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Abstract: Universal adversarial attacks, which hinder most deep neural network (DNN) tasks
using only a single perturbation called universal adversarial perturbation (UAP), are a realistic
security threat to the practical application of a DNN for medical imaging. Given that computer-
based systems are generally operated under a black-box condition in which only input queries are
allowed and outputs are accessible, the impact of UAPs seems to be limited because well-used
algorithms for generating UAPs are limited to white-box conditions in which adversaries can access
model parameters. Nevertheless, we propose a method for generating UAPs using a simple hill-
climbing search based only on DNN outputs to demonstrate that UAPs are easily generatable using a
relatively small dataset under black-box conditions with representative DNN-based medical image
classifications. Black-box UAPs can be used to conduct both nontargeted and targeted attacks. Overall,
the black-box UAPs showed high attack success rates (40–90%). The vulnerability of the black-box
UAPs was observed in several model architectures. The results indicate that adversaries can also
generate UAPs through a simple procedure under the black-box condition to foil or control diagnostic
medical imaging systems based on DNNs, and that UAPs are a more serious security threat.

Keywords: black-box algorithm; deep neural networks; adversarial attacks; medical imaging

1. Introduction

Adversarial examples [1–4] are inputs (e.g., images) perturbated with specific ex-
tremely small patterns, leading to the misclassification of deep neural networks (DNNs),
thus questioning the generalization ability of a DNN, limiting its practical application
in safety- and security-critical environments, and reducing model interpretability [4–7].
In particular, because the diagnostic performance of DNN-based systems is equivalent
to or higher than that of healthcare professionals, such systems are beginning to be used
as diagnostic medical imaging systems [8,9]. The existence of adversarial examples can
cause serious security [10] and social problems [11] because disease diagnosis is high-stake
decision making. To avoid these problems (e.g., to evaluate the vulnerability of DNNs to
adversarial attacks), the development of methods for generating adversarial perturbations
is required.

Adversarial attacks first proposed in the literature were input-dependent [1,2]. How-
ever, such input-dependent attacks are difficult to perform because they need to compute
a different adversarial perturbation for each input (i.e., they require high computational
costs); thus, universal adversarial perturbations (UAPs) [12,13] are more realistic adver-
sarial attacks. A UAP is a single input-agnostic perturbation. Adversaries can foil most
DNN tasks using only a single UAP (i.e., at lower costs); specifically, they do not need to
pay attention to input queries. Moreover, UAPs can be used for both nontargeted [12] and
targeted attacks [13]. Adversarial attacks based on UAPs are more practical for adversaries
because they can be easily performed in more realistic environments [12–14].

However, widely used UAP algorithms [12,13] are limited to white-box conditions
in which adversaries can use model parameters (e.g., the gradient of the loss function)
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and the training data. Given that DNN-based systems are generally operated under
black-box conditions (i.e., closed-source software and closed application programming
interfaces in which only input queries are allowed and outputs are accessible) in terms of
security, white-box attacks may be non-threatening. However, adversarial perturbations
can also be generated under black-box conditions; specifically, they are generally obtained
only using model outputs (e.g., confidence scores). The zeroth-order optimization (ZOO)
method [15] generates adversarial examples by estimating the loss gradients of a targeted
DNN from their model outputs. Black-box adversarial perturbations can be generated in
the context of optimization problems (i.e., minimizing the confidence score for the correct
label for nontargeted attacks and maximizing the score for the target class for targeted
attacks). As an example, a genetic algorithm-based method has been proposed [16]. Black-
box adversarial perturbations are generated with a low query cost using low-frequency
noise. [17]. Moreover, the simple black-box adversarial attack (SimBA) method considers
a simple iterative search algorithm with random hill climbing to generate adversarial
perturbation under the black-box condition [18]. However, these black-box attack methods
are limited to input-dependent adversarial attacks. In addition, generative network models
can be used to generate UAPs under black-box conditions [19]; however, they require a high
computational cost (it is costly to train the network models). The Fourier basis directions
can be used as black-box UAPs [20]. However, this method is limited to convolutional
neural networks; moreover, it does not allow targeted attacks. A simpler and more effective
algorithm for generating UAPs under black-box conditions is required.

Thus, herein, we propose a simple method for searching for black-box UPAs inspired
by the SimBA method [18]; specifically, we extended the SimBA method to allow us to
generate UAPs for both nontargeted and targeted attacks. To demonstrate the validity of
the proposed method, according to our previous studies [14,21], three representative DNN-
based medical image classifications were considered because of the importance of adversarial
attacks on medical machine learning [11], that is, skin cancer classification using skin lesion
images [22], diabetic macular edema classification using optical coherence tomography (OCT)
images [23], and pneumonia classification using chest X-ray images [23]. Instead of the white-
box conditions in [14,21], we evaluated how much DNN models with several architectures
are vulnerable to black-box UAPs for both nontargeted and targeted attacks.

2. Materials and Methods
2.1. Simple Black-Box Algorithm for UAPs

Our black-box algorithm (Algorithm 1) is an extension of the SimBA method [18],
which generates input-dependent perturbations to generate UAPs; in particular, we com-
bined the SimBA method with simple iterative methods for generating UAPs under white-
box conditions [12,13]. Similar to the SimBA method, our algorithm considers a black-box
classifier C that returns the confidence score output probability pC(y|x) of class y given
input image x. Here, C(x) indicates the class or label (with the highest confidence score)
for x (i.e., arg max

y′
pC(y′|x)). The algorithm starts with δ = 0 (i.e., no perturbations) and

iteratively updates the UAP δ using a direction q randomly sampled from a set Q of search
directions with attack strength ε under the constraint in which the Lp norm of the UAP is
equal to or less than a small value ξ (i.e., δp ≤ ξ). For project (δ, p, ξ), a projection function
is used to satisfy the constraint and is specifically defined as follows:

project(δ, p, ξ) = arg min ||
δ∗

δ− δ∗||2 s.t. ||δ∗||p ≤ ξ (1)

For nontargeted attacks, the updated UAP vector δ′ is accepted if the update from δ
to δ′ contributes to decreasing the confidence scores for their labels C(x) predicted without
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the UAP of any x in an input image set X. As shown in Algorithm 1, the update is accepted
if the following simple condition is satisfied (true):

∑
x ∈X

pC(C(x)|x + δ′) < ∑
x ∈X

pC(C(x)|x + δ). (2)

This corresponds to considering the average search directions obtained from input
images to generate a UAP; thus, it is analogous to an approach [24] to generate a UAP
using the norm of the loss gradients estimated from the outputs of a hidden layer with
respect to inputs.

Targeted UAPs can also be implemented by modifying this condition (electronic
Supplementary Material, Algorithm S1). Specifically, in this case, because the algorithm
accepts an updated UAP vector if the update overall contributes to increasing the confidence
score for a target class y of any x in X, the update is accepted if

∑
x ∈X

pC(y|x + δ′) > ∑
x ∈X

pC(y|x + δ). (3)

Several types of search directions Q were considered. As mentioned in a previous
study [18], a natural choice for Q may be the standard basis Q = I, for which q corresponds
to a random pixel attack. However, this may be less effective for inputs with a large
space (i.e., large images). In this case, a discrete cosine basis is useful because random
noise in a low-frequency space contributes to adversarial attacks [17]. The set QDCT of the
orthonormal frequencies was extracted using the discrete cosine transform. Assuming a
two-dimensional image space Rd×d, QDCT has d× d frequencies; however, a fraction fd of
the lowest frequency directions is only used to generate the UAP more effectively (faster).

This update procedure terminates when the attack success rate for X is 100%, or the
number of iterations reaches the maximum imax. When generating a nontargeted UAP δnt
the attack success rate corresponds to the fooling rate R f ; that is, the fraction of input images
for which their predicted labels are altered due to adversarial attacks to all input images in
set X, R f = |X|−1 ∑x∈X I(C(x) 6= C(x + δnt)), where the function I(A) = 1 if condition A
is true, and I(A) = 0 otherwise. When generating a targeted UAP δt, the attack success
rate corresponds to the targeted attack success rate Rs = |X|−1 ∑x∈X I(C(x + δt) = y); that
is, the fraction of input images predicted as target class y due to adversarial attacks to all
input images in set X.

Our algorithm (please see Algorithm 1) was implemented using the adversarial robust-
ness toolbox (ART, version 1.7.0; github.com/Trusted-AI/adversarial-robustness-toolbox,
accessed on 1 February 2021).

Algorithm 1 Computation of a nontargeted UAP

Input: Set X of input images, classifier C, set Q of search directions, attack strength ε , cap ξ

on Lp norm of the perturbation, norm type p (1, 2, or ∞ ), maximum number imax of iterations.

Output: nontargeted UAP vector δ

1: δ←0, r ← 0 , i← 0
2: while r < 1 and i < imax do
3: Pick a direction randomly: q∈Q
4: for α ∈ {−ε, ε} do
5: δ′ ← project(δ + αq, p, ξ)
6: if ∑x ∈X pC(C(x)|x + δ′) < ∑x ∈X pC(C(x)|x + δ) then
7: δ← δ′

8: break
9: end if
10: end for
11: r ← |X|−1 ∑x∈X I(C(x) 6= C(x + δ))
12: i← i + 1
13: end while

github.com/Trusted-AI/adversarial-robustness-toolbox
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2.2. Medical Images and DNN Models

To evaluate the performance of black-box UAPs generated using our algorithm, we
used the medical image datasets and DNN models in our previous studies on DNN-
based medical image classifications [14,21]. The datasets contain the skin lesion images
(in seven classes) for skin cancer classification, OCT images (in four classes) for referable
diabetic retinopathy classification, and chest X-ray images (in binary classes) for pneumonia
classification (also see Table S1 for the details of the class labels). All images had a pixel
resolution of 299× 299 pixels. The skin lesion images are red–green–blue, whereas the OCT
and chest X-ray images are in grayscale. We used the test images to generate UAPs and
evaluate the UAP performance because the black-box condition assumes that adversaries
cannot access the training data. The skin lesion, OCT, and chest X-ray image datasets
contained 3015, 3360, and 540 test images, respectively. Note that the skin lesion image
dataset was only class-imbalanced (also see Table S1).

To investigate the relationship between the model architecture and UAP performance,
following [14] and [21], we used the Inception V3 architecture [25], Visual Geometry Group-
16 (VGG16) [26], and Residual Network with 50 layers (ResNet50) [27] architectures. The
DNN models were obtained using transfer learning from the ImageNet dataset [28] (see [14]
for the test accuracies of the DNN models).

2.3. Generating UAPs

A portion of the test images in the dataset was used as input images to generate UAPs.
For the OCT image dataset, 800 test images (200 randomly selected images per class) were
used. For the chest X-ray image dataset, 200 test images (100 images randomly selected
per class) were used. For the skin lesion image dataset, 1000 randomly selected test images
were used. We considered ε = 0.5 and imax = 5000. As the set of search directions, QDCT
was considered, where fd was set to ~9.4% (28/299). The parameters ε and fd were selected
using a grid search to maximize the performance of the UAPs for the input images. The
ratio ζ of the Lp norm of the UAP to the average Lp norm of an image in the dataset (see [14]
for details) was used to determine the cap parameter ξ. Following [14], ζ = 4% for the skin
lesion and chest X-ray image dataset, and ζ = 8% for the OCT image dataset.

2.4. Evaluating the Performance of UAPs

Following [14] and [21], R f and Rs were used to evaluate the performances of a
nontargeted UAP and a targeted UAP, respectively. In addition, R f and Rs of a UAP were
computed using the validation dataset, which consists of the rest of the test images (i.e., the
test images excluded the images used to generate the UAP) in each dataset. However, when
evaluating the effect of the number of images used to generate a UAP on the performance
of the UAP (Section 3.3), a validation dataset of the same size was used to evaluate the
performance, and a fixed number of test images were randomly selected from the remaining
images (validation dataset) for each medical dataset. Random UAPs, vectors randomly
sampled from a sphere with a specific radius [12], were used as random controls. As
mentioned in [14], note that Rs has a baseline (i.e., nonzero Rs observed without UAPs).

To evaluate how the predicted labels changed for each class due to the UAPs, the
confusion matrices on the validation dataset (i.e., the rest of the test images used to generate
a UAP) were also obtained. Normalized confusion matrices were computed to account for
the imbalanced datasets.

3. Results
3.1. Nontargeted Attacks Using Black-Box UAPs

The performance of non-targeted UAPs was evaluated (Table 1). Overall, the fooling
rate R f of the UAPs was significantly higher than that of the random UAPs (random
controls) and was hardly influenced by the randomness of the algorithm (i.e., random seed
setting; see Table S2). Moreover, the difference between the clean images and their adver-
sarial versions through the use of UAPs was almost imperceptible (Figure 1). The results
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indicate that small UAPs are generatable under black-box conditions. For each medical im-
age dataset, however, the performance (R f ) might depend on the model architectures and
norm type p of the UAPs. For the skin lesion image dataset, R f achieved a score of >70%
when p = 2 regardless of the model architecture; however, it was relatively low (~35%) for
the UAPs with p = ∞ against the ResNet50 and VGG16 models. A similar R f (~65%) was
also observed for the Inception V3 model when p = ∞. For the OCT image dataset, R f of
the UAP with p = ∞ was higher than that of the UAP with p = 2; in particular, the UAP
with p = 2 against the ResNet50 model was less effective in causing a misclassification of
the DNN model, although it still showed a slightly higher R f in comparison to random
UAPs. For the chest X-ray image dataset, R f (~40%) of the UAPs against the Inception V3
model was slightly lower than that (~50%) of the UAPs against the ResNet50 and VGG16
models, regardless of the norm type.

Table 1. Fooling rates R f (%) of UAPs for non-targeted attacks against DNN models for medical
image datasets. Values in brackets indicate random controls (R f of random UAPs).

Dataset/Architecture
Skin Lesion OCT Chest X-ray

p = 2 p = ∞ p = 2 p = ∞ p = 2 p = ∞

Inception V3 78.8 (13.6) 65.6 (10.2) 31.7 (1.6) 44.9 (3.3) 41.8 (2.1) 44.1 (2.6)
ResNet50 71.9 (11.1) 33.9 (8.6) 5.5 (1.3) 69.3 (4.3) 51.5 (5.9) 50.9 (6.2)
VGG16 76.6 (5.3) 38.9 (3.6) 40.9 (0.7) 75.1 (2.0) 50.0 (1.8) 50.0 (2.4)
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Inception V3 model, which has been widely used in previous studies on DNN-based medical imag-
ing (e.g., [22,23]) for (a) skin lesion, (b) OCT, and (c) chest X-ray image classifications. Here, 𝑝 = 2 

Figure 1. Clean images and their adversarial images generated using nontargeted UAPs against
Inception V3 model, which has been widely used in previous studies on DNN-based medical imaging
(e.g., [22,23]) for (a) skin lesion, (b) OCT, and (c) chest X-ray image classifications. Here, p = 2 in
(a,c) p = ∞ in (b) in terms of the UAP performance (Table 1). Labels (without square brackets) next
to the images are the predicted classes (see Table S1 for details). Each UAP is scaled by a maximum
of 1 and a minimum of zero to visually emphasize UAPs.

The confusion matrices (Figure 2) indicate that the adversarial images were classified
into a few specific classes (e.g., dominant classes); however, the dominant classes might be
different between the model architectures.
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Figure 2. Normalized confusion matrices for Inception V3, ResNet50, and VGG16 models attacked
using nontargeted UAPs for skin lesions, OCT, and chest X-ray image datasets. Here, p = 2 for skin
lesion and chest X-ray image datasets, and p = ∞ for the OCT image dataset. See Table S1 for the
abbreviations of the class labels.

3.2. Targeted Attacks Using UAPs

The performance of targeted UAPs was evaluated (Table 2), where p = 2 for the
skin lesion and chest X-ray image datasets, and p = ∞ for the OCT image dataset, when
considering the performance of nontargeted UAPs (Table 1). Following our previous
study [14], we selected the target classes for each medical image dataset (also see Table S1):
the most significant cases (hereinafter called ‘cases’ for simplicity) and controls.
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Table 2. Target attack success rates Rs (%) of UAPs for targeted attacks against the DNN models for
medical image datasets. Values in brackets indicate random controls (Rs of random UAP).

Dataset Target Class/
Architecture

Skin Lesion OCT Chest X-ray
Control Case Control Case Control Case

Inception V3 63.8 (64.8) 60.9 (10.4) 27.3 (27.2) 92.2 (25.2) 67.1 (54.4) 91.8 (45.9)
ResNet50 76.0 (66.6) 81.2 (10.6) 28.6 (28.3) 93.5 (24.8) 53.8 (57.6) 97.6 (42.4)
VGG16 80.0 (72.4) 79.0 (7.7) 25.1 (26.5) 97.9 (24.6) 97.4 (51.5) 97.1 (48.5)

Overall, the targeted attacks on the cases were successful for all types of medical image
classification. The UAP performance (Rs = 60% to 95%) of the UAPs was significantly high
compared to the random controls. For the OCT and chest X-ray image datasets, Rs was
independent of the model architecture. However, a weak model architecture dependency
of Rs was observed for the skin lesion image dataset. The value of Rs (~60%) of the UAP
against the Inception V3 model was slightly lower than that (~80%) of the UAP against the
ResNet50 and VGG16 models.

In contrast, attacks targeting the controls were only partly successful. For the skin
lesion image dataset, Rs of the UAP were 75% to 80% for the ResNet50 and VGG16 models,
which is significantly higher than that of the random controls; however, it is similar to that
of the random control for Inception V3, indicating that the targeted attacks failed. For the
OCT image dataset, the values of Rs of the UAP were also almost equivalent to those of
random UAPs, regardless of the model architecture. For the chest X-ray image dataset, the
performance of UAPss was remarkably high for the VGG16 model (Rs ~95%); however, Rs
was relatively low (~65%) for the Inception V3 model compared to the UAP against the
VGG16 model, although Rs was higher than that of the random control. For the ResNet50
model, Rs was similar to that of the random control.

3.3. Effect of the Input Dataset Size on the UAP Performance

Finally, we investigated the effect of the size of the input dataset used to generate a
UAP on UAP performance. As a representative example, in terms of such performance, we
focused on the skin lesion image dataset and evaluated the performance of nontargeted
UAPs with p = 2. The UAPs were generated using an input dataset consisting of N images
randomly selected from the test images in the medical image dataset. Here, we considered
N = 100, N = 500, and N = 1000. The value of R f was computed using the input and
validation datasets. The validation dataset consisted of 2015 images randomly selected
from the test images, excluding the images in the input dataset.

As shown in Figure 3, R f increases with N. In addition, R f for the validation dataset
was lower than that for the input dataset; however, the difference in R f between the
validation dataset and input dataset decreased with an increase in N. These tendencies
were observed regardless of the model architecture. The results indicate that UAPs achieve
high performance and generalization, resulting in a misclassification of the DNN model
with an increasing in N. However, the UAPs showed a relatively high performance despite
a small N. When N = 100, R f for the validation dataset was >50% for the Inception V3
and VGG models, although it was ~30% for the ResNet50 model. Moreover, R f for the
validation dataset was >60%, regardless of the model architecture, when N = 500.
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Figure 3. Effect of input dataset size on the fooling rates R f (%) of UAPs against Inception V3 (a),
ResNet50 (b), and VGG16 models (c) for skin lesion image dataset. The values of R f for both the
input and validation datasets are shown.

4. Discussion

We proposed a simple method for generating UAPs under the black-box condition
inspired by the SimBA method [18] and applied this method to DNN-based medical image
classification. Overall, the results showed that small (almost imperceptible) UAPs are
generatable under the black-box condition using only a simple hill-climbing search based
on the model outputs (i.e., confidence scores) to perform both nontargeted and targeted
attacks. The vulnerability of black-box UAPs was observed in several model architectures,
indicating the versatility of our method; thus, the vulnerability may be a general property
of a DNN. The results indicate that adversaries can foil or control DNN tasks even if they
never use model parameters (e.g., loss gradients) and training data because target systems
are operated under black-box conditions in terms of security. DNN-based medical image
diagnoses may be easy to conduct in a realistic environment.

It can be argued that the performance of black-box UAPs generated using our method
compares favorably with that of white-box UAPs [12,13]. In addition to the model parame-
ters, the white-box UAPs were generated using a larger dataset (7–10 times) than that of the
black-box UAPs. For instance, for the nontargeted UAPs with p = 2 and ζ = 4% against the
Inception V3 model for the skin lesion image dataset, R f of the black-box UAP was ~80%
(Table 1), whereas that of the white-box UAP was ~90% (see Table 1 in [14]), where 1000 test
images and 7000 training images were used to generate the black-box and white-box UAPs,
respectively. For nontargeted attacks, overall, the values of R f of the black-box UAPs were
40% to 80% (Table 1, except for the nonsignificant cases in which R f is almost similar to
the random control), whereas R f of the white-box UAPs was 70% to 90% [14]. For targeted
attacks, the values of Rs of the black-box UAPs were 60% to 90% (Table 2, except for the
controls), whereas those of the white-box UAPs were >90% (see Table 2 in [14]).

Given that the DNNs for medical image classification are vulnerable to white-box (i.e.,
loss gradient-based) UAPs [14], it is expected that black-box UAPs can also be generated
by estimating loss gradients from model outputs. The white-box methods for generating
UAPs [12,13], used in [14], iteratively update a UAP vector using loss-gradient-based
methods (e.g., the fast gradient sign method [2] and DeepFool [29]). Thus, instead of such
white-box methods, black-box methods that craft an input-dependent adversarial perturba-
tion by estimating the loss gradient from model outputs (e.g., the ZOO method [15]) can be
used in the iterative algorithms to generate black-box UAPs. However, this approach may
be unrealistic in terms of computational time because crafting an adversarial perturbation
while estimating loss gradients is time-consuming in black-box methods. Therefore, we
considered an extension of SimBA (i.e., a simple hill-climbing approach) as an alternative
approach.

In general, the number of queries per fixed time is limited in terms of software and
application programming interfaces in terms of security; thus, query-efficient methods are
needed for input-dependent adversarial attacks. Our proposed method generated UAPs
with a relatively high performance despite a small number of queries because it is based
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on the SimBA method [18], which is a query-efficient approach. The upper of the overall
number of queries is the same for the SimBA method when considering adversarial attacks
on classification tasks for an image set; specifically, it is the product of the maximum number
of iterations (imax) and the number of input images (N). Because the SimBA method needs
to generate an adversarial perturbation per image, the upper part of the overall number of
queries is the product of the maximum number of queries per image, which corresponds
to imax, and the size of the image set. However, our method may be more efficient than
the SimBA method for adversarial attacks on classification tasks for an image set. Our
method can generate black-box UAPs using a relatively small number of input images and
is effective for adversarial attacks on classification tasks for many other images (Figure 3)
because UAPs are input-agnostic. Assuming that the number of input images is lower
than the size of the image set, the SimBA method may require a larger number of queries
because it generates adversarial perturbation per image in the set. In addition, given that
UAPs are input-agnostic, the number of queries required for generating UAPs poses a few
problems because UAPs are also useful for adversarial attacks to classification tasks for
many other images, even if they require generating many queries. Black-box UAPs have
an advantage in that adversaries do not need to be concerned with the query efficiency in
black-box attack methods, in addition to the advantages mentioned in Section 1.

Black-box UAPs are likely useful for avoiding adversarial defenses. For example,
a discontinuous activation function is often used to make it difficult for adversaries to
estimate the loss gradients [30]; however, black-box attack methods have led to many
defense methods [31], including the use of a discontinuous activation function. Black-box
attacks based on UAPs may provide insight into the development of more efficient defense
methods.

However, the performance of black-box UAPs is limited in some cases. For nontargeted
attacks on the models for the chest X-ray image dataset, the values R f of the black-box UAPs
were ~50% at most (Table 1 and Figure 2), whereas those of the white-box UAPs were ~80%
at most (the models incorrectly predicted the true labels; Table 1 in [14]). In addition, the
success rates of the targeted attacks on the controls were mostly equivalent to the random
controls (Table 2), although the white-box UAPs achieved a high performance (Table 2
in [14]). This is because the black-box attack method only utilizes limited information
to generate UAPs compared with white-box methods. Moreover, this may be due to an
unbalanced dataset. The images in the control class were abundant in the skin lesion image
dataset (also see Table S1). The proposed algorithm considers maximizing the confidence
score for a targeted class; thus, the algorithm may stop to search for UAPs for targeted
attacks to an abundant label in a dataset because a large Rs will have already been achieved.
Simple solutions for improving the performance include the use of more input images (e.g.,
as shown in Figure 3 and using data augmentation) and considering a larger number of
queries. Another solution is to consider different types of search directions. For example,
the Fourier basis [20], texture bias [32], and Turing patterns [33] may be useful for efficiently
searching for UAPs because they are also useful for universal adversarial attacks.

Our proposed method is limited to a black-box condition in which the confidence
scores for all labels are available. A harder black-box condition can also be considered,
that is, a case in which the classifiers return the predicted label only. For example, the
boundary attack method [34] generates input-dependent adversarial perturbations based
on a decision-based attack that starts from a large adversarial perturbation and then seeks
to reduce the perturbations while remaining adversarial. This method requires a relatively
large number of model queries; however, the HopSkipJumpAttack method [35] can conduct
decision-based adversarial attacks with significantly fewer model queries by using binary
information at the decision boundary. Nevertheless, this study considered confidence-
score-based black-box attacks because the use of confidence scores is important in deciding
whether to trust a classifier’s decision in terms of machine learning trust and safety [36] (for
healthcare in particular [37,38]). However, it is important to evaluate whether adversarial
attacks are possible under hard black-box conditions in terms of the reliability and safety of
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a DNN. Although further investigations are needed, our algorithm may provide insight
into the development of decision-based universal adversarial attacks.

5. Conclusions

We proposed a simple method for generating UAPs under black-box conditions and
demonstrated that black-box UAPs could be generated easily using a relatively small
dataset. Our finding that adversaries can generate UAPs under the black-box condition
using a simple procedure provides insight into increasing the reliability and safety of a
DNN and designing its operational strategy (for medical imaging in particular [10]).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/a15050144/s1, Algorithm S1: Computation of a targeted UAP;
Table S1; List of the abbreviations of the image labels and label composition in each medical image
dataset. Table S2: Fooling rates R f (%) of nontargeted UAPs with p = 2 against Inception V3 model
for skin lesion images dataset under different random seed settings.
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