f_f algorithms

Article

Dynamic Line Scan Thermography Parameter Design via
Gaussian Process Emulation

Simon Verspeek *{, Ivan De Boi 117, Xavier Maldague

check for
updates

Citation: Verspeek, S.; De Boi, I;
Maldague, X.; Penne, R.; Steenackers,
G. Dynamic Line Scan Thermography
Parameter Design via Gaussian
Process Emulation. Algorithms 2022,
15,102. https://doi.org/10.3390/
a15040102

Academic Editors: Andrea Serani

and Riccardo Pellegrini

Received: 14 February 2022
Accepted: 18 March 2022
Published: 22 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

2 1

, Rudi Penne and Gunther Steenackers !

Faculty of Applied Engineering, Department Electromechanics, Research Group InViLab, University of
Antwerp, Groenenborgerlaan 171, B 2020 Antwerp, Belgium; ivan.deboi@uantwerpen.be (LD.B.);
rudi.penne@uantwerpen.be (R.P.); gunther.steenackers@uantwerpen.be (G.S.)

Computer Vision and Systems Laboratory, Department of Electrical and Computer Engineering,
Université Laval, Quebec City, QC G1V 0A6, Canada; xavier.maldague@gel.ulaval.ca

*  Correspondence: Simon.Verspeek@uantwerpen.be; Tel.: +32-3-265-87-94

Abstract: We address the challenge of determining a valid set of parameters for a dynamic line scan
thermography setup. Traditionally, this optimization process is labor- and time-intensive work, even
for an expert skilled in the art. Nowadays, simulations in software can reduce some of that burden.
However, when faced with many parameters to optimize, all of which cover a large range of values,
this is still a time-consuming endeavor. A large number of simulations are needed to adequately
capture the underlying physical reality. We propose to emulate the simulator by means of a Gaussian
process. This statistical model serves as a surrogate for the simulations. To some extent, this can
be thought of as a “model of the model”. Once trained on a relative low amount of data points,
this surrogate model can be queried to answer various engineering design questions. Moreover,
the underlying model, a Gaussian process, is stochastic in nature. This allows for uncertainty
quantification in the outcomes of the queried model, which plays an important role in decision
making or risk assessment. We provide several real-world examples that demonstrate the usefulness
of this method.

Keywords: active thermography; parameter design; emulation; Gaussian process

1. Introduction

Active thermography is widely recognized as a fast, reliable and contactless non-
destructive inspection technique [1]. It can be performed in a stationary manner in which
the sample to be inspected remains at the same location. This way, the object is easily
heated using a heating source, and the cooling of the sample is registered using a thermal
camera. This method limits the size of the object since the sample has to fit in the field
of view of the camera. It is possible to examine larger samples by placing the thermal
camera at a greater distance from the sample. The downside of placing the camera further
away from the sample is the resolution reduction in a specified region. In order to detect
a defect with sufficient certainty, the defect has to have an area of at least 3 x 3 pixels [2].
Larger samples can be inspected using dynamic line scan thermography (DLST). This
technique uses a heat source and a thermal camera in tandem, which moves relative to the
sample to be inspected. This can be achieved in two ways: either the camera and heating
source are moved above the object using a robotic arm, or the specimen can translate on a
conveyor belt underneath the heating source and the camera [3,4]. Since dynamic line scan
thermography is a relatively new technique, it is less widely spread in comparison to other
nondestructive testing methods.

An expert skilled in the art has to define the DLST measurement parameters in order
to prevent time-intensive trial and error attempts to find a workable parameter set. In this
work, we focus on the movement velocity, the distance between the heat source and the
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camera, the heating power, the start depth of the defect, the diameter of the defect, the
height of the camera and the ambient temperature.

Several studies have been performed in order to simplify the search for these DLST
measurement parameters. Finite element simulations have been used in order to update the
parameters according to measurements [5]. Response surfaces are used as approximation
in order to find the best parameters based on the characteristics of the defect (depth,
dimension) and the thermal properties of the material [2]. Using the response surface and
some fixed parameters provided by the inspector of a specimen, the best matching set of
parameters is predicted. A response surface can be generated using data from multiple
measurements. However, in order to create such a response surface, a large amount
of measurements are needed. Generally, this is a time-consuming and costly endeavor.
Therefore, a response surface is often built from data gathered in multiple finite element
simulations. The amount of simulations matches the amount of needed measurements;
nonetheless, performing simulations is cheaper, cost wise and time wise. The simulation
performed for this manuscript consists of a flat bottom hole plate heated by a line heater
moving above the sample. The simulated object is a flat bottom hole plate since this is
widely used in scientific research on thermography. The thermal behavior of flat bottom
holes best resembles the response expected by most defects, whereby active thermography
is used as an inspection method. Such defects are delaminations, lateral cracks, areas of
porosity, etc. Attempts are made to create a standard for thermal imaging based on the use
of flat bottom hole plates [6,7]. Therefore, this research is limited to flat bottom hole plates.

A different approach to predict an optimal parameter set is to use artificial intelligence.
For instance, it is possible to train a reinforcement agent to search for the best parameters
to detect multiple defects in a flat bottom hole plate. However, training the reinforcement
learning algorithm requires more simulations than generating the response surface and,
therefore, is less interesting.

Computer simulations are used in a wide range of scientific and engineering chal-
lenges [8]. In this work, we follow their definition of a simulation, stating that it is any
computer program that imitates a real-world system or process. Being able to simulate an
experiment instead of actually conducting it in the real world greatly reduces the required
time, cost and other practical implications, such as possible health risks or consequences
for the environment.

However, since simulators are programmed to a specific task, they are not insensitive
to bias. Moreover, for more complex simulators, the amount of time needed to run the
simulations can become cumbersome. In order to overcome these drawbacks, the simula-
tion itself can be modeled by a machine learning algorithm, which predicts the outcome
of the simulator. Popular choices for these models are Gaussian processes [9], random
forests [10] and neural networks [11]. In this sense, the emulator is a ‘'model of a model’.
The gain stems from the fact that a complex simulation is much more computationally
expensive than a computationally cheap emulation. Over the past years, emulation has
found its way in several domains. In [12], a Gaussian process was implemented to emulate
a mechanical model of the left ventricle, which allowed for a more rapid discovery of the
optimal parameter set for the design. The authors of [13] built an emulator to model the
calibration of an engine. The spread of an infectious disease was modeled in [10].

For machine learning models that are probabilistic by nature, they serve as a statistical
surrogate model. This allows for the quantification of uncertainty of their predictions,
which plays an important role in decision making or risk assessment. For this reason,
we focus on Gaussian processes in this work. By following the Bayesian paradigm, their
predictions consist of both a mean and a variance, which is interpretable as a measure of
uncertainty. A more detailed description is given in Section 2.

The rest of this paper is structured as follows. In the next section, we explain how
we generated the data and give some theoretical background on Gaussian processes and
uncertainty sampling. Section 3 describes our results. In Section 4, we discuss these
findings. Finally, the conclusions are provided.
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2. Materials and Methods
2.1. Data Generation

The simulated data used in this manuscript are provided by a finite element simulation.
The simulation consists of a flat bottom hole plate and a line heater. The flat bottom hole
plate has the following dimensions: 330 x 170 x 10 mm. The material linked to the plate is
PVC, and the circular pocket is located in the center of the sample. A representation of the
simulation can be found in Figure 1.

Figure 1. Visualization of the finite element simulation consisting of a flat bottom hole plate (blue)
and a line heater (yellow). The line heater moves above the sample in a linear motion. For a more
detailed figure and explanation, we refer the reader to [2].

The line heater translates above the flat bottom hole plate, and the thermal response
of the sample is examined. The sample to be inspected is a PVC flat bottom hole plate with
defects varying in size and depth. The simulation uses the following variables: movement
velocity, distance between the heat source and the camera, heating power, start depth of the
defect, diameter of the defect, height of the camera and ambient temperature. This allows
for a variety of scenarios to be mimicked. The result of the simulation is the temperature
difference between a position on the surface above a defect and a position that is not above
a defect. The result of each simulation is used to generate a response surface (see Figure 2).
For more details, we refer to [2].
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Figure 2. Response surface as generated in [2]. The surface is generated from 1000 finite element
simulations, using eight input parameters. The simplified response surface has all input parameters
fixed, except for the heat load and the source velocity. The fixed parameters are: dj,p; g, = 425 mm,
dstart = 5.8 mm, Dyoe =9 mm, dppigps = 430 mm, Typpiens = 48 °C. Using this response surface, one can
find the best temperature difference as a valley or top.
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Running a simulation is much faster and cheaper than performing actual measure-
ments since there is no need for cooling time between consecutive simulations. However,
as thoroughly described in [2], every simulation still requires solving time. The data pro-
vided by these simulations serve as input for the training of the underlying model in the
emulation. In this work, the model is a Gaussian process.

2.2. Gaussian Processes

Here, we give a brief overview of Gaussian processes. A more comprehensive treat-
ment can be found in [9]. The authors define a Gaussian process (GP) as a continuous
collection of random variables, any finite subset of which is normally distributed as a
multivariate distribution.

We denote a dataset of n observations as {(x;, y;)}/_;, where x is an input vector of
dimension d, and y is a scalar-valued observation. In regression, the objective is to find a
function f : R — R,

y=f(x)+e €NN(O,O’§), 1

with € being identically distributed observation noise. This function can be drawn from a
GP, which is fully defined by its mean m(x) and covariance function k(x,x"), also denoted as

f(x) ~ GP(m(x), k(x,x)). @)

The covariance function is parametrized by a set of hyperparameters 0 that can be
learned by maximizing the log marginal likelihood. In our experiments, we use BFGS, a
quasi-Newton method described in [14]. The squared exponential kernel (SE), also called
the radial basis function kernel, is applicable in a wide variety of situations because it
generates smooth (infinitely differentiable) functions. It has the form

x —x'|?
ksg(x,x) —U%exp(—| o | >, (©)

in which 0]% is a height-scale factor and [ is the length scale that determines the radius
of influence of the training points. Since our data are both very smooth and stationary
(covariances only depend on the distance between two data points, not their location), the
squared exponential kernel is a more than reasonable choice. We do, however, implement
a different length-scale parameter for every input dimension. This technique is called
automatic relevance determination (ARD) and allows for functions that vary differently in
each input dimension [15]. The kernel used in this work has the form

2
) X 14 ‘xj—x;-
ksearp(x,X') = 0F exp _EZ T
=1 j

4)

2.3. Active Learning

The process of simulating the values for the temperature difference given a large
amount of inputs is very time consuming. The strategy to overcome this via emulation is
to train a machine learning algorithm to predict those values. The aim is now to train the
model as accurately as possible, given a limited number of data points. This is achieved by
the following steps:

1. A small selection of data points is sampled uniformly from the dataset. Alternatively,
those points could lay an n-dimensional grid, or be a Latin hypercube sampled or
chosen from a Sobol sequence. In [12], a comparison between the different sampling
methods is made. In this work, we restrict ourselves to uniform sampling, as it is
the most simple method. For a more comprehensive study on this topic, we refer the
reader to [16,17].
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The model (in our case, the Gaussian process) is trained on this initial small dataset.
The point from the input space with the highest uncertainty (variance) in the GP’s
posterior distribution is chosen and added to the dataset of the GP, which is then
retrained. This method is called uncertainty sampling (US). Alternatively, the point
which reduces the total variance of the posterior could be chosen. This method is
called integrated variance reduction (IVR). We implement US because it is cheaper to
compute [18].

Step 3 is repeated until a certain criterion is met. When limited by a computational
budget, this could be a fixed number of iterations. Another criterion is convergence in
the posterior distribution, which means that adding new data points no longer has a
significant result on the predictions of the GP.

This process is called active learning and has been well studied by the machine learning

community [9,19-21]. A more recent view on the subject in the context of information
theory can be found in [22]. This algorithm is summarized in Algorithm 1.

Algorithm 1 Active learning with uncertainty sampling.

1: trainset < dataset(n) > start with a training set of n random points
2: testset <— dataset - trainset > put remaining points in test set
3: GP.train(trainset) > train Gaussian process on trainset
4: oldPosterior <— GP.predict(testset + trainset) > get the GP posterior
5: while nrOflterations < maxNrOflterations > check computational budget
6: or diffPosterior > minDiffPosterior do > check for convergence
7: ActiveLearninglteration(GP) > perform one iteration
8: newPosterior <— GP.predict(testset + trainset) > get the GP posterior
9: diffPosterior <— newPosterior - oldPosterior > calculate the change

10: oldPosterior <— newPosterior > store for next iteration

11: end while

12: procedure ACTIVELEARNINGITERATION(GP) > Active Learning iteration

13: trainset <— dataset(US(testset)) > update training set

14: testset <— dataset - trainset > update test set

15: GP.train(trainset) > retrain GP

16: end procedure

17: procedure US(testset) > Uncertainty Sampling

18: for all xics¢ € testset do > evaluate every test point

19: if var(Xtest) > var(Xmostvar) then

20: XmostVar <— Xtest > this point becomes new candidate

21: end if

22: end for

23 return Xy ostvar > return test point with most variance

24: end procedure

3. Results

The purpose of this manuscript is to investigate the feasibility to use emulation for dy-

namic line scan thermography. Predicting the optimal parameter set is difficult and highly
dependent on the defect characteristics. Generating a sufficient detailed response surface
requires a large number of data points. The incentive of using Gaussian Process emulation
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for parameter prediction is based on the idea that it takes fewer data points to learn the
effect of the different design parameters in comparison to generating a response surface.

We evaluate the benefits of dynamic line scan thermography emulation by means
of a Gaussian process in two ways. First, we assess the ability of the model to capture
the underlying physical truth. Second, we formulate several design specific queries that
arise in a practical setting and investigate to which extend the emulation can be utilized to
answer these.

3.1. Model Performance

In order to assess the accuracy of the model, we need a ground truth. We ran the
simulator, as described in [2], 45,000 times. However, the movement velocity, height of the
camera and the ambient temperature were kept constant at 10 mm/s, 450 mm, and 20 °C,
respectively. The remaining input variables were as follows:

1.  Distance between the heat source and the camera, range 50 to 600 mm;
2. Heating power, range 50 to 800 W;

3.  Start depth of the defect, range 2 to 9.8 mm;

4. Diameter of the defect, range 12 to 24 mm.

These four tuples are the inputs of our dataset. The reason we limited the dataset to
four variables is that composing a dataset of seven input variables with enough resolution
to assess the accuracy of the model would take a lot more data points and thus time to
simulate. Moreover, in an industrial context, one does not always have full control over the
parameters we fixed in this demonstration, as they are dictated by the production process
and installation itself.

For each of those four tuples, the temperature difference between a position on the sur-
face above a defect and a position that is not above a defect is calculated. This temperature
difference is the output of our dataset.

Via active learning, as described in Section 2, we iteratively picked data points from
the dataset and moved them to the training set of the Gaussian process. The remaining
data points in the dataset served as test points. After the Gaussian process was trained, two
calculations on the test points were performed:

1.  The root mean square error between the posterior mean in each test point and the
actual values from the simulations. This number serves as a measurement for the
deviation of the model from the underlying truth.

2. The average posterior standard deviation for all remaining test points. This is a
measurement for how much uncertainty there still is in the system. The point with
the highest variance, i.e., the highest uncertainty, becomes the point that is moved
from the test set to the training set of the Gaussian process in the next iteration.

When both of these numbers flatline, then there is little to be gained in running more
simulations. In that case, the Gaussian process is able to approximate the ground truth.

We performed the active learning process for 500 iterations. We started with 25 training
points randomly chosen from the dataset. This makes for a total of 525 data points in the
Gaussian process of the last iteration. In Figure 3, the learning curves of the Gaussian
process are visualized. The exact curves of the iterations depend on the initial random
points that are drawn from the dataset described aboveblack. Therefore, we repeated the
experiment five times.
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Figure 3. Graphical visualization of the learning process of the Gaussian process for 5 runs of
500 iterations. (a) represents the root mean square error (RMSE) of the learned surrogate compared to

the response surface created in [2]. (b) shows the average standard deviation of the Gaussian process
posterior prediction.

The hyperparameters for the covariance functions, as described in Equation (4), of the
trained Gaussian processes, can be found in Table 1.
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Table 1. Hyperparameters of the trained Gaussian processes.
Run l; [mm] I, [W] I3 [mm] I3 [mm] tTI% [°C]
1 142.81 246.17 2.28 2.35 11.97
2 150.00 255.99 2.30 241 11.75
3 182.72 216.52 223 1.98 10.87
4 177.48 223.02 2.26 1.96 10.97
5 153.98 238.46 2.60 2.37 12.84

The values for the hyperparameters of the covariance function of the trained Gaussian processes for each of the
five runs.

3.2. Parameter Design

Generating a response surface is a technique used in the design of experiments (DOF)
often with the idea of investigating the interference between several factors in a process. It
is possible to determine which factors have an influence on the output effect and in what
way the output responds to a change in one or a collection of input parameters. Afterwards,
the insight in the process and the response surface itself can be used to optimize the
parameters in order to minimize/maximize the output effect of the process. In industrial
applications, one is generally not interested in the influence of the different input parameters
on the output effect. There, focus lies on how to optimize the efficiency of the inspection
process itself, or in other words, how to reduce its economical impact on the overall
production process.

Once a Gaussian process is trained to emulate the simulations up to an adequate level,
we can query the model with real-world engineering design questions. Below, we give a
few examples. We picked the threshold values in these examples in an arbitrary way. Here,
they only serve demonstrating purposes. They are, of course, application specific. In a
practical setup, they depend on the type of the camera used, the ambient temperature in
the production facility, the material of the sample under inspection, etc.

Example 1. From a practical and economical point of view, the most crucial input parameter is the
heating power. The reduction in the energy needed to heat a sample under inspection results in a
drastic reduction in the inspection cost. To accommodate this, we can ask the following question:
what parameter combination should be used to be able to detect a predefined defect with a certain
start depth and diameter, with a minimal of amount of heating energy needed? For instance, we
want to be able to detect a defect with a diameter of 14 mm, which is situated 6 mm below the
surface. We query the GP posterior prediction for all test and training points by filtering on the
input variables’ start depth and diameter. Then, we filter the temperature difference on a range from
51010 °C. A temperature difference that is lower might make it hard to detect with a given camera.
A temperature difference that is higher means the sample under inspection is heated to a value that
is too high, resulting in a waste of energy of an even and undesirable effect on the material itself.
From all the remaining possible inputs, we choose the ones with the lowest heat load. In our case this
is 50 W. We end up with a range for the distance between the camera and the heat source of 335 to
420 mm. All these values yield a temperature difference between 5 and 10 °C for the given defect.
On the other hand, when the distance between the heat source and the camera is below this range,
we can observe that the heat load has to be increased to 75 W to still yield a temperature difference
between 5 and 10 °C.

Example 2. In some practical scenarios, it is possible that the distance between the heat source
and the camera has to be a fixed value, for instance, due to constraints on the physical setup in the
production environment. We can ask the trained model, what parameter combination should be used
to be able to detect a range of defects with only adjusting the heating power? Again, we filter the
temperature difference on a range from 5 to 10 °C. We fix the distance between the heat source and
the camera to 100 mm. We observe that we need a minimum of 500 W to be able to detect all defects
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from our dataset. When the heat load is below 500 W, we can no longer detect defects that are lower
than 9.8 mm below the surface.

Example 3. The model can also be used to visualize regions in the input space that result in unde-
sirable temperatures for the sample. For instance, we can highlight regions where the temperature
of the sample would become too high. This serves as a warning, as temperatures that are too high
might cause damage to the sample under inspection. In Figure 4, we provide an overview of the
predicted temperature differences per defect diameter. Regions that are colored are to be avoided
when designing the dynamic line scan thermography setup. These plots also reveal that some regions
of the input space are workable for some defects, but not for others. The full benefit of these plots
comes into its own when using software that allows the end user to rotate the generated cubes, which
is trivial to set up in Matlab or any Python environment equipped with a graphing library, such
as Matplotlib.

Example 4. In this last example, we visualize the plots from Example 3 in a different way to
highlight regions of the input space that correspond to appropriate temperature differences. In
Figqure 5, we color regions that result in hard-to-detect (or even undetectable) temperature differences
red. For this example, we set the threshold to an arbitrary value of 5 °C. Regions that result in
temperature differences above 25 °C are colored yellow. Ideal regions lie in between those values and
are given the color green (see Table 2).
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Figure 4. Cont.
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Figure 4. Visualization of the temperature difference for six different defect diameters. (a) 12 mm, (b) 14 mm,
(c) 16 mm, (d) 18 mm, (e) 20 mm and (f) 22 mm. Red indicates temperature differences that might result in
damaging the sample under inspection. These plots serve as a warning when designing a setup.
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Figure 5. Visualization of the temperature difference for six different defect diameters. (a) 12 mm,
(b) 14 mm, (c) 16 mm, (d) 18 mm, (e) 20 mm and (f) 22 mm. Red are temperature differences below
5 °C, yellow above 25 °C and green in between. Only the green regions are of practical value in
real-world applications.
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Table 2. Optimal parameter sets found for the examples explained above.

Parameter Example1  Example2 Example3  Example 4
Ambient Temperature [°C] 20 20 20 20
Velocity [mm/s] 10 10 10 10

Camera Height [mm)] 450 450 450 450
Diameter Hole [mm)] 14 12-24 22 12
Startdepth Hole [mm)] 6 2-9.8 2-9.8 2-9.8
Heating Power [W] 50 500 200-400 600-800
Distance cam.—heat [mm] 335-420 100 500-600 50-200

Example 1 handles the question “What parameter combination should be used to be able to detect a predefined
defect with a certain start depth and diameter, with a minimal of amount of heating energy needed?’. Example 2
searches for the best parameter combination to detect as many holes as possible with only adjusting the heating
power. Example 3 predicts the regions in the input space that result in undesirable temperatures for the sample.
Consequently, the interesting regions can be found as the remaining parameter combinations. Example 4 visualizes
the regions of the input space that correspond to appropriate temperature differences. Depending on the colors,
one can find a suitable region.

4. Discussion

Both the RMSE and the average standard deviation show an initial steep decline that
gradually flatlines. All our experiments have shown to converge to the same values after
enough iterations. These curves support the decision making process whether or not to
continue to add more data points (costly simulations). For our application, one could
conclude that after 350 iterations the RMSE and the standard deviation are sufficiently low
enough and do not change significantly anymore. The total amount of iterations needed to
train the Gaussian process such that it can approximate the simulations up to an adequate
level, depends on the application itself. It is a function of the available computational budget
and the amount of uncertainty that can be tolerated. Similarly, generating a response surface
is also subjective in the sense of deciding when a surrogate has a sufficient resolution and
accuracy for the specified application. Therefore this manuscript does not focus on the
exact numbers or percentage of data points needed to approximate the response surface.

Simulators and emulators are models of an underlying truth and as such nothing more
than an approximation. This means that one has to be prudent about the outcomes of such
models. For instance, it is possible for the model to predict values that do not correspond
with reality or, even worse, that do not have any physical meaning. For instance, we
noticed that for some test points (points were we make predictions) far away from the
data, it is possible to obtain negative values for the temperature difference, even though
the data only contained positive values. This issue can be dealt with in two ways. First,
one could implement constraints on the model. In our case we could alter the covariance
function, such that only positive values can be predicted by the model. This is an approach
thoroughly explained in [23]. Second, in this research, we chose the Gaussian process for
the underlying machine learning model. By following the Bayesian paradigm [9], this
stochastic model makes predictions that are not just numerical values (in our case for the
temperature difference). They are also accompanied by a variance. As such, each prediction
for every test point is in fact a normal distribution. The variance can be interpreted as a
measurement of uncertainty about the prediction. This extra information should be taken
into account when evaluating the predictions.

As mentioned throughout the text, several optimisations could further improve the
performance of the model. They were not investigated in this work, because we wanted
to restrict ourselves to a basic implementation of the core idea of approximating dynamic
line scan thermography parameter design via emulation. We consider these to be future
work. First, the initial sampled points were drawn uniformly from the input space. Several
alternatives are described in the literature [12,16,17]. As the total number of sampled points
increases, the influence of the initial points becomes less important. Still, on very tight
computational budgets, this could become a factor of interest. Second, the Uncertainty
Sampling method sometimes favours points on the boundary of the input space. This
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is due to the fact that the density of data points is lower in those regions and thus the
uncertainty is higher (there are no data points beyond the boundary). Integrated Variance
Reduction takes this drawback into account and calculates the total amount of uncertainty
reduction a new data point yields. It does so for each point in the test set. This reduces the
score of points in the vicinity of the boundary. It is to be expected that Integrated Variance
Reduction would reduce the number of time consuming sampled input points, but at a
higher computational cost. This is also stated in [18]. The effect of this remains an open
question. Third, as also stated above, the Gaussian process used in this study can be further
developed to incorporate prior knowledge in the form of constraints.

5. Conclusions

We have described a method to emulate the time consuming simulations for a dynamic
line scan thermography setup. By means of a Gaussian process, the simulator can be
approximated. We have shown that the accuracy increases for every simulation that is
added to the training set of the Gaussian process. However, the increase flatlines after a
certain application specific number of simulations. At this point, adding more simulations,
a time consuming effort, does not add to the overall usefulness of the model. We also posed
several parameter design questions relevant in real world engineering design challenges.
We demonstrated that a trained emulator can be queried to help find solutions to those
questions. This method facilitates the process of finding an economic viable set of design
parameters for a dynamic line scan thermography setup in industrial applications.
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