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Abstract: The human immunodeficiency virus (HIV) mainly attacks CD4+ T cells in the host. Chronic
HIV infection gradually depletes the CD4+ T cell pool, compromising the host’s immunological reac-
tion to invasive infections and ultimately leading to acquired immunodeficiency syndrome (AIDS).
The goal of this study is not to provide a qualitative description of the rich dynamic characteristics of
the HIV infection model of CD4+ T cells, but to produce accurate analytical solutions to the model
using the modified iterative approach. In this research, a new efficient method using the new iterative
method (NIM), the coupling of the standard NIM and Laplace transform, called the modified new
iterative method (MNIM), has been introduced to resolve the HIV infection model as a class of system
of ordinary differential equations (ODEs). A nonlinear HIV infection dynamics model is adopted
as an instance to elucidate the identification process and the solution process of MNIM, only two
iterations lead to ideal results. In addition, the model has also been solved using NIM and the fourth
order Runge–Kutta (RK4) method. The results indicate that the solutions by MNIM match with
those of RK4 method to a minimum of eight decimal places, whereas NIM solutions are not accurate
enough. Numerical comparisons between the MNIM, NIM, the classical RK4 and other methods
reveal that the modified technique has potential as a tool for the nonlinear systems of ODEs.

Keywords: new iterative method; Laplace transform; HIV infection model; ordinary differential
equation; modified iterative algorithm; Runge–Kutta method

1. Introduction

Differential equations are the foundation of many scientific and engineering prob-
lems [1]. Differential equations are equations that express a relationship between certain
variables and their derivatives. Variables are changing entities in mathematics, and the rate
of change of one variable with respect to another is called a derivative [2].

In addition, an ordinary differential equation (ODE) is an equation that involves some
ordinary derivatives of a function. In general, physical systems in nature consist of com-
plicated phenomena for which accurate solutions can be difficult to compute. Numerical
or semi-analytical methods may be preferable in such instances. In this context, there are
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numerous standard books [3–7] on the solution of ordinary differential equations (ODEs).
A first attempt at classifying ODE systems is with respect to the initial or boundary con-
ditions connected with them, both mathematically and computationally [8]. It should be
mentioned that the numerical solution of ordinary differential equations is a very active
and ongoing topic of research [9].

Infectious diseases frequently affect a huge number of people spread across vast
geographical regions. Mathematical models of ordinary differential equations have sig-
nificance in studying the dynamic behavior of infectious diseases. In recent times, many
mathematical models including mumps virus [10], ebola virus disease [11], dengue fever
disease [12], rubella disease [13], influenza transmission [14], zika virus transmission [15],
COVID-19 pandemic [16–18] and many others have been formulated using differential
equations.

In the present study, the HIV infection model of CD4+ T cells has been investigated
mathematically. HIV infection targets CD4+ T cells, the immune system’s biggest white
blood cells. HIV infection has a severe devastating impact on CD4+ T cells, killing them and
weakening the immune system. When the number of CD4+ T cells falls below a particular
threshold, the cell-mediated immune system vanishes, the immune system weakens, and
the body is more likely to be infected [19]. The HIV infection model is represented by the
standard three-compartmental system [20], such as susceptible CD4+ T cell concentration,
CD4+ T cell infection and free HIV viral substance in the blood. They are denoted by
time dependent variables such as X(t), Y(t) and Z(t). A system of nonlinear differential
equations characterizes this model are as follows:

d
dt

X(t) = p− αX(t) + rX(t)
(

1− X(t) + Y(t)
Tmax

)
− kZ(t)X(t) (1)

d
dt

Y(t) = kZ(t)X(t)− βY(t) (2)

d
dt

Z(t) = NβY(t)− qZ(t) (3)

Let us assume the initial conditions are as follows:

X(0) = x0, Y(0) = y0, Z(0) = z0 (4)

Several typical approaches to numerically address the HIV infection of the CD4+ T
cells model have recently been introduced in the literature. For instance, Ongun [21] used
the Laplace–Adomian decomposition method (LADM) to solve the HIV infection model.
Merdan et al. [22] had developed the multi-stage variational iteration approach (MSVIM).
In order to solve the HIV infection model, Yüzbaş [23] introduced the Bessel collocation ap-
proach. Doğan [24] solved the model using the multi-step Laplace–Adomian decomposition
method (MSLADM). Merdan [25] employed the homotopy perturbation method (HPM) on
the determined system. Merdan et al. [26] recently used the modified variational iteration
technique (MVIM) to get the approximate solutions of (1)–(3). Goreishi et al. [27] used the
homotopy analysis method (HAM) to resolve the variation of the noted model. To acquire
the numeric solution of the HIV model, the stochastic global search approach known as
genetic algorithm (GA) is combined with two local search optimizers known as interior
point algorithm (IPA) and active set algorithm (ASA) in [28]. Very recently, Attaullah and
Sohaib [29] used continuous Galerkin–Petrov (cGP) and the Legendre wavelet collocation
method (LWCM) for the approximate solution to the selected mathematical model.

For the general nonlinear problem, the new iterative method (NIM) has received a lot of
attention since it requires no multiplier or polynomials for nonlinear terms of the problems.
The NIM algorithm was developed by Daftardar-Gejji and Jafari [30] to solve stochastic and
deterministic problems. Recently, Adwan et al. [31] used NIM to identify analytical and
numerical solutions for linear and nonlinear multidimensional problems. The approximate
solutions for second order nonlinear ordinary differential equations (ODEs) have been
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provided by Al-Jawary et al. [32] using NIM. By using semi analytic NIM, the nonlinear
problem of Jeffery–Hamel flow has been solved analytically and numerically by AL-Jawary
et al. [33]. Alderremy et al. [34] have extended the applications of NIM to find the solutions
of Klein–Gordon equations (KGEs), which have been applied in the modeling of spin wave,
quantum field theory, kink dynamics, astrophysics, cosmology and classical mechanics.
First, they reduced the level of calculation by using the Elzaki transform method and then
solved the corresponding equations with the help of NIM. Recently, the technique has been
applied widely to several dynamical systems (see [35–39]).

The design of semi-analytical methods such as the Adomian decomposition, homotopy
perturbation, variational iteration approaches and new iterative method (NIM) differ from
each other. Although these methods provide some helpful solutions that are frequently
represented in terms of polynomials and the region of convergences (ROCs) is relatively
small in certain nonlinear problems such as the HIV infection model. Both perturbation
techniques and non-perturbative approaches cannot provide a straightforward procedure
for adjusting or controlling the convergence region and rate of a given approximation
series [27]. So it is occasionally essential to improve them. Also, the recent results provided
in the literature of Attaullah and Sohaib [21], used continuous Galerkin–Petrov (cGP) and
the Legendre wavelet collocation method (LWCM) to match at least four decimal places
with RK4, which is considered to be more accurate than all previous results published, so
there could be the scope for further investigation to attain more accuracy.

The goal of this research is to modify the new iterative method (NIM) by implementing
the modified new iterative method (MNIM), i.e., the combination of Laplace transformation
and NIM to solve the class of nonlinear HIV infection model and achieve higher accuracy
than previous methods.

The rest of the present study is presented as: the solution procedure of NIM and
modified NIM are interpreted in Section 2. The applications of both NIM and MNIM for
the considered HIV infection model are introduced in Section 3. The results and discussion
of the present methods are illustrated in Section 4, and then the concluding remarks of the
research has been given in Section 5.

2. Solution Procedure
2.1. Basic Idea of NIM

In this section we have discussed the new iterative method (NIM) as follows. Consider
a general equation:

u = L(u) + N(u) + f (5)

where L is a linear operator and N is a nonlinear operator from a Banach space B → B and
f is a given analytic function. The solution of u for Equation (5) having in the series form,

u(t) = u0(t) + u1(t) + u2(t) + · · · =
∞

∑
i=0

ui(t) (6)

Since L is linear,

L

(
∞

∑
i=0

ui

)
=

∞

∑
i=0

L(ui) (7)

The nonlinear operator N can be decomposed as follows:

H0 = N(u0) and Hm = N

(
m

∑
j=0

uj

)
− N

(
m−1

∑
j=0

uj

)
(8)

Thus, according to NIM,
H0 = N(u0) (9)

H1 = N(u0 + u1)− N(u0) (10)
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Hm = N(u0 + · · ·+ um)− N(u0 + · · ·+ um−1), m ≥ 1 (11)

Therefore,

N
(

∞
∑

i=0
ui

)
= H0 + H1 + H2 + · · ·

= N(u0) + (N(u0 + u1)− N(u0))
+(N(u0 + u1 + u2)− N(u0 + u1)) + · · ·

(12)

⇒ N

(
∞

∑
i=0

ui

)
= N(u0) +

∞

∑
i=1

{
N

(
i

∑
j=0

uj

)
− N

(
i−1

∑
j=0

uj

)}
(13)

Therefore, we define the recursive relation:

u0 = f (14)

u1 = L(u0) + N(u0) (15)

u2 = L(u1) + {N(u0 + u1)− N(u0)} (16)

u3 = L(u2) + {N(u0 + u1 + u2)− N(u0 + u1)} (17)

um+1 = L(um) + {N(u0 + · · ·+ um)− N(u0 + · · ·+ um−1)}. m ≥ 1 (18)

Then series solution becomes

u1 + u2 + · · ·+ um+1 = {L(u0) + L(u1) + L(u2) + · · ·+ L(um)}
+{N(u0)}+ {N(u0 + u1)− N(u0)}+ · · ·+ {N(u0 + · · ·+ um)− N(u0 + · · ·+ um−1)}

(19)

⇒ u(t) =
∞

∑
i=0

ui = f + L

{
∞

∑
i=0

ui

}
+

[
N(u0) +

∞

∑
i=1

{
N

(
i

∑
j=0

uj

)
− N

(
i−1

∑
j=0

uj

)}]
(20)

Therefore,

u = f +
∞

∑
i=1

ui (21)

2.2. The Modified New Iterative Method (MNIM)

In this section we have proposed a modification of NIM using the combination of
Laplace transform with the new iterative method to solve system of differential equations.
Let us consider a system of differential equations in the operator form:

D(µ1) + R1(µ1) + N1(µ1, µ2, . . . , µn) = g1(t) (22)

D(µ2) + R2(µ2) + N2(µ1, µ2, . . . , µn) = g2(t) (23)

...

D(µn) + Rn(µn) + Nn(µ1, µ2, . . . , µn) = gn(t) (24)

subjected to the initial conditions

µ1(0) = a1, µ2(0) = a2, . . . , µn(0) = an (25)

where D is an invertible linear differential operator, and R1, R2, . . . , Rn are remaining linear
operators order less than D and N1, N2, . . . , Nn are nonlinear operators and g1, g2, . . . , gn

are inhomogeneous terms. For the first order D ≡ d
dt , second order D ≡ d2

dt2 and so on.
The technique consists first of applying Laplace transformation (which is denoted by

=) to both sides of systems (22)–(24), hence,

={D(µ1)}+={R1(µ1)}+={N1(µ1, µ2, . . . , µn)} = ={g1(t)} (26)



Algorithms 2022, 15, 175 5 of 14

={D(µ2)}+={R2(µ2)}+={N2(µ1, µ2, . . . , µn)} = ={g2(t)} (27)

...

={D(µn)}+={Rn(µn)}+={Nn(µ1, µ2, . . . , µn)} = ={gn(t)} (28)

Applying the formulas for Laplace transforms, we obtain

s=(µ1)− µ1(0) = ={g1(t)} − ={R1(µ1)} − ={N1(µ1, µ2, . . . , µn)} (29)

s=(µ2)− µ2(0) = ={g2(t)} − ={R2(µ2)} − ={N2(µ1, µ2, . . . , µn)} (30)

...

s=(µn)− µn(0) = ={gn(t)} − ={Rn(µn)} − ={Nn(µ1, µ2, · · · , µn)} (31)

where ‘s’ is called a Laplace domain function.
Using the initial conditions (25), we have,

=(µ1) =
a1

s
+
={g1(t)}

s
− 1

s
={R1(µ1)} −

1
s
={N1(µ1, µ2, . . . , µn)} (32)

=(µ2) =
a2

s
+
={g2(t)}

s
− 1

s
={R2(µ2)} −

1
s
={N2(µ1, µ2, . . . , µn)} (33)

...

=(µn) =
an

s
+
={gn(t)}

s
− 1

s
={Rn(µn)} −

1
s
={Nn(µ1, µ2, . . . , µn)} (34)

applying the inverse Laplace transform to the equations in (32)–(34), we get

µ1 = =−1
[

a1

s
+
={g1(t)}

s

]
−=−1

[
1
s
={R1(µ1)}

]
−=−1

[
1
s
={N1(µ1, µ2, . . . , µn)}

]
(35)

µ2 = =−1
[

a2

s
+
={g2(t)}

s

]
−=−1

[
1
s
={R2(µ2)}

]
−=−1

[
1
s
={N2(µ1, µ2, . . . , µn)}

]
(36)

...

µn = =−1
[

a2

s
+
={gn(t)}

s

]
−=−1

[
1
s
={Rn(µn)}

]
−=−1

[
1
s
={Nn(µ1, µ2, . . . , µn)}

]
(37)

Let the approximate solutions µ1, µ2, . . . , µn of system be expressed as

µ1 = µ1,0 + µ1,1 + · · · =
∞

∑
i=0

µ1,i (38)

µ2 = µ2,0 + µ2,1 + · · · =
∞

∑
i=0

µ2,i (39)

...

µn = µn,0 + µn,1 + · · · =
∞

∑
i=0

µn,i (40)

For the NIM, the nonlinear operators can be decomposed by,

G0 = N1(µ1,0) and Gm = N1

(
m

∑
i=0

µ1,i

)
− N1

(
m−1

∑
i=0

µ1,i

)
, m ≥ 1 (41)
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H0 = N2(µ2,0) and Hm = N2

(
m

∑
i=0

µ2,i

)
− N2

(
m−1

∑
i=0

µ2,i

)
, m ≥ 1 (42)

...

I0 = Nn(µn,0) and Im = Nn

(
m

∑
i=0

µn,i

)
− Nn

(
m−1

∑
i=0

µn,i

)
, m ≥ 1 (43)

Since R1, R2, · · · , Rn are linear,

∞

∑
i=0

R1(µ1,i) = R1

(
∞

∑
i=0

µ1,i

)
(44)

∞

∑
i=0

R2(µ2,i) = R2

(
∞

∑
i=0

µ2,i

)
(45)

...
∞

∑
i=0

Rn(µn,i) = Rn

(
∞

∑
i=0

µn,i

)
(46)

The NIM admits the use of the recursive relations in the following way:

µ1,0 = =−1
[
={g1(t)}

s

]
+ a1 = f1(t) + a1, (47)

where f1(t) is the term arising after inverse Laplace transformation of the source term
={g1(t)}

s , all of which are assumed to be prescribed.

µ1,1 = −=−1
[

1
s
={R1(µ1,0)}

]
− 1

s
=−1[=(G0)] (48)

...

µ1,m+1 = −=−1
[

1
s
={R1(µ1,m)}

]
−=−1

[
1
s
=(Gm)

]
, m = 1, 2, . . . (49)

Thus,

∴ µ1 =
∞

∑
i=0

µ1,i = f1 +
∞

∑
i=1

µ1,i= f1 −=−1

[
1
s
=
{

R1

(
∞

∑
i=0

µ1,i

)}]
−=−1

[
1
s
=
{

N1

(
∞

∑
i=0

µ1,i

)}]
(50)

By a similar manner, we have

µ2,0 = =−1
[
={g2(t)}

s

]
+ a2 = f2(t) + a2 (51)

µ2,1 = −=−1
[

1
s
={R2(µ2,0)}

]
−=−1

[
1
s
=(H0)

]
(52)

...

µ2,m+1 = −=−1
[

1
s
={R2(µ2,m)}

]
−=−1

[
1
s
=(Hm)

]
, m = 1, 2, . . . (53)

∴ µ2 =
∞

∑
i=0

µ2,i = f2 +
∞

∑
i=1

µ2,i= f2 −=−1

[
1
s
=
{

R2

(
∞

∑
i=0

µ2,i

)}]
−=−1

[
1
s
=
{

N2

(
∞

∑
i=0

µ2,i

)}]
(54)
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and

µn,0 = =−1
[
={gn(t)}

s

]
+ an = fn(t) + an (55)

µn,1 = −=−1
[

1
s
={Rn(µn,0)}

]
−=−1

[
1
s
={I0}

]
(56)

...

µn,m+1 = −=−1
[

1
s
={Rn(µn,m)}

]
−=−1

[
1
s
={Im}

]
, m = 1, 2, . . . (57)

∴ µn =
∞

∑
i=0

µn,i = fn +
∞

∑
i=1

µn,i= fn −=−1

[
1
s
=
{

Rn

(
∞

∑
i=0

µn,i

)}]
−=−1

[
1
s
=
{

Nn

(
∞

∑
i=0

µn,i

)}]
(58)

2.3. Convergence Analysis of MNIM

Let, χ, γ and µij be the elements in a Banach space B, and Ni is nonlinear contrac-
tion from B→ B such that ‖µij‖ = ‖N(χ) − N(γ)‖ ≤ k‖χ − γ‖. Then according to
the principle of Banach fixed-point theorem, ∑ µi,j converges if ‖µi,r+1‖ ≤ kr+1‖µi,0‖,
where 0 < k < 1, i = 1, 2, . . . and j = 0, 1, . . . , r + 1, . . ..

Proof. In general, let us take
µi,0 = fi(t) + ai (59)

where µi,0 is the initial approximation, fi(t) is a known function in Banach space B, ai is an
arbitrary constant and i ∈ N. We can write

‖µi,1‖ = ‖Ni(µi,0)‖ ≤ k‖µi,0‖ (60)

‖µi,2‖ = ‖Ni(µi,0 + µi,1)− Ni(µi,0)‖ ≤ k‖µi,1‖ ≤ k2‖µi,0‖ (61)

‖µi,3‖ = ‖Ni(µi,0 + µi,1 + µi,2)− Ni(µi,0 + µi,1)‖ ≤ k‖µi,2‖ ≤ k3‖µi,0‖ (62)

...

‖µi,r+1‖ = ‖Ni(
r

∑
j=0

µi,j)− Ni(
r−1

∑
j=0

µi,j)‖ ≤ k‖µi,r‖ ≤ kr+1‖µi,0‖, r = 0, 1, 2, . . . (63)

Hence, the series ∑ µi,j, (where i ∈ N and j ∈W) absolutely and uniformly converges,
which is unique in view of the Banach contraction principle. �

3. Application
3.1. NIM for HIV Infection Model

Here we introduce numerical outline of NIM for the approximate solution of the HIV
infection model. Let the integration on the system (1)–(3), using initial conditions (4) and
parameters of Table 1.

X(t) = x0 + pt−
(∫ t

0
αX(t)dt

)
+
∫ t

0
rX(t)

(
1− X(t) + Y(t)

Tmax

)
dt

−
(∫ t

0
kZ(t)X(t)dt

) (64)

Y(t) = y0 +

t∫
0

kZ(t)X(t) dt−

 t∫
0

βY(t)dt

 (65)
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Z(t) = z0 +

t∫
0

NβY(t)dt−

 t∫
0

γZ(t) dt

 (66)

Table 1. List of parameters used in the HIV infection model.

Parameters Remark

p Production rate of healthy T cells from bone marrow and thymus
α Uninfected T cell natural turn-over rate
r Healthy T-cell growth rate through mitosis

Tmax CD4+ T cells maximum concentration level in the body
k The rate of infection
β Natural turn-over rates of infected T cells
N Number of virus particles assumed to be produced by infected T cells
q Virus particle natural turnover rate

In view of (14)–(18) and according to the solution procedure of NIM for system of
differential equations, we find the approximations as follows:

X0(t) = pt + x0 (67)

Y0(t) = y0 (68)

Z0(t) = z0 (69)

X1(t) = −
αpt2

2
−αx0t +

rpt2

2
+ rx0t− rp2t3

3Tmax
− rx0 pt2

Tmax
−

rx2
0t

Tmax
− rpy0t2

2Tmax

− rx0y0t
Tmax

− kz0 pt2

2
− kz0x0t

(70)

Y1(t) =
1
2

kz0 pt2 + kz0x0t− βy0t (71)

Z1(t) = Nβy0t− γz0t (72)

The next successive iterations can be obtained in a similar manner.
Therefore,

X(t) =
5

∑
i=0

Xi(t) (73)

Y(t) =
5

∑
i=0

Yi(t) (74)

Z(t) =
5

∑
i=0

Zi(t) (75)

For the computation purpose we have taken the 5-iterations of NIM solutions.

3.2. MNIM for the HIV Infection Model

Let us first apply the Laplace transform on both sides of Equations (1)–(3) and using
the initial conditions (4) and model parameters discussed in Table 1.

=(X(t)) = 1
s+α−r

[{
p
s + x0 − r

Tmax
=
(
X2(t)

)}
−
{

r
Tmax
=(Y(t)X(t)) + k(Z(t)X(t))

}] (76)

=(Y(t)) = 1
s + β

{y0 + k=(Z(t) X(t))} (77)
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=(Z(t)) =
1

s + q
{z0 + Nβ=(Y(t))} (78)

Again, applying the inverse Laplace transform on both sides of Equations (76)–(78),
we get

X(t) = =−1
[

1
s+α−r

{
p
s + x0 − r

Tmax
=
(
X2(t)

)
− r

Tmax
=(Y(t)X(t))

−k=(Z(t)X(t))}]
(79)

Y(t) = =−1
{

1
s + β

(y0 + k=(Z(t) X(t)))
}

(80)

Z(t) = =−1
{

1
s + q

(z0 + Nβ=(Y(t)))
}

(81)

In view of (47)–(58), solutions are obtained by using MNIM, as follows

X0(t) = =−1
{

1
s + α− r

( p
s
+ x0

)}
(82)

Y0(t) = =−1
{

y0

s + β

}
(83)

Z0(t) = =−1
{

z0

s + q

}
(84)

X1(t) = −=−1
[

1
s+α−r

[
r

Tmax

{
=
(
X2

0(t)
)
+=(Y0(t)X0(t))

+k=(Z0(t)X0(t))}]]α
(85)

Y1(t) = =−1
[

k
s + β

{=(Z0(t)X0(t))}
]

(86)

Z1(t) = =−1
[

Nβ

s + q
{=(Y0(t))}

]
(87)

X2(t) = −=−1
[

1
s+α−r

[
r

Tmax

{
=(X1(t) + X0(t))

2

−=((Y0(t) + Y1(t))(X1(t) + X0(t)))− k=((Z0(t)
+Z1(t))(X1(t) + X0(t)))}

+=−1
[

1
s+α−r

[
r

Tmax

{
=
(
X0

2(t)
)
+=(Y0(t)X0(t))

+k=(Z0(t)X0(t))}]]

(88)

Y2(t) = =−1
[

k
s+β{=((Z0(t) + Z1(t))(X1(t) + X0(t)))}

]
−=−1

[
k

s+β{=(Z0(t)X0(t))}
] (89)

Z2(t) = =−1
[

Nβ

s + q
{=(Y1(t))}

]
(90)

The next successive iterations can be obtained in a similar manner.
Therefore,

X(t) =
2

∑
i=0

Xi(t) (91)

Y(t) =
2

∑
i=0

Yi(t) (92)

Z(t) =
2

∑
i=0

Zi(t) (93)

For the computation purpose we have taken the 2-iterations of MNIM solutions.
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4. Results and Discussions

We take a scenario of Attaullah et al. [29], where the initial conditions are x0 = 0.1,
y0 = 0, z0 = 0.1, with parameter values p = 0.1, α = 0.02, β = 0.3, r = 3, q = 2.4,
k = 1500, k = 0.0027, N = 10. All our calculations as well as our graphs are carried out by
Maple 2020. The Maple built-in programme has been used for RK4 solutions with step size
∆t = 0.001. The new iterative method (NIM) and modified new iterative method’s (MNIM)
simulation results are illustrated graphically and numerically. We displayed the graphical
outcomes of both NIM and MNIM strategies related to the RK4 method in Figure 1. The
figure depicts that the 5-iterations of NIM solutions fail to provide suitable accuracy as
time increases and solutions are only valid till t ≤ 1, whereas the 2-iterations of modified
NIM precisions agree well with those of RK4 precisions. Additionally, we contrasted the
absolute errors of the proposed MNIM scheme to those of other conventional methods,
such as cGP(2) and LWCM [29], GA-IPA and GA-ASA [28], LADM-Padé [21], MVIM [26],
HPM [25], Bessel collocation [23] and NIM relative to RK4 method, as shown in Tables 2–4
for X(t), Y(t), Z(t), respectively. The recent results via cGP(2) and LWCM [29] match to at
least four decimal places with RK4. Further, the numeric solutions via NIM matched at least
one decimal place with RK4. In contrast, the results show that the solutions by 2-iterations
of MNIM match with those of RK4 at least eight decimal places. The comparisons with
other methods used for the model clearly indicate that the MNIM scheme outperformed
all the pre-existing solutions. Therefore, it suggests the high accuracy and validity of the
proposed MNIM scheme with fewer iterative steps.
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Table 2. Comparison of Absolute Errors for X(t) of MNIM Scheme and LWCM, cGP(2), GA-IPA, GA-ASA, LADM-Padé, MVIM, HPM, Bessel collocation, NIM
relative to RK4 Method for HIV Infection Model.

t LWCM
[29]

cGP(2)
[29] GA-IPA [28] GA-ASA [28] LADM-Padé

[21] MVIM [26] HPM [25] Bessel
Collocation [23]

NIM
(Present Method)

MNIM
(Present Method)

0.2 7.50 × 10−6 5.81 × 10−6 1.32 × 10−3 1.32 × 10−3 7.77 × 10−5 7.85 × 10−5 7.78 × 10−5 4.87 × 10−3 6.979 × 10−6 1 × 10−10

0.4 2.70 × 10−5 2.11 × 10−5 1.06 × 10−3 1.06 × 10−3 1.65 × 10−4 3.00 × 10−4 1.95 × 10−4 2.56 × 10−2 0.0005035 7 × 10−10

0.6 7.34 × 10−5 5.74 × 10−5 1.69 × 10−3 1.69 × 10−3 2.43 × 10−3 8.49 × 10−4 1.10 × 10−3 6.81 × 10−2 0.006497 5.0 × 10−9

0.8 1.77 × 10−4 1.38 × 10−4 3.83 × 10−3 3.83 × 10−3 3.46 × 10−2 2.14 × 10−3 1.39 × 10−2 1.36 × 10−1 0.04157 2.14 × 10−8

1 3.98 × 10−4 3.98 × 10−4 4.19 × 10−3 4.18 × 10−3 2.58 × 10−1 5.14 × 10−3 7.89 × 10−2 2.04 × 10−1 0.1816 7.92 × 10−8

Table 3. Comparison of Absolute Errors for Y(t) of MNIM Scheme and LWCM, cGP(2), GA-IPA, GA-ASA, LADM-Padé, MVIM, HPM, Bessel collocation, NIM
relative to RK4 Method for HIV Infection Model.

t LWCM
[29]

cGP(2)
[29] GA-IPA [28] GA-ASA [28] LADM-Padé

[21] MVIM [26] HPM [25] Bessel
Collocation [23]

NIM
(Present Method)

MNIM
(Present Method)

0.2 8.36 × 10−10 6.67 × 10−10 1.66 × 10−6 1.73 × 10−6 1.20 × 10−9 1.19 × 10−9 1.20 × 10−9 2.16 × 10−7 3.255 × 10−12 0
0.4 1.95 × 10−9 1.49 × 10−9 2.46 × 10−6 2.94 × 10−6 6.15 × 10−9 5.29 × 10−9 5.89 × 10−9 2.17 × 10−7 2.255 × 10−8 6 × 10−10

0.6 3.20 × 10−9 2.48 × 10−9 1.76 × 10−7 4.54 × 10−7 5.78 × 10−8 1.27 × 10−8 2.24 × 10−8 8.58 × 10−7 5.876 × 10−7 3.2 × 10−9

0.8 4.63 × 10−9 3.65 × 10−9 1.80 × 10−7 2.07 × 10−7 8.26 × 10−8 2.27 × 10−8 9.09 × 10−8 1.78 × 10−6 5.825 × 10−6 1.19 × 10−8

1 6.44 × 10−9 5.04 × 10−9 1.88 × 10−6 2.02 × 10−6 1.21 × 10−7 3.12 × 10−8 3.39 × 10−7 3.09 × 10−6 3.538 × 10−5 3.66 × 10−8

Table 4. Comparison of Absolute Errors for Z(t) of MNIM Scheme and LWCM, cGP(2), GA-IPA, GA-ASA, LADM-Padé, MVIM, HPM, Bessel collocation, NIM
relative to RK4 Method for HIV Infection Model.

t LWCM
[29]

cGP(2)
[29] GA-IPA [28] GA-ASA [28] LADM-Padé

[21] MVIM [26] HPM [25] Bessel
Collocation [23]

NIM
(Present Method)

MNIM
(Present Method)

0.2 1.00 × 10−10 8.66 × 10−7 1.32 × 10−5 1.46 × 10−5 1.08 × 10−7 5.61 × 10−8 1.00 × 10−7 6.59 × 10−8 1.591 × 10−6 1 × 10−10

0.4 1.24 × 10−6 1.07 × 10−6 3.40 × 10−6 1.49 × 10−6 1.84 × 10−5 1.06 × 10−6 1.33 × 10−5 3.79 × 10−8 9.555 × 10−5 3 × 10−10

0.6 1.15 × 10−6 9.95 × 10−7 3.07 × 10−6 4.05 × 10−6 6.87 × 10−4 5.75 × 10−6 2.15 × 10−4 2.31 × 10−7 0.001025 8 × 10−10

0.8 9.50 × 10−7 8.21 × 10−7 7.91 × 10−6 7.03 × 10−6 4.71 × 10−3 2.01 × 10−5 1.53 × 10−3 7.87 × 10−7 0.005438 6 × 10−10

1 7.61 × 10−7 6.34 × 10−7 6.64 × 10−6 5.66 × 10−6 5.80 × 10−3 5.64 × 10−5 6.95 × 10−3 1.46 × 10−2 0.01965 2.4 × 10−9
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5. Conclusions

In this paper, we propose an improvement to the existing new iterative method and
prove that the improved method is more accurate than the new iterative method for solving
a system of nonlinear differential equations that describes HIV infection in CD4+ T cells.
The MNIM helps us to reduce the number of terms as well as iterations steps. The modified
NIM solutions are more accurate than other numeric solutions of the HIV infection model.
The recent results provided in Ref. [29], matches to at least four decimal places with RK4,
in contrast, MNIM matches to at least eight decimal places. Furthermore, based on our
observations, the numerical solutions of 5-iterations of NIM for the HIV infection model
were valid only in a short time span (t ≤ 1) and the modified NIM is used to extend the
validity domains for selected disease model, calculating only 2-iteration steps. The modified
method provides the solution in a rapid convergent series with computable terms. Analytic-
numeric solutions were used to ensure that the MNIM technique is straightforward, reliable,
and efficient. We hope that the modified iterative algorithm will be able to solve many
types of interesting nonlinear problems. The implementation of this method in HIV
infection dynamics may pave the way for a new horizon in the future. Future work should
reapply these methods in developing a dynamic model for other diseases such as heart
disease [40–42] and combine the proposed approach with the machine learning model to
develop optimal solutions for infectious diseases such as COVID-19 and pneumonia [43–45].
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26. Merdan, M.; Gökdoǧan, A.; Yildirim, A. On the Numerical Solution of the Model for HIV Infection of CD4+ T Cells. Comput.

Math. Appl. 2011, 62, 118–123. [CrossRef]
27. Ghoreishi, M.; Ismail, A.I.B.M.; Alomari, A.K. Application of the Homotopy Analysis Method for Solving a Model for HIV

Infection of CD4+ T-Cells. Math. Comput. Model. 2011, 54, 3007–3015. [CrossRef]
28. Malik, S.A.; Qureshi, I.M.; Amir, M.; Malik, A.N. Nature Inspired Computational Approach to Solve the Model for HIV Infection

of CD4+ T Cells. Res. J. Recent Sci. 2014, 3, 67–76.
29. Attaullah; Sohaib, M. Mathematical Modeling and Numerical Simulation of HIV Infection Model. Results Appl. Math. 2020, 7,

100118. [CrossRef]
30. Daftardar-Gejji, V.; Jafari, H. An Iterative Method for Solving Nonlinear Functional Equations. J. Math. Anal. Appl. 2006, 316,

753–763. [CrossRef]
31. Adwan, M.I.; Al-Jawary, M.A.; Tibaut, J.; Ravnik, J. Analytic and Numerical Solutions for Linear and Nonlinear Multidimensional

Wave Equations. Arab J. Basic Appl. Sci. 2020, 27, 166–182. [CrossRef]
32. Al-Jawary, M.A.; Adwan, M.I.; Radhi, G.H. Three Iterative Methods for Solving Second Order Nonlinear ODEs Arising in Physics.

J. King Saud Univ.-Sci. 2020, 32, 312–323. [CrossRef]
33. AL-Jawary, M.A.; Abdul Nabi, A.Z.J. Three Iterative Methods for Solving Jeffery-Hamel Flow Problem. Kuwait J. Sci. 2020, 47,

1–13.
34. Alderremy, A.A.; Elzaki, T.M.; Chamekh, M. New Transform Iterative Method for Solving Some Klein-Gordon Equations. Results

Phys. 2018, 10, 655–659. [CrossRef]
35. Ghosh, I.; Chowdhury, M.S.H.; Mt Aznam, S.; Rashid, M.M. Measuring the Pollutants in a System of Three Interconnecting Lakes

by the Semianalytical Method. J. Appl. Math. 2021, 2021, 6664307. [CrossRef]
36. Ghosh, I.; Chowdhury, M.S.H.; Mt Aznam, S.; Mawa, S. New Iterative Method for Solving Chemistry Problem. AIP Conf. Proc.

2021, 2365, 020012.
37. Chowdhury, M.S.H.; Ghosh, I.; Aznam, S.M.; Mawa, S. A Novel Iterative Method for Solving Chemical Kinetics System. J. Low

Freq. Noise Vib. Act. Control 2021, 40, 1731–1743. [CrossRef]
38. Shah, Z.; Nawaz, R.; Kumam, P.; Farid, S. Application of New Iterative Method to Time Fractional Whitham–Broer–Kaup

Equations. Front. Phys. 2020, 8, 104. [CrossRef]
39. Ahsan, M.M.; Siddique, Z. Machine learning-based heart disease diagnosis: A systematic literature review. Artif. Intell. Med. 2022,

122, 102289. [CrossRef] [PubMed]
40. Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare 2022,

10, 541. [CrossRef] [PubMed]
41. Ahsan, M.M.; Mahmud, M.A.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms

and model performance. Technologies 2021, 9, 52. [CrossRef]

http://doi.org/10.1016/j.aej.2020.02.022
http://doi.org/10.1186/s13662-020-02614-z
http://doi.org/10.1186/s13662-020-02945-x
http://doi.org/10.1186/s13662-020-03044-7
http://doi.org/10.1016/j.chaos.2020.110388
http://doi.org/10.1016/j.chaos.2020.110394
http://doi.org/10.1016/j.chaos.2021.110757
http://doi.org/10.1186/s13662-020-02544-w
http://doi.org/10.1016/j.mbs.2005.12.026
http://www.ncbi.nlm.nih.gov/pubmed/16466751
http://doi.org/10.1016/j.mcm.2010.09.009
http://doi.org/10.1016/j.apm.2011.12.021
http://doi.org/10.1155/2012/976352
http://doi.org/10.1016/j.camwa.2011.04.058
http://doi.org/10.1016/j.mcm.2011.07.029
http://doi.org/10.1016/j.rinam.2020.100118
http://doi.org/10.1016/j.jmaa.2005.05.009
http://doi.org/10.1080/25765299.2020.1751439
http://doi.org/10.1016/j.jksus.2018.05.006
http://doi.org/10.1016/j.rinp.2018.07.004
http://doi.org/10.1155/2021/6664307
http://doi.org/10.1177/1461348421992610
http://doi.org/10.3389/fphy.2020.00104
http://doi.org/10.1016/j.artmed.2022.102289
http://www.ncbi.nlm.nih.gov/pubmed/35534143
http://doi.org/10.3390/healthcare10030541
http://www.ncbi.nlm.nih.gov/pubmed/35327018
http://doi.org/10.3390/technologies9030052


Algorithms 2022, 15, 175 14 of 14

42. Ahsan, M.M.; Nazim, R.; Siddique, Z.; Huebner, P. Detection of COVID-19 patients from CT scan and chest X-ray data using
modified MobileNetV2 and LIME. Healthcare 2021, 9, 1099. [CrossRef]

43. Ahsan, M.M.; Ahad, M.T.; Soma, F.A.; Paul, S.; Chowdhury, A.; Luna, S.A.; Yazdan, M.M.; Rahman, A.; Siddique, Z.; Huebner, P.
Detecting SARS-CoV-2 from chest X-Ray using artificial intelligence. IEEE Access 2021, 9, 35501–35513. [CrossRef]

44. Ahsan, M.M.; Gupta, K.D.; Islam, M.M.; Sen, S.; Rahman, M.; Shakhawat Hossain, M. COVID-19 symptoms detection based on
nasnetmobile with explainable ai using various imaging modalities. Mach. Learn. Knowl. Extr. 2020, 2, 490–504. [CrossRef]

45. Ahsan, M.M.; EAlam, T.; Trafalis, T.; Huebner, P. Deep MLP-CNN model using mixed-data to distinguish between COVID-19 and
Non-COVID-19 patients. Symmetry 2020, 12, 1526. [CrossRef]

http://doi.org/10.3390/healthcare9091099
http://doi.org/10.1109/ACCESS.2021.3061621
http://doi.org/10.3390/make2040027
http://doi.org/10.3390/sym12091526

	Introduction 
	Solution Procedure 
	Basic Idea of NIM 
	The Modified New Iterative Method (MNIM) 
	Convergence Analysis of MNIM 

	Application 
	NIM for HIV Infection Model 
	MNIM for the HIV Infection Model 

	Results and Discussions 
	Conclusions 
	References

