists
often consider the classification problem with only two classes—detection of malignant
tissue in a given WSI fragment [21]. J. Noorbakhsh et. al. showed that neural networks
trained on images of some tissues are able to classify other tissues with high accuracy [22].
To diagnose lymphoma, Bayesian neural networks achieved a quality of AUC = 0.99 [23].
A. D Jones, et. al. compared the prediction quality of neural networks trained on PNG and
JPG images for breast, colon, and prostate tissues and found that there were no statistically
significant differences; therefore, it is possible to use JPG to reduce the training time and
memory used [24].

In [25,26], multi-class classification was performed with CNN, and cancerous tissues
were detected and differentiated. For the same purposes, H. Ding et. al. [27] used the fully
convolutional network [28]. In [29], the network trained on WSI data was transferred for
the analysis of MSI, and H. Chen et al. [30] proposed a new loss function that allowed more
efficient CNN training of CNN on WSI data.

Most works devoted to the use of neural networks for cancer diagnostics address the
problem of binary classification between malignant and benign tissues. The use of neural
networks to diagnose colorectal cancer is not so popular for other organs, such as the breast.
For example, in the Scopus research database, there are 2850 studies for the query “deep
learning” AND “Breast cancer”, while only 628 studies for the query “Deep learning” AND
“colorectal cancer”.

In this work, we collected WSIs of colon tissue samples and trained CNN to classify
them into six classes. To deal with WSI data, a training sample caching system was
designed and implemented. Several classification approaches were compared: multi-class
classification and one-vs-rest classification, and the one-cycle policy method was also
used [31] to configure training hyper-parameters.

2. Materials and Methods
2.1. WSIs Database

When labeling the images, we used the diagnostic criteria of the current edition (fifth)
of the WHO classification of gastrointestinal tract tumors [32]. Three GI pathologists, with at
least 7 years of work experience, were responsible for performing the image segmentations
on a commercial basis. Each pathologist was engaged in the segmentation of his set of
WSIs. Upon completion, the head of the group of pathologists (Karnaukhov N.S.) checked
the markup and corrected the labels he considered incorrect classification. In the case
of any other pathologist discordance, he fixed the segmentation issues, being the most
qualified specialist.

We selected the criteria describing the morphological structures characteristic of all
types of benign and malignant tumors of the colon, according to WHO recommenda-
tions. A systematization of histological slides was conducted, with a discussion of various
pathological processes. The classes of histological categories involved in the histological
conclusion were formed, namely:

• structures of normal colon glands (NG);
• structures of serrated lesions (SDL);
• structures of serrated lesions with dysplasia (SDH);
• structures of hyperplastic polyp, microvesicular type (HPM);
• structures of hyperplastic polyp, goblet-cell type (HPG);
• structures of adenomatous polyp, low-grade dysplasia (APL);
• structures of adenomatous polyp, high-grade dysplasia (APH);



Algorithms 2022, 15, 398 3 of 15

• structures of tubular adenoma (TA);
• structures of villous adenoma (VA);
• structures of glandular intraepithelial neoplasia, low-grade (INL);
• structures of glandular intraepithelial neoplasia, high-grade (INH);
• structures of well differentiated adenocarcinoma (AKG1);
• structures of moderate differentiated adenocarcinoma (AKG2);
• structures of poorly differentiated adenocarcinoma (AKG3);
• structures of mucinous adenocarcinoma (MAK);
• structures of signet-ring cell carcinoma (SRC);
• structures of medullary adenocarcinoma (MC);
• structures of undifferentiated carcinoma (AKG4);
• Granulation tissue (GT).

Histological samples from endoscopic colon biopsies were digitized (.svs) with
a Leica Aperio AT2 scanning microscope, with a resolution of 0.50 µm/pixel. The scanned
images were divided equally between 3 specialists. Each specialist labelled the histological
structures with the ASAP software. Several representative examples are shown in Figure 1.
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Figure 1. Examples of labelled hematoxylin- and eosin (H and E)-stained colorectal tissue slides
stained with the labelled hematoxylin and eosin (H and E) of different classes: (a) tubular ade-
noma (TA); (b) villous adenoma (VA); (c) well-differentiated adenocarcinoma (AKG1); (d) poorly
differentiated adenocarcinoma (AKG3).
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Each labelled area was outlined with its own color. The pathologists tried to avoid
fibrous tissue, artifacts from histological slides, and the white background falling into the
labelled area. The borders of the labelled areas were not allowed to intersect.

Some classes of histological categories are based on the presence of several morpholog-
ical structures, for example, tubulovillous adenoma. We did not consider mixed structures
as separate classes because such mixtures were already identified in the output of machine
learning classification. When the ML algorithm returned significant probabilities for several
classes, the output was treated as a mixture of structure types.

We used the WHO classification of the gastrointestinal tract, 5th edition, but did
not aim to train the algorithm to make a diagnosis. The main purpose of the study
was implementing the automatic segmentation system so that pathologists can perform
diagnoses faster. All slides were collected and processed at the National Medical Research
Center of Oncology, Rostov-on-Don. The total number of WSIs was 1785.

2.2. WSIs Preprocessing

WSIs are multi-layered images combining histological slides with different magnifi-
cations. The WSIs were scanned with high resolution, and the size of the digitized slide
was able to reach 80,000 × 60,000 pixels. Each individual image took up 80 MB to 1.5 GB of
computer memory. Due to the large sizes of the source images, their direct use for CNN
training was not possible. Therefore, we split the original images into small patches and
used them for training and testing CNN, with the exception of uninformative patches
(representing a white background or containing less than 50% of the total area with tissues).

Splitting WSIs into patches and saving them to a separate file was time consuming for
a large database of images. This procedure had to be repeated when the size of the patch
was modified. The caching system overcame these issues. This system was implemented in
the form of an associative array, which for each WSI, stored metadata: image dimensions
and lists of the coordinates of the patch in the source image for each class, depending on
the desired size of the patch (see Figure 2). Upon training and testing, the patches were
read directly from the original WSI according to the desired size and the coordinates stored
in the cache.
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Only the normalizing and CLAHE (contrast limited adaptive histogram equalization)
operations from Albumentations (a Python library for image augmentation) [33] were used
for patch preprocessing. Representative examples of patches before and after preprocessing
are shown in Table 1.

2.3. Approaches to the Problem Statement: Multi-Class and Multi-Label

The problem of classifying WSI patches can be solved by two approaches: multi-
class and multi-label. The multi-class ML approach returns a normalized vector of class
probabilities for a given object. The number of elements in the vector coincides with the
number of classes, and their sum is equal to 1, which in probability theory, indicates that
an object must belong to exactly one of the classes under consideration. On the contrary,
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the multi-label approach is applied to tasks where objects may belong to several classes at
once or to none of them.

Table 1. Image preprocessing.

Original
patch
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of a multi-class neural network would significantly overestimate the probabilities of classes
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The idea of transfer learning was used to classify WSI fragments [34]. We used deep
neural networks pre-trained on the ImageNet dataset as a basis and provided additional
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ResNet deep convolutional neural networks [35] and EfficientNet [36] architectures were
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tures used for image recognition and showed good results in the ImageNet competition. To
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2.5. Training the Neural Network

This study focused on the 6 most common classes in the WSI fragments: normal
glands (NG), adenocarcinoma G1 (AKG1), adenocarcinoma G2 (AKG2), adenocarcinoma
G3 (AKG3), tubular adenoma (TA), and villous adenoma (VA). The “tubular” and “villous”
classes only encompassed low- and high-grade adenomas and did not contain adeno-
carcinomas (as these classes could overlap). We selected these labels to make our work
comparable with existing AI applications, namely the web platform cancercenter.ai, based
on ICD-O 3 morphological codes.

Two strategies were used to solve the classification problem:

1. Training a single neural network to classify fragments into six target classes.
2. Training six independent neural networks to solve the one-vs-rest binary classifica-

tion problems.

The neural networks for both classification problems were based on a common prin-
ciple. They relied on a convolutional neural network for feature extraction. Three fully
connected layers with the ReLU activation function that performed the classifier task were
added to this CNN. A sigmoid activation function was applied to the network output.

For the task of 6-class classification, the outputs of the neural network did not readily
correspond to the probabilities of the corresponding classes. A procedure was implemented
to convert the output of a neural network to values characterizing the probabilities.

2.6. Converting Neural Network Outputs to Class Probabilities

Despite the presence of a softmax layer at the output of the multi-class neural network,
the resulting outputs generally differed from the probabilities. In practice, it would be
convenient to obtain the exact probabilities, for example, as an image with colored frag-
ments when the neural network is confident in its classification with a given probability. To
convert the outputs of the neural network to probabilities, we used the following algorithm.

Let us denote Netc—the part of the multi-class neural network that accepts an image
patch x as input and returns the value Netc(x) in the interval [0, 1]—as the degree of
x matching class c. For each value t of Netc, we define a subset Xt,c of the training sample
{(xi, yi)}l

i=1, with the image xi providing the value of the neural network Netc(xi) larger
than the threshold t:

Xt,c = {xi ∨ Netc(xi) ≥ t} (1)

Then, the value t of the neural network can be converted to the probability pc of class
c by calculating the accuracy of Netc in Xt,c:

pc =
|{xi ∨ yi = c, xi ∈ Xt,c}|

|Xt,c|
(2)

where vertical lines |·| denote the cardinality of a set.
When training neural networks to binary one-vs-rest problems, the values obtained

by applying the sigmoid to the network outputs were considered as the probability that
a WSI patch belonged to the target class.

2.7. Training Neural Networks

The process of training neural networks was carried out in two ways: classical ap-
proach and one-cycle policy. In the classical approach, the parameters of the neural network
were optimized over several epochs of training by stochastic gradient descent (SGD), with
fixed values of learning rate and momentum. When using the one-cycle policy, the neural
network was trained in one epoch with the SGD method. In the training process, the values
of the learning rate and momentum changed through a fixed number of training iterations.
The training process was divided into three stages. The first two stages had the same length,
and the final stage contained only a few iterations. The maximum value of the learning
rate was set in a first step. The minimum value of the learning rate was usually set at 0.2 or
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0.1 of the maximum value. At the first stage, the learning rate increased from the minimum
to the maximum value. In the second stage, the opposite was true. For the third stage,
1/100 of the maximum value was usually taken. The values of the momentum decreased
at the first stage and increased at the second and third stages (See Figure 3).
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This strategy to vary the parameters of the SGD optimizer was sort of a regularization
and helped to avoid overfitting the network and train it much faster [31]. Moreover, this
approach worked much faster than the classical one, since neural networks in the process
of such training achieved high performance in one training epoch.

The binary cross-entropy function was used as a loss function for training and the
mean function for the reduction of outputs.

2.8. Evaluation. Train and Test Splitting

The objects of the neural network analysis were the small patches of complete WSIs.
Therefore, a common mistake during the evaluation of the trained neural network was to
split the set of patches into training and test parts of the sample without considering the
WSIs these pieces were taken from. The patches of the same image had similar features:
a color scheme, characteristics for a given place and direction of the cross section of cell
structures, and a certain type of intercellular space. If some of these patches fell into the
training sample of the neural network, the network would learn to recognize them, and
the quality of the results on the test sample would be overestimated. However, the goal
was to apply the neural network for patches of completely new images, parts of which
had never been used during training. Therefore, the test would be valid if we split the
training and test samples before splitting the WSIs into patches. This approach complicated
the program code and introduced the problems associated with significantly different
proportions of classes in the training and test sets of images. However, it allowed one to
obtain an adequate quality criterion.

The entire sample of WSIs was split into train, validation, and test datasets in the ratio
of 60%, 20%, and 20%, respectively. The number of source images and patches of different
sizes is shown in the Table 3.

Neural networks made more reliable predictions when trained with balanced data.
Random oversampling was applied to the training sample to equalize the neural network
capabilities for adjusting weights for different classes.

2.9. PR Curves and Their Normalization

WSI patches that were confidently classified by a neural network were of great interest.
The PR curve enabled the assessment of the precision and the recall of the classification for
different values of the degree of confidence. It was plotted for each class of image patches.
We used the average area under the PR curves of all classes as an integral characteristic of
the classification quality for all classes.
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Table 3. Results of the splitting of the whole dataset on train, validation, and test sets.

Data Sets Number of WSIs in Set Patch Size
Class Names and Number of Patches in Each

AKG1 AKG2 AKG3 NG TA VA

Train 1071
224 × 224 39104 39573 1885 102101 288570 245649

500 × 500 7909 7831 356 20311 58977 50726

Validation 357
224 × 224 7543 6543 502 45447 103798 46193

500 × 500 1486 1236 94 9053 21260 9664

Test 357
224 × 224 9233 15640 601 38665 114408 48830

500 × 500 1857 3105 110 7646 23516 10242

For each class included in the integral characteristic with the same weight, the pro-
portion of patches in the test set should be the same. To ensure this, the undersampling
technique was used. After randomly selecting sets of WSIs of the test set, we calculated the
number of patches of each class, selected the smallest, and used this number to perform
random undersampling in all other classes.

With this approach, all PR curves had (1; alpha) as their rightmost point, where alpha
is the percentage of patches in the smallest class. Thus, the PR curves were normalized,
and the effect of different classes on the integral metric was equalized.

3. Results

In the first experiment, we trained a single neural network to classify patches of a WSI
into six classes. The neural network was trained according to the one-cycle policy. The
quality of the prediction was evaluated with the PR-AUC value for each class during
training. Figure 4 shows the variations in PR-AUC graphs.
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According to Figure 4, the classification quality of some classes increased or fluctuated
(NG and AKG2 classes), while the classification quality of other classes decreased (for
example, TA and VA classes). As a result of many experiments, it was not possible to find
out the optimal number of training iterations maximizing values of PR-AUC simultaneously
for all classes.

At some point, the PR-AUC values decreased, indicating almost random predictions.
This might be the consequence of extremely high values of neural network weights and
indicate the exploding gradient problem. The problem arises due to the exponential growth
of gradients in the training process, and in turn, the growth of the weights of the neural
network to infinity.

The weights of the network grew unequally for different classes. That is why we
constructed six independent neural networks to solve the one-vs-rest binary classification
problem. The classification quality in this case was evaluated with the accuracy, ROC-AUC,
and PR-AUC metrics. Neural networks based on ResNet and EfficientNet architectures
were compared, and the sizes of the WSI patches (224 × 224 and 500 × 500) were also
varied. Selected results for EfficientNet-B4 are shown in Figure 5.
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Figures 6 and 7 show the ROC and PR curves for the best trained models.
The best results were obtained for the NG class. This can be explained by a variety of

available images of this class and the lower specificity of healthy tissues. The rest models
demonstrated a lower quality of classification, since pathological tissues may have similar
features. Table 4 shows the best prediction results for each class, according to the ROC-AUC
and PR-AUC metrics. The EfficientNet-b4 model showed the best results for most tasks.

The problem of multi-label classification implies that it is the choice of a probability
threshold to determine whether an object belongs to a certain class. Several other metrics
can be applied in addition to ROC-AUC and PR-AUC, such as sensitivity, specificity,
precision, F1 score, and negative predictive value (NPV). All of them directly depend
on the value of the probability threshold. Table 5 shows the values of these metrics for
a threshold = 0.5 for both patch-level and WSI-level.
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Table 4. The best results obtained for each class, according to ROC- and PR-curve analysis.

Metrics Classes

NG AKG1 AKG2 AKG3 TA VA

ROC-AUC

Metrics value 0.96 0.85 0.94 0.91 0.80 0.84

CNN EfficientNet-b4 EfficientNet-b4 EfficientNet-b4 EfficientNet-b4 EfficientNet-b4 EfficientNet-b4/
ResNet-34

PR-AUC
Metrics value 0.86 0.53 0.77 0.70 0.51 0.53

CNN EfficientNet-b4 EfficientNet-b4 EfficientNet-b4 ResNet-34 EfficientNet-b4 EfficientNet-b4

The CNN classification can be transferred to the real images. Figure 9 shows the
output of the software, where the colors of the patches correspond to class colors in
Figures 4, 6 and 7. The software painted the patches where predicted class probability was
greater than 0.5.
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Table 5. Metric values for EfficientNet-b4 predictions. Patch-level evaluation corresponds to the WSI
level in a way similar to the micro-averaging corresponding to the macro-averaging.

Metrics Level
Classes

NG AKG1 AKG2 AKG3 TA VA

Accuracy
Patch 0.905 0.828 0.730 0.833 0.793 0.855

WSI 0.838 0.871 0.876 0.974 0.664 0.886

Precision
Patch 0.944 0.200 0.339 1.000 0.308 0.612

WSI 0.939 1.000 0.625 1.000 0.368 0.500

Sensitivity
Patch 0.463 0.009 0.669 0.000 0.190 0.372

WSI 0.553 0.000 0.577 0.000 0.318 0.277

Specificity
Patch 0.994 0.992 0.741 1.000 0.914 0.952

WSI 0.981 1.000 0.933 1.000 0.794 0.964

NPV
Patch 0.902 0.833 0.918 0.833 0.849 0.883

WSI 0.813 0.871 0.920 0.974 0.756 0.912

F1-score
Patch 0.622 0.017 0.450 0.000 0.236 0.463

WSI 0.696 0.000 0.600 0.000 0.341 0.357
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Figure 9. Examples of CNN predictions. The patches were painted when the predicted class
probability was greater than 0.5.

As an output of our program, we received the probability (the value from 0 to 1)
for each of the six tissue types that the patch belonged to. If all the probabilities were
below the threshold, we did not assign any class to the patch. In this case, the patch
may have belonged to the unknown class. When several classes had probabilities greater
than the threshold, the prediction was «mixed»; that is, the patch consisted of several
areas belonging to different tissue types. It would be inconvenient to analyze the result
of the painted WSI if we used special markers for all mixed types. Such patches could be
highlighted for the specialist; otherwise, we painted the mixed patches with the color of
the most probable type, while the threshold could be chosen by the user.

4. Discussion

The development of new methods for diagnosing colorectal cancer burdens pathol-
ogists with the work of segmentation. Deep learning has been successfully applied in
computational pathology in the past few years to automate this task. The computer
program can process large amounts of WSI automatically without feeling fatigue, thus
becoming a useful AI assistant for pathologists. The application of deep learning in the
diagnosis of colorectal or other types of cancer has many advantages, such as the high
speed of diagnosis. However, it has some limitations as well. Reliable identification of colon
tumors (Section 2.1) requires a similar amount of WSI for each type. This is quite difficult
to provide, due to the rare occurrence of certain diseases. Even for a human specialist,
the correct definition of the cancer is quite a difficult task. The problem of differentiation
between six types of lesions solved in this work is more complex, compared to the common
binary classification of histological images. This explains lower values of the area under
ROC curves, compared to the most published works [19,24,25,29].

The closest results were obtained recently by Masayuki Tsuneki and Fahdi Kana-
vati [37]. Using the database of 1799 WSI, they performed binary classification to detect
the colorectal poorly differentiated adenocarcinoma. Using the same transfer learning,
the authors managed to achieve a receiver operating characteristic curve-area under the
curves of up to 0.95. A strict comparison of this result with our 0.91 is inappropriate, due to
different database statistics, but a rough comparison is very useful. The test database of
M.Tsuneki and F.Kanavati consists of 74 WSIs with a poorly differentiated ADC diagnosis,
404 moderately differentiated ADCs, 643 adenoma, and 678 non-neoplastic subsets. The
authors focused on the problem of poorly differentiated ADC discrimination. This class
diagnosis is rare and requires special treatment.

Due to the rarity of the poorly differentiated ADCs, our dataset contained only 21 such
cases out of 1785 WSI. As we split the whole database into train 60%, validation 20%, and
test 20% parts, the last one contained only four WSIs with poorly differentiated ADCs.
Thus, the WSI-level error varied a lot during random sampling. The patch-level error was
more statistically stable but differed from the WSI-level value as much as the micro-average
score differed from the macro-averaged score.
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Our study clearly showed the complexity of differential diagnosis between the struc-
tures of tubular adenoma, villous adenoma, and well-differentiated adenocarcinoma in
conditions of insufficient data of these classes. The initial growth of highly differentiated
adenocarcinoma often occurs in tubular and villous adenoma, and when pathologists
label these H- and E-stained structures and face them with transition areas, they assign
an uncertain class. Other structures do not cause an ambiguous interpretation by different
specialists. This issue could be solved by multiple validation of the same WSI labelling by
several specialists.

Another weakness of the neural network in cancer diagnosis is its subjective predic-
tions. The neural network is trained on images labeled by a team of pathologists, and thus,
it will produce results similar to those of doctors. To achieve complete objectivity in cancer
diagnosis, data should be obtained with various equipment and labeled by different groups
of pathologists.

5. Conclusions

As a result of this study, a database of 1785 WSIs of colorectal tissues was collected.
A caching system containing WSI patches provided faster access to images and optimized
the use of computer memory. In total, more than 1.155 million pieces of size 224 × 224 and
more than 235,000 pieces of size 500 × 500 were processed. We applied a multi-label
approach to classify tissue images into six types of colorectal lesions. The probabilities
returned by six binary classifiers were not normalized because the WSI patches may belong
to several classes at once or may not belong to any of them.

Several experiments were carried out to test different neural network architectures
and patch sizes. The experiments were performed for both the multi-class classification and
the one-vs-rest classification. We found the multi-class classification problem to be difficult
for CNN, as it was not able to achieve a good performance for all classes simultaneously.
Due to the imbalance of classes in the dataset, the CNN demonstrated a relatively weak
classification performance of the AKG1, VA, and TA classes (ROC-AUC~0.8). For both
EfficientNet and ResNet-34 architectures, the CNNs were able to separate healthy and
pathological tissues with high precision (ROC-AUC = 0.96 and PR-AUC = 0.86 for the NG
class). Good results were obtained for predicting adenocarcinoma G2 and adenocarcinoma
G3 classes, with the values of the ROC-AUC equal 0.94 and 0.91, respectively. The Efficient-
Net architecture, in general, demonstrated better performance and more stable results. We
expect that the availability of a homogeneous distribution of data over different histological
categories may allow more than six classes to be classified.
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