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Abstract: Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation tech-
nique to treat brain disorders by using a constant, low current to stimulate targeted cortex regions.
Compared to the conventional tDCS that uses two large pad electrodes, multiple electrode tDCS
has recently received more attention. It is able to achieve better stimulation performance in terms of
stimulation intensity and focality. In this paper, we first establish a computational model of tDCS,
and then propose a novel optimization algorithm using a regularization matrix λ to explore the
balance between stimulation intensity and focality. The simulation study is designed such that
the performance of state-of-the-art algorithms and the proposed algorithm can be compared via
quantitative evaluation. The results show that the proposed algorithm not only achieves desired
intensity, but also smaller target error and better focality. Robustness analysis indicates that the
results are stable within the ranges of scalp and cerebrospinal fluid (CSF) conductivities, while the
skull conductivity is most sensitive and should be carefully considered in real clinical applications.

Keywords: transcranial direct current stimulation (tDCS); optimization model; quantitative evalua-
tion metrics; conductivity; robustness test

1. Introduction

As a non-invasive neuromodulation method, transcranial direct current stimulation
(tDCS) shows therapeutic potential to treat many brain disorders and improve brain
functions, such as major depression [1–3], epilepsy [4–6], and Parkinson’s disease [7–9]. It
has also garnered great interest because it may benefit healthy individuals as well [10–13].
Conventional tDCS applies a constant, low direct current through two large pad electrodes
to stimulate a specific brain region. It is challenging to achieve precise activation or
inhibition at a specific region without interfering with other regions of the brain. Numerous
efforts have been made to improve this promising technique, such as using multiple
electrodes to achieve focalized EEG-guided stimulation. For example, GTEN system (EGI,
Eugene, OR, USA) with 256 channels integrated the reciprocity theorem and EEG-based
source localization tools such as sLORETA. These reciprocity principle based methods use
observed EEG patterns as a guide to maximize the directional electric field at the target.
However, they have many deficiencies. First of all, updated source localization algorithms
such as gFOTV can improve localization accuracy and degree of focalization [14,15]. In
addition, the density of the electrode system does affect stimulation outcomes, and 256 may
not be high enough to reach the plateau [16–19]. The most important drawback is that the
reciprocity theorem may not be ideal, especially in the multiple target case. It may stimulate
the average location of these targets, and results in a broadly distributed stimulation pattern.
Consequently, one of the emerging challenges of utilizing the high-density electrode system
for tDCS is to determine the optimal current at each electrode. An optimal current pattern
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will enable multi-electrode systems to provide stimulation with high focality, accuracy, and
intensity.

So far, optimization-based methods are the most popular solution to assign injected
current values. As an overdetermined problem, the Least Squares solution is a straightfor-
ward approach [20], which minimizes the second order error term. Considering the safety
issue in clinical use, constraints are then added when applying the algorithm; thus, it can be
referred to as the Constrained Least Squares method (CLS). Its optimal current pattern often
produces relatively focal stimulation but low stimulation intensity; one possible explanation
for this is that the target region is generally tiny compared to the whole brain. To overcome
this challenge, the Least Squares method has been improved by assigning weight to balance
the tiny target region and large non-target ones, in a technique called the Weighted Least
Squares method [20,21]. It is able to produce higher stimulation intensity; however, the
weight factor must be given by the clinician, which is a non-trivial task. Another possible
solution is to change the L2-norm of the error vector to an L1-norm approach. The L1-norm
is applied to achieve more focal stimulation because the fidelity term based on the L1-norm
is more robust and results in a non-uniform error distribution, which we have reported
previously [22]. However, itis very computationally expensive. Because of its computa-
tional drawbacks, we do not explore the effects of using the L1-norm in this investigation.
Another developed technique optimizes for the intensity at the target region, and is named
the Max Intensity (MI) method [17,23]. This method tends to achieve high stimulation
intensity, but is more likely to activate large non-target areas. Thus, this motivates the
introduction of more constraints on non-target areas to improve the MI method [24,25].
However, the additional constraints may lead to situations of no feasible solution set and,
also, longer computational time. These improvements all indicate the key point behind
this optimization problem—that is, to find ways of balancing the stimulation intensity and
focality. One novel solution named Linearly Constrained Minimum Variance (LCMV) [20]
adopts ideas from the beamforming problem. The algorithm has a hard constraint in that
the stimulation intensity at the target region is enforced to be exactly equal to the desired
one, while a cost function minimizes the energy of the non-target regions. This strategy is
aimed to ensure the stimulation effectiveness, but has pitfalls. LCMV minimizes the effects
on the non-target areas under the premise that the hard constraint is fulfilled. When the
desired electric field at the target regions is difficult to achieve, it can greatly sacrifice the
non-target region and produce a spread-out electric field distribution. In the worst case, it
may even fail to attain the hard constraint, thus giving no feasible solution.

To balance the trade-off and overcome these pitfalls, we propose a new method com-
bining the principles of LCMV and MI. The new method, Stimulation with Balanced Focality
and Intensity (SBFI), maximizes the energy in the target region and minimizes the rest of
the energy in non-target regions. In addition, we also adopt an idea from the Weighted
Least Squares method by adding a stimulation parameter λ in SBFI to balance the intensity
and focality of the target regions and non-target regions. Computational simulation experi-
ments were conducted using the aforementioned methods and the proposed SBFI method.
The quantitative results show that SBFI achieves better performance in balancing the stim-
ulation intensity and focality for both single and multiple targets studies. Robustness
experiments indicate that the results are stable with different scalp and CSF conductivi-
ties, while skull conductivity is most sensitive and should be carefully considered in real
clinical applications. The proposed optimization method SBFI shows a good robustness
among tested methods in terms of the overall electric field distribution deviations and the
maximum intensity changes at the target area.

2. Materials and Methods
2.1. Framework and Computational Model

To formulate this optimization problem, we consider the head as a volume conduc-
tion model, which consists of multiple tissues, each with different electrical conductivity.
Furthermore, the cortex is discretized into n elements, and the electric field in the cortex
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is denoted by e3n×1. The realistic head model in this study is derived from a FieldTrip
template [26], which provides anatomical information of the scalp, skull, CSF, and cortex.
The conductivity values are adopted from the literature [20], where σScalp = 0.465 S/m,
σSkull = 0.01 S/m, σCSF = 1.65 S/m, and σCortex = 0.2 S/m.

For a stimulation system with m electrodes, we use sm×1 to denote the injected current
in the system. In this study, we choose m = 342; thus, s has a dimension of 342 × 1.
This high-density electrode system, with more degrees of freedom, is able to provide a
better stimulation pattern than a low-density system [18]. The electrode location is based
on the international electroencephalography (EEG) system. The electrode model was
constructed using SolidWorks (Dassault Systѐmes SOLIDWORKS Corp., Waltham, MA,
USA). To simulate real clinical conditions, the electrode has both a metal layer and gel layer.

Considering the fact that head tissues are mainly resistive when tDCS is applied,
the electric field distribution can be regarded as quasi-static. Under this condition, the
applied current sm×1 and electric field e3n×1 are linearly related as e3n×1 = K3n×m·sm×1. The
coefficient matrix K3n×m, known as the lead field matrix, provides the mapping information
between the injected currents of the electrode system, and the electric field value at each
voxel of the brain. K3n×m is obtained by FEM and solving the Laplace equation in COMSOL
Multiphysics (COMSOL Inc., Burlington, MA, USA).

2.2. Optimization Model

With the intent to balance the tradeoff between stimulation focality and intensity,
Stimulation with Balanced Focality and Intensity (SBFI) combines both in the cost function.
The focality is represented by the total energy of the non-target regions ‖ Ds ‖2. Here, D is
the submatrix of K relating the injected current at non-target regions. The intensity can be
expressed by e0

TCs. The distribution of the desired electric field intensity at the target is e0.
C, as the submatrix of K, is the coefficient matrix of current at the target region (s). Thus,
the cost function of SBFI can be further written as:

s = argmin
s

(
ntar

nnon
‖ Ds ‖2 − λe0

TCs
)

(1)

where λ is the optimization parameter to balance the first term of focality and the second
term of intensity. Higher λ favors intensity, while smaller λ tends to have better focality;
in this work, λ is chosen empirically based on parameter sweep simulations. The number
of voxels at the target and non-target regions are ntar and nnon, respectively. This convex
optimization problem can be solved efficiently by software such as CVX, and the only
unknown current pattern s is therefore obtained.

Furthermore, the algorithm can be expanded to fulfil the needs of targeting multiple
brain regions in a single stimulation session. For example, different erectile dysfunction
(ED) symptoms are mapped to different cortical targets, and stimulating a single target may
be insufficient to address multi-dimensional ED pathology [27–29]. In addition, network-
targeted transcranial direct current stimulation (net-tDCS) is able to change the excitability
of the sensorimotor network, and show the potential to manipulate network connectivity
patterns [30]. Similarly, multi-target stimulation is desirable in the potential application
of stopping seizure with the guidance of neural recording techniques [31,32]. However,
stimulation effects at different targets may not be the same if complex brain structure and
other factors are considered. Thus, the optimization parameter λ is further refined by
λ = diag(λ1, λ1, . . . , λntar ) to balance the stimulation effects of different targets.

s = argmin
s

(
ntar

nnon
‖ Ds ‖2 − e0

TλTCs
)

(2)

2.3. Safety Constraints

To guarantee the stimulation is within the safety limits, it is necessary to introduce
constraints for the optimization model. Generally, there are three common safety concerns.
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First, the sum of all current inflow should be equal to the sum of all current outflow based
on the charge conservation law.

∑ si = 0 (3)

Second, the current injected into each electrode cannot exceed Imax. This is especially
important for high-density electrode systems to avoid side effects such as pain and skin
injury. This constraint can be written as:

|si| ≤ Imax, for any i (4)

Lastly, we limit the sum of all current inflow to the body. If we use Itotal to represent
the maximum sum currents injected into the body, then the constraint will be:

∑|si| ≤ 2Itotal (5)

In this study, we set Imax = 2 mA, and Itotal = 4 mA, which are reported to be
safe [33–35].

The feasible sets of the optimization model are defined as:

S =
{

s ∈ Rm : ∑ si = 0, |si| ≤ Imax, ∑|si| ≤ 2Itotal
}

(6)

2.4. Experiment Design

To test the performance of the proposed algorithm SBFI, and compare it to the con-
ventional two-electrode system and some available algorithms mentioned, we designed
various stimulation cases based on different clinical applications. First, the simplest test is
to stimulate a single target containing only one voxel in the motor cortex with a desired
intensity of 0.3 V/m (Figure 1), i.e., ntar = 1, e0 has a dimension of 3× 1, and C has a di-
mension of 3×m; this scenario mimics common clinical use. The second test is to stimulate
multiple targets derived from synthetic data [15]. As indicated in Figure 2, the stimulation
targets contain three brain regions with a maximum electric field of 0.3727 V/m in the left
frontal lobe (region 1), 0.3522 V/m in the left occipital lobe (region 2), and 0.2841 V/m in
the left temporal lobe (region 3). In this case, target voxels refer to those with an electric
field intensity larger than 0.05 V/m. Therefore, ntar = 111, e0 has a dimension of 333× 1,
and C has a dimension of 333×m. Our third test measures how each algorithm performs
with real EEG data from a seizure patient. The target regions are identified by EEG source
localization [15,36]. In addition to examining SBFI performance on multiple targets in real
seizure data, this study also demonstrates the applicability of our method to EEG-guided
brain stimulation. Similar to the synthetic case, there are three target areas in the EEG-
guided case, shown in Figure 3. One is in the occipital cortex (region 1) with maximum
electric field of 0.1107 V/m, while the other two are on the left and right prefrontal lobe
(region 2 and 3) with intensities of 0.0702 V/m and 0.0844 V/m, respectively. Due to the
infeasibility of a conventional two-electrode system to target multiple areas, it is excluded
in the performance comparison study of optimization algorithms for multiple targets. The
comparison is therefore between SBFI, CLS, and MI.
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Figure 1. Results for the single target protocol. (A) Desired electric field and result of conventional
montage. (B) Results of different optimization algorithms. The color scale represents intensity of
the electric field, in V/m. (Note: Results are shown at the same scale [0, 0.3] V/m for various
algorithms except CLS. The intensity above 0.3 V/m is saturated for visualization.) (C) The electrode
configurations calculated by different algorithms. The Conventional montage and MI methods
produce spread-out electric field distributions with a small number of electrodes. The CLS method
can achieve focal stimulation, but the intensity is too weak. In addition, it requires the utilization of
80 electrodes, which is another drawback compared to the others. Both LCMV and SBFI successfully
achieve focusing stimulation with sufficient intensity. SBFI is slightly better than LCMV in terms of
intensity, target error, and focality.
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Figure 2. Results for the synthetic multiple targets protocol. (A) Results of different optimization
algorithms for the synthetic multiple targets protocol. The color scale represents intensity of the
electric field, in V/m. (Note: Results are shown at the same scale [0, 0.3727] V/m for various
algorithms except for CLS. The intensity above 0.3727 V/m is saturated for visualization.) As before,
the intensity of the CLS method is too weak, while the MI method appears to activate the whole
left hemisphere. Only SBFI provides a good balance between stimulation intensity, precision, and
accuracy. The LCMV was unable to find a valid solution for the multi-target case. (B) The electric
field distribution pattern of SBFI using a single λ targeting synthetic multiple brain regions. (C) The
electric field distribution pattern of SBFI using different λ.
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Figure 3. Results of different optimization algorithms for the real multiple targets protocol. The color
scale represents intensity of the electric field, in V/m. (Note: Results are shown at the same scale
[0, 0.1107] V/m for different algorithms except for CLS. The intensity above 0.1107 V/m is saturated
for visualization.) Again, the intensity of the CLS method is too weak, while the MI method almost
activates the whole brain. Only SBFI provides a good balance between stimulation intensity, precision,
and accuracy. The LCMV method was unable to find a valid solution for the multi-target case.

In the real world, uncertainty in tissue conductivity can result in different electric
field distribution from our expected, idealized models; this greatly affects the robustness
of the computational model. The conductivity variations result in a different coefficient
matrix K′3n×m; accordingly, with the same current pattern sm×1, it produces an electric field
vector e′3n×1 = K′3n×m·sm×1 that is different from the expected electric field distribution
using standard conductivity values. The dissimilarity between e′3n×1 and the expected
distribution e3n×1 reflects the robustness of the computational model. In this study, we
observe how small changes in tissue conductivity can create differences between e′3n×1
and e3n×1, thereby analyzing the robustness of our model. Based on the literature [37–39],
we assumed that the conductivities of the main tissues have uniform distributions with
a unit of S/m, i.e., Pscalp(x|σ) ∼ U(0.2, 0.6), Pskull(x|σ) ∼ U(0.001, 0.04), PCSF(x|σ) ∼
U(1.20, 2.01), and Pcortex(x|σ) ∼ U(0.05, 0.71). An overview of both single and multiple
targets with different algorithms is given to demonstrate the general effects of conductivity
changes. The detailed influences are revealed by an example of single target stimulation
with SBFI in the main text.



Algorithms 2022, 15, 169 8 of 18

2.5. Evaluation Metrics

Quantitative evaluations are used to measure and compare the performance of the
proposed method with other state-of-the-art methods. At first, the stimulation intensity,
in volts per meter, is quantified by the maximum electric field of the target region. In
general, higher intensity is preferred. An intensity of 0.1~0.3 V/m is reported to be
efficient [20,40,41].

E = emax = max(etar) (7)

Second, the target error (TE) is defined as the Euclidean distance between the mass
centers of the target and the solution regions [18,22].

TE = ‖ MC0 −MC ‖2, (MC0)j =
∑i(e0)ij·pij

∑i(e0)ij
, (MC)j =

∑i(e)ij·pij

∑i(e)ij
(8)

where j ∈ {x, y, z}, pi represents the coordinates of the ith voxel. The mass center of
the target region and the activation region are MC0 and MC, respectively. With units of
millimeters, TE is a way of evaluating the stimulation accuracy: the smaller the TE, the
higher the accuracy.

Third is the focality [18,22] measured in millimeters, which is represented by the
radius in which the cumulative energy is half of the total energy. If we use Γ(r) to represent
the voxel set within a distance r from the center of the target region, and E(r) is the portion
of the energy of Γ(r).

r0.5 = r|E(r)=0.5, E(r) =
∑i∈Γ(r) ‖ e(ri) ‖2

2

∑i e(ri)
2
2

(9)

Focality indicates stimulation precision. Smaller values of r0.5 indicate that most of the
energy is concentrated in a smaller region, and thus off-target brain regions are less likely
to be activated.

In addition, although all optimization algorithms are applied to the aforementioned
342-electrode system, any electrode whose absolute current is less than 1 µA is considered
inactivated, and the number of activating electrodes in the montage is provided. To avoid
any confusion, the “electrode number” for different optimization methods in the rest of
paper refers to the number of electrodes with absolute current larger than 1 µA.

When measuring model robustness, the mean squared error (MSE), the common image
measurement, is adopted to evaluate the dissimilarity between e′3n×1 and e3n×1. A higher
MSE indicates that the electric field distribution is more sensitive to changes in conductivity,
and that the computational model is therefore less robust with respect to conductivity
uncertainty.

MSE =
1
n ∑

(
e′3n×1 − e3n×1

)2 (10)

Then the intensity (E′), target error (TE′) and focality ( f ocality′) of e′3n×1 are compared
with those of e3n×1. ∆E, ∆TE, and ∆ f ocality are therefore obtained by |E′ − E|, |TE′ − TE|,
and | f ocality′ − f ocality|, respectively. Finally, the maximum rate of change will be given,
defined by the maximum ∆E/∆σ, ∆TE/∆σ, or∆ f ocality/∆σ for the different metrics.

3. Results
3.1. Study with Single Target

The advantages of using multiple electrodes instead of the conventional system with
two large pad electrodes can be demonstrated in the results of the electric field distribution
with a single target in Figure 1A,B. Figure 1C shows the electrode configurations calcu-
lated by different algorithms. Note, the configuration only shows the electrodes whose
current is larger than 1 µA. The conventional montage produces a maximum electric field
of 0.4385 V/m with a focality of 63.5043 mm. The figure clearly indicates this spread-
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out distribution not only activates the target in the motor cortex, but also the entire left
hemisphere. A target error of 28.3738 mm shows that the conventional montage does
not create an accurate stimulation either. The performance of the MI algorithm is similar
to the conventional montage with even higher electric field intensity and worse focality
and accuracy, which is as expected. The MI method maximizes the intensity at the target
reaching 0.7449 V/mm with only four electrodes. Although its intensity is more than
1.5 times higher than conventional system, it affects larger brain regions, especially the
frontal lobe. The focality and target error are 81.9083 mm and 29.1206 mm, respectively. The
CLS method has the opposite results of the MI algorithm and conventional montage. CLS
produces an extremely precise and accurate stimulation pattern among all methods with
a focality of 10.8616 mm and target error less than 1 cm. However, the outcome intensity
of CLS is around 17 times lower than the desired value. Such a low intensity may not be
clinically efficacious. Additionally, this montage requires 80 electrodes, which introduces
additional drawbacks compared to the other methods. As for the LCMV and the proposed
SBFI method, Figure 1 shows that the performance of those two are comparable. Both
successfully find a balance between MI and CLS algorithms with around 20 electrodes. The
desired intensity 0.3 V/m at the target region is achieved, while the focality and target error
are within control. The focality of LCMV is 25.2921 mm, and its target error is 9.6710 mm.
The proposed SBFI method with λ = 0.0316 is slightly better at the focality of 22.1130 mm
and target error of 7.3776 mm. Compared to the conventional montage and MI algorithm,
these dramatic improvements in focality and target error indicate that more energy is
focused in a smaller region surrounding the target point, which promises more effective
and safe stimulation.

3.2. Study with Multiple Targets

When stimulating disjointed target regions, the conventional two-electrode montage is
no longer feasible, and using a multiple-electrode system is the only reasonable approach.
Thus, the multiple-target studies exclude the conventional system, and comparisons are
made only between different optimization methods. It is worth pointing out that LCMV
performs reasonably in the single target case, but due to the hard constraint, the LCMV
method has no feasible solution set for multiple target cases tested in our study. Therefore,
we were not able to compare the performance of LCMV with all the other methods. The
failure to have a feasible solution is the key drawback of the LCMV method, and this
motivates us to propose the SBFI model.

Desired electric field distribution of synthetic multiple targets is shown in Figure 2A.
Similar to the results of the single target study, CLS can mimic the electric field distribution
pattern of the desired result, except the intensities of all three regions are almost an order of
magnitude smaller than the desired value. The effectiveness of stimulation is questionable
at such low intensities. On the contrary, the MI method produces high enough stimulation
intensity in those three areas but sacrifices the focality. From the distribution figure, it is
hard to recognize three discrete areas; the MI method appears to activate the whole left
hemisphere. In the case of the proposed SBFI method, effective and precise stimulation
can be achieved simultaneously with λ = diag(0.5885, 0.247, 0.247). The intensity of all
three regions is higher than 0.1 V/m, which is enough to induce cortical changes as shown
in the literature [20,40,41]. Although the focality values of the three regions are relatively
higher than in CLS, the energy outside the target region is actually lower than the threshold,
which in turn will not be able to activate neurons. Thus, it is an acceptable tradeoff to see
this small increase in focality value. Overall, the proposed SBFI method provides a good
balance between stimulation intensity, precision, and accuracy. It not only can provide
sufficient stimulation intensity as performed in the MI method, but also is able to minimize
target error and focality simultaneously.

Figure 2B shows the results of SBFI using a scalar λ. It is clear that the scalar λ fails
to balance the three target regions. The desired intensity of all three target regions is
similar, but the result intensity at the motor cortex region is much lower than the other two
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regions. It appears the system does not favor the targets on the motor cortex region. One
possible explanation could be the size of the target region. Intuitively, it is easier for the
system to stimulate a large region than a tiny region because fewer electrodes are needed
to minimize the intensity at the surrounding non-target region. If the target size is defined
as the maximal distance between the target voxels and target mass center, the size of the
motor cortex target is 12.9444 mm, which is the smallest among the three, compared to
13.6425 mm on the occipital lobe and 17.7783 mm on the temporal lobe. Thus, in order to
compensate this unbalanced distribution of size, we have to assign different λi for different
target regions.

The results in Figure 2A clearly show that the proposed SBFI method can achieve
reasonable balance between the intensity and focality by fine-tuning the optimization
parameter λ = diag

(
λmotor, λoccipital , λtemporal

)
. This flexibility allows the system to

achieve different optimal results tailored to various applications. Decreasing the values of
λ will increase the weight of the first term ‖ Ds ‖2, which controls focality. The result will
always have better focality and lower target error but with relatively lower intensity. For
example, when λ is chosen to be diag(0.1085, 0.055, 0.055), the algorithm favors focality.
As shown in Figure 2C, the focality and target error are better than the case of SBFI in
Figure 2A, but the intensities are lower. Compared to CLS, SBFI achieves the highest
intensities at all three target regions, while at the same level of focality and target error.
Mathematically, increasing the values of λ allows the second term to dominate, and the
cost function is closer to the MI method. When λ approaches infinity, SBFI is equivalent
to the MI algorithm. The first term leads the optimization if λ is decreased, as the cost
function mainly minimizes the energies of the non-target area.

Similar results are obtained for the EEG-guided multiple target study as a simple
demonstration that our proposed method is applicable to solve clinical needs, as shown
in Figure 3. CLS can preserve the distribution pattern, but always fails to achieve enough
intensity. MI undoubtedly reaches desired intensity, but the high intensity is at the cost of
stimulation focality and accuracy. This EEG-guided case shows that MI even impacts both
hemispheres, which may be due to the fact that there are targets on both hemispheres. It
is worth pointing out that CLS and MI produce two extremes: MI favors the intensity of
the targets and CLS produces more focal stimulation. However, only SBFI can balance the
trade-off between intensity and the focality of all target regions. By choosing the proper
optimization parameters λ = diag(0.147, 0.1049, 0.1049), SBFI achieves desired intensity
at all three target regions with reasonable focality and target error.

3.3. Robustness Study

We investigated our model’s robustness to changes in conductivity values, including
scalp conductivity, skull conductivity, cerebrospinal fluid (CSF) conductivity, and brain
cortex conductivity. Since the electrical properties of these tissues can vary slightly between
patients, we use the term “conductivity uncertainty” to describe the small changes made to
our model parameters during our robustness study.

3.3.1. The Overall Impact of Conductivity Uncertainty

Figure 4A and Table 1 show the maximum MSE due to conductivity uncertainties for
each algorithm. For all cases, the MSE peak appears at the skull layer, and valley appears
at the CSF layer. These accordant peaks and valleys indicate a predominant impact of skull
conductivity on model robustness, and a minor impact of the CSF on model robustness.
The scalp layer and cortex layer have similar in-between effects on MSE, which indicate
the comparable and moderate influences of the scalp and cortex in general. Figure 4B
shows an example of MSE analysis in a single-target experiment with our SBFI method.
MSE increases as the model’s conductivity values deviate from their idealized values,
which creates a concave “V” shape for each tissue. Note that the concave “V” shape
associated with the skull is much sharper and higher than the others—this shows that
the model is most sensitive to small uncertainties or deviations in skull conductivity. The
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observed trends are consistent with all stimulation scenarios regardless of target types and
optimization algorithms (see Supplementary).
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Figure 4. (A) Mean square error (MSE) between expected electric field e3n×1 and electric field e′3n×1
due to uncertainty in tissue conductivity. Left: single target. Right: synthetic multiple targets, from
top to bottom are the results for target 1, 2, and 3, respectively. (Note: y-axis is log scale in the right
column.) The effects on MSE in general: skull > scalp ≈ cortex > CSF. (B) Example of the MSE
changes across the conductivity distribution range at each layer. When the conductivity of a tissue is
equal to that tissue’s original conductivity from the model, the MSE is trivially zero. However, as we
shift the tissue’s conductivity away from its starting value, the error increases. Larger slopes on the
graph above indicate a high sensitivity to conductivity changes, and therefore a low robustness to
uncertainty. Within the possible conductivity changes, the model is most sensitive to skull, and least
sensitive to CSF.

Table 1. Dissimilarity results of the robustness test ((V/m)2 ).

Tissue Conventional LCMV SBFI MI CLS

Scalp 0.003 6.43× 10−4 6.14× 10−4 0.008 6.79× 10−7

Skull 0.007 0.002 0.002 0.023 2.80× 10−6

CSF 5.71× 10−4 6.23× 10−5 5.51× 10−5 0.002 4.49× 10−8

Cortex 0.003 9.41× 10−5 8.89× 10−5 0.009 3.12× 10−8

3.3.2. The Impact on Intensity by Conductivity Uncertainty

Figure 5 and Table 2 show that the skull’s conductivity uncertainty has the most pow-
erful impact on electric field intensity. Figure 5B shows an example of intensity analysis in a
single-target experiment with our SBFI method. An increase in skull conductivity induced
a dramatic intensity growth on the target region. In contrast, the maximum intensity of
the target region negatively correlates to the conductivity of the scalp, CSF, and cortex,
on which the scalp has moderate effects stronger than the CSF and cortex. One possible
explanation for the trends could be related to the conductivity ranges. The conductivity of
the scalp/CSF is always much higher than the inner tissue layer skull/cortex. Therefore, the
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current tends to be shunted through the layers of the scalp/CSF instead of the skull/cortex.
If the scalp/CSF conductivity increases, current shunted though the scalp/CSF will increase,
weakening the intensity at the cortex. If the skull conductivity increases, less current will
be shunted at the scalp/skull boundary. At the skull/CSF boundary, the skull conductivity
is still considerably lower than the CSF. The significant conductivity differences ensure an
increase in the net current flowing into the CSF and cortex, resulting in an intensity increase
at the cortex.
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Figure 5. (A) Maximum intensity deviation from the expected value due to conductivity uncertainty.
Left: single target. Right: synthetic multiple targets, from top to bottom are the results for target 1, 2,
and 3, respectively. (Note: y-axis is log scale in the right column). The effects on intensity in general:
skull > scalp > CSF ≈ cortex. (B) Example of the intensity changes. The large intensity spans on the
graph above indicate the strong impact of the conductivity changes. Within the possible conductivity
changes, skull conductivity increase greatly increases the intensity, while conductivity increases in
scalp/CSF/cortex decrease the intensity.

Table 2. Intensity results of the robustness test.

Tissue σ (S/m) Max Intensity (V/m) Min Intensity (V/m) Rate ((V/m)/(S/m))

Scalp 0.2–0.6 0.598 0.242 0.890
Skull 0.001–0.04 0.828 0.037 20.299
CSF 1.20–2.01 0.386 0.257 0.159

Cortex 0.05–0.71 0.352 0.219 0.202

3.3.3. The Impact on TE by Conductivity Uncertainty

Regarding TE in Figure 6, the scalp and CSF generally have the least impact capped
at 4 mm, which have no clear trend of increasing or decreasing for all scenarios (see Sup-
plementary), while the skull and cortex can alter the TE greatly up to 16 mm. Figure 6B
shows an example of TE analysis in a single-target experiment with our SBFI method.
Overall, the TE tends to decrease when the skull/cortex conductivity increases. Some-
times, the cortex even induces more TE changes than the skull. However, considering the
conductivity change of the skull is 94% smaller than the cortex (∆σskull = 0.039 S/m and
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∆σcortex = 0.66 S/m), the rate of change of skull-induced TE is actually six times higher
than that of the cortex, as shown in Figure 6B and Table 3. Thus, it is still reasonable to
envision that the skull generally has stronger effects on TE than the cortex does.
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Figure 6. (A) Maximum TE deviation from the expected value due to conductivity uncertainty. Left:
single target. Right: synthetic multiple targets, from top to bottom are the results for target 1, 2, and 3,
respectively. (Note: y-axis is log scale in the right column.) The effects of TE in general: skull > cortex
> scalp > CSF. (B) Example of the TE changes. TE has non-monotonic and divergent changing forms.
(Note: the y-axis starts at 4 mm.) Overall, TE tends to decrease when the skull/cortex conductivity
increases, while scalp/CSF has no clear tendency. TE spans caused by the cortex are the largest,
which indicates that cortex conductivity has a strong impact on TE.

Table 3. Target error results of the robustness test.

Tissue σ (S/m) Max TE (mm) Min TE (mm) Rate ((mm)/(S/m))

Scalp 0.2–0.6 7.383 7.184 0.497
Skull 0.001–0.04 8.158 6.605 39.830
CSF 1.20–2.01 7.591 6.817 0.956

Cortex 0.05–0.71 9.743 5.900 5.822

3.3.4. The Impact on Focality by Conductivity Uncertainty

Similarly to the TE test, the scalp and CSF show minor and comparable effects on
focality, usually inducing focality changes less than 10 mm. Figure 7A and Table 4 also
reveal the main influence of skull conductivity uncertainty on focality. Figure 7B shows
an example of focality analysis in a single-target experiment with our SBFI method. The
skull-induced focality changes can be larger than 40 mm, but most of them happen when
σskull ≤ 0.005 S/m. When σskull > 0.005 S/m, the focality change is less than 1.5 mm. This
also occurs in the other scenarios (see Supplementary), but the tuning point is not always
the same. The impact of the cortex on focality is more complicated, and varies significantly
with algorithms and target types. The highest change is ∼ 25 mm, but sometimes the
influence can be as weak as the scalp/CSF effects.
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Figure 7. (A) Maximum focality deviation from the expected value due to the conductivity uncertainty.
Left: single target. Right: synthetic multiple targets, from top to bottom are the results for target 1, 2,
and 3, respectively. (Note: y-axis is log scale in the right column.) The effects on focality in general:
skull > cortex > CSF ≈ scalp. (B) Example of the focality changes. (Note: the y-axis starts at 20 mm.)
No clear tendency of the focality changes. Most focality changes happen when the skull conductivity
is small.

Table 4. Focality results of the robustness test.

Tissue σ (S/m) Max Focality (mm) Min Focality (mm) Rate ((mm)/(S/m))

Scalp 0.2–0.6 22.808 22.007 2.002
Skull 0.001–0.04 62.773 21.635 1054.8
CSF 1.20–2.01 22.598 22.102 0.612

Cortex 0.05–0.71 33.227 21.522 17.736

4. Discussion
4.1. Electrode Configuration

The electrode configuration for all studies clearly shows that MI always uses four
electrodes, where two are used for stimulation and the other two are for current return.
The two stimulation electrodes deliver most of the current to the targets to increase the
intensity. However, with the safety constraint on the total amount of injected current, no
spare electrodes can be used to neutralize the effects in non-target regions. This is why MI
usually has poor focality and large target error. In contrast, CLS needs more electrodes than
any of the other methods. These electrodes counteract each other to eliminate effects at
non-target areas, which explains the good focality and small target error in all CLS results.
The large number of electrodes also contributes to low intensity since each electrode can
only deliver a small current to meet the safety constraint on total current. Therefore, the
strategy is to keep the number of electrodes neither too large nor too small, which is the
unique approach of SBFI. In a sense, some electrodes deliver enough current to ensure the
desired intensity, while others are used to decrease the unwanted effects at non-target brain
regions.
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4.2. Regularization with Single Lambda and Multi-Lambda

As described in the results section, error in multiple-target studies can be mitigated
by adopting λ = diag(λ1, λ1, . . . , λntar ) such that balancing each target can be performed
simultaneously. The motivation to extend one scalar λ to multiple λi is that some targets
may be in a dominant position and easier to be stimulated than others. For simplicity, we
currently have all the voxels in the same region share the same λ. In an extreme case, we
could set the optimal λi for each voxel.

4.3. The Choice of Lambda

The selection of λ strongly affects the outcome of intensity and focality. From the
simulation study, we found that the optimal λ varies from case to case, and thus there is
no single fixed optimal value for every stimulation problem. Consequently, it is critical
to decide the parameter λ such that the balance between intensity and focusing ability
can be obtained. The current selection is based on some sweep simulations and sophisti-
cated methods, such as Bilevel Optimization [42,43] and Cross Validation [44,45], can be
employed to choose λ dynamically for closed-loop stimulations in the case of evolving
sources. Nevertheless, insights could be obtained by studying the relationship among
λ, the number of target voxels, and the size of target regions. For example, λ is higher
when stimulating a single target with only one voxel, and is much lower when stimulating
multiple targets with hundreds of voxels. Thus, it is reasonable to predict that optimal λ is
inversely proportional to the number of target voxels, and adjusts λ accordingly.

4.4. Robustness

The Robustness tests here identify the important roles of tissue conductivities in
the optimal stimulation, which is consistent with the existing literature [37,38]. Through
our systematic studies, we investigate the tissue conductivity variation effects for multi-
electrode stimulations with different target types and different algorithms. Overall, scalp
and CSF produce slight effects on stimulation intensity, target error, and focality. Unfor-
tunately, conductivities of the skull and cortex itself greatly influence the electric field
distribution over the cortex. These results indicate the need for individual modeling, espe-
cially for the parameter settings of the clinical applications. Another possible solution is to
construct general models of specific populations. For example, the tissue conductivities of
children, adults, and aging population vary a lot, while they may be stable within their own
group [46–48]. Furthermore, conductivity discrepancies resulting from pathologies are also
being investigated [49–51]. The electrical property changes in disease states may greatly
influence the electric field distribution and alter the stimulation results. Thus, the specific
simulation model for certain disease treatments should be carefully considered. As a result,
more experiments should be conducted to investigate the joint influence of different tissue
conductivity, various stimulation protocols, electrode characteristics, electrode position
displacement, more precise human head models, etc.

It is interesting to note the robustness differences between algorithms that the MI
method is in general less robust than other optimization algorithms. The conventional
montage is slightly better than the MI method with relatively lower bars in Figures 4,
5, 6 and 7A, but the robustness is not as good as LCMV or SBFI. LCMV and SBFI have
comparable robustness against tissue conductivity uncertainty. The reason for the more
robust behavior could be that both algorithms try to balance both target (e0

TCS) and
non-target regions (‖ Ds ‖2) with more electrodes. Therefore, the current distribution in
the brain could be relatively more controllable, which leads to more robust results in the
face of conductivity uncertainty. The results of CLS are the least affected by conductivity
changes—far less than the others because of its low intensity over the whole cortex.

5. Conclusions

In this paper, we proposed a novel optimization algorithm: Stimulation with Balanced
Focality and Intensity (SBFI) to support multiple electrode tDCS. SBFI can provide a balance
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between stimulation intensity and focality by adjusting the optimization parameter λ with
a reasonable number of electrodes. Compared to the conventional montage and other
popular optimization methods, SBFI can not only obtain sufficient stimulation intensity
but also minimize target error and improve stimulation focality simultaneously. A series
of simulation experiments present its potential for use in different clinical applications,
especially stimulation for multiple targets. One limitation of the method is that the opti-
mization parameter λ is problem-dependent. In the discussions above, we outline possible
solutions that will be explored in the near future. Furthermore, in the robustness studies,
the proposed method SBFI shows a good robustness with different tissue conductivity
variations. Among the tested algorithms, SBFI has relatively lower deviations from the
overall electric field distribution and less intensity changes at the target area. The robust-
ness experiments further suggest the high impact of skull conductivity variations, which
requires more consideration in modeling studies and clinical implementation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/a15050169/s1, Figure S1: Robustness test results-MSE; Figure S2:
Robustness test results-Intensity; Figure S3: Robustness test results-TE; Figure S4: Robustness test
results-Focality; Table S1: Synthetic Multiple targets dissimilarity results of the robustness test; Table
S2: Synthetic Multiple targets intensity results of the robustness test; Table S3: Synthetic Multiple
targets TE results of the robustness test; Table S4: Synthetic Multiple targets focality results of the
robustness test.
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