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Abstract: Neural networks have made big strides in image classification. Convolutional neural
networks (CNN) work successfully to run neural networks on direct images. Handwritten character
recognition (HCR) is now a very powerful tool to detect traffic signals, translate language, and extract
information from documents, etc. Although handwritten character recognition technology is in
use in the industry, present accuracy is not outstanding, which compromises both performance and
usability. Thus, the character recognition technologies in use are still not very reliable and need further
improvement to be extensively deployed for serious and reliable tasks. On this account, characters
of the English alphabet and digit recognition are performed by proposing a custom-tailored CNN
model with two different datasets of handwritten images, i.e., Kaggle and MNIST, respectively, which
are lightweight but achieve higher accuracies than state-of-the-art models. The best two models from
the total of twelve designed are proposed by altering hyper-parameters to observe which models
provide the best accuracy for which dataset. In addition, the classification reports (CRs) of these
two proposed models are extensively investigated considering the performance matrices, such as
precision, recall, specificity, and F1 score, which are obtained from the developed confusion matrix
(CM). To simulate a practical scenario, the dataset is kept unbalanced and three more averages for the
F measurement (micro, macro, and weighted) are calculated, which facilitates better understanding
of the performances of the models. The highest accuracy of 99.642% is achieved for digit recognition,
with the model using ‘RMSprop’, at a learning rate of 0.001, whereas the highest detection accuracy
for alphabet recognition is 99.563%, which is obtained with the proposed model using ‘ADAM’
optimizer at a learning rate of 0.00001. The macro F1 and weighted F1 scores for the best two models
are 0.998, 0.997:0.992, and 0.996, respectively, for digit and alphabet recognition.

Keywords: handwritten character recognition; English character recognition; convolutional neural
networks (CNNs); deep learning in character recognition; digit recognition; English alphabet recognition

1. Introduction

Handwriting is the most typical and systematic way of recording facts and information.
The handwriting of an individual is idiosyncratic and unique to individual people. The
capability of software or a device to recognize and analyze human handwriting in any
language is called a handwritten character recognition (HCR) system. Recognition can
be performed from both online and offline handwriting. In recent years, applications of
handwriting recognition are thriving, widely used in reading postal addresses, language
translation, bank forms and check amounts, digital libraries, keyword spotting, and traffic
sign detection.

Image acquisition, preprocessing, segmentation, feature extraction, and classification
are the typical processes of an HCR system, as shown in Figure 1. The initial step is to
receive an image form of handwritten characters, which is recognized as image acquisition
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that will proceed as an input to preprocessing. In preprocessing, distortions of the scanned
images are removed and converted into binary images. Afterward, in the segmentation
step, each character is divided into sub images. Then, it will extract every characteristic of
the features from each image of the character. This stage is especially important for the last
step of the HCR system, which is called classification [1]. Based on classification accuracy
and different approaches to recognize the images, there are many classification methods,
i.e., convolutional neural networks (CNNs), support vector machines (SVMs), recurrent
neural networks (RNNs), deep belief networks, deep Boltzmann machines, and K-nearest
neighbor (KNN) [2].
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Figure 1. Representation of a common handwritten character recognition (HCR) system.

A subclass of machine learning comprises neural networks (NNs), which are
information-processing methods inspired by the biological process of the human brain.
Figure 2 represents the basic neural network. The number of layers is indicated by deep
learning in a neural network. Neurons, being the information-processing element, build
the foundation of neural networks that draws parallels from the biological neural network.
Weights associated with the connection links, bias, inputs, and outputs are the primary
components of an NN. Every node is called a perceptron in a neural network (NN) [3].
Research is being conducted to obtain the best accuracy, but the accuracy using a CNN
is not outstanding, which compromises the performance and usability for handwritten
character recognition. Hence, the aim of this paper is to obtain the highest accuracy
by introducing a handwritten character recognition (HCR) system using a CNN, which
can automatically extract the important features from the images better than multilayer
perceptron (MLP) [4–9].
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CNNs were first employed in 1980 [10]. The conception of convolutional neural
networks (CNNs) was motivated by the human brain. People can identify objects from
their childhood because they have seen hundreds of pictures of those objects, which is why
a child can guess an object that they have never seen before. CNNs work in a similar way.
CNNs used for analyzing visual images are a variation of an MLP deep neural network that
is fully connected. Fully connected means that each neuron in the layer is fully connected
to all the neurons in the subsequent layer. Some of the renowned CNN architectures are
AlexNet (8 layers), VGG (16, 19 layers), GoogLeNet (22 layers), and ResNet (152 layers) [11].
CNN models can provide an excellent recognition result because they do not need to collect
prior knowledge of designer features. As for CNNs, they do not depend on the rotation of
input images.

A CNN model has been broadly set for the HCR system, using the MNIST dataset.
Such research has been carried out for several years. A few researchers have found the
accuracy to be up to 99% for the recognition of handwritten digits [12]. An experiment
was carried out using a combination of multiple CNN models for MNIST digits and
had 99.73% accuracy [13]. Afterward, for the same MNIST dataset, the recognition accuracy
was improved to 99.77%, when this experiment of the 7-net committee was extended to
a 35-net committee [14]. Niu and Suen minimized the structural risk by integrating the
SVM for the MNIST digit recognition and obtain the astonishing accuracy of 99.81% [15].
Chinese handwritten character recognition was investigated using a CNN [16]. Recently,
Alvear-Sandoval et al. worked on deep neural networks (DNN) for MNIST and obtained
a 0.19% error rate [17]. Nevertheless, after a vigilant investigation, it has been observed
that the maximal recognition accuracy of the MNIST dataset can be attained by using
only ensemble methods, as these aid in improving the classification accuracy. However,
there are tradeoffs, i.e., high computational cost and increased testing complexity [18]. In
this paper, a tailored CNN model is proposed which attains higher accuracy with light
computational complexity.

Research on HCR technology has been going on for long time now and it is in use
by the industry, but the accuracy is low, which compromises the usability and overall
performance of the technology. Until now, the character recognition technologies in use are
still not very dependable and need more development to be deployed broadly for unfailing
applications. On this account, characters of the English alphabet and digit recognition are
performed in this paper by proposing a custom-tailored CNN model with two different
datasets of handwritten images, i.e., Kaggle and MNIST, respectively, which achieve higher
accuracies. The important features of these proposed projects are as follows:

1. In the proposed CNN model, four 2D convolutional layers are kept the same and
unchanged to obtain the maximum comparable recognition accuracy into two different
datasets, Kaggle and MNIST, for handwritten letters and digits, respectively. This
proves the versatility of our proposed model.

2. A custom-tailored, lightweight, high-accuracy CNN model (with four convolutional
layers, three max-pooling layers, and two dense layers) is proposed by keeping in
mind that it should not overfit. Thus, the computational complexity of our model
is reduced.

3. Two different optimizers are used for each of the datasets, and three different learning
rates (LRs) are used for each of the optimizers to evaluate the best models of the
twelve models designed. This suitable selection will assist the research community in
obtaining a deeper understanding of HCR.

4. To the best of the authors’ knowledge, the novelty of this work is that no researchers
to date have worked with the classification report in such detail with a tailored
CNN model generalized for both handwritten English alphabet and digit recognition.
Moreover, the proposed CNN model gives above 99% recognition accuracy both in
compact MNIST digit datasets and in extensive Kaggle datasets for alphabets.

5. The distribution of the dataset is imbalanced. Hence, only the accuracy would be
ineffectual in evaluating model performance, so advanced performances are analyzed
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to a great extent with a classification report for the best two proposed models for the
Kaggle and MNIST datasets, respectively. Classification reports indicate the F1 score
for each of the 10 classes for digits (0–9) and each of the 26 classes for alphabet (A–Z).
In our case of multiclass classification, we examined averaging methods for the F1
score, resulting in different average scores, i.e., micro, macro, and weighted average,
which is another novelty of this proposed project.

The rest of the paper is organized as follows: Section 2 describes the review of the
literature and related works in the handwritten character recognition research arena;
Sections 3 and 4 present datasets and proposed CNN model architecture, respectively;
Section 5 discusses the result analysis and provides a comparative analysis; and Section 6
describes the conclusion and suggestions for future directions.

2. Review of Literature and Related Works

Many new techniques have been introduced in research papers to classify handwrit-
ten characters and numerals or digits. Shallow networks have already shown promis-
ing results for handwriting recognition [19–26]. Hinton et al. investigated deep belief
networks (DBN), which have three layers along with a grasping algorithm, and recorded
an accuracy of 98.75% for the MNIST dataset [27]. Pham et al. improved the perfor-
mance of recurrent neural networks (RNNs), reducing the word error rate (WER) and
character error rate (CER) by employing a regularization method of dropout to recognize
unconstrained handwriting [28].

The convolutional neural network (CNN) delivered a vast change as it delivers a
state-of-the-art performance in HCR accuracy [29–33]. In 2003, for visual document anal-
ysis, a common CNN architecture was introduced by Simard et al., which loosened the
training of complex methods of neural networks [34]. Wang et al. used multilayer CNNs
for end-to-end text recognition on benchmark datasets, e.g., street view text and ICDAR
2003, and accomplished brilliant results [35].

Recently, for scene text recognition, Shi et al. introduced a new approach, the conven-
tional recurrent neural network (CRNN), integrating both the deep CNN (DCNN) and
recurrent neural network (RNN), and announced its superiority to traditional methods of
character recognition [36]. For semantic segmentation, Badrinarayanan et al. proposed a
deep convolutional network architecture where the max-pooling layer was used to obtain
good performance; the authors also compared their model with current techniques. The
segmentation architecture known as SegNet consists of a pixel-wise classification layer,
an encoder network, and a decoder network [37,38]. In offline handwritten character
recognition, CNN has shown outstanding performance for different regional and inter-
national languages. Researchers have conducted studies on Chinese handwritten text
recognition [39–41]; Arabic language [42]; handwritten Urdu text recognition [43,44]; hand-
written Tamil character recognition [45]; Telugu character recognition [46]; and handwritten
character recognition on Indic scripts [47].

Gupta et al. used features extracted from a CNN in their model and recognized the
informative local regions in [48] from recent character images, accomplishing a recognition
accuracy of 95.96% by applying a novel multi-objective optimization framework for HCR
which comprises handwritten Bangla numerals, handwritten Devanagari characters, and
handwritten English numerals. High performance of the CROHME dataset was observed
in the work of Nguyen et al. [49]. The author employed a multiscale CNN for clustering
handwritten mathematical expression (HME) and concluded by identifying that their
model can be improved by training the CNN with a combination of global, attentive, and
max-pooling layers.

Recognition of word location in historical books, for example on Gutenberg’s Bible
pages, is wisely addressed in the work of Ziran et al. [50] by developing an R-CNN-based
deep learning framework. Ptucha et al. introduced an intelligent character recogni-
tion (ICR) system, logically using a conventional neural network [51]. IAM datasets
and French-language-based RIMES lexicon datasets were used to evaluate the model,
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which reported a commendable result. The variance between model parameters and
hyper-parameters was highlighted in [52]. The hyper-parameters include the number of
epochs, hidden units, hidden layers, learning rate (LR), kernel size, activation function, etc.,
which must be determined before the training begins to determine the performance of the
CNN [53]. It is mentioned that, if the hyper-parameters are chosen poorly, it can lead to
a bad CNN performance. The total number of hyper-parameters of some CNN models
are 27, 57, 78, and 150, respectively, for AlexNet [54], VGG-16 [55], GoogleNet [56], and
ResNet-52 [57]. To improve the recognition performance, practicing researchers play an
important role in the handwriting recognition field for designing CNN parameters effec-
tively. Tapotosh Ghosh et al. converted the images into black-and-white 28 × 28 forms with
white as the foreground color in [58] by approaching InceptionResNetV2, DenseNet121,
and InceptionNetV3 using the CMATERdb dataset. The accuracy obtained by different
researchers, their dataset preprocessing, and the different approaches taken to obtain the
best recognition accuracy in recent years have been arranged in a tabular form at the end of
the paper in Section 5—Results and Analysis.

3. Datasets

The MNIST digit benchmark dataset is a subgroup of a bigger special dataset available
from the National Institute of Standards and Technology (NIST). This benchmark dataset,
having two categories (digit and alphabet), is accessible through Keras functionality, which
is shaped through training on 60,000 sets of examples and a test set, which is made up of
testing 10,000 examples [59]. Nevertheless, for digit recognition in this project, only 1 type
of dataset is used from the list, which comprises 10 classes of MNIST digits.

Each digit is of uniform size and, by computing the center of mass of the pixels,
each binary image of a handwritten digit is centered into a 28 × 28 image. The test set
consists of 5000 patterns and each image consists of 30,000 patterns from 2 datasets, from
about 250 different writers, 1 from high school students and the other from Census Bureau
employees [1]. To make verification easier, datasets are labeled accordingly. The MNIST
images sample distribution is shown in Figure 3.
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The Kaggle alphabet dataset was sourced from the National Institute of Standards
and Technology (NIST), NMIST, and other google images [60]. Kaggle English handwritten
alphabets of 26 classes are shaped by training with over 297,000 sets of examples and a test
set, which is made up of over 74,490 examples. The total distribution of Kaggle letters is
illustrated in Figure 4. Each letter is of uniform size and by computing the center of mass
of the pixels, each binary image of a handwritten letter is centered into a 28 × 28 image.
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4. Proposed Convolutional Neural Network

Of all the deep learning models in image classifications, CNN has become very popular
due to its high performance in recognizing image patterns. This has opened up various
application opportunities in our daily life and industries which include medical image
classification, traffic monitoring, autonomous object recognition, facial recognition, and
much more.

CNNs are sparse, feed-forward neural networks [61]. The idea of an artificial neuron
was first conceptualized in 1943. Hubel and Wisel first found that, for detecting lights in
the receptive fields, visual cortex cells have a major role, which greatly inspired building
models such as neocognitron. This model is considered to be the base and predecessor
of CNN. CNN is formed of artificial neurons which have a self-optimization property,
learning like brain neurons. Due to this self-optimizing property, it can extract and classify
the features extracted from images more precisely than any other algorithm. Moreover,
it needs very limited preprocessing of the input data, while yielding highly accurate and
precise results. CNNs are vastly used in object detection and image classification, includ-
ing medical imaging. In image classification, each pixel is considered a feature for the
neural network. CNN tries to understand and differentiate among the images depending
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on these features. Conventionally, first few convolutional layers capture very low-level
features, such as the edges, gradient orientation, or color. However, with the increased
number of convolutional layers, it starts extracting high-level features. Due to the higher
dimensionality and convolution, the parameters of the network increase exponentially. This
makes the CNN computationally heavy. However, with the development of computational
technology and GPU, these jobs have become much more efficient. Moreover, the devel-
opment of the CNN algorithms has also prompted the ability to reduce dimensionality
by considering small patches at a time which reduces the computational burden without
losing the important features.

Handwritten character recognition (HCR) with deep learning and CNN was one of the
earliest endeavors of researchers in the field. However, with increased modeling efficacy
and the availability of a huge dataset, current models can perform significantly better
than the models of ten years ago. However, one of the challenges of the current models
is generalization. The model that performs excellently with one dataset may perform
poorly with a different one. Thus, it is important to develop a robust model which can
perform with the same level of accuracy across different datasets, which would give the
model versatility. Thus, a CNN model is designed which is computationally proficient
because of its optimized number of CNN layers, while performing with high accuracy
across multisource massive datasets.

Owing to the lower resolution of the handwritten character images, the images which
were fed to the input layers were sized 28 × 28 pixels. The input layer feeds the images to
the convolutional layers, where the features are convolved. The model has only four convo-
lutional layers, which makes it lightweight and computationally efficient. The first layer is
a 2D convolutional layer with a 3 × 3 kernel size and rectified linear unit (ReLU)-activation
function. ReLU is one of the most widely used activation functions in deep learning algo-
rithms. ReLU is computationally effective because the neurons are not activated altogether
like the other activation functions, e.g., tanh [62]. ReLU is a piecewise linear function which
is also continuous and differentiable at all points except for 0. Besides providing simplicity
and empirical simplicity, it also has reduced likelihood of vanishing gradient. Because of
the abovementioned benefits, and as per the suggestion of the literature that ReLUs tend to
converge early, it was chosen for our model. The idea behind ReLU is simple, it returns
positive values input directly to the output, whereas the negative values are returned as 0,
as depicted in Figure 5.
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The subsequent three layers are the 2D convolutional layers, which are accompanied
by one max-pooling layer and a ReLU-activation function. Max pooling is a sample-based
discretization process which is used to downsize our input images. It pools the maximum
value from each patch of each feature map, thus helping to reduce the dimensionality of
the network. Moreover, it reduces the number of parameters by discarding insignificant
ones, which decreases the computational burden as well as helping to avoid overfitting.
Thus, a 2 × 2 max-pooling layer is integrated in each of the convolutional layers except
for the first one. The output of the fourth convolutional layer is fed to the flattening layer
to convert the input to a 1D string, which is then fed to the fully connected layer, i.e., the
dense layer.

In the fully connected layer, as the name suggests, all the neurons are linked to the
activation units of the following layer. In the proposed model, there are two fully connected
layers where all the neurons of the first layer are connected to the activation unit of the
second fully connected layer. In the second fully connected layer, all the inputs are passed
to the Softmax activation function, which categorizes the features into multiclass as needed.
Finally, the determined class of any input image is declared in the output. The proposed
model is illustrated in Figure 6 and the resultant parameters of each layer are tabulated
in Table 1.
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Figure 6. Proposed CNN model for character recognition.

Table 1. Details of the proposed model.

Layer (Type) Output Shape Param #

conv_1 (Conv 2D) (None, 26, 26, 32) 320
conv_2 (Conv 2D) (None, 26, 26, 64) 18,496

max_pooling2D_18 (MaxPooling2D) (None, 13, 13, 64) 0
conv_3 (Conv 2D) (None, 13, 13, 128) 73,856

max_pooling2D_19 (MaxPooling2D) (None, 6, 6, 128) 0
conv_4 (Conv 2D) (None, 6, 6, 256) 295,168

max_pooling2D_20 (MaxPooling2D) (None, 3, 3, 256) 0
flatten (Flatten) (None, 2304) 0
FC_1 (Dense) (None, 64) 147,520
FC_2 (Dense) (None, 10) 650

Total Params # 536,010

Trainable Params # 536,010

Non-Trainable Params # 0
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For generalization, the same proposed model is used to classify both the English
alphabets and digits. The only difference is the number of output classes defined in the
last fully connected layer, which is the ‘fully connected + Softmax’ layer, as depicted by
Figure 6, and the FC_2 layer, as presented by Table 1. The number of classes is 10 for
digit recognition as depicted by the table, and the number of classes is 26 for alphabet
recognition. Moreover, for extensive comparative analysis, we also analyzed how the
proposed model performs with different optimizers, ‘ADAM’ and ‘RMSprop’, which also
include the variation of the learning rates (LRs). This analysis helps in understanding how
the model performance might vary with the change of optimizers and variation of learning
rates which are discussed in detail in Section 5—Results and Analysis.

In order to avoid the difficulties posed by the problem of latency in data process-
ing, this project utilizes Colab-pro by Google, which has a 2.20 GHz Intel Xeon Proces-
sor, 128 GB RAM, and Tesla P100 16 GB GPU. The model was designed and tested in
Colab-pro, keeping in mind the factor of easy reproducibility by the research community,
as Colab-pro has built-in support for GPU-enabled TensorFlow and the necessary support
for CUDA acceleration.

5. Results and Analysis

We used two datasets for the handwritten recognition process: the Kaggle dataset
for our English letter (A–Z) and MNIST for our numeric characters (0–9). Two optimizers
were used for each of the datasets, ‘ADAM’ and ‘RMSprop’, as well as three different
learning rates (LRs) of 0.001, 0.0001, and 0.00001 for each of the optimizers. This gives us
six CNN models for each of the datasets and twelve models overall. To avoid confusion
and repetition, we named our models. The models were named as follows for the Kaggle
dataset: with a learning rate of 0.001, the model under the ‘ADAM’ optimizer is K1 and the
one under the ‘RMSprop’ is K2; with a learning rate of 0.0001, the model under the ‘ADAM’
optimizer is K3 and the one under the ‘RMSprop’ is K4; with a learning rate of 0.00001,
the model under the ‘ADAM’ optimizer is K5 and the one under the ‘RMSprop’ is K6.
The models were named similarly for the MNIST dataset from model M1 to model M6.
Our results indicated that we obtained the best result under the ‘ADAM’ optimizer with
a learning rate of 0.00001 under the Kaggle dataset (model K5), and under ‘RMSprop’
with a learning rate of 0.001 for the MNIST dataset (model M2). We then calculated the
F1 score (micro, macro, and weighted average) and obtained confusion matrices and two
classification reports for the two models that give us the best accuracy for the each datasets.
Figure 7 simplifies the selection of the best models for each dataset.
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For the alphabet dataset, the overall accuracies using the ‘ADAM’ optimizer in the
proposed CNN model for handwritten English alphabet recognition were 99.516%, 99.511%,
and 99.563% for LR 0.001, LR 0.0001, and LR 0.00001, respectively. The same model using
‘RMSprop’ achieved the accuracy of 99.292%, 99.108%, and 99.191%, respectively, by LR
0.001, LR 0.0001, and LR 0.00001. These results clearly show that, in terms of accuracy, the
model using the ‘ADAM’ optimizer with LR 0.00001, named as model K5, performs better
than the other proposed models. It is clear that all the proposed six models for character
recognition achieved above 99.00% overall accuracy.

For the digit dataset, the overall accuracies using ‘RMSprop’ for handwritten digit
recognition were 99.642%, 99.452%, and 98.142% for LR 0.001, LR 0.0001, and LR 0.00001,
respectively. The same model using the ‘ADAM’ optimizer achieved accuracies of 99.571%,
99.309%, and 98.142% for LR 0.001, LR 0.0001, and LR 0.00001, respectively. Figures 8 and 9
depict validation accuracies and Figures 10 and 11 show the validation losses of all the
twelve models with the Kaggle and MNIST dataset, respectively. It is clear that overall
accuracy decreases with the decrease in learning rate (LR). This confirms that the model
using ‘RMSprop’ with LR 0.001, named as model M2, outperformed the other proposed
models in terms of accuracy. From Figures 9 and 11, it can be clearly observed that no
overfitting happens for the digit recognition or for alphabet recognition; overfitting occurs
when ‘RMSprop’ is used, which is depicted in Figures 8d–f and 10d–f. Overfitting occurs
when the model performs fine on the training data but does not perform exactly in the
testing set. Here, the model learns the unnecessary information within the dataset as it
trains for a long time on the training data.

The performance evaluation of the models is more obvious and explicit from the
matrices of specificity, recall, precision, F1 score, and support. The possible outcomes
obtained by the confusion matrix (CM) calculate the performance of these matrices. This
CM has four different outcomes: total false positive (TFP), total false negative (TFN), total
true positive (TTP), and total true negative (TTN). The CM sets up nicely to compute the
per-class values of recall, precision, specificity, and F1 score for each of the datasets.

Let us consider the scenario where we want the model to detect the letter ‘A’. For
simplification, let us also assume that each of the 26 letters in the alphabet (A–Z) has
100 images for each of the letters, totaling 2600 images altogether. If we assume that the
model accurately identifies the images of the letter ‘A’ in 97 out of 100 images, then we say
that the accuracy of the model is 97%. Thus, we can also conclude that the total number
of true positives (TTPs) is 97. Under the same assumptions as above, if the letter ‘O’ is
incorrectly identified as ‘A’, then this would tell us that the number of total false positives
(TFPs) in this case would be 1. If the letter ‘A’ has been misidentified as ‘O’ three times in
the model, then the total number of false negatives (TFNs) for this model is 3. The rest of
the 2499 images of the 2600 images are then considered as the total true negative (TTN).
Figures 12 and 13 show the confusion matrices for the best two models (model K5 for letter
recognition and model M2 for digit recognition) established in terms of overall performance
that were trained and validated with the Kaggle and MNIST datasets, respectively.
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Figure 8. Validation accuracy of the six models for English alphabet recognition. (a) Optimizer—‘ADAM’;
learning rate—0.001. (b) Optimizer—‘ADAM’; learning rate—0.0001. (c) Optimizer—‘ADAM’; learning
rate—0.00001. (d) Optimizer—‘RMSprop’; learning rate—0.001. (e) Optimizer—‘RMSprop’; learning
rate—0.0001. (f) Optimizer—‘RMSprop’; learning rate—0.00001.
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Figure 9. Validation accuracy of the six models for digit (0–9) recognition. (a) Optimizer—‘ADAM’; 
learning rate—0.001. (b) Optimizer—‘ADAM’; learning rate—0.0001. (c) Optimizer—‘ADAM’; 
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Figure 9. Validation accuracy of the six models for digit (0–9) recognition. (a) Optimizer—‘ADAM’;
learning rate—0.001. (b) Optimizer—‘ADAM’; learning rate—0.0001. (c) Optimizer—‘ADAM’;
learning rate—0.00001. (d) Optimizer—‘RMSprop’; learning rate—0.001. (e) Optimizer—‘RMSprop’;
learning rate—0.0001. (f) Optimizer—‘RMSprop’; learning rate—0.00001.
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Figure 10. Validation loss of the six models for English alphabet recognition. (a) Optimizer—‘ADAM’;
learning rate—0.001. (b) Optimizer—‘ADAM’; learning rate—0.0001. (c) Optimizer—‘ADAM’;
learning rate—0.00001. (d) Optimizer—‘RMSprop’; learning rate—0.001. (e) Optimizer—‘RMSprop’;
learning rate—0.0001. (f) Optimizer—‘RMSprop’; learning rate—0.00001.
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Figure 11. Validation loss of the proposed six models for digit (0–9) recognition. (a) Optimizer—
‘ADAM’; learning rate—0.001. (b) Optimizer—‘ADAM’; learning rate—0.0001. (c) Optimizer—
‘ADAM’; learning rate—0.00001. (d) Optimizer—‘RMSprop’; learning rate—0.001. (e) Optimizer—
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Figure 11. Validation loss of the proposed six models for digit (0–9) recognition. (a) Optimizer—‘ADAM’;
learning rate—0.001. (b) Optimizer—‘ADAM’; learning rate—0.0001. (c) Optimizer—‘ADAM’; learning
rate—0.00001. (d) Optimizer—‘RMSprop’; learning rate—0.001. (e) Optimizer—‘RMSprop’; learning
rate—0.0001. (f) Optimizer—‘RMSprop’; learning rate—0.00001.
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Precision deals with the percentage of the relevant results, whereas accuracy states
how close the real values are to the generated values. Sensitivity, identified as recall and
true negative rate, known as specificity, are other important factors for investigating a CNN
model. The F1 score is the weighted average of the combination of both precision and recall.
Equations (1)–(5) represent accuracy, specificity, recall, precision, and F1 score, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F1 Score = 2 ∗
(

Precision ∗ Recall
Precision + Recall

)
(5)

With the Kaggle dataset of 74,490 testing images for letter recognition, using ‘ADAM’
optimizer model K1 detects 74,130 TTP and 360 TFP images, model K3 finds 74,126 TTP
and 364 TFP images, whereas model K5 detects 74,165 TTP and 325 TFP images. Then,
again, the models using ‘RMSprop’ underperform in identifying the TFP cases, which
is above 500 for each model, while the TTP cases detected using ‘RMSprop’ are 73,963,
73,826, and 73,888 by models K2, K4, and K6, respectively. The recall of model K5 is 99.56%,
performing better than the other investigated models. In contrast, model K4 attained the
lowest recall percentage of 99.1% (which is also above 99%) in comparison with others.
From the confusion matrices, it was noted that all the proposed models achieved the
specificity of 99% and model K5 performed supremely for recognizing handwritten letters.

It is important to recall that, in multiclass classification, we compute the F1 score
for each class in a one-versus-the-rest (OvR) tactic, instead of a single overall F1 score,
as perceived in binary classification. Therefore, the total true negative (TTN) number
is vital to evaluate the proposed model. With the Kaggle dataset, model K5 detected
1,861,925 TTN images, which was the highest number detected; contrarily, model K4 de-
tected the lowest number, at 1,861,586 TTN images. The overall performance and the total
number of TTN images detected of the proposed model K5 showed better results than the
other models, as it is always expected that higher TTN cases will be obtained for each class
while recognizing specific letters. The accuracy of the proposed model K5 was 99.563%,
with precision and recall values of 99.5% for both the parameters, which is the highest
handwritten alphabet recognition accuracy known to the authors for the Kaggle dataset.

Now, for the MNIST dataset for digit recognition, model M1, model M2, and model
M3 performed with accuracies of 99.571%, 99.309%, and 98.238%, respectively, whereas
model M2, model M4, and model M6 performed with accuracies of 99.642%, 99.452%,
and 98.142%, respectively. Model M2 (‘RMSprop’ with LR 0.001) achieved the highest
precision of 99.6, whereas model M6 obtained the lowest precision of 98.1 (which is also
above 98 %). Similarly, the highest value of recall was 0.9964 by model M2, and the
lowest recall value of 0.9814 was by model M6. It was also seen that, from confusion
matrices, with MNIST 5000 test patterns for digit recognition, model M2 had the highest,
preeminent performance in comparison with other models, because it found 4185 TTP
and 15 TFP images, and had the highest TTN case of 37,785. Model M6 performed poorest
when compared with other models; the TTP and TFP cases are 4122 and 78, respectively,
and the TTN cases decreased by 65 images compared with model M2; however, while
recognizing specific digits, it was expected to always obtain higher TTN cases for each
class. Table 2 shows the comparative results with the Kaggle and MNIST datasets of all
the models.
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Table 2. Confusion matrix parameters of all the investigated models.

Data-Set Learning
Rate Optimizer Model

Name
Precision

(%)
Specificity

(%) Recall (%) TFP TFN TTP TTN
Overall

Accuracy
(%)

Kaggle
Alphabet

Recognition

0.001
‘ADAM’ K1 99.4 99.98 99.51 360 360 74,130 1,861,890 99.516

RMS_prop K2 99.2 99.97 99.29 527 527 73,963 1,861,723 99.292

0.0001
‘ADAM’ K3 99.5 99.98 99.51 364 364 74,126 1,861,886 99.511

RMS_prop K4 99.0 99.96 99.10 664 664 73,826 1,861,586 99.108

0.00001
‘ADAM’ K5 99.5 99.98 99.56 325 325 74,165 1,861,925 99.563

RMS_prop K6 99.1 99.96 99.19 602 602 73,888 1,861,648 99.191

MNIST
Digit

Recognition

0.001
‘ADAM’ M1 99.5 99.95 99.57 22 22 4178 37,778 99.571

RMS_prop M2 99.6 99.96 99.64 15 15 4185 37,785 99.642

0.0001
‘ADAM’ M3 99.2 99.92 99.30 29 29 4171 37,771 99.309

RMS_prop M4 99.4 99.93 99.45 23 23 4177 37,777 99.452

0.00001
‘ADAM’ M5 98.2 99.80 98.23 74 74 4126 37,726 98.238

RMS_prop M6 98.1 99.79 98.14 78 78 4122 37,722 98.142

To classify both the English alphabets and digits, using two different optimizers,
four 2D convolutional layers are kept the same and unchanged in the proposed CNN
model. The only difference is the number of output classes, defined in the last fully
connected layer, which is the ‘fully connected + Softmax’ layer. The number of classes is
10 and 26 for digit and alphabet recognition, respectively. It is clearly seen from Table 2
that the ‘ADAM’ optimizer performs better than ‘RMSprop’ for letter recognition, whereas,
for digit recognition, ‘RMSprop’ is more suitable. These optimizers are used here to
obtain fast-tracked results by changing the attributes of the proposed neural networks.
For alphabet recognition, with the Kaggle dataset, it shows that the models (i.e., K1–K6)
perform better with the decrement of one of the hyper-parameters, the learning rate (LR);
contrariwise, with the MNIST dataset, for digit recognition, it displays that the models
(model M1–model M6) perform well with the increment of the learning rate, e.g., the overall
accuracy increases to 1.53% while using ‘RMSprop’, and the learning rate increases from
0.00001 to 0.001 for the MNIST dataset.

It can be seen from Figures 12 and 13 that the distribution of the dataset is imbalanced.
Hence, only the accuracy would be ineffective in judging model performance and so the
classification report (CR) is indispensable for an analytical understanding of the model
predictions. The advanced performances can be analyzed to a great extent with a classifica-
tion report (CR) for the best two proposed models (model M2 and model K5), which are
presented in Tables 3 and 4, respectively.

Table 3. Classification report of model M2 for 0–9 recognition.

Digit (0–9) Precision
/Class

Recall
/Class

F1 Score
/Class

Support
/Class

Support
Proportion/Class

class 0 1.00 1.00 1.00 411 0.098

class 1 1.00 1.00 1.00 485 0.115

class 2 1.00 1.00 1.00 403 0.096

class 3 1.00 1.00 1.00 418 0.1

class 4 1.00 0.99 0.99 461 0.11

class 5 1.00 0.99 1.00 372 0.089

class 6 1.00 1.00 1.00 413 0.098

class 7 1.00 1.00 1.00 446 0.106

class 8 0.99 1.00 0.99 382 0.091

class 9 0.99 1.00 0.99 409 0.097

Total 4200 1.00
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Table 4. Classification report of model K5 for A–Z recognition.

Letters
(A–Z)

Precision
/Class

Recall
/Class

F1 score
/Class

Support
/Class

Support Proportion
/Class

class A 0.99 0.99 0.99 1459 0.02

class B 1.00 0.99 1.00 4747 0.064

class C 0.99 1.00 0.99 2310 0.031

class D 1.00 1.00 1.00 5963 0.08

class E 0.99 0.99 0.99 1986 0.027

class F 0.99 0.99 0.99 1161 0.016

class G 1.00 0.99 0.99 1712 0.023

class H 0.99 1.00 0.99 2291 0.031

class I 1.00 1.00 1.00 3894 0.052

class J 0.99 1.00 0.99 2724 0.037

class K 0.99 0.99 0.99 2315 0.031

class L 0.98 0.99 0.99 1109 0.015

class M 1.00 0.99 1.00 3841 0.052

class N 1.00 1.00 1.00 11,524 0.155

class O 0.99 0.99 0.99 2488 0.033

class P 0.99 0.99 0.99 1235 0.017

class Q 1.00 1.00 1.00 4518 0.061

class R 0.99 0.99 0.99 1226 0.016

class S 1.00 0.98 0.99 229 0.003

class T 1.00 0.99 0.99 870 0.012

class U 1.00 0.99 1.00 2045 0.027

class V 1.00 1.00 1.00 9529 0.128

class W 0.99 0.98 0.99 1145 0.015

class X 0.99 0.99 0.99 2165 0.029

class Y 0.97 0.96 0.97 249 0.003

class Z 0.99 0.99 0.99 1755 0.024

Total 74,490 1.00

The columns marked in yellow in Tables 3 and 4 indicate the score for each of the
10 classes for digits (0–9) and each of the 26 classes for alphabet, A–Z. In our case, using
multiclass classification calculation, we pursued averaging methods for the F1 score, re-
sulting in different average scores, i.e., micro, macro, and weighted averaging. Macro
averaging is possibly the most straightforward among the averaging methods. Regardless
of their support values, this method treats all classes without differentiation. Support
denotes the number of actual occurrences of the class in the dataset. The macro F1 score
is totaled by taking the unweighted arithmetic mean of all the per-class F1 scores. We
calculated macro F1 scores of 0.998 and 0.992 for model M2 and model K5, respectively.

Macro F1 score (model M2) =
8 ∗ 1 + 2 ∗ 99

10
= 0.998

Macro F1 score (model K5) =
8 ∗ 1 + 17 ∗ 99 + .97

26
= 0.992

The weighted average F1 score was computed by counting the mean of all per-class
F1 scores while considering each classes’ support. This average refers to the proportion of
each classes’ support, relative to the sum of all support values. In our case of multiclass
classification, using Equation (6), the calculated values of weighted F1 score are 0.997 and
0.996 for model M2 and model K5, respectively. Micro averaging computes a universal
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average F1 score by taking the sums of the TTP, TFN, and TFP. Micro F1 score is computed
using Equation (7), which is derived from Equation (5). Table 5 shows the micro, macro, and
weighted average of F1 score for the best two proposed models (model M2 and model K5).
The performance of a classification model is evaluated by the following well-accepted
F-measurement matrix:

Weighted F1 score = ∑b
a(Per class F1 score ∗ Support Proportion) (6)

Micro F1 score =
TP

TP + 1
2 (FP + FN)

(7)

Table 5. Micro, macro, and weighted average of F1 score for the best two proposed models.

F-Measure Model M2
(Digit Recognition)

Model K5
(Letter Recognition)

Micro F1 score 0.996 0.995
Macro F1 score 0.998 0.992

Weighted F1 score 0.997 0.996

Micro F1 score works well with the balanced dataset. In this project, as the datasets
are imbalanced, the macro average would be an ideal choice where all classes are equally
significant, because it treats all classes equally. The weighted average is preferred if we
want to assign greater contribution to classes with more examples, because each classes’
contribution to the F1 average is weighted by its size.

We obtained good results with multiclass classification. The proposed CNN model
(with four convolutional layers, three max-pooling layers, and two dense layers) for hand-
written recognition was approached by keeping in mind that it should not start overfitting.
However, this work shows how different learning rates and optimizers play a part in the
models’ performances. Additionally, classification reports are presented for micro, macro,
and weighted averages. A comparative analysis of how the best two proposed models
perform with other distinguished models in recent years by different researchers is shown
in Table 6.
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Table 6. Comparison of different learning models’ approaches based on dataset, preprocessing, and accuracy.

Sl. No. Author(s) Publication
Year Approach Dataset Preprocessing Results

1. Mor et al. [63] 2019 Two convolutional layers and one dense layer. EMNIST X 87.1%

2. Alom et al. [64] 2017 CNN with dropout and Gabor Filters. CMATERdb 3.1.1 Raw images passed to
Normalization 98.78%

3. Sabour et al. [65] 2019 A CNN with 3 convolutional layers and
two capsule layers. EMNIST X 95.36% (Letters)

99.79% (Digits)

4. Dos Santos et al. [66] 2019 Deep convolutional extreme learning machine. EMNIST Digits X 99.775%.

5. Adnan et al. [67] 2018 Deep Belief Network (DBN), Stacked Auto
encoder (AE), DenseNet CMATERdb 3.11 600 images are rescaled to 32 ×

32 pixels.

99.13% (Digits)
98.31% (Alphabets)

98.18% (Special Character)

6. W. Xue et al. [68] 2020 Three CNN were combined into a single feature
map for classification.

UC Merced, AID, and
NWPU-RESISC45 X

AID: 93.47%
UC Merced: 98.85%,

NWPU-RESISC45: 95%

7. D.S.Prashanth et al. [69] 2020 1. CNN, 2. Modified Lenet CNN (MLCNN) and
3. Alexnet CNN (ACNN). Own dataset of 38,750 images X

CNN: 94%
MLCNN: 99%
ACNN: 98%

8. D.S.Joshi
and Risodkar [70] 2018 K-NN classifier and Neural Network Own dataset with 30 samples

RGB to gray conversion, skew
correction, filtering,

morphological operation
78.6%

9. Ptucha et al. [51] 2020 Introduced an intelligent character recognition
(ICR) system

IAM
RIMES lexicon X 99%

10. Shibaprasad et al. [71] 2018 Convolutional Neural Network (CNN)
architecture 1000-character samples Resized all images to

28 × 28 pixels. 99.40%

11.
Yu Weng

and Cnulei
Xia [72]

2019 Deep Neural Network (DNNs) Own dataset of 400 types of pictures Normalized to 52 × 52 pixels. 93.3%

12. Gan et al. [73] 2019 1-D CNN
ICDAR-2013
IAHCC-UC

AS2016

Chinese character images
rescaled into 60 × 60-pixel size.

98.11% (ICDAR-2013)
97.14% (IAHCC-UCA2016)

13. Kavitha et al. [45] 2019 CNN (5 convolution layers, 2 max pooling layers,
and fully connected layers) HPL-Tamil-is o-char RGB to gray conversion 97.7%.

14. Saha et al. [74] 2019 Divide and Merge Mapping (DAMM) Own dataset with 1,66,105 images Resize all images to 128 × 128. 99.13%

15. Y. B. Hamdan et al. [75] 2021 Support vector machine (SVM) classifiers
network graphical methods. MNIST, CENPARMI X 94%
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Table 6. Cont.

Sl. No. Author(s) Publication
Year Approach Dataset Preprocessing Results

16. Ukil et al. [76] 2019 CNNs PHD Indic_11
RGB to grayscale conversion

and resized image to
28 × 28 pixels.

95.45%

17. Cavalin et al. al. [77] 2019 A hierarchical classifier by the confusion matrix
of flat classifier EMNIST X 99.46% (Digits)

93.63% (Letters)

18. Tapotosh Ghosh et al. [58] 2021 InceptionResNetV2, DenseNet121, and
InceptionNetV3 CMATERdb

The images were first converted
to B&W 28 × 28 form with

white as the foreground color.
97.69%

19. Proposed Model 2022

CNN using ‘RMSprop’ and ‘ADAM’ optimizer
with four convolutional layers, three max

pooling and two dense layers are used for three
different Learning rates (LR 0.001, LR 0.0001 and

LR 0.00001) for multiclass classification.

MNIST: 60,000 training,
10,000 testing images.

Kaggle: 297,000 training,
74,490 testing images.

Each digit/letter is of a uniform
size and by computing the
center of mass of the pixels,

each binary image of a
handwritten digit is centered

into a 28 × 28 image.

99.64% (Digits)
Macro F1 score average: 0.998

99.56% (Letters)
Macro F1 score average: 0.992
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6. Conclusions

In modern days, applications of handwritten character recognition (HRC) systems
are flourishing. In this paper, to address HCR systems with multiclass classification, a
CNN-based model is proposed that achieved exceptionally good results with this multiclass
classification. The CNN models were trained with the MNIST digit dataset, which is shaped
with 60,000 training and 10,000 testing images. They were also trained with the substantially
larger Kaggle alphabet dataset, which comprises over 297,000 training images and a test
set which is shaped on testing over 74,490 images. For the Kaggle dataset, the overall
accuracies using the ‘ADAM’ optimizer were 99.516%, 99.511%, and 99.563% for learning
rate (LR) 0.001, LR 0.0001, and LR 0.00001, respectively. Meanwhile, the same model using
‘RMSprop’ achieved accuracies of 99.292%, 99.108%, and 99.191%, respectively, by LR 0.001,
LR 0.0001, and LR 0.00001. For the MNIST dataset, the overall accuracies using ‘RMSprop’
were 99.642%, 99.452%, and 98.142% for LR 0.001, LR 0.0001, and LR 0.00001, respectively.
Meanwhile, the same model using the ‘ADAM’ optimizer achieved accuracies of 99.571%,
99.309%, and 98.142% with LR 0.001, LR 0.0001, and LR 0.00001, respectively. It can be easily
understood that, for alphabet recognition, accuracy decreases with the increase in learning
rate (LR); contrarily, overall accuracy is proportionately related to LR for digit recognition.
In addition, precision, recall, specificity, and F1 score were measured from confusion
matrices. Of all the discussed twelve models, the model using the ‘ADAM’ optimizer
with LR 0.00001 obtained a recall value of 99.56%, and the model with LR 0.001 with
the ‘RMSprop’ optimizer obtained the recall value of 99.64%; therefore, these two models
excel other models for the Kaggle and MNIST datasets, respectively. As the distribution
of the datasets is imbalanced, only the accuracy would be ineffective in evaluating the
models; therefore, classification reports (CR) indicating the F1 score for every 10 classes
for digits (0–9) and every 26 classes for alphabet (A–Z) were included for the predictions
of the best two proposed models. From the CR, we achieved micro, macro, and weighted
F1 scores of 0.996 and 0.995, 0.998 and 0.992, and 0.997 and 0.996 for the MNIST and Kaggle
datasets, respectively. Furthermore, the obtained results of best two models presented
here were compared with the results of other noticeable works in this arena. Considering
future work, we intend to include several feature extraction methods by applying a similar
framework to that proposed here to more complex languages, such as Korean, Chinese,
Finnish, and Japanese.

Author Contributions: Conceptualization, N.S., K.F.H. and A.A.; methodology, N.S. and K.F.H.;
software, N.S. and K.F.H.; validation, N.S. and A.A.; formal analysis, N.S.; investigation, N.S. and
K.F.H.; writing—original draft preparation, N.S. and K.F.H.; writing—review and editing, N.S., K.F.H.,
V.P.Y. and A.A.; visualization, N.S. and V.P.Y.; supervision, V.P.Y. and A.A.; project administration,
A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Priya, A.; Mishra, S.; Raj, S.; Mandal, S.; Datta, S. Online and offline character recognition: A survey. In Proceedings

of the International Conference on Communication and Signal Processing, (ICCSP), Melmaruvathur, Tamilnadu, India,
6–8 April 2016; pp. 967–970.

2. Gunawan, T.S.; Noor, A.F.R.M.; Kartiwi, M. Development of english handwritten recognition using deep neural network. Indones.
J. Electr. Eng. Comput. Sci. 2018, 10, 562–568. [CrossRef]

3. Vinh, T.Q.; Duy, L.H.; Nhan, N.T. Vietnamese handwritten character recognition using convolutional neural network. IAES Int. J.
Artif. Intell. 2020, 9, 276–283. [CrossRef]

http://doi.org/10.11591/ijeecs.v10.i2.pp562-568
http://doi.org/10.11591/ijai.v9.i2.pp276-281


Algorithms 2022, 15, 129 23 of 25

4. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893.

5. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
6. Xiao, J.; Zhu, X.; Huang, C.; Yang, X.; Wen, F.; Zhong, M. A New Approach for Stock Price Analysis and Prediction Based on SSA

and SVM. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 35–63. [CrossRef]
7. Wang, D.; Huang, L.; Tang, L. Dissipativity and synchronization of generalized BAM neural networks with multivariate

discontinuous activations. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3815–3827. [CrossRef]
8. Kuang, F.; Zhang, S.; Jin, Z.; Xu, W. A novel SVM by combining kernel principal component analysis and improved chaotic

particle swarm optimization for intrusion detection. Soft Comput. 2015, 19, 1187–1199. [CrossRef]
9. Choudhary, A.; Ahlawat, S.; Rishi, R. A binarization feature extraction approach to OCR: MLP vs. RBF. In Proceedings of the

International Conference on Distributed Computing and Technology (ICDCIT), Bhubaneswar, India, 6–9 February 2014; Springer:
Cham, Switzerland, 2014; pp. 341–346.

10. Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift
in position. Biol. Cybern. 1980, 36, 193–202. [CrossRef]

11. Ahlawat, S.; Choudhary, A.; Nayyar, A.; Singh, S.; Yoon, B. Improved handwritten digit recognition using convolutional neural
networks (Cnn). Sensors 2020, 20, 3344. [CrossRef]

12. Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; LeCun, Y. What is the best multi-stage architecture for object recognition? In Proceedings
of the IEEE 12th International Conference on Computer Vision (ICCV), Kyoto, Japan, 29 September–2 October 2009; pp. 2146–2153.
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