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Abstract: We collected 20 explicit and stable numerical algorithms for the one-dimensional transient
diffusion equation and analytically examined their consistency and convergence properties. Most
of the methods used have been constructed recently and their truncation errors are given in this
paper for the first time. The truncation errors contain the ratio of the time and space steps; thus,
the algorithms are conditionally consistent. We performed six numerical tests to compare their
performance and try to explain the observed accuracies based on the truncation errors. In one of
the experiments, the diffusion coefficient is supposed to change strongly in time, where a nontrivial
analytical solution containing the Kummer function was successfully reproduced.

Keywords: truncation error; diffusion; heat conduction; explicit time-integration; unconditionally
stable numerical methods

1. Introduction

Fickian diffusion or Fourier-type heat conduction is one of the most fundamental
mass- or energy-transport processes. In the simplest case, it can be described by a single
linear partial differential equation (PDE) of space and time:

∂u(x, t)
∂t

= α
∂2u(x, t)

∂x2 (1)

where x, t ∈ R, u = u(x, t) is the concentration (temperature in case of heat conduction) as
a function of space and time, and α is the constant diffusion coefficient. The generalizations
of this equation, such as the advection (or drift)–diffusion equation and different kinds of
advection–diffusion–reaction equations [1], can model the transport and propagation of
various particles in physical, chemical and biological systems [2]. Moreover, very similar,
albeit more complicated, PDEs are used to model fluid flow through porous media [3], such
as moisture [4], ground water or crude oil in underground reservoirs [5].

It is well-known that countless numerical methods have been proposed to solve
Equation (1) and its generalizations. Most of them belong to the broad family of finite
difference schemes (FDM) [6,7], which often means a kind of method of lines [1], where
the spatial variables are discretized first to obtain an ordinary differential equation (ODE)
system and then an ODE solver is employed. Nevertheless, finite element methods (FEM)
are also used [8], especially if the geometry is complex. Most of these methods can be
considered either as an explicit or an implicit method, and sometimes they have a mixed
character [9]. If the physical properties, i.e., the coefficients of the equation, are highly
non-uniform in space, the eigenvalues of the system matrix likely have a range of several
orders of magnitude, which implies that one has a highly stiff problem. In this case, the so-
called Courant–Friedrichs–Lewy (CFL) limit (which refers to conventional explicit methods,
e.g., the Runge–Kutta or Adams–Bashforth schemes) is very small. This means that these
algorithms are unstable unless the time step size is smaller than this low threshold, and
therefore the simulation can be unacceptably slow.
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Since implicit methods have much better stability properties, they are frequently used
for these equations [10–16]. Nevertheless, they involve the solution of a system of algebraic
equations at each time step whose parallelization is much less straightforward than that
of explicit methods. Thus, the calculations can be time-consuming for very-large-sized
and non-tridiagonal matrices, which is the case when the number of space dimensions is
larger than one. In these cases, even the simplest explicit Euler time integration can be
much faster than the implicit one [10,11,17]. Regrettably, the formerly rapid increase of the
clock frequencies of processors disappeared about two decades ago, which reinforced the
progression towards increasing parallelism in high-performance computing [18,19].

These are the main reasons why there is a growing interest in explicit and uncondi-
tionally stable algorithms [20–26]. In the last few years, our research group has developed
a couple of new algorithms of this kind. In our original papers [14,27–33], we examined
our new methods analytically and proved that they are indeed unconditionally stable for
the linear heat equation. However, when we examined the consistency, we always found
that they were only conditionally consistent, in accordance with the literature [11,12,25,34]
(p. 120). The goal of this paper is to collect a large number of these methods, give their
truncation error, and draw some consequences about the accuracy of the methods. Note
that in textbooks and monographs, typically the standard methods, such as the explicit and
implicit Euler, as well as the Crank–Nicolson method, are analyzed [35,36]. Richtmyer and
Morton [12,13,37], as well as Mitchell and Griffiths [13,14,38], give the principal terms of
the truncation error of the Dufort–Frankel method, but none of them do the same for the
odd–even hopscotch method, albeit the latter book devotes four pages to that method. We
emphasize that the truncation errors of some of the methods have never been calculated
before and this might constitute the main novelty of our paper. In the case of our methods,
the convergence properties were analyzed previously not via the truncation errors, but in a
different way. As we will explain in detail later, this means that the numerical solutions
given by the methods were compared to the known analytical solution of the ODE system
obtained after the space discretization of the PDE (1). If possible, we will provide both
kinds of errors here and compare them. We will also perform some numerical tests aiming
to underpin the theoretical results. We note that it was demonstrated that these methods
can be used for extremely stiff systems in more than one space dimension. They can provide
fairly accurate results much faster than the widely used Runge–Kutta algorithms [14,15,39]
or the professionally optimized MATLAB ‘ode’ solvers. Nevertheless, in the current paper,
the purpose of the numerical examples is not to test them under extreme conditions, but to
illustrate the theoretical results and see which method is more competitive for the studied
Equation (1). We stress that unconditional stability is not the rule but rather the exception
in the huge crowd of explicit methods. It is well known, for example, that no explicit
Runge–Kutta method can be A-stable [40] (p. 60). Therefore, unconditionally stable explicit
methods are rarely tested against one another, and performing tests with 20 of them is
absolutely unique.

The rest of the paper is organized as follows. In Section 2 we briefly present the
numerical algorithms. In Section 3 we describe the different methods for the investigation
of consistency and convergence, then presents the calculated error terms. The numerical
experiments are presented in Section 4, while the conclusions are summarized in Section 5.

2. The Analyzed Numerical Methods

We considered the 1D interval x ∈ [x0 , xN ] with length L = xN − x0 and constructed
an equidistant spatial grid with the node coordinates x0 , x1 , . . . , xN , so xj = xj−1 + ∆x,
j = 1, . . . , N, ∆x = L/N . The time variable is also discretized, so if t ∈

[
t0, tfin], then

tj = t0 + j∆t , j = 1, . . . , T, T∆t = tfin − t0. The mesh-ratio is defined as usual, r = α ∆t
∆x2 . In

this work, only the simplest case of Equation (1) (one space-dimensional equidistant mesh
and constant α coefficient) was examined, but we give the original publications where
more details can be found about the application of the methods for general meshes as well.
Let us start with a brief presentation of the defining formulas of the methods.
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1. The UPFD method is proposed by Chen-Charpentier and Kojouharov [41] for the
linear diffusion–advection–reaction PDE. It is a non-standard combination of the
explicit and implicit Euler discretizations, where only the actual node is considered
implicitly and the neighbors explicitly. In the case of Equation (1) it reads:

un+1
i − un

i
∆t

=
α

∆x2

(
un

i−1 − 2un+1
i + un

i+1

)
. (2)

The fully explicit form is:

un+1
i =

un
i + r

(
un

i−1 + un
i+1
)

1 + 2r
, (3)

2. The first scheme we invented is the so-called constant neighbor (CNe) algorithm [32,42],
which has the following formula:

un+1
i = un

i · e−2r +
un

i−1 + un
i+1

2

(
1− e−2r

)
, (4)

3. The CpC method [31] is the organization of the CNe scheme into a two-stage algorithm.
The first stage is a fractional time step with length p∆t with the CNe formula:

uCp
i = un

i e−2pr +
un

i−1 + un
i+1

2

(
1− e−2pr

)
.

These new and the old values are combined linearly to obtain the predictor values:

upred
i =

(
1− 1

2p

)
un

i +
1

2p
uCp

i .

These are used at the second stage, which is a full-time step size corrector step; thus,
the final values are:

un+1
i = un

i · e−2r +
upred

i−1 + upred
i+1

2

(
1− e−2r

)
, (5)

4. CpCC: We now make an attempt to improve the accuracy of the CpC method by
iterating one more time using the values obtained by the CpC method as predictors.
So, after executing Formula (5) in the CpC method, we set upred

i = un+1
i and then

calculate Formula (5) again.
5. The two-stage linear-neighbor (LNe or Lne2) method [32] starts with taking a full-size

time step with the CNe method to obtain the predictor values upred
i , which are valid

at the end of the current time step. Using these values, a quantity can be introduced:

si = upred
i−1 + upred

i+1 − un
i−1 − un

i+1,

which is proportional to the aggregated or effective slopes of the neighbors of node i. Now
the corrector values of the two-stage LNe method are:

un+1
i = un

i e−2r +
un

i−1 + un
i+1

2

(
1− e−2r

)
+

si
2

(
1− 1− e−2r

2r

)
. (6)

6. The LNe3 method is a three-stage algorithm [32] whose first two stages are the same
as the LNe schemes. At the end of its second stage, based on the corrector values in
Equation (6), one can set upred

i = un+1
i , recalculate the slopes si and then repeat (6) to

obtain new corrector results. This procedure gives a three-stage scheme altogether.
This algorithm is still second-order, but more accurate than LNe2.
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7. The LNe4 method is a four-stage algorithm, which is obtained by repeating the
procedure explained in the previous point after the calculations of the LNe3 method.

8. The CLL method [33] is very similar to the LNe3 method, but it applies fractional
time steps at the first and second stages with step sizes ∆t1 = p∆t , ∆t2 = p2∆t. Due
to these, it achieves third-order convergence in the time step size, but only if p2 = 2/3.
If the length of the second stage is not fixed to this value, then low-order expressions
with coefficient 3p2 − 2 appear in the truncation errors, which make the method
second-order only. In this paper, we fixed p2 = 2/3 and keep p as a free parameter.
Therefore, the first stage applies the following formula:

uC
i = un

i · e−2pr +
un

i−1 + un
i+1

2

(
1− e−2pr

)
In the second stage, a formula similar to (6) is used, but with a reduced time step size:

uCL
i = un

i e−4r/3 +
un

i−1 + un
i+1

2

(
1− e−4r/3

)
+

s1
i

2p

(
2
3
− 1− e−4r/3

2r

)
, (7)

where s1
i = uC

i−1 + uC
i+1 − un

i−1 − un
i+1. In the third stage, a full time step is taken:

un+1
i = un

i e−2r +
un

i−1 + un
i+1

2

(
1− e−2r

)
+

3s2
i

4

(
1− 1− e−2r

2r

)
, (8)

where s2
i = uCL

i−1 + uCL
i+1 − un

i−1 − un
i+1.

9. The pseudo-implicit (PI) two-stage method was developed in our previous publica-
tion [14] (Algorithm 5 there) for the conduction–convection–radiation equation. Here,
we apply it only to the pure diffusion Equation (1) with parameter λ = 1, which
means that a half time step is taken to obtain the predictor values and then a full time
step for the corrector values. The formulas are the following:

Stage 1: upred
i =

un
i +

r
2 (un

i−1+un
i+1)

1+r

Stage 2: un+1
i =

(1−r)un
i +r

(
upred

i−1 +upred
i+1

)
1+r ,

Note that the trick of the implicit and explicit treatment of the actual node and its
neighbors is the same as in the UPFD method, so this PI method can actually be considered
as a generalization of the UPFD scheme.

10. The alternating direction explicit (ADE) scheme is a known [26,43] but non-conventional
method for which the condition of consistency is also known. We include it here
for comparison purposes. In a one-dimensional equidistant mesh, one splits the
calculation, i.e., first sweeps the mesh from the left to right, and then vice versa. In
the case of Dirichlet boundary conditions at nodes 0 and N, one sets:

pn
i = un

i , i = 1, . . . N , pn+1
0 = un+1

0 and qn
i = un

i , i = N − 1, ...1 , qn+1
N = un+1

N .

Then, the following equations are solved from left to right and from right to left,
respectively:

pn+1
i − pn

i
∆t

=
α

∆x2

(
pn+1

i−1 − pn+1
i − pn

i + pn
i+1

)
and

qn+1
i − qn

i
∆t

=
α

∆x2

(
qn

i−1 − qn+1
i − qn

i + qn+1
i+1

)
. (9)

The explicit expressions are the following:

pn+1
i =

(1− r)pn
i + r

(
pn+1

i−1 + pn
i+1

)
1 + r

and qn+1
i =

(1− r)qn
i + r

(
qn

i−1 + qn+1
i+1

)
1 + r

. (10)
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The final values are the simple averages of the two half-sided terms: un+1
i =

(
pn+1

i + qn+1
i

)
/2.

If one expresses the final value of u, one obtains:

(1 + r)un+1
i = (1− r)un

i + r/2
(

un
i−1 + un+1

i+1 + un+1
i−1 + un

i+1

)
,

which is actually the same formula as in the Crank–Nicolson method, though the solution
of this system of equations is completely different in the two methods. We note that for non-
uniform meshes, the ADE method loses its fully explicit character and matrix calculations
will be necessary.

11. The Dufort–Frankel (DF) method [44] (p. 313) is the textbook example of explicit
and unconditionally stable methods. It is a one-stage but two-step algorithm with
the formula:

un+1
i =

(1− 2r)un−1
i + 2r

(
un

i−1 + un
i+1
)

1 + 2r
.

This method is not a self-starter, and thus u1
i has to be calculated from u0

i using another
method. We use two half-sized UPFD time step for this purpose.

For the application of odd–even hopscotch methods, the space must be discretized by
a special, so-called bipartite grid. The cells are labelled as odd and even, and all the nearest
neighbors of the odd nodes are even and vice versa. The spatial and temporal structure
of the examined algorithms in space and time are presented in Figure 1. Only one odd
and one even cell for each method is shown in the figure, where the time flows from the
top to the bottom. The stages are symbolized by colored rectangles, while the repeating
units of blocks are surrounded by dashed blue lines. In the case of the shifted-hopscotch
structure (b), for example, this unit consists of two half and three full time steps which
altogether span two full time steps for each node. First, a half-sized time step (symbolized
by a green box with the number ‘1’ inside in Figure 1b) is taken for the odd cells using the
initial values, then full time steps are taken strictly alternately for the even and odd cells
until the end of the last time step (orange boxes), which should be halved for odd cells to
reach exactly the same final time as the even nodes do. The main point is that when a new
value of ui is calculated, the latest values of the neighbors ui±1 must always be used, which
ensures stability and quite fast convergence at the same time.
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12. The original odd–even hopscotch (OOEH) algorithm has been used for half a cen-
tury [45]. The structure of this algorithm is shown in Figure 1a. It uses the usual
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FTCS formula (based on explicit Euler time discretization) at the first stage (labels
‘1’ in the orange boxes in the figure) and the backward time central space (BTCS)
formula (implicit Euler time discretization, labels ‘2’ in the figure) at the second stage,
which are the following: FTCS: un+1

i = (1− 2r)un
i + r

(
un

i−1 + un
i+1
)
, implicit Euler:

un+1
i =

un
i +r(un+1

i−1 +un+1
i+1 )

1+2r .
13. The RH, or reversed (odd–even) hopscotch scheme [28], applies the same structure

as the OOEH method, but the order of the formulas are interchanged, so the implicit
formula comes first followed by the explicit one. One might think that this algorithm
cannot be explicit, since the new values of the neighbors are not known when first-
stage calculations start. To resolve this, the implicit formula is applied with the UPFD
trick, which means the neighbors are treated not implicitly, but explicitly; thus, the
first-stage formulas are:

un+1
i =

un
i + r

(
un

i−1 + un
i+1
)

1 + 2r
. (11)

Since, as we mentioned, the latest values of the neighbors are always used, it is enough
to change the formulas of the first and second stages in the code of the OOEH to obtain
the code of the RH algorithm. We demonstrated that this RH algorithm has much smaller
errors in the case of extremely stiff systems than the OOEH method.

14. The OEH-CNe (odd–even hopscotch with CNe) applies the same structure as the
OOEH method again, but uses only the CNe formulas (4) appropriately.

15. The shifted-hopscotch (SH) algorithm [29] uses the theta formulas:

unew
i =

(1− 2rθ)uold
i + r

(
ulatest

i−1 + ulatest
i+1

)
1 + 2r(1− θ)

, (12)

where the ‘old’ and ‘latest’ labels refer to the appropriate time levels, which can be seen
in Figure 1b. We always use the θ values which are proven to yield the most effective
version (S4 algorithm in [29]). More concretely, θ = 0 is used at the first stage and
θ = 1/2 in the second, third and fourth, while θ = 1 is used at the fifth stage. When the
length of the stage is halved, ∆t and thus r must be divided by 2 as well in (12).

16. The shifted-hopscotch–CNe (SH-CNe) algorithm [29] applies the same space-time
structure as the SH method, but uses only the CNe formulas (4) appropriately. For
example, the calculation at the first stage is the following:

un+1/2
i = un

i · e−r +
un

i−1 + un
i+1

2
(
1− e−r). (13)

17. The asymmetric-hopscotch (ASH) method [46] is similar to the SH one, but with only
three stages. As is shown in Figure 1c, there are two half and one full time step size
stages with the θ formula, which together span one full time step for all nodes. Based
on numerical experiments, the algorithms have optimal performance if θ = 0 is used
at the first, θ = 1/2 at the second, and θ = 1 at the third stage (A1 algorithm in [46]).

18. The asymmetric-hopscotch–CNe (ASH-CNe) algorithm applies the same structure as
the SH method, but uses the CNe Formulas (13) and (4) appropriately.

19. The next method is the leapfrog-hopscotch (LH) method [28]; see Figure 1d. As we
will see, this is a very powerful method if one uses θ = 0 at the first stage and θ = 1/2

in all other stages (L2 algorithm in [30]).
20. The leapfrog-hopscotch–CNe (LH-CNe) method [30] is obtained if one replaces the θ

formulas in the previous LH algorithm with the CNe formula in each stage of the LH
structure (Figure 1d), appropriately.

The algorithms and some of their properties are summarized in Table 1; for example,
the order of temporal convergence, marked by ‘O’. All of the twenty algorithms are un-
conditionally stable for the linear diffusion equation, i.e., the previously mentioned CFL
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limit is not valid for them. Some of them have the additional, stronger feature that the
new un+1

i values are the convex combination of the initial u0
j values, which is indicated in

the last column of the table. It implies that the maximum and minimum principles [34]
(p. 87) are always fulfilled and unphysical oscillations are never produced, even for very
large time step sizes. On the other hand, this favorable property restricts the speed of the
convergence of these methods, so they are often the least accurate for small and medium
time step sizes, as we will observe later. It means they significantly underestimate the
speed of the diffusion process, especially for large and medium time step sizes.

Table 1. List of the methods and their abbreviations.

Abbrev. Name of the Method Recent Known LTE O Conv. Comb.

1. UPFD Uncond. positive finite difference - + 1 +
2. CNe Constant neighbor + + 1 +
3. CpC Two-stage iterated CNe + - 2 +
4. CpCC Three-stage iterated CNe new - 1 +
5. LNe Two-stage Linear neighbor + + 2 +
6. LNe3 Three-stage iterated CNe + - 2 +
7. LNe4 Four-stage iterated CNe + - 2 +
8. CLL Const.-Lin.-Lin. neighbor fract. step + + 3 -
9. PI Pseudo-implicit + - 2 -
10 ADE Alternating direction explicit - + 2 -
11 DF Dufort-Frankel - + 2 -
12 OOEH Original odd–even hopscotch - ? 2 -
13 RH Reversed hopscotch + - 2 -
14 OEH-CNe OEH structure with CNe formulas + - 2 +
15 SH Shifted hopscotch + - 2 -
16 SH-CNe SH structure with CNe formulas + - 2 +
17 ASH Asymmetric hopscotch + - 2 -
18 ASH-CNe ASH structure with CNe formulas + - 2 +
19 LH Leapfrog-hopscotch + - 2 -
20 LH-CNe LH structure with CNe formulas + - 2 +

All methods containing the CNe or LNe formula, as well as the LH, RH, SH, ASH and
the PI methods, have been recently constructed by our research group, which is indicated
after the name of the method in the Table. In our original papers, some analytical proofs,
verifications using analytical solutions and numerical tests to compare performances are
presented. However, in most cases, the truncation error has not been calculated (marked
by a ‘-’ sign in the “known LTE” column).

3. Analytical Results

The most widespread definition of the truncation error is the difference between the
discretized and the exact equation [47] (p. 31). For example, in the case of Equation (1) and
the forward time central space (FTCS) method,

τ = D+
t u− D2

xu, (14)

where

D+
t u =

u
(

xn
i , tn + ∆t

)
− u

(
xn

i , tn)
∆t

and D2
xu =

u
(

xn
i − ∆x, tn)− 2u

(
xn

i , tn)+ u
(
xn

i + ∆x, tn)
∆x2

are the first-order forward and second-order central difference operators for the time
and the space variable, respectively. The Taylor-series expansions of u are inserted into
Equation (14). The function u is supposed to be the exact solution, thus the substitutions
ut = αu(2x), u(2t) =

(
αu(2x)

)
t
= α2u(4x), u(3t) = α3u(6x) and so on can be used. The

discretization error of D2
x is:
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τ0 = ε0 = − α

12
u(4x)∆x2 − α

360
u(6x)∆x4 − α

20, 160
u(8x)∆x6 + h. o. t., (15)

The discretization error of the D+
t operator depends only on ∆t, thus the space- and

time-dependent terms in the truncation error can be clearly separated. This is not true in
our cases, where there are terms containing the ratio of ∆t and ∆x. Moreover, for multistage
methods, an expression with a similar form as (15) cannot be obtained, or the method is not
clearly a FDM at all, since the differentiation with respect to time is not approximated by a
finite difference operator. Nevertheless, all of the examined methods are explicit, and thus
they can almost always be expressed in the fully explicit form un+1

i = f
(
un

i , un
i±1 , . . .

)
,

where there are no quantities at the new n+1 time level present in the right-hand side, but
the f function has the parameter r. Note that in the numerical codes, these forms are used.

The Taylor series expansion can be performed at this level as well [30]. In this way,
one obtains the difference between the numerical and the exact solution. Let us denote the
truncation error obtained by choosing this way by ε. To present a simple example, in the
case of the UPFD method, τ is obtained when the expansions are applied to Equation (2),
while ε is obtained when it is applied to Equation (3). In the latter case, the (1 + 2r)−1

coefficient must also be expanded and the result will be different from τ. One of the sources
of the difference is that when Equation (3) is obtained from Equation (2), we multiplied it by
∆t, which is quite common; see p. 20 in [37]. Therefore, ε must be divided by ∆t to make the
two kinds of errors comparable. In fact, after this division, both τ and ε give an estimation
for the global error [30]. However, we will see that τ and ε are usually still different and it
is a nontrivial question which one reflects more the properties of the numerical scheme,
i.e., which one is more useful for practical purposes.

The term (15) is present in case of all the examined methods, both in τ and in ε. We
note that the higher order terms (h. o. t.) will be usually omitted for the sake of brevity. The
τ and ε errors have been calculated in most cases by both the first and the second author
completely independently.

If one follows the so-called method of lines, where Equation (1) is discretized only
spatially using the central difference formula, one obtains the ODE system:

d
→
u

dt
= M

→
u ,

→
u (t = 0) =

→
u

0
, (16)

where
→
u

0
is the arbitrary initial vector. The elements of M can be given as:

mii = −
2α

∆x2 , mi,i+1 = mi,i−1 =
α

∆x2 (1 < i < N),

while the first and last row are determined by the boundary condition. The exact solution
of (16) at the end of a time step is the following:

→
u

n+1
= eM∆t→u

n
=

(
1 + M∆t + M2 ∆t2

2
+ M3 ∆t3

3!
+ O

(
∆t4
))→

u
n
.

Here, as well as in the case of the e−2r-type terms in the CNe, LNe, etc., methods, the
usual series expansion e±x = 1± x + x2/2! ± x3/3! +O

(
x4) is used up to the appropriate

order. After some simple algebraic calculations, we obtained the expressions of a general
element of the exact solution after one and two time steps:

un+1
i =

r2

2
un

i±2 +
(

r− 2r2
)

un
i±1 +

(
1− 2r + 3r2

)
un

i + O
(

r3
)

, (17)

and
un+2

i = 2r2un
i±2 +

(
2r− 8r2

)
un

i±1 +
(

1− 4r + 12r2
)

un
i + O

(
r3
)

, (18)
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respectively. The simple notation un
i±j = un

i+j + un
i−j , i, j ∈ N+ has been introduced for

brevity. Formulas (17) and (18) are valid if we are far enough from the boundaries. To ensure
this, we always examine the middle element of a large enough matrix. A similar expression
can be obtained for each numerical method. More precisely, for the hopscotch methods, we
have different formulas for the odd and the even nodes. If the smallest repeating unit spans
one or two time steps, then Equation (17) or (18) must be used, respectively. The local error
is the difference between the analytical and the numerical expressions, which is divided
by ∆t again to obtain the global error, which is denoted by δ. We say that a method is,
e.g., second-order if the zeroth- and the first-order terms vanish in δ, and the second-order
terms have the lowest order. This kind of investigation has been performed for some of our
methods in the original publications, but only in order to prove the order of the method.
The first non-vanishing terms are given for the first time here, which is also a novelty in the
current paper.

The calculated errors are presented in the Appendix A.

4. Numerical Experiments

In this section, we reproduce nontrivial analytical solutions in one space dimension.
The Dirichlet boundary conditions at the two end points of the interval and the initial
u0(x, t) function were obtained by simply substituting the appropriate x and t values
into the analytical solution. The MATLAB R2019b software was used for all numerical
calculations. We calculated the eigenvalues of the M matrix in Equation (16) for this
problem. Using these, the stiffness ratio and the largest time step size where the standard
FTCS method is stable can be determined as usual [33].

To measure the accuracy, the widely used L∞ error is calculated, which compares the
exact value uanalytic

i and the result unum
i obtained by the actual numerical method at the

final time tfin:
Error = max

1≤i≤N

∣∣∣uanalytic
i (tfin)− unum

i (tfin)
∣∣∣. (19)

Experiment 1. We are going to reproduce the following reference solution, which is a
quite recent [48] analytical solution:

uanalytic(x, t) =
x

t7/2

(
1− x2

3αt
+

x4

60α2t2

)
e−

x2
4αt . (20)

We considered the domain with the boundaries x0 = −5, xN = 5, t0 = 0.3, tfin = 0.56,
while α = 1. We set ∆x = 0.02, which implies that the stiffness ratio is 1.01 · 105, while
∆tFTCS

MAX = 3.9 · 10−4. We examined the error defined in (19) as a function of the time step
size ∆t. First, the errors were calculated for a very large ∆t, then with decreased time step
sizes until small error values were obtained. In Figures 2 and 3, the errors as a function
of the time step size are shown in log-log diagrams. Since we used a fixed-space step size
and decreased only the time step size, the errors cannot go to zero, but only to the residual
error due to space discretization, which is given by (15). This can be seen in the bottom left
of the figures. One can notice that although the CLL method is third-order and it is much
more accurate than the LNe method, it converges more slowly than the hopscotch-type
methods. In accordance with some experiments in our previous papers, the LH method
was the most accurate.
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Figure 3. The errors as a function of the time step size for the quickly converging methods, as well as
the CLL method in the case of Experiment 1. The error curves reach the residual error τ0 on the left
side of the figure.

Figures 4–6 show how the numerical solutions approximate the analytical solution
as the time step size is decreased. In the case of the one-stage CNe method and the three-
stage CLL methods, the curves are smooth without unphysical oscillations, while the ASH
method produces significant oscillations for larger time step sizes. On the other hand,
the CNe method converges very slowly and the CLL converges at a medium rate, while
the ASH converges much faster. Some investigation of the behaviour of the errors are
presented in our previous paper [39], as well for fixed time step size and space-dependent
diffusion coefficient.
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Figure 6. The numerically calculated temperatures u for the three-stage ASH method as a function of
the space variable x for different time step sizes in Experiment 1. The red and the black solid lines are
for the initial and the analytically calculated temperatures, respectively.

Experiment 2. The solution of the semi-discretized Equation (16) was also calculated
numerically by the ode15s MATLAB routine with a very stringent tolerance. The spatial
domain was extended to x0 = −10, xN = 10 , but all other circumstances of Experiment 1,
including the analytical solution (20) and the spatial step size ∆x = 0.02, still hold. In
Figure 7, we present the errors for six methods when not only the analytical, but the
numerical reference was used for the error calculation in Formula (19). One can see that
if the numerical reference is used, the residual errors disappear, and for very small time
step sizes, the error of the third-order CLL method goes below the errors of the second-
order methods.

Experiment 3. In this subsection, x0 = −5, xN = 5, t0 = 0.3, tfin = 0.5. The space step
size ∆x varied, but all other parameters of Experiment 1 were preserved. For comparison
purposes, we used the very common implicit (Euler) method:

un+1
i = un

i + r
(

un+1
i−1 − 2un+1

i + un+1
i+1

)
,

which was implemented by matrix inversion.
In our previous publications, we measured the running times and conveyed plenty of

examples where the traditional methods were outperformed by the explicit and uncondi-
tionally stable ones. Therefore, our main purpose with these standard schemes was not the
comparison of the performances, but to compare the behavior of the errors of the 20 con-
ditionally consistent schemes with an unconditionally consistent case, so that we could
explain properly the connection between the truncation errors and the observed errors.
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Figure 7. The errors as a function of the time step size for six methods in Experiment 2 when not only
the analytical but a numerical reference solution was used to calculate the errors.

First, the space step is considered as a parameter with six different values of ∆x (five
in the case of the implicit method, since it has much larger running times). The error-
curves are presented for the first-order UPFD and implicit methods in Figure 8, while
Figure 9 contains the results for the second-order LNe and LH methods. The curves of the
UPFD, LNe and LH method cross one another, because if the space step size is smaller, the
convergence is slower due to the ∆t2∆x−4 type terms in the truncation error. It is easy to
see that for a fixed time step size, decreasing space step sizes does not yield better accuracy.
In the case of the implicit method, however, the error decreases if either the time or the space
step is decreased. In the case of the UPFD and the LNe method, the horizontal distance
between the neighboring curves (belonging to a certain ∆x and its half ∆x/2) is a factor of
4, while it is only a factor of 2 for the LH method. This can be explained by the truncation
error terms of ∆t∆x−2 of the UPFD and ∆t2∆x−4 of LNe schemes, and, on the other hand,
the term ∆t2∆x−2 of the LH scheme. If the exponent in the denominator is twice as large as
in the numerator, then ∆t must be divided by four to counterbalance the division of ∆x by
two in order to keep the error constant.
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for the UPFD and the implicit method, respectively.
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Experiment 4. We conducted a case study considering ∆t→ 0 when ∆t/(∆x)2 = 0.2
was fixed. All parameters were the same as in Experiment 3. The error curves can be
seen in Figure 10 for all the 20 methods. Two groups of the methods can be clearly
distinguished. The errors of the first group tended to constant values, since their truncation
errors contained terms where the exponent of the space step size in the denominator
was twice as large as that of the time step size in the numerator. These algorithms were
not convergent under these circumstances. On the other hand, the errors of the second
group tended to zero, which means they did not have truncation error terms of ∆tn∆x−2n.
The results of this numerical investigation are consistent with the analytically calculated
truncation error expressions which were detailed in Section 2. The exceptions are the SH
and the ASH methods, for which we were not able to calculate the τ errors, only the ε ones
(see Equations (A1) and (A2)), which contain the critical ∆tn∆x−2n terms. In these cases,
the ε errors do not properly reflect the observed properties of these methods from this point
of view; thus, we think that further investigations would be necessary.
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Figure 10. The maximum errors as a function of the time step size in Experiment 4 for a constant
r = α ∆t/∆x2. This means that the space step size also decreases from the right to the left side of
the figure.

Experiment 5. Here, everything was the same as in Experiment 1, with the exception
that the diffusion coefficient and the final time were increased to α = 2 and tfin = 5, while
∆x = 0.01. The error-curves are presented in Figures 11 and 12 for the slowly and the
quickly converging methods. We also examined how the maximum errors developed as
time elapsed for a given medium-sized time step size. Figures 13 and 14 show that after a
sharp increase, the accumulated errors themselves diffuse away and the errors tend slowly
toward zero, after some small fluctuations in case of a few quickly converging methods.
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Figure 13. The evolution of the maximum errors as a function of the physical time t for the slowly
converging methods in Experiment 5. The used time step size is ∆t = 4.7 · 10−3.
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Figure 14. The evolution of the maximum errors as a function of the physical time t in the case of fast
converging methods in Experiment 5. The used time step size is rather large: ∆t = 1.25 · 10−2.
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Experiment 6. We next considered the generalized diffusion equation where the
diffusion constant has a power-law time dependence:

∂u(x, t)
∂t

= α̂ tn ∂2u(x, t)
∂x2 , (21)

where α̂ is considered a constant. The function:

u(x, t) =
x

tb−a e−
(1+n)x2

4α̂t2b KM

[
1 + n− a

1 + n
,

3
2

,
(1 + n)x2

4α̂t2b

]
. (22)

is a very recent [30] analytical solution of Equation (21) if b = (1 + n)/2 and KM is the
Kummer–M function, which was calculated here by the hypergeom function of MATLAB.
We set the parameter values α̂ = 3.1, a = 39.2, n = 10.4 , x0 = −2, xN = 2, t0 = 0.9,
tfin = 0.94 and ∆x = 0.01. Figures 15 and 16 show the maximum errors as a function of
the time step size for the slowly and quickly converging schemes, respectively. Figure 17
shows the initial temperatures u0, the analytical solution uanal and some numerical results,
which were obtained with four different methods using different time step sizes.
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methods in the case of Experiment 6, where the diffusion constant strongly depends on the time.
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Figure 17. The temperature u as a function of the space coordinate x in Experiment 6. This figure
shows the initial temperatures u0, the analytical solution uanal and the numerical results, which were
obtained with four different methods using different time step sizes.



Algorithms 2022, 15, 425 20 of 26

5. Discussion and Summary

We have studied 20 numerical methods for the non-steady-state linear diffusion
equation. All of the algorithms are unconditionally stable explicit methods; 16 of them have
been recently constructed by our research group. We have calculated the truncation errors
for each algorithm, which was unknown until now in several cases. Moreover, we have
considered another method of investigation, in which the numerical solution is compared
to the concrete analytical solution of the ODE system, which is obtained by the spatial
discretization of the PDE. We think that this latter method produces errors which explain
the observed numerical order of the algorithms more clearly if the spatial discretization
is kept fixed and only the time step size is decreased, especially when the stiffness ratio
is high.

We have reproduced a recent analytical solution by the studied 20 numerical methods
in six numerical experiments. We have made attempts to explain the observed numerical
errors based on the analytically calculated truncation errors. We emphasize again that
although these algorithms are only conditionally consistent, they give accurate results for
time step sizes orders of magnitude larger than the standard explicit methods, and faster
(for large systems) than the implicit methods.
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Appendix A

Here, we present those errors which we were able to calculate.

1. UPFD

τUPDF = τ0 + 2α2 u(2x)

∆x2 ∆t +
α2

2
u(4x)∆t + α3u(4x)

∆t2

∆x2 +
α3

6
u(6x)∆t2

εUPDF = ε0 + 2α2 u(2x)

∆x2 ∆t +
2
3

α2u(4x)∆t +
α2

180
u(6x)∆x2∆t− 4α3u(2x)

∆t2

∆x4 −
α3

3
u(4x)

∆t2

∆x2 +
7
45

α3u(6x)∆t2

δUPFD = − β2

2
(
un

i±1 − 2un
i
)
∆t +

5β3

2
(
un

i±1 − 2un
i
)
∆t2 + O

(
∆t3
)

.

2. CNe

τCNe = εCNe = ε0 + α2 u(2x)

∆x2 ∆t +
7
12

α2u(4x)∆t +
α2

360
u(6x)∆x2∆t− 2

3
α3u(2x)

∆t2

∆x4 −
α3

18
u(4x)

∆t2

∆x2 +
89

540
α3u(6x)∆t2

δCNe =
β2

2
(
un

i±1 − 2un
i
)
∆t− 5β3

2
(
un

i±1 − 2un
i
)
∆t2 + O

(
∆t3
)

3. CpC. If the parameter p is kept, we have:

εCpC = ε0 +
α2

12
u(6x)∆x2∆t +

α3
(

360(1 + 3p)u(2x) + 30(19 + 21p)∆x2u(4x) + (271 + 93p)∆x4u(6x)

)
1080∆x4 ∆t2.
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One can see that the error decreases with decreasing p. However, the stability analysis
in our original paper showed that p must be at least 1

2 for unconditional stability, thus this
is the optimal choice for p. With this, we have:

εC 1
2 C = ε0 +

α2

12
u(6x)∆x2∆t +

5
6

α3u(2x)
∆t2

∆x4 +
59
72

α3u(4x)
∆t2

∆x2 +
127
432

α3u(6x)∆t2

δC 1
2 C =

β3

12
(
un

i±2 + un
i±1 − 2un

i
)
∆t2 + O

(
∆t3
)

4. CpCC: Let us keep p as a free parameter. However, during the calculations, p cancels
out from all the considered terms and we obtain:

εCpCC = ε0 + α2 u(2x)

∆x2 ∆t +
7

12
α2u(4x)∆t +

α2

360
u(6x)∆x2∆t− 2

3
α3u(2x)

∆t2

∆x4 −
α3

18
u(4x)

∆t2

∆x2 +
89
540

α3u(6x)∆t2

δCpCC =
1
2

β2(un
i±2 − 2un

i±1 + 2un
i
)
∆t2 +

1
3

β3[un
i±3 − 6un

i±2 + 11un
i±1 − 12un

i
]
∆t3 + O

(
h4
)

.

One can see that the extra iteration does not improve but deteriorates the accuracy.
That is why we need the linear-neighbor approximation for further improvement.

5. LNe:

εLNe = ε0 − α2

12 u(6x)∆x2∆t− α2

160 u(8x)∆x4∆t + α3u(2x)
∆t2

∆x4 +
11
12 α3u(4x)

∆t2

∆x2 +
37

120 α3u(6x)∆t2

+ 211
20,160 α3u(8x)∆x2∆t2 − 4

3 α4u(2x)
∆t3

∆x6 − 17
18 α4u(4x)

∆t3

∆x4 − 77
540 α4u(6x)

∆t3

∆x2 +
943

30,240 α4u(8x)∆t3

δLNe = − β3

6
(
un

i±1 − 2un
i
)
∆t2 +

7β4

24
(
un

i±1 − 2un
i
)
∆t3 + O

(
∆t4
)

.

6. LNe3:

εLNe3 = ε0 − α2

12 u(6x)∆x2∆t− α2

160 u(8x)∆x4∆t + 1
6 α3u(4x)

∆t2

∆x2 +
1
9 α3u(6x)∆t2 + 31

480 α3u(8x)∆x2∆t2

+α4u(2x)
∆t3

∆x6 +
19
12 α4u(4x)

∆t3

∆x4 +
301
360 α4u(6x)

∆t3

∆x2 +
4159

20,160 α4u(8x)∆t3

δLNe3 = − β3

12
(
un

i±3 − 4un
i±2 + 7un

i±1 − 8un
i
)
∆t2 − β4

24
(
7un

i±3 − 20un
i±2 + 34un

i±1 − 42un
i
)
∆t3 + O

(
∆t4
)

.

7. LNe4:

εLNe4 = ε0 − α2

12 u(6x)∆x2∆t− α2

160 u(8x)∆x4∆t + 1
6 α3u(4x)

∆t2

∆x2 +
1
9 α3u(6x)∆t2 + 31

480 α3u(8x)∆x2∆t2

− 1
6 α4u(6x)

∆t3

∆x2 − 1
8 α4u(8x)∆t3

δLNe4 = − β3

12
(
un

i±3 − 4un
i±2 + 7un

i±1 − 8un
i
)
∆t2 − β4

12
(
un

i±4 − 6un
i±3 + 16un

i±2 − 26un
i±1 + 30un

i
)
∆t3 + O

(
∆t4
)

One can see that the largest inconsistent term ∆t2∆x−4 of LNe disappeared in LNe3,
and similarly, ∆t3∆x−6 and ∆t3∆x−4 of LNe3 disappeared from LNe4, which can explain
the observed improvement in the numerical accuracy of these iterated algorithms. On the
other hand, the terms in the δ errors are not really smaller in the case of the LNe3 and the
LNe4 methods. This can explain why we experienced in our earlier publication [32] that
these are not much more accurate than the LNe2 method for fixed and rather stiff spatially
discretized systems.

8. CLL:

εCLL = ε0 − α2

12 u(6x)∆x2∆t− α2

12 u(6x)∆x2∆t− α2

160 u(8x)∆x4∆t− α3

24 u(8x)∆x2∆t2 + 2
3 pα4u(2x)

∆t3

∆x6

+ 1
54 (39p + 11)α4u(4x)

∆t3

∆x4 +
453p+355

1620 α4u(6x)
∆t3

∆x2 +
17

30,240 (89p + 161)α4u(8x)∆t3

δCLL =
β4

216
[
(23− 36p)un

i±3 − 8(7− 9p)un
i±2 + 4(20− 27p)un

i±1 − 2(47− 72p)un
i
]
∆t3 + O

(
∆t4
)
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It is obvious that, unlike the previous algorithms, this one is third-order. From the
truncation error, it follows that the value of p should be as small as possible. The stability
analysis in the original paper revealed that p should be at least 2/3, thus this value is the
optimal. In the expression of δ, the p = 2/3 choice makes all the rounded brackets equal
to one in absolute value, which also suggests that this is close to the optimal p. With this
choice we obtain:

δCLL =
β4

216
[
−un

i±3 − 8un
i±2 + 8un

i±1 + 2un
i
]
∆t3 + O

(
∆t4
)

.

Note that since the exponents e−
2
3 ·

r
2 must be calculated anyway due to the second

stage, the code will be faster with this choice, which is a significant gain in the non-uniform
case, where these exponents are different for each node.

9. PI:

εPI = ε0 −
α2

12
u(6x)∆x2∆t + α3u(2x)

∆t2

∆x4 +
13
12

α3u(4x)
∆t2

∆x2 +
121
360

α3u(6x)∆t2,

δPI = −
β3

6
(
un

i±2 − 3un
i±1 + 4un

i
)
∆t2 + O

(
∆t3
)

.

10. ADE: If we analyze the core Formulas (9) and (10), where only nearest neighbors are
taken into account, we obtain:

τADE = ε0 −
α2

24
u(6x)∆x2∆t− 1

12
α3u(6x)∆x3∆t2

εADE = ε0 +
α2

12
u(4x)∆t− 7

180
α2u(6x)∆x2∆t− α3

12
u(4x)

∆t2

∆x2 +
2
45

α3u(6x)∆t2.

The expression of τ and ε are definitely not the same. The first one demonstrates
a second-order consistent scheme; the second is first-order and conditionally consistent.
According to the numerical experiments, ADE is second-order but conditionally consistent.
The problem may be caused by the fact that (9) and (10) are actually implicit formulas and
only the alternating direction splitting procedure makes them explicit. In other words,
the information where the pn+1

i−1 and qn+1
i+1 values come from is not present in (9) and (10).

Now we make an attempt to involve the whole alternating direction procedure to obtain a
more reliable result. This is performed by expressing the new values pn+1

i−1 and qn+1
i+1 of the

neighbors by formulas (10) with indices shifted by one, and substituted into (9) and (10)
again. With this, one extra neighbor is involved on both sides and we obtain:

τADE = ε0 −
α2

24
u(6x)∆x2∆t− 1

12
α2u(4x)∆t− 31

360
α2u(6x)∆x2∆t− 11

12
α3u(4x)

∆t2

∆x2 −
149
360

α3u(6x)∆t2,

εADE = ε0 −
1

12
α2u(6x)∆x2∆t− 11

12
α3u(4x)

∆t2

∆x2 −
119
360

α3u(6x)∆t2.

Repeating this procedure recursively, two or more extra neighbors are involved. In
these cases we obtain:

τADE = ε0 −
α2

24
u(6x)∆x2∆t− 1

12
α2u(4x)∆t− 31

360
α2u(6x)∆x2∆t− α3u(4x)

∆t2

∆x2 −
7

12
α3u(6x)∆t2

εADE = ε0 −
1

12
α2u(6x)∆x2∆t− α3u(4x)

∆t2

∆x2 −
α3

2
u(6x)∆t2

We believe that this last expression reflects the real nature of the numerical method
since it means a second-order scheme, which is conditionally consistent. However, the lead-
ing inconsistent term contains ∆t2∆x−2, instead of ∆t2∆x−4 as in the case of the previous
methods, thus this method converges much faster than those.
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11. DF: We have to face a similar problem as in the case of the ADE method. If the core
formulas are the starting point, we obtain different expressions for τ and ε:

τDF = ε0 − α3u(4x)
∆t2

∆x2 +
α3

6
u(6x)∆t2,

εDF = ε0 +
α2

6
u(4x)∆t +

1
180

α2u(6x)∆x2∆t +
2
3

α3u(4x)
∆t2

∆x2 +
7

45
α3u(6x)∆t2.

We note that τDF contains the terms which were given in the classical books [12–14,37,38].
If we consider the very first time step taken by the θ formula, and then the second time
step by the DF formula, the ε error term also shows second-order accuracy.

In the case of the odd–even hopscotch-type methods, the procedure to obtain the odd
and even node-values is different; we have to calculate both the odd and the even errors.
We list them on the following pages.

12. OOEH:

εOOEH, odd = ε0 − α2

6 u(6x)∆x2∆t + 2α3u(4x)
∆t2

∆x2 + α3u(6x)∆t2,

εOOEH, even = ε0 − α2

6 u(6x)∆x2∆t− α3

3 u(6x)∆t2.

δOOEH, odd = 2
3 β3(−un

i±3 + 3un
i±2 − 3un

i±1 + 2un
i
)
∆t2 + O

(
∆t3) ,

δOOEH, even = 1
3 β3(un

i±3 − 6un
i±2 + 15un

i±1 − 20un
i
)
∆t2 + O

(
∆t3) .

13. RH:

εRH, odd = ε0 − α2

6 u(6x)∆x2∆t + 4α3u(2x)
∆t2

∆x4 +
13
3 α3u(4x)

∆t2

∆x2 +
121
90 α3u(6x)∆t2,

εRH, even = ε0 − α2

6 u(6x)∆x2∆t− 4α3u(2x)
∆t2

∆x4 − 7
3 α3u(4x)

∆t2

∆x2 − 61
90 α3u(6x)∆t2.

δRH, odd = − 2
3 β3(un

i±3 − 3un
i±1 + 4un

i
)
∆t2 + O

(
∆t3) ,

δRH, even = 1
3 β3(un

i±3 + 3un
i±1 − 8un

i
)
∆t2 + O

(
∆t3) .

The truncation errors of the RH method are larger than the OOEH’s ones, but the δ

errors are smaller, especially for the even nodes. This may be the reason why the original
method is more accurate for equidistant and mildly stiff systems, but less accurate in
extremely stiff cases.

14. OEH-CNe:

εOEH−CNe, odd = ε0 − α2

6 u(6x)∆x2∆t + 10
3 α3u(2x)

∆t2

∆x4 +
59
18 α3u(4x)

∆t2

∆x2 +
127
108 α3u(6x)∆t2,

εOEH−CNe, even = ε0 − α2

6 u(6x)∆x2∆t− 2
3 α3u(2x)

∆t2

∆x4 − 19
18 α3u(4x)

∆t2

∆x2 − 271
540 α3u(6x)∆t2.

δOEH−CNe, odd = 1
3 β3(−2un

i±3 + 3un
i±2 − 4un

i±1 + 6un
i
)
∆t2 + O

(
∆t3) ,

δOEH−CNe, even = 1
3 β3(un

i±3 − 3un
i±2 + 5un

i±1 − 6un
i
)
∆t2 + O

(
∆t3) .

15. SH:

εSH, odd = ε0 − α2

6 u(6x)∆x2∆t− α3u(2x)
∆t2

∆x4 − 7
12 α3u(4x)

∆t2

∆x2 − 61
360 α3u(6x)∆t2,

εSH, even = ε0 − α2

6 u(6x)∆x2∆t + α3u(2x)
∆t2

∆x4 +
13
12 α3u(4x)

∆t2

∆x2 +
121
360 α3u(6x)∆t2.

(A1)

δSH, odd = 1
12 β3(un

i±3 + 3un
i±1 − 8un

i
)
∆t2 + O

(
∆t3) ,

δSH, even = − 1
6 β3(un

i±3 − 3un
i±1 + 4un

i
)
∆t2 + O

(
∆t3) .

16. SH-CNe:

εSH−CNe, odd = ε0 − α2

6 u(6x)∆x2∆t− 1
6 α3u(2x)

∆t2

∆x4 − 19
72 α3u(4x)

∆t2

∆x2 − 271
2160 α3u(6x)∆t2,

εSH−CNe, even = ε0 − α2

6 u(6x)∆x2∆t + 5
6 α3u(2x)

∆t2

∆x4 +
59
72 α3u(4x)

∆t2

∆x2 +
127
432 α3u(6x)∆t2.



Algorithms 2022, 15, 425 24 of 26

δSH−CNe, odd = 1
12 β3(un

i±3 − 3un
i±1 + 5un

i±1 − 6un
i
)
∆t2 + O

(
∆t3) ,

δSH−CNe, even = − 1
12 β3(2un

i±3 − 3un
i±2 + 4un

i±1 − 6un
i
)
∆t2 + O

(
∆t3) .

17. ASH:

εASH, odd = ε0 − α2

12 u(6x)∆x2∆t− α3u(2x)
∆t2

∆x4 − 7
12 α3u(4x)

∆t2

∆x2 − 61
360 α3u(6x)∆t2,

εASH, even = ε0 − α2

12 u(6x)∆x2∆t + α3u(2x)
∆t2

∆x4 +
13
12 α3u(4x)

∆t2

∆x2 +
121
360 α3u(6x)∆t2.

(A2)

δASH, odd = 1
12 β3(un

i±3 + 3un
i±1 − 8un

i
)
∆t2 + O

(
∆t3) ,

δASH, even = − 1
6 β3(un

i±3 − 3un
i±1 + 4un

i
)
∆t2 + O

(
∆t3) .

18. ASH-CNe:

εASH−CNe, odd = ε0 − α2

12 u(6x)∆x2∆t− 1
6 α3u(2x)

∆t2

∆x4 − 19
72 α3u(4x)

∆t2

∆x2 − 271
2160 α3u(6x)∆t2,

εASH−CNe, even = ε0 − α2

12 u(6x)∆x2∆t + 5
6 α3u(2x)

∆t2

∆x4 +
59
72 α3u(4x)

∆t2

∆x2 +
127
432 α3u(6x)∆t2.

δASH−CNe, odd = 1
12 β3(un

i±3 − 3un
i±1 + 5un

i±1 − 6un
i
)
∆t2 + O

(
∆t3) ,

δASH−CNe, even = − 1
12 β3(2un

i±3 − 3un
i±2 + 4un

i±1 − 6un
i
)
∆t2 + O

(
∆t3) .

19. LH. In this case, one cannot distinguish individual time steps and the stages of the
whole calculations are entangled. We made an attempt to calculate the truncation
errors, but we do not think this issue was solved by our tentative work. Similarly
to the ADE and DF schemes, we examined only the diamond-shaped core formula
and obtained:

τLH = ε0 +
α3

4
u(4x)

∆t2

∆x2 +
α3

24
u(6x)∆t2, (A3)

εLH = ε0 +
α2

12 u(4x)∆t + α2

360 u(6x)∆x2∆t + α2

20,160 u(8x)∆x4∆t

+ 1
6 α3u(4x)

∆t2

∆x2 +
187

5040 α3u(6x)∆t2 − 1
20,160 α3u(8x)∆x2∆t2 .

(A4)

The τ error is very small, which may explain that usually this method is the most
accurate among the 20 examined ones. On the other hand, the ε error is much larger and
there is even a first-order term in it.

20. LH-CNe: the problems are similar, but here at least the τ and ε errors are the same.

τLH−CNe = εLH−CNe = ε0 +
α2

12 u(4x)∆t + α2

360 u(6x)∆x2∆t + α2

20,160 u(8x)∆x4∆t

+ 1
3 α3u(2x)

∆t2

∆x4 +
7

36 α3u(4x)
∆t2

∆x2 +
43

1080 α3u(6x)∆t2 − 1
30,240 α3u(8x)∆t2.

However, this truncation error says this formula is first-order, but according to the
numerical experiment, it has the same accuracy as the SH-CNe and ASH-CNe. We think that
some further nontrivial investigations would be necessary for the LH and LH-CNe methods.
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