
����������
�������

Citation: Custode, L.L.; Mo, H.;

Ferigo, A.; Iacca, G. Evolutionary

Optimization of Spiking Neural P

Systems for Remaining Useful Life

Prediction. Algorithms 2022, 15, 98.

https://doi.org/10.3390/a15030098

Academic Editor: Edward Rolando

Núñez-Valdez

Received: 15 February 2022

Accepted: 17 March 2022

Published: 19 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Evolutionary Optimization of Spiking Neural P Systems for
Remaining Useful Life Prediction
Leonardo Lucio Custode † , Hyunho Mo † , Andrea Ferigo and Giovanni Iacca *

Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy;
leonardo.custode@unitn.it (L.L.C.); hyunho.mo@unitn.it (H.M.); andrea.ferigo@unitn.it (A.F.)
* Correspondence: giovanni.iacca@unitn.it
† These authors contributed equally to this work.

Abstract: Remaining useful life (RUL) prediction is a key enabler for predictive maintenance. In fact,
the possibility of accurately and reliably predicting the RUL of a system, based on a record of its
monitoring data, can allow users to schedule maintenance interventions before faults occur. In the
recent literature, several data-driven methods for RUL prediction have been proposed. However,
most of them are based on traditional (connectivist) neural networks, such as convolutional neural
networks, and alternative mechanisms have barely been explored. Here, we tackle the RUL prediction
problem for the first time by using a membrane computing paradigm, namely that of Spiking Neural
P (in short, SN P) systems. First, we show how SN P systems can be adapted to handle the RUL
prediction problem. Then, we propose the use of a neuro-evolutionary algorithm to optimize the
structure and parameters of the SN P systems. Our results on two datasets, namely the CMAPSS and
new CMAPSS benchmarks from NASA, are fairly comparable with those obtained by much more
complex deep networks, showing a reasonable compromise between performance and number of
trainable parameters, which in turn correlates with memory consumption and computing time.

Keywords: Spiking Neural P Systems; NEAT; Remaining Useful Life; predictive maintenance;
CMAPSS

1. Introduction

Bio-inspired computing, that is the study of computing paradigms inspired from
biological systems, is a well-established field within AI that over the years has proposed
several efficient computing models and algorithms [1]. Membrane computing is a branch
of bio-inspired computing that was initiated by Păun in 1998 [2]. The goal of membrane
computing is to perform computations by emulating nature at the cellular level.

In the area of membrane computing, researchers have focused on developing new
computational models that have parallel and distributed computation capability. The
resulting membrane systems are called P systems. Moreover, P systems can be coupled
with the biologically plausible firing mechanism observed in neurons, which enables
processing and exchanging information through spikes. In this sense, Spiking Neural P
(in short, SN P) systems [3,4] were proposed by incorporating the idea of spiking neurons
(and spike trains) into P systems. One major difference with respect to other neural-like
parallel computing systems [5] is that SN P systems use time as a source of information in
the computation, similarly to what happens in brains.

Of note, it has been proved that SN P systems can simulate a Turing machine with
a fairly small number of neurons [6–8]. However, their application to real-world tasks is
still limited, because it requires a remarkable expertise for humans to design such systems.
Although few methods have been proposed for mitigating this problem [9,10], the lack of
automatic design methodologies is still a bottleneck in the development of the field.

Driven by this motivation, and following up on our previous work [11], here we
employ a well-known neuro-evolutionary algorithm, namely the Neuro-Evolution of

Algorithms 2022, 15, 98. https://doi.org/10.3390/a15030098 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15030098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1652-1690
https://orcid.org/0000-0002-6497-2250
https://orcid.org/0000-0003-1795-011X
https://orcid.org/0000-0001-9723-1830
https://doi.org/10.3390/a15030098
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15030098?type=check_update&version=2


Algorithms 2022, 15, 98 2 of 18

Augmenting Topologies (NEAT) [12], to automatically design SN P systems for a predictive
maintenance (PdM) task. More specifically, we customize the vanilla NEAT algorithm
to adjust the parameters of a specific type of SN P systems by increasing the number of
parameters encoded in the genotype (i.e., the candidate solutions handled by NEAT) and
adapting them to the parameters of the neurons in the SN P systems.

One important advantage of our proposal is that it requires little human knowledge on
the design of SN P systemscompared to other approaches from the literature; for instance,
the automatic design methods introduced in [9,10] need to fix either the topology or the
parameters of the rules used in each neuron (see Section 2). On the other hand, our approach
allows us to optimize all the parameters simultaneously except for the number of rules.
With this further automation, the need for experts capable of designing such systems is
reduced; in turn, this may enhance the applicability of SN P systems.

To verify our approach applied to PdM, we evolve SN P systems as predictors for the
remaining useful life (RUL) of industrial components. PdM is a growing trend in research
and industry that has the potential to provide benefits in terms of costs and performance
by optimizing maintenance. As a matter of fact, RUL prediction is one of the essential
elements for efficient and robust PdM. Given the historical data of condition monitoring
signals for a target component until its end-of-life, RUL prediction can be considered as
solving a regression problem by leveraging the relation between the degradation patterns
in the historical data and their RUL.

Various machine learning (ML)-based methods based on traditional backpropagation-
neural networks (BPNNs) have been introduced for RUL prediction. One of the earliest
approaches, discussed in [13], uses a multi-layer perceptron (MLP) and a convolutional
neural network (CNN) for performing RUL prediction in the case of aircraft engines. In [14],
instead of extracting convolutional features, recurrent neural networks (RNNs) such as long
short-term memory (LSTM) have been used to directly recognize temporal patterns in the
data used for prediction. Recently, Ref. [15] applied an attention mechanism to improve the
RUL prediction accuracy. Another recent work [16] applied evolutionary computation to
optimize the architecture of a multi-head CNN-LSTM model tailored to the RUL prediction
task, which was previously handcrafted in [17]. More recently, a combination of an auto-
encoder (AE) with a DL architecture has been proposed to improve the RUL prediction
accuracy [18], whereas Extreme Learning Machines (ELMs) have been proposed in [19].

While a few previous works proposing SN P systems for pattern recognition do exist,
they all use handcrafted systems for classification tasks, such as English letter recognition [1]
or fingerprint recognition [20]. SN P systems have been used also for fault diagnosis [21,22],
but in most cases, these existing approaches require extensive domain knowledge for the
design of the used SN P systems. Our work, instead, allows automatically designing SN P
systems by using a neuro-evolutionary technique. Another novelty is that in our case, we
apply SN P systems to a regression task, differently from the previous literature focused
on classification tasks. To summarize, the main (to the best of our knowledge, novel)
contributions of this work can be identified in the following elements:

• We use a modified version of the NEAT algorithm to successfully evolve SN P sys-
tems applied to RUL prediction.

• We obtain better performance than an MLP on the CMAPSS dataset, reducing also the
number of parameters.

• We obtain better-than-random performance on the new CMAPSS dataset while signif-
icantly reducing the number of parameters w.r.t. the state-of-the-art.

The rest of the paper is organized as follows. The next section briefly presents the
background concepts. Section 3 introduces the proposed method to optimize SN P sys-
tems based on evolutionary computation. Then, Sections 4 and 5 present the experimental
setup and the numerical results, respectively. Finally, Section 6 concludes this work.



Algorithms 2022, 15, 98 3 of 18

2. Background

In the following, we provide the background concepts and related work on SN P
systems, NEAT, and RUL prediction.

2.1. Spiking Neural P Systems

Before presenting our method, we describe how an SN P system works. In biological
neurons, a neuron transmits an electric pulse, which is known as a spike, via its synapses.
A spike train is a sequence of such spikes. In our study, we assume that (1) all the spikes of
a spiking neuron are identical, and (2) the spiking neurons carry information by means of
the number and the timing of the spikes rather than the size and the shape of each spike.

As we anticipated in the introduction, the computational model used in this study
is a membrane system called a P system, in which each membrane comprises a number
of generic “objects” and a set of rules. Its computation is based upon the progression of
objects in a membrane structure. At the beginning, the model is initialized with a specific
number of objects in each membrane. Following the set of rules presented in the membrane,
the state of the system is updated in each timestep. The result of the system is then the
number of objects in each membrane, after completing all the timesteps.

In particular, SN P systems are a class of neural-like P systems that contain neurons
structured in a neural net. The behavior of SN P systems is based on the state of its neurons
and their interactions based on spikes.

By using the same notions of regular languages used in [3], a standard SN P system of
degree m ≥ 1 is formally defined as follows:

Π = (O, σ1, . . . , σm, syn, Iin, Iout) (1)

where:

• O = a is a singleton alphabet, where a represents a spike.
• σ1, . . . , σm denote neurons. Each neuron consists has the form: σi = (ni, Ri), 1 ≤ i ≤ m,

in which ni is the number of spikes initially present in σi and Ri = {r1, . . . , rN} is
a finite set of rules in the neuron, respectively. Each rule ri can take one of these
two forms:

E/ac → ap; d, ∀c, p, d : p < c; (2)

E/a f → λ, ∀ f . (3)

• syn is the set of synapses, where each synapse is included in {1, . . . , m} × {1, . . . , m}.
More specifically, syn is an m× m matrix in which each (i, j) element contains the
neuron indexes of the synapse connecting neurons i and j, and its corresponding
weight, which is an integer. In other words, the synapses have the form of (i, j, zi,j)
where 1 ≤ i, j ≤ m, i 6= j denote the indexes of the two connected neurons, and zi,j
denotes the weight on that connection.

• Iin is the set of input neurons, i.e., a mutually exclusive subset of {σ1, . . . , σm}.
• Iout is the set of output neurons, i.e., a mutually exclusive subset of {σ1, . . . , σm}.

The computation of the system at each step consists of updating the number of spikes
following the set of rules in each neuron. The first type of rule, shown in Equation (2), is
called a spiking rule (or firing rule). In this rule, E is a regular language over O; c denotes the
number of spikes consumed to generate p < c spikes, when the spiking rule is applicable;
d denotes the “refractory” period, which in turn indicates an enforced waiting interval
between two consecutive spikes; c is the application threshold of the spiking rule. The rule
can be applied to a neuron only if the number of spikes in the neuron g is greater than or
equal to the number of spikes to be consumed c (i.e., the spiking rule is applicable for the
neurons that satisfy g ≥ c). In summary, a neuron σi at a certain timestep is updated with
respect to the spiking rule in the following way: if the number of spikes g contained in σi
is greater than c, then the neuron consumes c spikes to fire. After immediately emitting p



Algorithms 2022, 15, 98 4 of 18

spikes, g− c spikes remain in the neuron for the following d timesteps. The second type of
rule, shown in Equation (3), is referred to as the forgetting rule. In this rule, f denotes the
number of spikes required to apply the forgetting rule, and λ indicates an empty string.
Namely, a neuron σi at a certain timestep is updated with respect to the forgetting rule in
the following way: if σi contains exactly f spikes and the spiking rule is not applicable for
the neuron, then it consumes f spikes without producing any spikes. We should note that
a neuron can contain several instances of the rules shown in Equations (2) and (3). If more
than one rules is applicable to a neuron at any timestep, we chose one randomly, with the
same probability.

Applications of SN P Systems

SN P systems have been applied to several tasks in a variety of fields. The initial
applications of SN P systems were about language generators [4,23]. In fact, since the SN P
systems work by computing trains of spikes, these can be easily seen as symbols over an
alphabet of events.

SN P systems have also been applied to NP problems. In [23–25], the authors applied
SN P systems to the SAT problem. In [26], the authors used an Optimization Spiking
Neural P System (OSNPS) to solve the knapsack problem. Finally, in [27], the authors
combined SN P systems with a genetic algorithm to tackle the Traveling Salesman Problem
(TSP). Another application of SN P systems is in the field of logic gates, where they can be
employed for simulating logic gates [28–31].

More recently, a new variant called Fuzzy Reasoning Spiking Neural P Systems
(FRSNPSs), that is an extension of SN P systems that supports fuzzy reasoning, has been
used for fault diagnosis [21,22,32]. Finally, SN P systems have been applied to pattern
recognition tasks [20,33,34]. However, to our knowledge, they have never been employed
neither in multivariate analysis nor in the PdM domain.

2.2. NEAT

Neuro-Evolution of Augmenting Topologies (NEAT) is a well-known neuro-evolutionary
algorithm originally proposed by Stanley and Miikkulainen in [12] for optimizing the weights
and topologies of feed-forward and recurrent neural networks. A distinctive feature of
NEAT is that it works by complexification, i.e., it starts with minimal topologies that, through
the course of evolution, may become more complex, if the task at hand requires it. The
NEAT algorithm encodes a neural network by using two lists: one containing the neurons
and one containing the synapses. This, together with a method for tracking the lineage of
each gene, allows for an efficient niching that leads to a more stable evolution (i.e., crossover
is less likely to be destructive).

In our previous [11], which represents the basis for the present paper, we introduced
a modification of NEAT to support SN P systems. However, differently from the present
work, in our previous paper, we tested the evolved SN P systems only on simple control
tasks taken from the OpenAI Gym benchmark, while here, we extend for the first time
the applicability of this method to an industrially relevant problem: that is, the RUL
prediction problem.

2.3. RUL Prediction

The flowchart of a data-driven RUL prediction task, that is the focus of the present
work, is illustrated in Figure 1. The object of the RUL prediction is an industrial machine or
its components. The sensor measurements (usually, in the form of multivariate time series)
indicate the state of some physical properties which are monitored by sensors installed on
the machine. Then, these time-series data are fed into a black box model, which is a system
that derives as output an RUL prediction.

Such a black box model is trained based on historical data, which consist of previous
sensor measurements and actual RUL values collected by run-to-failure operations. During
training, the time-series data are fed in input to the model, and the actual RUL values are



Algorithms 2022, 15, 98 5 of 18

used as labels for calculating loss, which is defined as the difference between the predicted
RUL and the actual RUL. In this context, determining an appropriate black box model is a
key issue to improve the RUL prediction.

Figure 1. Flow chart of a data-driven RUL prediction task.

3. Proposed Method

As we noted in [11], in order to efficiently evolve SN P systems by means of the NEAT
algorithm, a few assumptions are needed. In particular, since NEAT does not directly allow
the evolution of a varying number of parameters for each neuron and synapse, we fix the
number of rules that each neuron can contain, so that the number of parameters for each
neurons remains constant. Moreover, we use weighted connections, which allow for more
expressive SN P systems. Following these assumptions, each genotype (which encodes an
instance of SN P systems) contains, for each neuron, the following parameters:

• c: number of spikes needed by the firing rule;
• p: number of spikes produced by the firing rule;
• d: refractory period of the firing rule;
• f : number of spikes required by the forgetting rule.

In order to create a valid phenotype (i.e., an SN P system) starting from such a
genotype, we employ two simple rules to make sure that the obtained system does not
violate the constraints of SN P systems, namely:

Constraint 1—Firing: This constraint states that the number of spikes produced in
output must be less than or equal to the number of spikes that triggered the rule, i.e.,
p ≤ c. If this condition is violated, we set p = c.
Constraint 2—Forgetting: Since we use only two rules, i.e., a firing and a forgetting
rule, we must be sure that the forgetting rule requires less spikes than the firing rule;
otherwise, it may be never applied. For this reason, we add the constraint: f < c.
If this constraint is violated, we set f = c− 1.

3.1. Input Features

The RUL prediction problem typically deals with time series that, without loss of
generality, we can assume as sequences of real values. Given that SN P systems only handle
integers, we employ a discretization technique, namely the Symbolic Fourier Approxima-
tion (SFA) [35], to convert floating-point numbers to integers. SFA was originally proposed
for improving the similarity search in time-series data that typically lie in high-dimensional
spaces. In this method, a time series on high dimension is mapped into a lower dimensional
space by means of the Fourier approximation, and it is then discretized to symbols that
are, in turn, represented as integers. As such, the process of SFA consists of two parts:
the Discrete Fourier Transform (DFT) approximation and the Multiple Coefficient Binning
(MCB) discretization. This process has three parameters:

• n: number of real values in the input time series (i.e., the size of the input vector);
• w: size of the integer vector resulting from the SFA (i.e., number of selected Fourier

coefficients);
• s: number of values to discretize each Fourier coefficient to (i.e., number of symbols).

In the SFA process, an input time series of length n is decomposed into a sum of
orthogonal basis functions that have the form of sinusoidal waves by using the DFT. Then,



Algorithms 2022, 15, 98 6 of 18

each wave is associated to the corresponding Fourier coefficient. The sequence of the first
w coefficients are selected as an outcome of the DFT approximation.

As shown in Figure 2, each selected coefficient is then discretized to a symbol inde-
pendently, based on discretization intervals. To define these intervals, a technique called
MCB is used, which enables minimizing the loss of information induced by discretization.
Specifically, we apply the DFT approximation to all the time series of length n in the dataset
and arrange all the i-th coefficients into a group. Then, a histogram is built for each group.
For each histogram, the interval of the bins are determined by equi-depth binning, which
enforces an equal frequency for all the bins by adjusting the interval of the bins; the fre-
quency of each bin should be N/s where N denotes the total number of given time series
of length n. This process, determining the fixed discretization intervals, is considered as
a pre-processing phase. After we get a simple lookup by pre-processing, a time series of
length n can be transformed into a vector of s symbols (s < n). Then, each output symbol
by the SFA is mapped into an integer, which finally gives the input representation that can
be used for our SN P system.

Figure 2. Illustration of the Symbolic Fourier Approximation process. Xi denotes a selected Fourier
coefficient, and oi represents each output symbol from the SFA.

3.2. Fitness Evaluation

To evaluate the fitness of a candidate solution (i.e., in the instance of SN P systems), we
give as input the whole training set, and we store its outputs. Then, we compute the root
mean square error (RMSE) between the ground truth and the output of the SN P system.
This value represents the fitness of that solution.

4. Experimental Setup

We describe now the details of our experimental setup, namely the datasets used in
the experimentation, the compared algorithms, and the computational environment.

4.1. Datasets

In the area of PdM, a well-established benchmark called the Commercial Modular
Aero-Propulsion System Simulation (CMAPSS) [36] dataset has been considered for many
years as the de facto standard benchmark for RUL prediction. Since the dataset became
publicly available on the NASA’s data repository in 2008, it has been widely used to develop
and evaluate a multitude of RUL prediction models. In the CMAPSS dataset, the data



Algorithms 2022, 15, 98 7 of 18

consist of the run-to-failure degradation trajectories of aircraft engines, which however are
solely based on MATLAB simulations, without considering real flight conditions.

In 2021, the NASA released the new CMAPSS (N-CMAPSS) [37] dataset. One major
difference with respect to the previous dataset is that each time series consists of millions
of samples, reflecting data acquired under real flight conditions. Thus, the dataset is
significantly larger and it is more realistic. In the following, we briefly present the details
of the two datasets.

4.1.1. CMAPSS

This dataset contains the simulation of various NASA turbofan engine degradation. The
trajectories from 21 different sensors are generated under four different simulation settings.

As outlined in Table 1, the dataset consists of four sub-datasets: FD001, FD002, FD003
and FD004, according to the operating states and fault mode. Each sub-dataset is split into
a training set and a test set. The training set of each sub-dataset is made up of run-to-failure
histories of different engines. In contrast, the simulation of each test engine is terminated
before its failure, so that the RUL of each engine in the test set is required to be predicted
for reporting the final results. Among the four sub-datasets, we run our experiments on the
FD001. Instead of using the remaining three sub-datasets, we evaluate our method on the
N-CMAPSS dataset described below.

Table 1. CMAPSS dataset overview.

FD001 FD002 FD003 FD004

Number of engines in training set 100 260 100 249
Number of engines in test set 100 259 100 248

Max/min cycles in training set 362/128 378/128 525/145 543/128
Max/min cycles in test set 303/31 367/21 475/38 486/19

Operating conditions 1 6 1 6
Fault modes 1 1 2 2

One additional note is that the data of each engine consist of 21 multivariate time
series, but seven time series that do not show changes over time are discarded. Thus,
we use only 14 time series as inputs. All the sensor readings and the RUL prediction are
updated at the same frequency; the time unit for both the RUL prediction and the sensor
measurements is referred to as a cycle.

4.1.2. N-CMAPSS

This new dataset contains two sub-datasets, namely DS01 and DS02 [37]. The two
sub-datasets have been defined in such a way that DS01 should be tested with model-based
approaches and DS02 should be tested with data-driven approaches. Hence, here, we
only use the sub-dataset DS02 that consists of the run-to-failure degradation trajectories
of nine turbofan engines with different initial conditions. Compared to the previous
CMAPSS dataset, in this case, the CMAPSS dynamic model was again used to generate
synthetic trajectories, but a fidelity gap between simulation and reality was mitigated
by reflecting real flight conditions recorded on board a commercial jet. Furthermore, the
relation between the degradation and its operation history is considered to extend the
degradation modeling [37].

Table 2 describes the DS02 sub-dataset. A unit in the table indicates each engine.
Among the nine units, we use six units (u2, u5, u10, u16, u18 and u20) for the training set
Dtrain, and the remaining three units (u11, u14 and u15) for the test set Dtest. In particular,
the u14 and u15 relate to shorter and lower altitude flights compared to those of the training
units, so that the evaluation results on the Dtest can implicitly reflect the generalization
capability of the RUL prediction model.



Algorithms 2022, 15, 98 8 of 18

Table 2. Overview of each unit in the DS02 sub-dataset of N-CMAPSS w.r.t. the number of samples
mi (in millions), the end-of-life time tEOL, and the failure modes.

Training Set (Dtrain) Test Set (Dtest)
Unit mi (M) tEOL Failure Mode Unit mi (M) tEOL Failure Mode

u2 0.85 75 HPT u11 0.66 59 HPT + LPT
u5 1.03 89 HPT u14 0.16 76 HPT + LPT
u10 0.95 82 HPT u15 0.43 67 HPT + LPT
u16 0.77 63 HPT + LPT
u18 0.89 71 HPT + LPT
u20 0.77 66 HPT + LPT

In the given dataset, the total number of samples (i.e., timestamps) is 5.26 M in Dtrain
and 1.25 M in Dtest, with a sampling rate of 1 Hz. Considering the large number of samples,
we assume a lower sampling rate of 0.01 Hz by taking one sample every 100. The end-of-life
time tEOL points out the counted flight cycles at the end of the engine’s lifespan, i.e., tEOL is
the same as the initial value of the labeled RUL. There are two distinctive failure modes
in the dataset: the abnormal high-pressure turbine (HPT) and the low-pressure turbine
(LPT). The combination of the two failure modes for a unit means that the unit is subject to
a more complex failure mode than a single-failure mode. The dataset provides 20 condition
monitoring signals that are related to the useful life of the flight engine. The multivariate
time series from the 20 signals is used as an input for our SN P system.

4.2. Compared Algorithms

As we discussed in Section 1, the previous works have mostly used traditional neural
networks as data-driven methods for RUL prediction. The performance of these methods
is typically estimated by the RMSE of a trained network on test data that have not been
observed during the training phase. To evaluate our work with comparative analysis, we
specify the details of the compared methods taken from the literature.

As for CMAPSS, we consider two feed-forward networks proposed in [13], i.e., a MLP
and a CNN, and one LSTM proposed in [14]. The architecture of the MLP comprises one
hidden layer of 50 neurons. For the CNN, the model consists of two pairs of convolutional
layers and pooling layers, which are followed by an MLP. The first convolutional layer
has eight filters of size 12, while the second convolutional layer is made up of 14 filters of
size 4. Each pooling layer performs average pooling with size 1 × 2 to halve the feature
length. At the end of the last pooling layer, the feature map is flattened and passed to
a fully connected layer of 50 neurons, which is followed by an output neuron. Both the
MLP and the CNN use sigmoids as activation functions. The LSTM has four hidden layers:
two stacked LSTM layers and two fully connected layers. The number of hidden units in
each LSTM is 32, and the following two fully connected layers contain eight neurons in
each layer.

To demonstrate the performance of the proposed method compared to a machine
learning method other than neural network-based models, we also consider for the com-
parisons an approach based on support vector machine (SVM), which is presented in [38].
The main drawback of this method is that it requires feature creation and a degradation
model. For those two steps, in [38], the authors used an SVM classifier and a Weibull
distribution, respectively.

In the case of N-CMAPSS, we consider two feed-forward networks, again an MLP
and a CNN, as proposed in [39]. Based on our preliminary experiments, large recurrent
networks such as LSTM are not an efficient RUL prediction tool on this large dataset, since
their computational cost and training time are too large to handle it. The MLP used for
the N-CMAPSS dataset is much more complex than the one used for the CMAPSS dataset.
The considered MLP consists in fact of four hidden layers: the first three have 200 neurons
each, while the remaining one has 50 neurons. The architecture of the CNN is made up
of three convolutional layers followed by a fully connected layer. Each of the first two



Algorithms 2022, 15, 98 9 of 18

convolutional layers has 10 filters of size 10, while the last convolutional layer has merely
one filter of size 10. The extracted convolutional features proceed to a fully connected layer
that consists of 50 neurons. For both the MLP and the CNN, ReLU is used as an activation
function for all the nodes in the networks. As far as we know, no methods other than neural
network-based models have been proposed for N-CMAPSS yet; therefore, in this case, we
consider for the comparisons only the aforementioned MLP and CNN.

The details of the compared algorithms for the two different datasets are summarized
in Table 3 and Table 4, respectively. Regarding the training setup for the specified networks,
we mostly followed the setup used in the papers introducing them, although we had to
partially change some settings to ensure the convergence of the training loss across epochs.
More specifically, for the training of the networks in Table 3, we set a mini-batch size to
512 and use the RMSprop optimizer with a learning rate of 0.001. The maximum number
of epochs is set to 30, and early stopping is considered with a patience of 10 on 10% of a
given set of training samples. On the other hand, we use AMSgrad optimizer to train the
networks in Table 4. All the other settings are the same as before, except for the batch size
of the CNN, which in this case is set to 256.

Table 3. Compared RUL prediction methods for the CMAPSS dataset.

Method Description

MLP [13] 1 hidden layer
CNN [13] 2 convolutional layers, 2 pooling layers, and 1 fully connected layer
LSTM [14] 2 LSTM layers and 2 fully connected layer
SVM [38] SVM classifier and Weibull distribution

Table 4. Compared RUL prediction methods for the N-CMAPSS dataset.

Method Description

MLP [39] 4 hidden layers
CNN [39] 3 convolutional layers and 1 fully connected layer

4.3. Computational Setup and Data Preparation

The proposed approach as well as the other compared methods used in our work are
implemented in Python. To implement the custom NEAT algorithm, we used the neat-
python package (https://github.com/CodeReclaimers/neat-python (accessed on 10 Novem-
ber 2021)) [40]. In addition, TensorFlow 2.4 was used to implement the BPNNs. All the
experiments for those networks have been conducted on an NVIDIA TITAN Xp GPU, while
we used an Intel XEON E5 CPU for the experiments with our proposed method.

Since we employ the neural networks, each time series is normalized to [−1, 1] by a
min–max normalization. The CNNs described in Section 4.2 require time-windowed data
as an input to apply 1D convolution in the temporal direction. Therefore, all the given time
series are sliced by a time window of length 30 with stride 1 for the CNN proposed in [13]
and stride 10 for the CNN proposed in [39]. Then, the input size of each CNN is 30× 14
and 30× 20, respectively.

In our method, the time-windowed data are transformed by the SFA introduced in
Section 3.1 so that we can reduce the dimension of the data and generate an integer vector
which is used as an input for the SN P systems. In other words, a single integer vector
should be attained from the SFA of the multivariate time series. To do so, we apply the
SFA to each time series independently; then, we concatenate the output representations
obtained from the SFA on all the time series to generate a single vector. In detail, the input
length n is the same as the window size 30. The number of coefficients w is set to 3 for
CMAPSS and 1 for N-CMAPSS, and the number of bins is set to 26. Thus, the dimension of
each input of our SN P systems is 42 for the former and 20 for the latter. We selected these
numbers based on our preliminary experiments, in which we concluded that the SFA is
advantageous for our SN P systems compared to a simple quantization.

https://github.com/CodeReclaimers/neat-python


Algorithms 2022, 15, 98 10 of 18

4.4. NEAT Configurations

Table 5 shows the parameters used to evolve SN P systems with NEAT. For the
experiments on both the CMAPSS and the N-CMAPSS datasets, we followed the parameter
setting used in our previous work [11].

Table 5. Parameters used for the NEAT algorithm.

Parameter Value Parameter Value

Population size 30 Generations 300
Initialization weight ∼N (0, 1) Weight range [−1, 1]
Mutation power ∼N (0, 3) Mutation rate 0.2
Replacement rate 0.1 Add connection rate 0.5
Remove connection rate 0.5 Add node rate 0.5
Remove node rate 0.5 Toggle “enable” rate 0.1
Max stagnation period 20 Hidden neurons 10

Furthermore, in order to explore various search spaces, we consider six different
configurations with different combinations of the mean, std. dev., and maximum value for
each parameter evolved by means of NEAT. As we introduced in Section 3, we evolve in
total four parameters for each neuron. For evolving each parameter with NEAT, we need
then to specify the mean and std. dev. of a normal distribution (used for the parameter
initialization) and the maximum value for its range. We assume that these values are the
same for all neurons. We refer to each i-th NEAT configuration as SNPS (i), for which the
corresponding values are specified in Table 6.

Table 6. Mean, std. dev., and max. value for each evolved parameter in the tested NEAT configurations.

c p d f

Mean Std. Dev. Max Mean Std. Dev. Max Mean Std. Dev. Max Mean Std. Dev. Max

SNPS (1) 100 100 500 100 100 500 10 10 100 1 2 200
SNPS (2) 100 1 200 100 100 200 1 1 10 1 2 200
SNPS (3) 100 1 200 100 1 200 1 1 10 1 2 200
SNPS (4) 5 2 500 5 2 500 1 1 10 1 2 200
SNPS (5) 5 2 500 5 2 500 1 1 10 1 1 5
SNPS (6) 5 2 10 5 2 10 1 1 10 5 2 10

5. Numerical Results

The aim of our experiments is to evaluate the SN P systems found with the proposed
method described in Section 3 by comparing their results with those obtained by the
methods described in Section 4.2. We evaluate our method in terms of prediction accuracy
and computational simplicity. For the former, the comparison is mainly based on two
metrics: the RMSE and the s-score [36] on the test set. For the latter, we use as proxy the
number of trainable parameters and the execution time for the test.

When we define the error between the predicted and target RUL as di = RULpredicted
i −

RULtarget
i , the RMSE on the test set is given by:

RMSE =

√√√√ 1
N

N

∑
i=1

d2
i (4)

where N is the total number of test samples fed into the model during the test. The s-score
metric was proposed to differentiate between optimistic and pessimistic predictions by
using an asymmetric function, and it is computed as follows:



Algorithms 2022, 15, 98 11 of 18

s-score =
N

∑
i=1

SFi, SF =

e−
di
13 − 1, di < 0

e
di
10 − 1, di ≥ 0

(5)

i.e., it assigns a larger value to optimistic RUL predictions w.r.t. pessimistic RUL ones.
This reflects the risk of predicting an RUL value higher than the real one. It should be
noted that we use the s-score solely for evaluating the methods on the test set; on the other
hand, we perform the evolutionary optimization on the RMSE, since it provides more
information from an optimization point of view w.r.t. the s-score. In fact, based on our
previous work [16], networks optimized using the RMSE as fitness function provide better
results in terms of both metrics compared to networks optimized based on the s-score.

To obtain the number of trainable parameters in the SN P systems, we need to take
into account all the connections between input and hidden neurons and between hidden
and output neurons, as well as the four parameters for each neuron. Thus, the number
of parameters in the SN P systems is lilh + lhlo + 4lh + 4lo, where li, lh, and lo denote the
number of input, hidden, and output neurons, respectively. It should be noted that this is
the worst-case count; in fact, a structure produced by NEAT may not be fully connected.
In addition to the above count, we measure the execution time of each method on the
test set; it is the elapsed time to compute the predicted RUL for N test samples. This
measurement helps compare the computational simplicity of each method intuitively.

Considering the stochasticity of the evolutionary search conducted by NEAT, to
improve the reliability of the results, we execute 10 independent runs, each one with
a different random seed. At the end of each run, we calculate the RMSE on the test set
obtained by the best solution found in that run (note that during the evolutionary process,
each solution is instead evaluated on the training set). We consider the mean of these
10 RMSE values as the final performance of the obtained SN P systems.

For illustration purposes, Figures 3 and 4 show the fitness trend (i.e., the training RMSE
trend), in terms of average (solid line)± std. dev. (shaded area) across 10 independent runs,
for the best solutions found across generations with two selected NEAT configurations on
the two datasets, respectively. From the trends, we can conclude that the algorithm quickly
converges in about one-third of the budget and then achieves minor improvements in the
remaining part of the evolutionary process. Furthermore, we can observe that the method
is quite robust across runs, since the std. dev. of the fitness trend is fairly small.

Figure 3. Fitness across generations (mean ± std. dev. across 10 independent runs) for SNPS (5) on
CMAPSS (FD001).



Algorithms 2022, 15, 98 12 of 18

Figure 4. Fitness across generations (mean ± std. dev. across 10 independent runs) for SNPS (4) on
N-CMAPSS (DS02).

Concerning CMAPSS, the comparative results on the FD001 of all the considered
methods are presented in Table 7. SNPS (1) to (6) indicate the best SN P systems obtained
with each of the six NEAT configurations reported in Table 6. In terms of the test RMSE,
all the six results are much better than the MLP, since we can achieve lower RMSE values
with a smaller number of trainable parameters. In addition, we observe that the test RMSE
of the SVM-based model taken from [38] is placed between the result of the MLP and our
best results. Furthermore, the test results of SNPS (4) and (6) are fairly comparable with
those obtained by the CNN and the LSTM in terms of test RMSE, but our proposed method
achieves these results by using a considerably smaller number of trainable parameters
(1–2 orders of magnitude lower). In particular, we should note that the solution that gives
the best RMSE, SNPS (5), contains only 232 parameters, while the most complex method in
the table, the LSTM, has 14,681 parameters. The architecture of this SNPS is depicted in
Figure 5. It should be noted that this system was simplified by removing the nodes and
edges that did not have an impact on the output.

Table 7. Summary of the comparative analysis based on the test results on CMAPSS (FD001). The
symbol “-” indicates not available data. For our SNPS methods, we report the RMSE in terms of
mean ± std. dev. across 10 independent runs. For the remaining methods, we report the results from
the original papers (std. dev. not provided). The boldface indicates the best value per column.

Methods Test RMSE s-Score × (103)
Trainable

Parameters
Test Execution

Time (ms)

MLP [13] 37.36 ± 0.00 6.45 801 93
CNN [13] 18.45 ± 0.00 1.29 6815 151
LSTM [14] 16.14 ± 0.00 0.34 14,681 968
SVM [38] 29.82 ± 0.00 - - -
SNPS (1) 29.27 ± 3.76 3.28 263 25
SNPS (2) 31.55 ± 3.61 8.83 365 27
SNPS (3) 29.28 ± 2.99 4.36 60 7
SNPS (4) 20.90 ± 1.52 0.81 334 28
SNPS (5) 20.32 ± 1.54 0.54 232 25
SNPS (6) 20.79 ± 1.58 1.57 285 26

Considering the s-score, the values obtained by our proposed method are better than
the s-score of the MLP. Compared to the CNN, SNPS (5) gives a better s-score, although its
RMSE is slightly worse. This indicates that the proposed method not only speeds up the
RUL predictions with comparable accuracy, but also it can be robust to the risk of optimistic
RUL predictions.



Algorithms 2022, 15, 98 13 of 18

out

h1
i42
i41
i40
i39
i38
i37
i35
i34
i32
i31
i30
i29
i28
i27
i25
i24
i22

i20
i19
i17
i16
i15
i14
i12
i11
i10
i9
i8
i7
i5
i4
i3
i2
i1

Figure 5. Best SN P system evolved for the RUL prediction task on CMAPSS (FD001).

The importance of reducing the number of parameters can be highlighted by compar-
ing the test execution time. For all the time measurements, we use the same GPU, and the
time related to the initialization of the DL library is neglected. Although the test time is not
linearly proportional to the number of trainable parameters, there is a positive correlation;
our best SNPS in terms of test RMSE that has 232 parameters, i.e., SNPS (5), spends merely
25 ms to compute RUL predictions of the test samples, while a very simple one hidden
layer MLP containing 801 parameters takes almost four times as much. Moreover, SNPS
(3), which has only 60 parameters, spends only 7 ms to execute the test. In contrast, the
CNN and LSTM, which contain a significantly larger number of parameters compared to
our models, require a much longer time to complete the test. Thus, the small amount of
parameters in our SN P systems represents the main advantage of the proposed method,
since it is clear that reducing the number of parameters can reduce the time needed to
predict the RUL.

Figure 6 visualizes the trade-offs of the different methods (excluding SVM, for which
the number of parameters is not available from [38]) in terms of test RMSE vs. number of
parameters. We can observe that the proposed method Pareto dominates the MLP. Among
the compared algorithms, the proposed method is clearly the best one in terms of number
of trainable parameters. Moreover, compared to the LSTM, the best SNPS architecture
we found has an approximately 95% shorter test execution time, with around 95% less
parameters, while its test RMSE is only about 15% larger.



Algorithms 2022, 15, 98 14 of 18

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Test RMSE

0

1000

2000

3000

4000
Tr
ai
na

bl
e 
pa

ra
m
et
er
s MLP

CNN
LSTM
SNPS(1)
SNPS(2)
SNPS(3)
SNPS(4)
SNPS(5)
SNPS(6)

104
6×103

2×104

Figure 6. Trade-off between test RMSE and number of trainable parameters for the methods consid-
ered in the experimentation on CMAPSS (FD001).

Table 8 presents the comparative results on the N-CMAPSS dataset of the two deep
neural networks taken from [39] and the solutions obtained by our proposed method. It
should be noted that compared to the shallow MLP used on the CMAPSS dataset, the
number of parameters of the MLP used here is more than two orders of magnitude larger
(94,701 vs. 801). On the other hand, the CNN has a comparable number of parameters. We
can see that the two deep networks can reach a very low RMSE. However, the CNN shows
a better prediction accuracy with a lower number of parameters, although the computation
for training this DL architecture is still considerably large [19]. Differently from the results
on CMAPSS, the s-score performance of the proposed method is better than that of MLP, but
it cannot reach the performance of the CNN. As illustrated in Figure 7, our SN P systems do
not outperform the CNN in terms of RMSE, but they have a clear advantage in terms of
number of trainable parameters. Especially the best solution in terms of test RMSE, SNPS
(4) illustrated in Figure 8, has 56 parameters, and this remarkably simple structure enables
predicting RUL very quickly. In fact, the execution time on the test set reported in Table 8
clearly demonstrates this advantage. On this notably larger dataset, the proposed method
only takes less than 20 ms to predict the RUL, while the other methods take more than 1 s.

Table 8. Summary of the comparative analysis based on the test results on N-CMAPSS (DS02). The
symbol “-” indicates not available data. For our SNPS methods, we report the RMSE in terms of
mean ± std. dev. across 10 independent runs. For the remaining methods, we report the results from
the original papers (std. dev. not provided). The boldface indicates the best value per column.

Methods Test RMSE s-Score × (103) Trainable Parameters Test Execution Time (ms)

MLP [39] 8.34 ± 0.00 20.41 94,701 1223
CNN [39] 7.22 ± 0.00 1.14 5722 1178
SNPS (1) 19.72 ± 0.44 8.39 218 19
SNPS (2) 20.11 ± 0.62 6.53 180 17
SNPS (3) 19.23 ± 0.57 7.92 83 12
SNPS (4) 18.14 ± 0.52 6.39 56 11
SNPS (5) 18.25 ± 0.59 7.69 105 15
SNPS (6) 18.45 ± 0.57 6.48 98 14

Rrnd 26.85 ± 0.00 276.76 - -
Rµ 18.97 ± 0.00 63.98 - -



Algorithms 2022, 15, 98 15 of 18

0 2 4 6 8 10 12 14 16 18 20 22

Test RMSE

0

1000

2000

3000

Tr
ai
na

bl
e 
pa

ra
m
et
er
s MLP

CNN
SNPS(1)
SNPS(2)
SNPS(3)
SNPS(4)
SNPS(5)
SNPS(6)

104
105

Figure 7. Trade-off between test RMSE and number of trainable parameters for the methods consid-
ered in the experimentation on N-CMAPSS (DS02).

out

h1 h2
i20
i19
i18
i17
i16
i15
i13
i9
i8
i7
i6
i5
i4
i3
i2
i1

Figure 8. Best SN P system evolved for the RUL prediction task on N-CMAPSS (DS02).

Another advantage of our method relates to memory consumption (which correlates
to the number of parameters). Considering that in all the experiments we used the standard
32-bit floating point precision (so that each parameter takes 4 bytes), we can see that the
method with the largest number of parameters, the MLP, consumes roughly 370 KB, while
our SN P systems take much less than 1 KB. This difference may be crucial for some
industrial environments characterized by stringent memory constraints, e.g., due to the use
of embedded systems.



Algorithms 2022, 15, 98 16 of 18

Finally, as a further reference, we include in Table 8 two additional RMSE values,
namely Rrnd and Rµ. The test RMSE value of Rrnd indicates the performance that may
be obtained by randomly choosing an RUL value from the test labels and considering
it as an RUL prediction. Therefore, the random performance can be calculated by the
RMSE between the test labels and the randomly chosen values. In the case of Rµ, we take
instead all the RUL values from the test labels and compute their mean. Then, the mean
performance is computed by the RMSE between the test labels and their mean. We can
see that our results are better than the result of Rrnd, but only three NEAT configurations
perform slightly better than Rµ. One additional note is that the test RMSE values of the
BPNNs reported in Table 8 are different from those reported in [39], which are based on an
early version of DS02 that has a lower noise level on the sensor readings and a sampling
rate of 0.1 Hz.

6. Conclusions

Spiking Neural P (in short, SN P) systems are a bio-inspired computing tool that
incorporates the idea of spiking neurons into membrane systems called P systems. These
systems have been used for a variety of applications, but so far, they have been handcrafted
by human experts for each application. In this paper, we employed a custom neuro-
evolutionary algorithm, based on NEAT, to automatically design SN P systems for a given
task, with little or no domain knowledge. The proposed method was applied to an RUL
prediction task for predictive maintenance, where so far, traditional neural networks have
been mainly used. Then, we compared our method to methods from the literature, e.g.,
based on MLPs and CNNs. The comparative evaluation was based not only on the CMAPSS
dataset, which is the de facto standard benchmark in the area of RUL prediction, but also
on the N-CMAPSS dataset, which is one of the most up-to-date benchmarks in this area. In
the experiments on CMAPSS, we observed that our approach was able to produce SN P
systems that are competitive in terms of prediction error but with a much smaller number
of trainable parameters. Moreover, in the experiments on the N-CMAPSS dataset, although
our approach was not able to outperform the deep neural networks when considering the
RMSE, it produced once again much smaller structures (in terms of number of parameters).
Overall, our approach provides a reasonable trade-off between performance and number
of trainable parameters, so that the proposed SN P systems with optimized structure
and parameters can be used as an efficient RUL prediction tool in industrial applications
that require finding a compromise between the prediction accuracy and the number of
parameters, which in turns correlates with memory consumption (which is a crucial aspect
e.g., in embedded systems) and computing time.

Author Contributions: L.L.C. and H.M. contributed equally to this work and are listed in alpha-
betical order. A.F. ran part of the experiments and performed part of the numerical analysis. G.I.
conceptualized and supervised the study. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was partially supported by Trentino Sviluppo. We gratefully acknowledge
the support of NVIDIA Corporation with the donation of the TITAN Xp GPU used for this research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Song, T.; Pan, L.; Wu, T.; Zheng, P.; Wong, M.L.D.; Rodriguez-Paton, A. Spiking Neural P Systems With Learning Functions. IEEE

Trans. NanoBiosci. 2019, 18, 176–190. [CrossRef] [PubMed]
2. Paun, G. Computing with Membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
3. Ionescu, M.; Păun, G.; Yokomori, T. Spiking neural P systems. Fundam. Inform. 2006, 71, 279–308.

http://doi.org/10.1109/TNB.2019.2896981
http://www.ncbi.nlm.nih.gov/pubmed/30716044
http://dx.doi.org/10.1006/jcss.1999.1693


Algorithms 2022, 15, 98 17 of 18

4. Păun, G.; Pérez-Jiménez, M.J.; Rozenberg, G. Spike trains in spiking neural P systems. Int. J. Found. Comput. Sci. 2006, 17,
975–1002. [CrossRef]

5. Martín-Vide, C.; Pazos, J.; Păun, G.; Rodríguez-Patón, A. A New Class of Symbolic Abstract Neural Nets: Tissue P Systems.
In International Computing and Combinatorics Conference (COCOON); Ibarra, O.H., Zhang, L., Eds.; Springer: Berlin/Heidelberg,
Germany, 2002; pp. 290–299.

6. Pan, L.; Zeng, X. A note on small universal spiking neural P systems. In Proceedings of the International Workshop on Membrane
Computing (WMC), Curtea de Arges, Romania, 24–27 August 2009 ; Springer: Berlin/Heidelberg, Germany, 2009; pp. 436–447.

7. Wang, J.; Hoogeboom, H.J.; Pan, L.; Păun, G.; Pérez-Jiménez, M.J. Spiking neural P systems with weights. Neural Comput. 2010,
22, 2615–2646. [CrossRef] [PubMed]

8. Wang, X.; Song, T.; Gong, F.; Zheng, P. On the computational power of spiking neural P systems with self-organization. Sci. Rep.
2016, 6, 27624. [CrossRef]

9. Dong, J.; Stachowicz, M.; Zhang, G.; Cavaliere, M.; Rong, H.; Paul, P. Automatic Design of Spiking Neural P Systems Based on
Genetic Algorithms. Int. J. Unconv. Comput. 2021, 16, 201–216.

10. Casauay, L.J.P.; Cabarle, F.G.C.; Macababayao, I.C.H.; Adorna, H.N.; Zeng, X.; Martínez-Del-Amor, M.Á.; Cruz, R.T.D.L .
A Framework for Evolving Spiking Neural P Systems. Int. J. Unconv. Comput. 2021, 16, 271–298.

11. Custode, L.L.; Mo, H.; Iacca, G. Neuroevolution of Spiking Neural P Systems. In Applications of Evolutionary Computation; 2022,
to appear.

12. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127.
[CrossRef]

13. Sateesh Babu, G.; Zhao, P.; Li, X.L. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining
Useful Life. In Database Systems for Advanced Applications; Lecture Notes in Computer Science; Navathe, S.B., Wu, W., Shekhar, S.,
Du, X., Wang, X.S., Xiong, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9642, pp. 214–228. [CrossRef]

14. Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long Short-Term Memory Network for Remaining Useful Life estimation. In
Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA,
19–21 June 2017; pp. 88–95.

15. Chen, Z.; Wu, M.; Zhao, R.; Guretno, F.; Yan, R.; Li, X. Machine Remaining Useful Life Prediction via an Attention-Based Deep
Learning Approach. IEEE Trans. Ind. Electron. 2021, 68, 2521–2531. [CrossRef]

16. Mo, H.; Custode, L.L.; Iacca, G. Evolutionary neural architecture search for remaining useful life prediction. Appl. Soft Comput.
2021, 108, 107474. [CrossRef]

17. Mo, H.; Lucca, F.; Malacarne, J.; Iacca, G. Multi-Head CNN-LSTM with Prediction Error Analysis for Remaining Useful Life
Prediction. In Proceedings of the 2020 27th Conference of Open Innovations Association (FRUCT), Trento, Italy, 7–9 September
2020; pp. 164–171.

18. Ye, Z.; Yu, J. Health condition monitoring of machines based on long short-term memory convolutional autoencoder. Appl. Soft
Comput. 2021, 107, 107379. [CrossRef]

19. Mo, H.; Iacca, G. Multi-Objective Optimization of Extreme Learning Machine for Remaining Useful Life Prediction. In Applications
of Evolutionary Computation; 2022, to appear.

20. Ma, T.; Hao, S.; Wang, X.; Alfonso Rodriguez-Paton, A.; Wang, S.; Song, T. Double Layers Self-Organized Spiking Neural P
Systems With Anti-Spikes for Fingerprint Recognition. IEEE Access 2019, 7, 177562–177570. [CrossRef]

21. Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Wang, H.; Shao, J.; Wang, T. Fuzzy reasoning spiking neural P system for fault diagnosis.
Inf. Sci. 2013, 235, 106–116. [CrossRef]

22. Wang, T.; Zhang, G.; Zhao, J.; He, Z.; Wang, J.; Perez-Jimenez, M.J. Fault Diagnosis of Electric Power Systems Based on Fuzzy
Reasoning Spiking Neural P Systems. IEEE Trans. Power Syst. 2015, 30, 1182–1194. [CrossRef]

23. Chen, H.; Ishdorj, T.-O.; Paun, G.; Pérez Jiménez, M.d.J. Spiking neural P systems with extended rules. In Proceedings of the
4th Brainstorming Week on Membrane Computing (BWMC), Sevilla, Spain, 30 January–3 February 2006; Fénix Editora: ETS de
Ingeniería Informática; Volume I, pp. 241–265.

24. Ishdorj, T.-O.; Leporati, A. Uniform solutions to SAT and 3-SAT by spiking neural P systems with pre-computed resources. Nat.
Comput. 2008, 7, 519–534. [CrossRef]

25. Leporati, A.; Gutiérrez-Naranjo, M.A. Solving Subset Sum by spiking neural P systems with pre-computed resources. Fundam.
Inform. 2008, 87, 61–77.

26. Zhang, G.; Rong, H.; Neri, F.; Pérez-Jiménez, M.J. An optimization spiking neural P system for approximately solving combinato-
rial optimization problems. Int. J. Neural Syst. 2014, 24, 1440006. [CrossRef]

27. Qi, F.; Liu, M. Optimization spiking neural P system for solving TSP. In Proceedings of the International Conference on Machine
Learning and Intelligent Communications (MLICOM), Shenzhen, China, 26–27 September 2017; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 668–676.

28. Ionescu, M.; Sburlan, D. Some applications of spiking neural P systems. Comput. Inform. 2008, 27, 515–528.
29. Hamabe, R.; Fujiwara, A. Asynchronous SN P systems for logical and arithmetic operations. In Proceedings of the International

Conference on Foundations of Computer Science (FCS), Las Vegas, NV, USA, 16–19 July 2012; The Steering Committee of the
World Congress in Computer Science; p. 1.

http://dx.doi.org/10.1142/S0129054106004212
http://dx.doi.org/10.1162/NECO_a_00022
http://www.ncbi.nlm.nih.gov/pubmed/20608870
http://dx.doi.org/10.1038/srep27624
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1007/978-3-319-32025-0_14
http://dx.doi.org/10.1109/TIE.2020.2972443
http://dx.doi.org/10.1016/j.asoc.2021.107474
http://dx.doi.org/10.1016/j.asoc.2021.107379
http://dx.doi.org/10.1109/ACCESS.2019.2958895
http://dx.doi.org/10.1016/j.ins.2012.07.015
http://dx.doi.org/10.1109/TPWRS.2014.2347699
http://dx.doi.org/10.1007/s11047-008-9081-0
http://dx.doi.org/10.1142/S0129065714400061


Algorithms 2022, 15, 98 18 of 18

30. Song, T.; Zheng, P.; Wong, M.D.; Wang, X. Design of logic gates using spiking neural P systems with homogeneous neurons and
astrocytes-like control. Inf. Sci. 2016, 372, 380–391. [CrossRef]

31. Peng, X.W.; Fan, X.P.; Liu, J.X. Performing balanced ternary logic and arithmetic operations with spiking neural P systems with
anti-spikes. Adv. Mater. Res. 2012, 505, 378–385. [CrossRef]

32. Tu, M.; Wang, J.; Peng, H.; Shi, P. Application of Adaptive Fuzzy Spiking Neural P Systems in Fault Diagnosis of Power Systems.
Chin. J. Electron. 2014, 23, 87–92.

33. Díaz-Pernil, D.; Peña-Cantillana, F.; Gutiérrez-Naranjo, M.A. A parallel algorithm for skeletonizing images by using spiking
neural P systems. Neurocomputing 2013, 115, 81–91. [CrossRef]

34. Song, T.; Pang, S.; Hao, S.; Rodríguez-Patón, A.; Zheng, P. A parallel image skeletonizing method using spiking neural P systems
with weights. Neural Process. Lett. 2019, 50, 1485–1502. [CrossRef]

35. Schäfer, P.; Högqvist, M. SFA: A symbolic Fourier approximation and index for similarity search in high dimensional datasets. In
Proceedings of the 15th International Conference on Extending Database Technology—EDBT’12, Berlin, Germany, 27–30 March
2012 ; ACM Press: New York, NY, USA, 2012; p. 516.

36. Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In
Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008;
IEEE: Piscataway, NJ, USA, 2008; pp. 1–9.

37. Arias Chao, M.; Kulkarni, C.; Goebel, K.; Fink, O. Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for
Prognostics and Diagnostics. Data 2021, 6, 5. [CrossRef]

38. Louen, C.; Ding, S.X.; Kandler, C. A new framework for remaining useful life estimation using Support Vector Machine classifier.
In Proceedings of the 2013 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, 9–11 October 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 228–233.

39. Arias Chao, M.; Kulkarni, C.; Goebel, K.; Fink, O. Fusing physics-based and deep learning models for prognostics. Reliab. Eng.
Syst. Saf. 2022, 217, 107961. [CrossRef]

40. McIntyre, A.; Kallada, M.; Miguel, C.G.; da Silva, C.F. Neat-Python. Available online: https://github.com/CodeReclaimers/
neat-python (accessed on 10 November 2021).

http://dx.doi.org/10.1016/j.ins.2016.08.055
http://dx.doi.org/10.4028/www.scientific.net/AMR.505.378
http://dx.doi.org/10.1016/j.neucom.2012.12.032
http://dx.doi.org/10.1007/s11063-018-9947-9
http://dx.doi.org/10.3390/data6010005
http://dx.doi.org/10.1016/j.ress.2021.107961
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python

	Introduction
	Background
	Spiking Neural P Systems
	NEAT
	RUL Prediction

	Proposed Method
	Input Features
	Fitness Evaluation

	Experimental Setup
	Datasets
	CMAPSS
	N-CMAPSS

	Compared Algorithms
	Computational Setup and Data Preparation
	NEAT Configurations

	Numerical Results
	Conclusions
	References

