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Abstract: Recent developments have shown that the widely used simplified differential model of
Eringen’s nonlocal elasticity in nanobeam analysis is not equivalent to the corresponding and initially
proposed integral models, the pure integral model and the two-phase integral model, in all cases of
loading and boundary conditions. This has resolved a paradox with solutions that are not in line
with the expected softening effect of the nonlocal theory that appears in all other cases. In addition, it
revived interest in the integral model and the two-phase integral model, which were not used due
to their complexity in solving the relevant integral and integro-differential equations, respectively.
In this article, we use a direct operator method for solving boundary value problems for nth order
linear Volterra–Fredholm integro-differential equations of convolution type to construct closed-form
solutions to the two-phase integral model of Euler–Bernoulli nanobeams in bending under transverse
distributed load and various types of boundary conditions.

Keywords: integro-differential equations; Volterra–Fredholm equations; nonlocal boundary value
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1. Introduction

The classical or local theory of elasticity is scale-free. As a result, it cannot cope with
situations where an internal characteristic length of material becomes comparable to an
external geometric length. This is the case with micro- and nano-scale structures [1]. A rem-
edy for these situations is the use of generalized continuity theories such as the higher-order
continuum theories, namely the Cosserat theory [2], the couple stress theory [3], the mi-
cropolar theory [4], the strain gradient theory [5–7], and the nonlocal theories [8–10]. They
incorporate additional material parameters in the constitutive equations that increase the
complexity, and therefore, numerical methods, such as the finite element method, are
employed to solve the governing equations, see for example in [11–17]. For similar devel-
opments in the field of thermoelasticity, one can see the very recent publications [18–20].

In the nonlocal continuum theory of elasticity developed by Eringen [10], the stress
state at a point does not depend only on the strain at that particular point as in classical
elasticity (local model) but is defined as an integrated average of the strain field at every
point in the body (integral model). A variant of this integral model is the two-phase integral
model (integro-differential model) that combines the local model and the nonlocal integral
model [21–23]. Both integral models are associated with governing equations involving
integral or integro-differential equations that are difficult to solve. A simplified form of
nonlocality is the differential model, which includes a degenerated differential form of the
integral model [10].

Due to its simplicity, the nonlocal differential model has widely been used to analyze
various micro- and nano-structures including one-dimensional structures such as rods,
tubes, and beams [24–26]. In particular, for the beam bending analysis, the interested
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reader can look at, among others, [27–31]. However, several authors have reported that the
nonlocal differential model for certain types of loading gives inconsistent results compared
to those obtained from other types of loading and boundary conditions [27,32]. This
paradox was recently explained in [33] where it is shown that, in general, the nonlocal
differential model is not equivalent to its integral counterpart unless certain conditions are
met, as defined in [34].

This development has revived the interest in the nonlocal integral models, and there-
fore, there is a need to develop effective methods for producing exact analytical solutions.
A closed-form solution of the nonlocal integral model for the bending of Euler–Bernoulli
beams was recently obtained in [35]. Moreover, an analytical solution for the two-phase
nonlocal integral model was obtained in [36] through a reduction to a differential equation
with mixed boundary conditions as proposed by [34]. In general, integro-differential equa-
tions are usually difficult to solve directly. In the last few years, the authors have developed
a direct operator technique for solving exactly Fredholm-type integro-differential equations
(FIDE) with all kinds of boundary conditions, including nonlocal ones [37,38]. In [39],
a method for solving in closed form boundary value problems for a class of nth order
linear Volterra–Fredholm integro-differential equations (VFIDE) of convolution type was
proposed. The technique was used to construct the closed-form solution of the boundary
value problem for the two-phase nonlocal integral model of Euler–Bernoulli beams under
a uniformly transverse distributed load and in the case of simply supported boundary
conditions. In this article, we provide the closed-form solution for three more boundary
value problems corresponding to three practical cases of boundary conditions, specifi-
cally a cantilever beam, a clamped pinned beam, and a clamped beam. Exact analytical
solutions to these three boundary value problems through a direct operator method for
integro-differential equations do not exist in the literature.

The outline of the article is as follows. In Section 2, the notation is explained, and
the direct procedure for solving exactly Volterra–Fredholm integro-differential boundary
value problems of convolution type is recalled. In Section 3, the closed-form solution of the
integro-differential bending model of Euler–Bernoulli beams for three different types of
boundary conditions are obtained, and an algorithm for their calculation in a computer
algebra system is provided. Examples and discussion are given in Section 4. Finally, some
conclusions are presented in Section 5.

2. Closed-Form Solution of Volterra–Fredholm Integro-Differential Equations

Let X = C[0, L], L ∈ R+, and A : X → X be an nth order linear differential operator
of the form

Au =
n

∑
i=0

aiu(n−i)(x), D(A) = {u ∈ Xn : Φ(u) = 0}, (1)

where n ∈ N, ai, i = 0, 1, . . . , n, are real constants with a0 6= 0, Xn = Cn[0, L], X0 = X,
u = u(x) ∈ Xn, u(i)(x) = diu

dxi , i = 1, 2, . . . , n,

Φ(u) =


Φ1(u)
Φ2(u)

...
Φn(u)

, Φ ∈ [X∗n−1]
n, Φi ∈ X∗n−1, i = 1, 2, . . . , n, (2)

is a column vector of linear functionals that describe the specified boundary conditions,
and 0 denotes the zero column vector.

Let K : X → X be the linear Volterra integral operator of convolution type

Ku =
n

∑
i=0

∫ x

0
ki(x− t)u(n−i)(t)dt, (3)

where the kernels ki(x) ∈ X, i = 0, 1, . . . , n.
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Let the Fredholm-type functionals∫ L

0
k̄ j(x, t)Au(t)dt, j = 1, 2, . . . , m, (4)

where the kernels k̄ j(x, t) ∈ X× X are assumed to be separable, i.e.,

k̄ j(x, t) = gj(x)hj(t), gj = gj(x), hj = hj(t) ∈ X, j = 1, 2, . . . , m. (5)

Let the row vector of functions

g =
(

g1 g2 · · · gm
)
, g ∈ Xm, (6)

and the column vector of functionals

Ψ(Au) =


Ψ1(Au)
Ψ2(Au)

...
Ψm(Au)

, Ψj(Au) =
∫ L

0
hj(t)Au(t)dt, j = 1, 2, . . . , m, (7)

where Ψ ∈ [X∗]m and Ψj ∈ X∗, j = 1, 2, . . . , m.
Consider the linear Volterra–Fredholm type integro-differential operator T : X → X

defined by

Tu = Au + Ku−
m

∑
j=1

gjΨj(Au) = Au + Ku− gΨ(Au),

D(T) = D(A) = {u ∈ Xn : Φ(u) = 0}, (8)

and the Volterra–Fredholm integro-differential boundary value problem

VFIDBVP : Tu = f , f = f (x) ∈ X. (9)

Let the m×m matrix

Ψ(g) =


Ψ1(g1) Ψ1(g2) · · · Ψ1(gm)
Ψ2(g1) Ψ2(g2) · · · Ψ2(gm)

...
...

. . .
...

Ψm(g1) Ψm(g2) · · · Ψm(gm)

,

where the element Ψi(gj) is the value of the functional Ψi on the element gj, and Im denotes
the m×m identity matrix.

The criteria for the existence of a unique solution of the VFIDBVP in (9) and a formula
for its symbolic calculation in an exact closed form are given in [39] where the following
theorem has been proved.

Theorem 1. Let the operator T : X → X be defined as in (8). Assume that the Volterra integro-
differential operator D : X → X defined by

Du = (A + K)u, D(D) = D(A), (10)

is bijective on X and its inverse is denoted by D−1 = (A + K)−1. Then, the operator T is bijective,
precisely it is injective if and only if

det W = det
[

Im −Ψ
(

AD−1g
)]
6= 0, (11)
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and in this case, the unique solution to the boundary value problem

Tu = f , for all functions f ∈ X, (12)

is given by the formula

u = T−1 f

= D−1 f + D−1gW−1Ψ
(

AD−1 f
)

. (13)

3. Closed-Form Solution of Eringen’s Two-Phase Integral Model Equations

In a right-handed coordinate system, consider a uniform beam of length L and cross-
sectional area S whose longitudinal axis coincides with the x-axis and with one end at
x = 0 and the other at x = L. The beam is loaded by a transverse distributed load q(x) at
the top in the z-direction.

Under the Euler–Bernoulli assumptions and for a homogeneous and isotropic material,
the transverse displacement in the z-direction (deflection) w(x) is a function of x, and the
strain in the x-direction is defined by

εx(x) = −z
d2w(x)

dx2

In the two-phase nonlocal Eringen’s elasticity model, the stress σx(x) is defined
through the constitutive relation

σx(x) = E
(

ξ1εx(x) + ξ2

∫ L

0
k(x, t)εx(t)dt

)
,

and the corresponding bending moment is defined by

M(x) =
∫

S
σx(x)zdS = −EI

(
ξ1

d2w(x)
dx2 + ξ2

∫ L

0
k(x, t)

d2w(t)
dt2 dt

)
, (14)

where E is the elasticity modulus (constant) and I =
∫

S z2dS is the second moment of
area. The parameters ξ1 > 0, ξ2 > 0 and ξ1 + ξ2 = 1 regulate the contribution from the
local (classical) and nonlocal model, respectively. The kernel or attenuation function k(x, t)
determines the nonlocal effect of the strain εx(t) at the source point t on the stress σx(x) at
the receiver point x. There are many possible kernel functions k(x, t). The most commonly
used is the Helmholtz-type kernel

k(x, t) =
1

2τ
e−
|x−t|

τ , x, t ∈ [0, L], (15)

where the parameter τ = e0a
` , e0 is a material constant, a is an internal characteristic length

(e.g., lattice parameter, granular distance), and ` is an external characteristic length (e.g.,
the crack length, the wave length). The kernel k(x, t) is a positive function which diminishes
rapidly as |x− t| increases and satisfies the normalizing condition

∫ L
0 k(x, t)dt = 1.

The equilibrium equation in terms of the displacement w(x) is

− EI
d2

dx2

(
ξ1

d2w(x)
dx2 + ξ2

∫ L

0
k(x, t)

d2w(t)
dt2 dt

)
+ q(x) = 0, 0 < x < L, (16)

and the boundary conditions
w(x) or M′(x), (17)

and
w′(x) or M(x), (18)
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specified at each of the two ends of the beam at x = 0 and x = L.
Next, we look at the four most common cases of boundary conditions with practical

interest. In each case, we formulate the corresponding boundary value problem in operator
form and decomposed it in two lower-order problems, namely a second-order differential
boundary value problem (DBVP) and a second-order Fredholm integro-differential bound-
ary value problem (FIDBVP). The solution is obtained by first solving the DBVP in closed
form and then the FIDBVP.

For convolution kernels of the type (15), the FIDBVP is converted to a Volterra–
Fredholm integro-differential boundary value problem (VFIDBVP), which is then solved
by using Theorem 1.

3.1. Simply Supported Beam (SS)

For a beam simply supported at both ends, the boundary conditions imposed at x = 0
and x = L are

w(0) = w(L) = 0, M(0) = M(L) = 0. (19)

This problem is solved in detail in [39] and is not discussed further here.

3.2. Cantilever Beam (CF)

Let us consider the case of a cantilever beam subject to the following boundary conditions

w(0) = w′(0) = 0, M(L) = M′(L) = 0. (20)

Let X = C[0, L]. Taking into account the equilibrium Equation (16) and the defini-
tion (14), we define the operator B : X → X as

Bw(x) =
d2

dx2

(
d2w(x)

dx2 +
ξ2

ξ1

∫ L

0
k(x, t)

d2w(t)
dt2 dt

)
,

D(B) =
{

w(x) ∈ C4[0, L] : w(0) = w′(0) = 0,[
d2w(x)

dx2 +
ξ2

ξ1

∫ x

0
k(x, t)

d2w(t)
dt2 dt

]
x=L

= 0,[
d

dx

(
d2w(x)

dx2 +
ξ2

ξ1

∫ x

0
k(x, t)

d2w(t)
dt2 dt

)]
x=L

= 0
}

,

and write the boundary value problem (16), (20) in the compact form

Bw(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X. (21)

Let the Fredholm integro-differential operator B2 : X → X be defined by

B2w(x) =
d2w(x)

dx2 +
ξ2

ξ1

∫ L

0
k(x, t)

d2w(t)
dt2 dt,

D(B2) =
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0
}

. (22)

Furthermore, let the differential operator B1 : X → X be

B1y(x) =
d2y(x)

dx2 ,

D(B1) =
{

y(x) ∈ C2[0, L] : y(L) = y′(L) = 0
}

.
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If we take y(x) = B2w(x), then

D(B1B2) =
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0, y(x) = B2w(x) ∈ D(B1)
}

=
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0, y(x) ∈ C2[0, L], y(L) = y′(L) = 0
}

=
{

w(x) ∈ C4[0, L] : w(0) = w′(0) = 0,[
d2w(x)

dx2 +
ξ2

ξ1

∫ x

0
k(x, t)

d2w(t)
dt2 dt

]
x=L

= 0,[
d

dx

(
d2w(x)

dx2 +
ξ2

ξ1

∫ x

0
k(x, t)

d2w(t)
dt2 dt

)]
x=L

= 0
}

= D(B).

That is, the operator B can be factorized as B = B1B2, and therefore, the boundary
value problem (21) is carried to

B1B2w(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X. (23)

The solution of (23) can now be obtained by solving the following two boundary value
problems, namely the differential boundary value problem

DBVP: B1y(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X, (24)

and the Fredholm integro-differential boundary value problem

FIDBVP: B2w(x) = y(x), 0 < x < L. (25)

The solution of DBVP in (24) in closed form for any q(x) ∈ X is given by

y(x) = B−1
1

(
1

EIξ1
q(x)

)
=

1
EIξ1

[∫ x

0
(x− t)q(t)dt− x

∫ L

0
q(t)dt +

∫ L

0
tq(t)dt

]
, (26)

see, for example, in [40].
The solution procedure for the FIDBVP in (25) is determined by the type of the kernel

k(x, t). For a kernel function of the type (15), the operator B2 in (22) by removing the
modulus in the integrand can be written equivalently as the Volterra–Fredholm integro-
differential operator

B2w(x) =
d2w(x)

dx2 − ξ2

τξ1

∫ x

0
sinh(

x− t
τ

)
d2w(t)

dt2 dt +
ξ2

2τξ1
e

x
τ

∫ L

0
e−

t
τ

d2w(t)
dt2 dt,

D(B2) =
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0
}

, (27)

see [39] for details, and as a result, the FIDBVP in (25) degenerates to the Volterra–Fredholm
integro-differential boundary value problem

VFIDBVP: B2w(x) = y(x), 0 < x < L. (28)
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After substituting (26) into (28), the exact solution of VFIDBVP can be obtained by
applying Theorem 1. Comparing (28) with (9), we take n = 2, m = 1,

Aw(x) =
d2w(x)

dx2 , D(A) = {w(x) ∈ C2[0, L] : Φ(w) = 0},

Φ(w) =

(
Φ1(w)
Φ2(w)

)
=

(
w(0)
w′(0)

)
,

Kw(x) = − ξ2

τξ1

∫ x

0
sinh

(
x− t

τ

)
d2w(t)

dt2 dt,

g(x) =

(
− ξ2

2τξ1
e

x
τ

)
,

Ψ(Aw) =

(∫ L

0
e−

t
τ

d2w(t)
dt2 dt

)
,

f (x) =
1

EIξ1

[∫ x

0
(x− t)q(t)dt− x

∫ L

0
q(t)dt +

∫ L

0
tq(t)dt

]
.

In addition, we have

Dz(x) = (A + K)z(x) =
d2z(x)

dx2 − ξ2

τξ1

∫ x

0
sinh

(
x− t

τ

)
d2z(t)

dt2 dt,

D(D) = D(A) = {z(x) ∈ C2[0, L] : Φ(z) = 0}.

First, we find the inverse operator D−1 by solving the boundary value problem
Dz(x) = f (x) via the Laplace transform method. By applying the Laplace transform opera-
tor on both sides, using the convolution theorem and utilizing the boundary conditions
z(x) = z′(x) = 0, we get

L{Dz(x)} = L
{

d2z(x)
dx2

}
− ξ2

τξ1
L
{

sinh
( x

τ

)}
L
{

d2z(x)
dx2

}
=

[
1− ξ2

τξ1

(
1
τ

s2 − 1
τ2

)]
s2Z(s) = F(s),

from where it follows that
Z(s) = F(s)Q(s), (29)

where

Z(s) = L{z(x)}, F(s) = L{ f (x)}, Q(s) =
ξ1(τ

2s2 − 1)
s2(ξ1τ2s2 − 1)

.

Taking the inverse Laplace transform of (29), we obtain

z(x) = D−1 f (x) = L−1{F(s)Q(s)}. (30)

Since Equation (30) holds for every f (x) ∈ X, it is implied that the operator D
is bijective.

Next, we compute

D−1g(x) = D−1
(
− ξ2

2τξ1
e

x
τ

)
= L−1{G(s)Q(s)}, (31)

where G(s) = L{g(x)}, and subsequently

AD−1g(x) =
d2

dx2

(
D−1g(x)

)
,

Ψ
(

AD−1g(x)
)

=
∫ L

0
e−

t
τ AD−1g(t)dt.
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If
det W = det

[
I1 −Ψ

(
AD−1g(x)

)]
= 1−Ψ

(
AD−1g(x)

)
6= 0,

then from Theorem 1, it follows that the operator B2 is bijective and the problem (28) admits
a unique solution. To find the solution, we further compute

AD−1 f (x) =
d2

dx2

(
D−1 f (x)

)
,

Ψ
(

AD−1 f (x)
)

=
∫ L

0
e−

t
τ AD−1 f (t)dt. (32)

Finally, by substituting (30)–(32) and W−1 into (13), we obtain the exact solution in the
closed form of VFIDBVP in (28), viz.

w(x) = D−1 f (x) + D−1g(x)W−1Ψ
(

AD−1 f (x)
)

. (33)

This is the solution of the boundary value problem (23) and so the solution to the
nonlocal Euler–Bernulli Equation (16) subject to the boundary conditions (20).

3.3. Clamped Pinned Beam (CP)

In this section, we look at a clamped pinned beam in which case the boundary condi-
tions are

w(0) = w′(0) = 0, w(L) = M(L) = 0. (34)

To solve analytically the integro-differential boundary value problem (16), (34), we
define the operator B : X → X as

Bw(x) =
d2

dx2

(
d2w(x)

dx2 +
ξ2

ξ1

∫ L

0
k(x, t)

d2w(t)
dt2 dt

)
,

D(B) =
{

w(x) ∈ C4[0, L] : w(0) = w′(0) = 0, w(L) = 0,[
d2w(x)

dx2 +
ξ2

ξ1

∫ x

0
k(x, t)

d2w(t)
dt2 dt

]
x=L

= 0
}

,

where the definition (14) is utilized, and write (16), (34) in the symbolic form

Bw(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X. (35)

We define the Fredholm integro-differential operator B2 : X → X as in (22) in
Section 3.2, namely

B2w(x) =
d2w(x)

dx2 +
ξ2

ξ1

∫ L

0
k(x, t)

d2w(t)
dt2 dt,

D(B2) =
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0
}

, (36)

and the differential operator B1 : X → X as

B1y(x) =
d2y(x)

dx2 ,

D(B1) =
{

y(x) ∈ C2[0, L] : y(L) = 0
}

,

where y(x) = B2w(x).
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Then, the operator B1B2 : X → X is defined on

D(B1B2) =
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0, y(x) = B2w(x) ∈ D(B1)
}

=
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0, y(x) ∈ C2[0, L], y(L) = 0
}

=
{

w(x) ∈ C4[0, L] : w(0) = w′(0) = 0,[
d2w(x)

dx2 +
ξ2

ξ1

∫ x

0
k(x, t)

d2w(t)
dt2 dt

]
x=L

= 0
}

, (37)

and the boundary value problem (35) becomes

Bw(x) = B1B2w(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X,

D(B) = {w(x) ∈ D(B1B2) : w(L) = 0}. (38)

The solution of the problem

DBVP: B1y(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X,

for any q(x) ∈ X is given by

y(x) =
1

EIξ1

[∫ x

0
(x− t)q(t)dt−

∫ L

0
(L− t)q(t)dt + C1(x− L)

]
, (39)

where C1 represents an arbitrary constant.
By using y(x) in (39), we solve the problem

FIDBVP: B2w(x) = y(x), 0 < x < L,

which in the case of a kernel function k(x, t) of the type (15) degenerates to the problem

VFIDBVP: B2w(x) = y(x), 0 < x < L, (40)

where operator B2 is given in (27). Working just like in Section 3.2 except that now f (x) =
y(x) as in (39), we get the solution

w(x) = D−1 f (x) + D−1g(x)W−1Ψ
(

AD−1 f (x)
)

, (41)

which depends linearly on the arbitrary constant C1.
By requiring w(L) = 0, we can calculate C1 which when replaced at (41) gives the exact

solution of the boundary value problem (38) or the nonlocal Euler–Bernulli Equation (16)
subject to the boundary conditions (34).

3.4. Clamped Beam (CC)

Here, we study the behavior of a clamped beam, i.e., a beam subject to boundary conditions

w(0) = w′(0) = 0, w(L) = w′(L) = 0. (42)

We define the operator B : X → X by

Bw(x) =
d2

dx2

(
d2w(x)

dx2 +
ξ2

ξ1

∫ L

0
k(x, t)

d2w(t)
dt2 dt

)
,

D(B) =
{

w(x) ∈ C4[0, L] : w(0) = w′(0) = 0, w(L) = w′(L) = 0
}

,
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and write the integro-differential boundary value problem (16), (42) compactly as

Bw(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X. (43)

We take the Fredholm integro-differential operator B2 : X → X as in (22) in Section 3.2, viz.

B2w(x) =
d2w(x)

dx2 +
ξ2

ξ1

∫ L

0
k(x, t)

d2w(t)
dt2 dt,

D(B2) =
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0
}

,

and the differential operator B1 : X → X as

B1y(x) =
d2y(x)

dx2 , D(B1) =
{

y(x) ∈ C2[0, L]
}

,

where y(x) = B2w(x).
Then, the operator B1B2 : X → X is defined on

D(B1B2) =
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0, y(x) = B2w(x) ∈ D(B1)
}

=
{

w(x) ∈ C2[0, L] : w(0) = w′(0) = 0, , y(x) ∈ C2[0, L]
}

=
{

w(x) ∈ C4[0, L] : w(0) = w′(0) = 0
}

,

and the boundary value problem (43) may be written in the form

Bw(x) = B1B2w(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X,

D(B) =
{

w(x) ∈ D(B1B2) : w(L) = w′(L) = 0
}

. (44)

The solution of the problem

DBVP: B1y(x) =
1

EIξ1
q(x), 0 < x < L, q(x) ∈ X,

for any q(x) ∈ X is given by

y(x) =
1

EIξ1

[∫ x

0
(x− t)q(t)dt + C1x + C2

]
, (45)

where Ci, i = 1, 2, are arbitrary constants.
By using y(x) in (45), we solve the problem

FIDBVP: B2w(x) = y(x), 0 < x < L,

or in the case of a kernel function k(x, t) of the type (15), the problem

VFIDBVP: B2w(x) = y(x), 0 < x < L,

where operator B2 assumes the form (27). As before, we follow the procedure in Section 3.2
except that now f (x) = y(x) as in (45) to get the solution

w(x) = D−1 f (x) + D−1g(x)W−1Ψ
(

AD−1 f (x)
)

, (46)

which depends linearly on the arbitrary constants Ci, i = 1, 2.
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By enforcing the boundary conditions w(L) = 0 and w′(L) = 0, we can calcu-
late Ci, i = 1, 2, which when replaced at (46) gives the solution of the boundary value
problem (44) or the nonlocal Euler–Bernulli Equation (16) subject to the boundary condi-
tions (42).

3.5. Algorithm

The method for solving the above three boundary value problems can be easily
programmed in any computer algebra system. For this, we provide the following algorithm
in Listing 1.

Listing 1. Algorithm for solving the BVP: CF: (16), (20), CP: (16), (34) and CC: (16), (42).

input L, I, E, τ, ξ1, q(x)

compute
g(x) = − ξ2

2τξ1
e

x
τ

Q(s) = ξ1(τ
2s2−1)

s2(ξ1τ2s2−1)
G(s) = L{g(x)}
ĝ(x) = L−1{G(s)Q(s)}
D−1g(x) = ĝ(x)
AD−1g(x) = d2

dx2

(
D−1g(x)

)
Ψ
(

AD−1g(x)
)
=
∫ L

0 e−
t
τ AD−1g(t)dt

W = 1−Ψ
(

AD−1g(x)
)

if det W 6= 0 compute
in case:

CF: f (x) = 1
EIξ1

[∫ x
0 (x− t)q(t)dt− x

∫ L
0 q(t)dt +

∫ L
0 tq(t)dt

]
CP: f (x) = 1

EIξ1

[∫ x
0 (x− t)q(t)dt−

∫ L
0 (L− t)q(t)dt + C1(x− L)

]
CC: f (x) = 1

EIξ1

[∫ x
0 (x− t)q(t)dt + C1x + C2

]
end

F(s) = L{ f (x)}
f̂ (x) = L−1{F(s)Q(s)}
D−1 f (x) = f̂ (x)
AD−1 f (x) = d2

dx2

(
D−1 f (x)

)
Ψ
(

AD−1 f (x)
)
=
∫ L

0 e−
t
τ AD−1 f (t)dt

w(x) = D−1 f (x) + D−1g(x)W−1Ψ
(

AD−1 f (x)
)

in case:
CP: solve w(L) = 0 wrt C1
CC: solve w(L) = 0, w′(L) = 0 wrt C1, C2

end

print w(x)

else
print ’There is no unique solution’

end

4. Examples

We consider three example problems corresponding to the three types of boundary
conditions examined in the previous section, and for each of them, we find in closed
form the transverse displacement (deflection) w(x) for two different types of transverse
distributed loads q(x). It is noted that in all instances except the case of classical (local)
theory, the solutions are generally large algebraic expressions.
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Let a nanobeam have length L, height h, width b, Young’s modulus E, and a load
intensity parameter q0, as shown in Table 1 [31]. The same table also has the intervals for
the values of the nonlocal material constant τ and the parameter ξ1 (ξ1 + ξ2 = 1). It is
remarked that Wang, Q. and Liew, K.M. [28] stated that the nonlocal effect is noticeable
when the length of the structure is less than 20 nm and recommended e0a < 2.1 nm, while
Eringen [10] suggested a value of parameter e0 to be 0.39.

Table 1. Geometry, loading, and material parameters of the nanobeam.

L (nm) b (nm) h (nm) q0
(nN/nm) E (TPa) τ = e0a

(nm) ξ1

10 1 1 10−4 5.5 [1.0, 2.0] [0.1, 1]

First, we study the bending behavior of a cantilever beam (CF) for which the boundary
conditions are as in (20) loaded by a transverse distributed load

q(x) = q0 or q(x) = −q0 sin(nπ
x
L
),

where n is a positive integer. For the case of uniformly distributed load q(x) = q0, the de-
flection w(x) throughout the beam according to local (ξ1 = 1) and nonlocal (ξ1 = 0.1)
elasticity for various values of the nonlocal parameter τ = e0a is depicted in Figure 1.
Figure 2 shows the deflection w(x) for τ = 2 and several values of the parameter ξ1 that
controls the influence of local and nonlocal integral models in the constitutive relation.
In the case of a variable distributed load q(x) with n = 3, the deflection w(x) is sketched in
Figure 3 for different values of the nonlocal parameter τ.

w
 (

nm
)

x (nm) 

Local
τ=1

τ=sqrt(2)
τ=sqrt(3)

τ=2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  2  4  6  8  10

Figure 1. Deflection of cantilever beam (CF) under uniform load and various values of τ.

Next, we consider the case of a clamped pinned beam (CP) with the boundary condi-
tions as in (34). For the case of uniformly distributed load q(x) = q0, the deflection w(x) for
the whole beam in both local (ξ1 = 1) and nonlocal (ξ1 = 0.1) elasticity for several values of
the nonlocal parameter τ = e0a is outlined in Figure 4. In Figure 5, we give the deflection
w(x) for τ = 2 and various values of the control parameter ξ1. The shape of deformation of
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the beam loaded by a variable distributed load q(x) of the above type with n = 3 is shown
in Figure 6 for different values of τ.

w
 (

nm
)

x (nm) 

Local
ξ1=8/10
ξ1=5/10
ξ1=3/10
ξ1=1/10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  2  4  6  8  10

Figure 2. Deflection of cantilever beam (CF) under uniform load and several values of ξ1.

w
 (

nm
)

x (nm) 

Local
τ=1
τ=1.5

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  2  4  6  8  10

Figure 3. Deflection of cantilever beam (CF) under variable load and different values of τ.

As a third example, we take the case of a clamped beam (CC) for which the boundary
conditions are given in (42). In the case of a uniformly distributed load, the deflection w(x)
across the beam in both local (ξ1 = 1) and nonlocal (ξ1 = 0.1) theory for different values of
τ = e0a is given in Figure 7, while Figure 8 shows how the deflection changes as ξ1 varies.
In the case of the above variable distributed load q(x) with n = 3, the beam deforms as
shown in Figure 9 in a local (ξ1 = 1) and nonlocal (ξ1 = 0.2) model for different values of
the nonlocal parameter τ.
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w
 (

nm
)

x (nm) 

Local
τ=1

τ=sqrt(2)
τ=sqrt(3)

τ=2

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  2  4  6  8  10

Figure 4. Deflection of clamped pinned beam (CP) under uniform load and several values of τ.

w
 (

nm
)

x (nm) 
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ξ1=7/10
ξ1=4/10
ξ1=1/10

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  2  4  6  8  10

Figure 5. Deflection of clamped pinned beam (CP) under uniform load and various values of ξ1.

From the results presented, it can be concluded that in all three cases of boundary
conditions and loading cases, the solutions obtained are characterized by the softening
effect that the nonlocal theory has on the beam deformation. It is observed that as the
nonlocal material parameter τ increases, the deformation of the beam becomes greater in
all cases. In addition, as the control parameter ξ1 approaches the unit, the influence of the
nonlocal model on the beam deformation decreases, and the nonlocal solution convergences
to a classical (local) solution.
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w
 (

nm
)

x (nm) 

Local
τ=1.25
τ=1.75

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0  2  4  6  8  10

Figure 6. Deflection of clamped pinned beam (CP) under variable load and different values of τ.

Of primary interest is the case of the cantilever beam where the paradoxical behavior
of the simplified nonlocal differential model has been reported by many researchers. It is
noted that the cantilever beam finds many applications in nanotechnology as an actuator. It
is shown here that the two-phase integral model in the case of the cantiliver beam predicts
a softening effect, which is greater as the nonlocal parameter τ increases. This is consistent
with the results in all other cases of boundary conditions and confirms the validity of the
two-phase integral model.

w
 (

nm
)

x (nm) 

Local
τ=1.2
τ=1.4
τ=1.6
τ=1.8

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  2  4  6  8  10

Figure 7. Deflection of clamped beam (CP) under uniform load and several values of τ.
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w
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ξ1=5/10
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 0
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 0.008

 0.009

 0  2  4  6  8  10

Figure 8. Deflection of clamped beam (CP) under uniform load and various values of ξ1.

w
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 0.001

 0.0012

 0.0014

 0.0016
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Figure 9. Deflection of clamped beam (CP) under variable load and different values of τ.

5. Conclusions

The accuracy of the nonlocal differential model of Eringen’s nonlocal elasticity is
questionable in some cases of loading and boundary conditions. The integral model and
the two-phase integral model are valid and produce consistent results in all cases, but they
have computational difficulties related to integral or integro-differential equations involved.

In this article, a technique has been presented for constructing closed-form solutions
of the governing equations of the two-phase integral model of nonlocal Euler–Bernoulli
nanobeams in bending, which find many applications in micro- or nano-electromechanical
systems (MEMS or NEMS). The technique is based on the decomposition of the initial
fourth-order integro-differential boundary value problem into two second-order bound-
ary value problems and the use of the direct operator method for the exact solution of
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Volterra–Fredholm inegro-differential equations of convolution type presented in [39].
The procedure is easily programmable to any symbolic algebra system, and an algorithm
has been provided.

Results have been given for three types of boundary conditions and two kinds of
transverse distributed loads. It has been shown that the two-phase integral model in all
cases predicts a softening effect, which is greater as the nonlocal parameter τ increases.

The technique can be used to solve easily and effectively other similar problems. Its
main disadvantage is that because it is based on the Laplace transform, it is limited to
classes of functions for which direct and inverse integral transformations are available.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their
valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FIDE Fredholm Integro-Differential Equation
VFIDE Volterra–Fredholm Integro-Differential Equation
BVP Boundary Value Problem
DBVP Differential Boundary Value Problem
FIDBVP Fredholm Integro-Differential Boundary Value Problem
VFIDBVP Volterra–Fredholm Integro-Differential Boundary Value Problem

References
1. Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids

2003, 51, 1477–1508. [CrossRef]
2. Cosserat, E.; Cosserat, F. Théorie des Corps Déformables; Librairie Scientifique, A. Hermann et Fils: Paris, France, 1909.
3. Mindlin, R.D. Influence of couple stresses on stress concentrations. Exp. Mech. 1963, 3, 1–7. [CrossRef]
4. Eringen, A.C. Linear theory of micropolar elasticity. J. Math. Mech. 1966, 15, 909–923.
5. Mindlin, R.D.; Eshel, N.N. On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 1968, 4, 109–124. [CrossRef]
6. Fleck, N.A.; Hutchinson, J.W. A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 2001, 49, 2245–2271. [CrossRef]
7. Aifantis, E. Update on a class of gradient theories. Mech. Mater. 2003, 35, 259–280. [CrossRef]
8. Kroner, E. Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 1967, 3, 731–742. [CrossRef]
9. Eringen, A.C. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 1972, 10, 425–435. [CrossRef]
10. Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys.

1983, 54, 4703. [CrossRef]
11. Providas, E.; Kattis, M.A. Finite element method in plane Cosserat elasticity. Comput. Struct. 2002, 80, 2059–2069. [CrossRef]
12. Providas, E. Displacement Finite Element Method for Couple Stress Theory. In Proceedings of the Sixth International Conference on

Computational Structures Technology; Topping, B.H.V., Bittnar, Z., Eds.; Civil-Comp Press: Stirlingshire, UK, 2002; p. 24. [CrossRef]
13. Tserpes, K.I., Papanikos, P. Finite Element Modeling of the Tensile Behavior of Carbon Nanotubes, Graphene and Their Composites.

In Modeling of Carbon Nanotubes, Graphene and Their Composites; Tserpes, K., Silvestre, N., Eds.; Springer Series in Materials Science;
Springer: Berlin/Heidelberg, Germany, 2014; Volume 188, pp. 303–329. [CrossRef]

14. Lee, J.D.; Li, J. Advanced Continuum Theories and Finite Element Analyses; World Scientific: Singapore, 2020; p. 524. [CrossRef]
15. Tuna, M.; Leonetti, L.; Trovalusci, P.; Kirca, M. ‘Explicit’ and ‘Implicit’ Non-local Continuum Descriptions: Plate with Circular

Hole. In Size-Dependent Continuum Mechanics Approaches; Ghavanloo, E., Fazelzadeh, S.A., Marotti de Sciarra, F., Eds.; Springer:
Berlin/Heidelberg, Germany, 2021. [CrossRef]

16. Deng, G.; Dargush, G.F. Mixed variational principle and finite element formulation for couple stress elastostatics. Int. J. Mech. Sci.
2021, 202–203, 106497. [CrossRef]

17. Khodabakhshi, P.; Reddy, J.N. A unified integro-differential nonlocal model. Int. J. Eng. Sci. 2015, 95, 60–75. [CrossRef]

http://doi.org/10.1016/S0022-5096(03)00053-X
http://dx.doi.org/10.1007/BF02327219
http://dx.doi.org/10.1016/0020-7683(68)90036-X
http://dx.doi.org/10.1016/S0022-5096(01)00049-7
http://dx.doi.org/10.1016/S0167-6636(02)00278-8
http://dx.doi.org/10.1016/0020-7683(67)90049-2
http://dx.doi.org/10.1016/0020-7225(72)90050-X
http://dx.doi.org/10.1063/1.332803
http://dx.doi.org/10.1016/S0045-7949(02)00262-6
http://dx.doi.org/10.4203/ccp.75.24
http://dx.doi.org/10.1007/978-3-319-01201-8_10
http://dx.doi.org/10.1142/11312
http://dx.doi.org/10.1007/978-3-030-63050-8_11
http://dx.doi.org/10.1016/j.ijmecsci.2021.106497
http://dx.doi.org/10.1016/j.ijengsci.2015.06.006


Algorithms 2022, 15, 151 18 of 18

18. Mohammed, W.W.; Abouelregal, A.E.; Othman, M.I.A. Rotating silver nanobeam subjected to ramp-type heating and varying
load via Eringen’s nonlocal thermoelastic model. Arch. Appl. Mech. 2022, 92, 1127–1147. [CrossRef]

19. Marin, M.; Vlase, S.; Craciun, E.M.; Pop, N.; Tuns, I. Some Results in the Theory of a Cosserat Thermoelastic Body with
Microtemperatures and Inner Structure. Symmetry 2022, 14, 511. [CrossRef]

20. Said, S.M. 2D problem of nonlocal rotating thermoelastic half-space with memory-dependent derivative. Multidiscip. Model.
Mater. Struct. 2022, 18, 339–350. [CrossRef]

21. Eringen, A.C. Theory of nonlocal elasticity and some applications. Re. Mech. 1987, 21, 313–342.
22. Altan, S.B. Uniqueness of initial-boundary value problems in nonlocal elasticity. Int. J. Solids Struct. 1989, 25, 1271–1278.

[CrossRef]
23. Polizzotto, C. Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 2001, 38, 7359–7380. [CrossRef]
24. Arash, B.; Wang, Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes.

Comput. Mater. Sci. 2012, 51, 303–313. [CrossRef]
25. Eltaher, M.A.; Khater, M.E.; Emam, S.A. A review on nonlocal elastic models for bending, buckling, vibrations, and wave

propagation of nanoscale beams. Appl. Math. Model. 2016, 40, 4109–4128. [CrossRef]
26. Shariati, M.; Shishesaz, M.; Sahbafar, H.; Pourabdy, M.; Hosseini, M. A review on stress-driven nonlocal elasticity theory. J.

Comput. Appl. Mech. 2021, 52, 535–552. [CrossRef]
27. Peddieson, J.; Buchanan, G.R.; McNitt, R.P. Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 2003,

41, 305–312. [CrossRef]
28. Wang, Q.; Liew, K.M. Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A

2007, 363, 236–242. [CrossRef]
29. Reddy, J.N. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 2007, 45, 288–307. [CrossRef]
30. Wang, C.M.; Kitipornchai, S.; Lim, C.W.; Eisenberger, M. Beam bending solutions based on nonlocal Timoshenko beam theory. J.

Eng. Mech. 2008, 134, 475–481. [CrossRef]
31. Nguyen, N.T, Kim, N.I.; Lee, J. Mixed finite element analysis of nonlocal Euler–Bernoulli nanobeams. Finite Elem. Anal. Des. 2015,

106, 65–72. [CrossRef]
32. Challamel, N.; Wang, C.M. The small length scale effect for a non-local cantilever beam: A paradox solved. Nanotechnology 2008,

19, 345703. [CrossRef] [PubMed]
33. Fernández-Sáez, J.; Zaera, R.; Loya, J.A.; Reddy, J.N. Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A

paradox resolved. Int. J. Eng. Sci. 2016, 99, 107–116. [CrossRef]
34. Polyanin, A.D; Manzhirov, A.V. Handbook of Integral Equations, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2008.

[CrossRef]
35. Tuna, M.; Kirca, M. Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams.

Int. J. Eng. Sci. 2016, 105, 80–92. [CrossRef]
36. Wang, Y.B., Zhu, X.W.; Dai, H.H. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase

local/nonlocal model. AIP Adv. 2016, 6, 085114. [CrossRef]
37. Baiburin, M.M.; Providas, E. Exact Solution to Systems of Linear First-Order Integro-Differential Equations with Multipoint and

Integral Conditions. In Mathematical Analysis and Applications. Springer Optimization and Its Applications; Rassias, T.M., Pardalos,
P.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 154, pp. 1–16. [CrossRef]

38. Providas, E.; Parasidis, I.N. A Procedure for Factoring and Solving Nonlocal Boundary Value Problems for a Type of Linear
Integro-Differential Equations. Algorithms 2021, 14, 346. [CrossRef]

39. Providas, E. On the exact solution of nonlocal Euler-Bernoulli beam equations via a direct approach for Volterra-Fredholm
integro-differential equations. Appliedmath 2022, under review.

40. Zwillinger, D. Handbook of Differential Equations, 3rd ed.; Academic Press: San Diego, CA, USA, 1998.

http://dx.doi.org/10.1007/s00419-021-02096-9
http://dx.doi.org/10.3390/sym14030511
http://dx.doi.org/10.1108/MMMS-01-2022-0011
http://dx.doi.org/10.1016/0020-7683(89)90091-7
http://dx.doi.org/10.1016/S0020-7683(01)00039-7
http://dx.doi.org/10.1016/j.commatsci.2011.07.040
http://dx.doi.org/10.1016/j.apm.2015.11.026
http://dx.doi.org/10.22059/jcamech.2021.331410.653
http://dx.doi.org/10.1016/S0020-7225(02)00210-0
http://dx.doi.org/10.1016/j.physleta.2006.10.093
http://dx.doi.org/10.1016/j.ijengsci.2007.04.004
http://dx.doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
http://dx.doi.org/10.1016/j.finel.2015.07.012
http://dx.doi.org/10.1088/0957-4484/19/34/345703
http://www.ncbi.nlm.nih.gov/pubmed/21730658
http://dx.doi.org/10.1016/j.ijengsci.2015.10.013
http://dx.doi.org/10.1201/9781420010558
http://dx.doi.org/10.1016/j.ijengsci.2016.05.001
http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1007/978-3-030-31339-5_1
http://dx.doi.org/10.3390/a14120346

	Introduction
	Closed-Form Solution of Volterra–Fredholm Integro-Differential Equations
	Closed-Form Solution of Eringen's Two-Phase Integral Model Equations
	Simply Supported Beam (SS)
	Cantilever Beam (CF)
	Clamped Pinned Beam (CP)
	Clamped Beam (CC)
	Algorithm

	Examples
	Conclusions
	References

