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Abstract: The appealing properties of secure hardware solutions such as trusted execution environ-
ment (TEE) including low computational overhead, confidentiality guarantee, and reduced attack
surface have prompted considerable interest in adopting them for secure stream processing applica-
tions. In this paper, we revisit the design of parallel stream join algorithms on multicore processors
with TEEs. In particular, we conduct a series of profiling experiments to investigate the impact of
alternative design choices to parallelize stream joins on TEE including: (1) execution approaches,
(2) partitioning schemes, and (3) distributed scheduling strategies. From the profiling study, we
observe three major high-performance impediments: (a) the computational overhead introduced
with cryptographic primitives associated with page swapping operations, (b) the restrictive Enclave
Page Cache (EPC) size that limits the supported amount of in-memory processing, and (c) the lack of
vertical scalability to support the increasing workload often required for near real-time applications.
Addressing these issues allowed us to design SecJoin, a more efficient parallel stream join algorithm
that exploits modern scale-out architectures with TEEs rendering no trade-offs on security whilst
optimizing performance. We present our model-driven parameterization of SecJoin and share our
experimental results which have shown up to 4-folds of improvements in terms of throughput and
latency.

Keywords: stream join; trusted execution environment; software guard extensions; message passing
interface; high performance computing

1. Introduction

Since the widespread adoption of IoT and 5G technologies, a growing number of
industries shifted their data-processing paradigm to stream-processing as a major enabler
to real-time, data-driven applications. The joining of multiple data streams is a common
operation that is relevant to many stream processing applications, such as online data
mining and interactive query processing [1]. Due to its significant computational complex-
ity, significant research efforts have been devoted to the design and evaluation of parallel
stream join algorithms exploring modern multicore architectures. However, there has been
an underwhelming amount of work investigating how to achieve secure parallel stream
join on confidential data streams. With the introduction of the general data protection regu-
lation (GDPR) [2], complemented by numerous national counterparts worldwide such as
the personal data protection act (PDPA) [3], industry actors could no longer turn a blind eye
to privacy concerns due to the hefty penalties associated with regulatory non-compliance.

The appealing properties of secure hardware solutions such as trusted execution
environment (TEE) including (1) low computational overhead, (2) privacy guarantees,
and (3) reduced attack surface, have prompted considerable interest in adopting them
for secure stream processing applications. A TEE protects data and codes by loading
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them in a non-addressable and encrypted memory area called an enclave, and provides
some form of attestation to its trust. Theoretically, applications deployed inside an en-
clave have the potential to achieve the same performance as when they are developed on
conventional processors.

Unfortunately, parallelizing stream joins on TEE is non-trivial and poses three ma-
jor challenges:

(1) the enclave definition language (EDL) puts a limitation on the data-types that can
be communicated to the enclave, which often prompts major code refactoring and
potential serialization efforts as only the most basic data-types are supported;

(2) the restrictive enclave size effectively limits software development capabilities and
performance in applications that are data-driven or memory-intensive. A larger
memory usage entails more page swap operations, triggering more cryptographic
primitives, and hence, more computational overhead;

(3) the ECall and OCall function call interfaces that enable untrusted code and enclaves
to communicate seamlessly impose a heavy performance penalty of 10 k–18 k CPU
cycles whenever the application needs to enter or exit an enclave for any system call,
including I/O operations. Heavy performance penalties would have to be endured if
an algorithm is inappropriately designed based on TEEs. Unfortunately, there is no
study on the design of parallel stream join algorithms in distributed environments
with TEEs.

Related Works We review three types of related works: (i) works that focus on parallel
stream joins, (ii) works leveraging trusted execution environments; and (iii) other possible
privacy-preserving paradigms to achieve security for join processing.

(i) Parallel Stream Joins. Multiple works [4–6] have explored different ways to leverage
parallel architectures, focusing on the efficiency of sliding-window processing. Ref. [7]
introduced a partitioned, in-memory merge tree to curb the challenges rising from indexing
highly dynamic data, whilst [8] proposed a shared memory parallel SHJ algorithm on
multi-core processors for equi-based stream joins. Since the introduction of Streaming Joins
as a Service (SJaaS) [1] by Facebook, the research trend switched to focusing on scalability
and reliability. Ref. [9] proposed a distributed stream join processing that supports window-
based joins and online data aggregation. Streaming HyperCube [10] is an algorithm that
ensures a balanced load across all compute nodes optimally. None of these previous works
considered privacy in their computations.

(ii) The Use of TEEs. Intel SGX’s outreach efforts attracted the attention of many
researchers in the systems and databases field. CreDB [11] is a datastore that mimics
Blockchain guarantee of integrity using TEEs. Evidence shows that it can be used as a
drop-in replacement for No-SQL stores such as MongoDB without adverse performance
effects and with the added integrity benefit. EdgelessDB [12] is an SQL-based solution that
architects a database for the SGX environment. It keeps the data on disk strongly encrypted
and only decrypts data within the enclaves. Similarly, ProDB [13] provides a minimal
adaptation of a conventional DBMS with oblivious RAM protocol on hardware enclave.
Some solutions adopted other TEEs such as Arm TrustZone. DBStore [14] is an example of
a DBMS that leveraged the technology to enhance the security of mobile devices. None
of these solutions introduced novelties to the field of join processing. However, we take
note of Opaque [15] and ObliDB [16], two solutions focused on obliviousness protocols
that adapted some join algorithms for TEEs.

(iii) Other Privacy-Preserving Paradigms. The security guarantees offered by TEE are
far from comprehensive and have been criticized by many works [17]. One of the most
notorious security limitations of existing TEE architectures is their vulnerability to Micro-
architectural attacks [18]. The most prominent ones explored by the research community
are side-channel attacks (detailed in Software Grand Exposure [19]), and transient execution
attacks [20]. We prompt the reader to understand the variety of issues [21] that need to be
considered before accepting a TEE design as secure. As alternatives, technologies such as
fully homomorphic encryption and secure multi-party computations grew in popularity.
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However, these remain for the most part impractical in terms of computational complexity,
hardware demands and overall system’s runtime performance. For instance, an FHE-
based system implemented in IBM’s HELib [22] is 3 to 5 orders of magnitude slower than
its plaintext counterpart for basic integer arithmetic. This gap in performance is further
widened in complex systems when FHE-specific overheads such as bootstrapping are
accounted for. Furthermore, cyphertext expansion issues put stringent constraints on
Hardware/RAM requirements. Numerous efforts were deployed to curb the challenges
associated with FHE [23,24], but to the best of our knowledge, the technology can never
achieve near real-time performance as it was not initially designed with such requirement
in mind.

Our Contribution. In this work, we present three main contributions:
(i) We evaluate the impact of the new hardware constraints brought forth by TEEs

in general, and SGX in particular, on the performance of parallel stream join algorithms.
Namely, we conduct experiments pertaining to the different design alternatives to paral-
lelize stream joins such as executions approaches, join methods and partitioning schemes.
We aim to offer a better understanding of how those design aspects interact with modern
multicore processors when TEE hardware is involved. Through detailed profiling studies
with our benchmark on SGX-powered Microsoft Azure virtual machines, we make the fol-
lowing key observations. First, directly porting native code on TEE hardware through third
party solutions can induce severe performance penalties. Second, joining large workloads
on SGX triggers the process of EPC paging which results in an exponentially increasing
performance gap as the size of inputs increases. Third, the overhead introduced by enclave
calls makes eager processing costly.

(ii) Studying these issues allowed us to identify the different data-related and hardware-
related parameters involved in stream join operations on SGX. We present and discuss a
model of the performance overhead of running these operations under a very constraining
hardware and suggest an optimal parameterization of the design alternatives of stream
joins on SGX.

(iii) Finally, we share our open source implementation of SecJoin, a model-guided
secure stream join algorithm that aims to retain all the security guarantees of Intel SGX
while minimizing the performance overhead compared to the program running in a native
(non-SGX) environment. The evaluation based on three real-world workloads shows
that both our model and SecJoin are effective in improving performance and demonstrate
scalability to very large workloads whilst achieving up to 4-folds of improvements in terms
of throughput and latency.

Outline of the paper. The remainder of this paper is organized as follows: We first
present the relevant preliminaries and background in Section 2, then elaborate on the
challenges of parallelizing stream joins on TEE in Section 3. Next, we discuss the different
design aspects of to consider on multicore processors with TEE in Section 4 and explain
the results from our profiling study in Section 5. Based on that, we discuss our proposed
model and present our experimental results in Section 6. Finally, we discuss future works
with closing notes in Section 7.

2. Preliminaries and Background

Now, we (i) formally define the stream join operation and highlight some relevant
works in Section 2.1, (ii) discuss TEEs in general and Intel SGX in particular in Section 2.2,
and (iii) describe the threat model we consider in Section 2.3. We summarize the notations
used throughout this paper in Table 1.
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Table 1. Notations used in this paper.

Notations Description

x = {t, k, v} An input tuple x with three attributes

R, S Two input streams to join

skewkey Key skewness (unique or zipf)

skewts Timestamp skewness (uniform or zipf)

dupe Average number of duplicates per key

v Input arrival rate (tuples/ms)

w Window length (ms)

NR Total Number of Tuples in Stream R

NS Total Number of Tuples in Stream S

|X| Maximum Size of Tuple {R; S} or resulting Join {J}

MX Number of Tuples in Join-Matrix Partition over Stream {R; S}

λX Tuple arrival rate for {R; S}

MemEncl The amount of effective enclave memory available

#Encl The Number of Secure Enclaves Available

#Thr The Number of CPU Threads Available

#EPCS The Number of Enclave Page Cache Swaps within a given Enclave

LECall The Access Latency of an Enclave Call (ECall)

LOCall The Access Latency of an Outside Call (OCall)

LEPC The Latency of an Enclave Page Cache Swap

TEncl
on The execution time of a join in a secure enclave

C Sum of Initialization and shutdown overheads for app using exact
enclave memory size

CInit Enclave Initialization overhead per extra EPC page

CShut Enclave Shutdown overhead per extra EPC page

2.1. Stream Joins

The need to obtain joining results “early” (before having read an entire input stream)
has been a long identified problem by the research community. We define a tuple x as triplet
x = t, k, v, where t, k and v are the timestamp, key, and payload of the tuple, respectively.
We define the input stream (denoted as R or S) as a list of tuples chronologically arriving at
the system (e.g., a query processor).

In this work, we focus on intra-window join. It is particularly important for emerging
application demands that require maintaining large buffers of historical states [25,26]. In the
following, we simply denote it as stream join for brevity.

Definition 1 (Stream join). Given input streams R and S and a window w, the stream join joins
a pair of subsets (i.e., R′, S′) such that R′ on S′ = {(r ∪ s)|r.key=s.key, r.ts ∈ w, s.ts ∈ w, r ∈
R, s ∈ S}, where each result tuple (r ∪ s) has a timestamp, key, and value of max(r.ts, s.ts), r.key,
and r.value ‖ s.value, respectively.

Earlier work on stream join [27,28] historically focused on its single-thread execution
efficiency focusing on taking care of out-of-memory issue [28–32] or providing higher
statistical quality of intermediate aggregation results [33,34]. To cope with the rapid growth
of volume of data streams, much effort has been recently put into designing distributed
and parallel stream join algorithms [26]. However, to the best of our knowledge, no one has
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attempted answering the question of how to design efficient parallel stream join algorithms
with security guarantees.

2.2. Trusted Execution Environments

Trusted Execution Environments (TEEs) are expected to provide hardware-enforcement
mechanisms, such as sealed storage, memory encryption, and hardware secrets, to protect
private computing from untrusted users and processes. They also must enable secure inter-
enclave communication through local and remote authentication assertion, also known
as attestation. This effectively protects against malicious parties with root privileges and
creates a reverse sandbox that protects enclaves from remote attacks, operating systems,
hypervisors, firmwares and drivers. As the adoption of TEEs is becoming increasingly
popular in the industry, many more flavors of the technology are being commercialized.
Yet, the most widespread solutions remain Intel’s Software Guard Extentions (SGX) [21],
AMD’s Secure Encrypted Virtualization (SEV) [35], and ARM’s TrustZone [36].

SGX-based TEEs. In our study, we focus on Intel SGX as the most promising so-
lution available today for general-purpose computing. The SGX threat model assumes
all privileged software is potentially malicious and provides integrity and confidentiality
guarantees by isolating the enclave’s code and associated data from the operating system,
hypervisor and other hardware attached to the system, effectively reducing the attack
surface of an application as illustrated in Figure 1.

Untrusted Code:

Trusted Code:

Privileged System 
Code, 
OS, 

VMM, 
BIOS, 
SMM, 

.... 

Create Enclave Make an ECall() Cont.

Build Probe Return

Call Gate

Figure 1. Application execution flow on Intel SGX.

It encrypts the enclave memory with a 128-bit key that randomly changes every power-
cycle. Intel’s industry partners such as Fortanix, Anjuna and Scone have offered runtime
security frameworks that promise the capability of porting existing applications to an SGX
Enclave without the need for code modifications. These services, although successfully
curbing development overheads, do not offer proper application-specific optimizations
and end-up suffering from the high performance penalties imposed by SGX.

2.3. Threat Model

Intel SGX offers integrity and confidentiality protection to both the code and the data
laying within its enclaves. These security guarantees, as illustrated in Figure 1, are designed
to hold even in the event of a privileged system, operating system or BIOS compromise.
However, the protection of the components is beyond the scope of SGX. We assume the
streaming data generators, as well as the communication gateway in charge of batching
are trusted, and that data in transit between the stream generators and communication
gateway is transferred following industry-standard security protocols.

3. Challenges of Parallelizing Stream Joins on TEEs

The appealing properties of TEEs motivate us to adopt them for secure stream joins in
this work. However, this approach brings forth numerous hurdles; and there is still a lack
of out-of-the-box solutions available in the industry.
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3.1. Challenges

In this section, we summarize three major challenges of Parallelizing Stream Joins
on TEEs.

Challenge 1: Enclave Definition Language (EDL). Accessing and exiting an enclave
as well as marshaling the parameters passed accross the trusted/untrusted domains is done
through custom routines called ECall and OCall. Marshaling the parameters communicated
into the enclave is meant to curb the security vulnerabilities associated, such as Spectre [37].
However, this puts a limitation on Hash-based join algorithms [38,39] since the hash
table data-type cannot be natively communicated to an enclave, which often prompts
major code refactoring and potential serialization efforts as only the most basic data-types
are supported.

Furthermore, the SGX Software Development Kit (SDK), provided by intel to kick-start
developments using their technology, defines a syntax reference that does not seem to
support all common programming features. For instance, among many more, private
methods, switchless calls, and reentrant calls are not supported. Whether Intel is planning
to improve on the flexibility of its platform whilst maintaining the same level of security is
unclear at the time of writing this paper.

Challenge 2: Restrictive enclave size available. In most SGX-powered commercial
cloud solutions, only 128 MB is allocated to the Processor Reserved Memory (PRM),
of which 93 MB is for the Enclave Page Cache (EPC) and 35 MB is reserved for the metadata.
Although larger enclave memory is starting to recently be supported, the upper-bound
remains constraining. There are a multitude of reasons why the amount of memory
available to an enclave application is this limited; on top of the list is the integrity tree
depth and size which scales badly with the amount of memory being protected, leading
to poor cacheability, high bandwidth penalties and memory capacity overheads [40]. This
especially limits sort-based join algorithms that are not optimized for NUMA Systems [41],
as large streams of data cannot be directly loaded for sorting within the enclave.

Challenge 3: Enclave routines’ performance overhead. Previous works have shown
that SGX has a considerable trusted memory footprint that causes performance degrada-
tions of up to 1000 folds [42]. The ECall and OCall function call interfaces that enable
untrusted code and enclaves to communicate seamlessly impose a heavy performance
penalty of 10 k–18 k CPU cycles whenever the application needs to enter or exit an enclave
for any system call, including I/O operations. Moreover, for all applications that exceed
the amount of memory available within the enclave, a page swapping mechanism will be
triggered. Given the encryption and security checks involved, up to hundreds of thousands
of CPU cycles are entailed within each page-swap operation [43]. Enclave initialization and
destruction overheads also correlate with the buffer size, which increases exponentially
once we exceed the EPC memory available. For instance, for a buffer size of 160 MB, bare
metal median enclave startup and shutdown times are 5.4× 109 and 1.15× 108 CPU cycles
respectively [44].

3.2. Motivating Experiments

In this section, we present our motivating experiments.
Cache Effects on TEEs. Our micro-benchmarks show that exceeding the available

EPC size is not the sole performance bottleneck of Intel SGX. Rather, exceeding the L3
cache also causes non-negligible performance detriments as it requires cache evictions
which trigger security checks and cryptographic operations. We utilize the parallel memory
bandwidth benchmark tool (pmbw) [45] to monitor the performance of 64-bit read and
write operations using variable-length arrays on our Azure server (Described in Section 5.3).
We then port it on Graphene-SGX [46] to compare the throughput from within an enclave.
We notice that the SGX performance of the instructions almost perfectly matches the native
runs, until we reach the last level cache (LLC); after which, a clear performance gap is
noticed when the output of 20 runs is averaged as illustrated in Figure 2.
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Figure 2. Caching Effects when executing read and write instructions, natively and on SGX for
different array sizes.

Memory Allocation Overhead on TEEs. Next, we emphasize the importance of
meticulous job scheduling on SGX by evaluating the overhead of allocating enclave memory
during the initialization phase. We notice a significant “jump” in latency when the EPC
size is reached in terms of encrypted memory demand, after which the slope depicting the
change in latency rate increases from 1.5 ms/Mib to 4.7 ms/Mib as shown by the average
of 30 runs illustrated in Figure 3. Note that the numbers depicted are for the sole memory
allocation. Active usage and swapping of the memory pages in a complex application
would entail an exponential increase of such overhead as shown in our profiling study in
Section 5.

Figure 3. Memory allocation overhead on SGX with increased Encrypted Memory Demand.

4. Design Aspects of Parallelizing Stream Joins on Multicore Processors with TEEs

In the following, we introduce four design aspects of parallelizing stream joins on
TEEs: (i) execution approaches in Section 4.1, (ii) join methods in Section 4.2, (iii) partition-
ing schemes in Section 4.3, and (iv) distributed scheduling strategies in Section 4.4. We
summarize them in Table 2.
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Table 2. Summary of Design Aspects.

Design Aspects Design Decisions Description

Execution Approaches
Lazy Joins a complete set of tuples

Eager Joins a subset of tuples

Join Methods
Hash-Based Builds hash tables before probing

Sort-Merge Sorts both relations before merging

Partitioning Schemes

Logical Partitioning Passes pointers instead of values

Physical Partitioning Passes values instead of pointers

Join-Matrix Partitioning Content-insensitive matrix

Join -Biclique Partitioning Content-sensitive bipartite graph

Distributed Scheduling Strategies
Static Initialization Assumes equal partition sizes

Dynamic Adaptation Adjusts partition sizes dynamically

4.1. Execution Approaches

We consider two fundamental execution approaches of parallel stream join: lazy and
eager. The lazy approach initially buffers all input tuples of from both input streams over a
given time window, and then joins a complete set of tuples. In contrast, the eager approach
actively joins subsets of input tuples upon their arrival. Due to context and application
dependency, it is difficult for researchers and practitioners to converge on an optimal
approach to adopt. For instance, a lazy approach may be beneficial as it reduces enclave
function call overheads and it can apply specific data-dependent optimizations before
processing joins. However, it may also introduce additional processing latency due to the
non-trivial performance overhead of EPC page swaps. In contrast, the length of a subset
being processed under the eager approach is tunable. By tuning NR and NS, we may be
able to achieve better processing performance through balancing the trade-offs between
function call and memory allocation overheads.

4.2. Join Methods

Despite the large body of work on efficient join processing, join methods remain fun-
damentally different and hence, only contextually comparable in performance. Suggested
optimizations need to be hardware-aware and able to generalize to arbitrary data flows.
To that end, we consider in this study our own implementation of the Symmetric Hash
Join (SHJ) [27,47]’s implementation of the Multiway Sort Merge (MWAY) as examples
of Hash-Based and Sort-Merge join algorithms respectively. The essence in SHJ lies in
interleaving the probe and build processes. It maintains a hash table for each stream. Each
arriving tuple is immediately inserted into the corresponding hash table and probed in
the opposite one. This process repeats until all arriving tuples are consumed. In contrast,
the key idea in Sort-Merge algorithms is to first sort all relations by the join key before
merging them. MWAY improves on the idea by efficiently partitioning the relations prior
to independently sorting them. This enhances performance for NUMA systems. In the
context of SGX, the inhibiting enclave size restricts the number of tuples that can loaded at
once for sorting, hindering the effectiveness of the algorithm in the case of large datasets.
Similarly, SHJ assumes both hash tables fit entirely in (secure) memory [31]. We would like
to examine how these variables affect the overall system performance.

4.3. Partitioning Schemes

Parallel join algorithms are based on the theoretical foundation that the sets of records
manipulated by a database query processing system can be partitioned into disjoint subsets,
such that join results are computed independently across records. For lazy approaches,
we may physically or logically partition input tuples into individual threads. The goal of
the physical relation partitioning is to break at least the smaller input (i.e., tuples from
R) into pieces that fit into the caches. Thus, it avoids the hash table being shared among
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threads. However, it brings the additional cost of replicating tuples. Alternatively, we
may only logically partition input tuples among threads by passing pointers. For eager
approaches [5,6,10,26], there are two stream partitioning schemes that have been proposed.
We revisit the impact of both of them on TEEs: (1) join-matrix [26] and (2) join-biclique [9],
where the former is content-insensitive, and the latter is content-sensitive. Intuitively,
the join matrix model designs a join between two datasets R and S as a matrix, where each
dimension corresponds to one relation. Alternatively, the join-biclique model organizes the
processing units as a complete bipartite graph, where each side corresponds to a relation. It
is superior in memory efficiency, but is sensitive to the consumption of network bandwidth
for tuple routing. Figure 4 illustrates both partitioning schemes. Note that in the JM
case, groupings are optional. Each join partition can be independently processed by a
separate process.

Figure 4. Join execution order under the Join-Matrix Scheme.

4.4. Distributed Scheduling Strategies

Whilst dynamic scale-out servers for SGX are not yet supported by cloud service
providers, we believe that the technology could greatly benefit from horizontal scaling,
especially given the currently imposed limitation on enclave sizes. Scale-out systems
come in different flavors, but they essentially consist of an interconnected cluster of nodes
distributing the processing load across multiple machines following user directives. We
consider MPICH [48], a Message Passing Interface (MPI) implementation that combines
in its design goals: wide portability and high performance. MPI is a message-passing
API that provides abstractions for processes by providing them with ranks according to
the communication groups they belong to, enabling a variety of virtual topologies that
organize the application’s semantics efficiently. It is considered the de-facto programming
system on supercomputers and provides a natural interface for easier adoption by existing
HPC applications [49]. In Algorithm 1, we elaborate on our suggested static initialization
method in distributing the workload of secure join operations. The method assumes a
constant tuple arrival rate, based on which optimal configuration parameters, such as the
number of enclaves and join-matrix dimensions, are calculated as detailed in Section 6.
Although inflexible to changes in the rate of arrival, this distribution method has the benefit
of minimizing all TEE-induced overheads. In contrast, the adaptive distribution strategy
periodically recalculates all parameters based on the varying arrival rate, which optimizes
hardware resources utilization. However, this induces recurring enclave destruction and
re-initialization. In both approaches, data orchestration is managed by a single central
machine that receives the original streams and manages inter-machine communications
using MPI.
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Algorithm 1: Pseudo-code for an MPI Join distribution

1 call MPI_Init();
2 call MPI_Comm_size();
3 call MPI_Comm_rank();
4 //Initialize Enclaves on all machines
5 while Data_is_available do
6 if world_rank==0 then
7 inputs← Bu f f er_stream(MS, MR);
8 output_stream← Serialize(inputs);
9 string← output_stream.str();

10 length← string.length();
11 call MPI_Send(&Length);
12 call MPI_Send(&inputs);
13 end
14 Set count to 0;
15 if count % wold_size == world_rank then
16 call MPI_Recv(&Length);
17 Declare char buffer[Length];
18 call MPI_Recv(&bu f f er);
19 //Process join on local Enclave
20 count ++;
21 end
22 end

5. Profiling Study

We now describe the methodology of our profiling study. We outline our evaluation
goals in Section 5.1, discuss the datasets considered for the benchmarking workload in
Section 5.2, describe the experimental setup in Section 5.3, present our preliminary results
in Section 5.4.

5.1. Evaluation Goals

Our work aims to identify the alternative designs of parallel stream joins on TEEs,
and to understand how those designs interact with TEEs-enabled modern multicore pro-
cessors when running different real-world workloads. With the detailed profiling study,
we hope to identify some hardware and software approaches to resolving the performance
issues and point out the directions for the design and implementation of more efficient and
secure parallel stream join algorithms.

5.2. Benchmark Workload

We follow the benchmark proposed in Table 3 to conduct the profiling study. The
benchmark workload contains three real-world datasets: (1) Rovio continuously monitors
the user actions of a given game to ensure that their services work as expected [50]; (2) YSB
(Yahoo Stream Benchmark) [51] describes a simple job that identifies the campaigns of
advertisement events and stores a window count of relevant events per campaign; (3) DEBS
refers to a social network dataset published by the DEBS’2016 Grand Challenge [52]. When
necessary, we resort to data duplication to ensure both streams have at least 1 million
arriving tuples. Table 3 summarizes the tuple (buffer) sizes and attributes joined over in
each dataset for our experiments.
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Table 3. Join attribute and size of tuple per dataset.

Tuple Size
(in Bytes)

Attributes
Joined

Oven in R

Attributes
Joined

Oven in S

Rovio 30 1.2 1.2

YSB 100 1 1

DEBS 5000 3.5 4.6

5.3. Evaluation Setup

For our evaluation, we consider a cluster of Microsoft Azure’s DCsv2 series of virtual
machines that leverage Intel SGX. These machines are backed by 3.7 GHz Intel® Xeon
E-2288G (Coffee Lake) with SGX technology. With Intel® Turbo Boost Max Technology 3.0,
they can go up to 5.0 GHz. Azure offers 4 different configurations in this suite of VMs. We
namely consider the Standard_DC8_v2, which is the most powerful SGX configuration
offered by a cloud service provider we could find at the time of writing this paper. It offers,
8 physical cores; 32 Gib of memory; 400 Gib of SSD storage; 8 data disks; maximum cached
and temporary throughput of 16000/128 IOPS/Mbps (Cache size in Gib); expected network
bandwidth of 2 Mbps; and an EPC memory of 168 Mib.

5.4. Preliminary Results

In the following, we show how the three design aspects (i.e., execution approaches,
partitioning schemes, and join methods) interact with TEEs-enabled multicore processors.

The Effect of Varying Execution Approaches. In practice, most off-the-shelf sort-
merge algorithms cannot be readily ported on an SGX enclave without anticipating a
considerable performance loss. Sort-merge algorithms require sorting the entire relations
first, which can prove troublesome with very large datasets given the limited enclave
memory available. Nonetheless, algorithms which have been optimised for NUMA ar-
chitectures such as MWAY show considerable flexibility that can be leveraged in TEE.
Nonetheless, as illustrated in Figures 5 and 6, lazy approaches in joining dramatically
impact performance. We observe an exponentially increasing gap in both latency and
throughput between the insecure and secure processing nodes as the number of joins to be
processed increases. While the native mode is able to achieve up to 250,000 tuples/s on
the YSB dataset, the SGX counterpart achieves less than 60,000 tuples/s. The significant
throughput differences for different input sizes are mainly due to enclave memory swaps
operations as the large data cannot be loaded and processed within the limited memory
available to the enclave. In contrast, aggressive eager approaches also suffer from enclave
call performance overhead that adds up for in each subset of tuples processed. Hence,
a well informed hybrid approach needs to be considered.

The Effect of Varying Partitioning Schemes. In order to evaluate the impact of the
varying partitioning schemes configurations, we first run mini-batches of different size
streams R and S, such that: MR × MS = 106. Such a small number of inputs fits entirely
within the enclave memory. Averaging the results over 20 runs, we notice that square
partitioning (where MR = MS) consistently yields minimal latency (up to 10× less), whilst
all other configurations fit within the reverse bell curve illustrated in Figure 7. This behavior
is consistent across datasets and execution approaches.

The Effect of Varying Join Methods. In Figures 5 and 6, we observe that with a few
exceptions, SHJ generally outperforms MWAY in terms of throughput and latency for
smaller workloads. This native behavior is carried forward to the secure implementation
where small input sizes achieve a performance that is comparable to native runs. For larger
workloads requiring EPC paging, MWAY appears to have a slight edge.
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(a) DEBS

(b) Rovio

(c) YSB

Figure 5. Average Latency with Different Processing Volume.
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(a) DEBS

(b) Rovio

(c) YSB

Figure 6. Average Throughput with Different Processing Volume.
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Figure 7. Effect of Partition Matrix Shape.

6. Towards More Efficient Parallel Stream Join on Multicore Processors with TEEs
In the baseline scenario of a standard stream join code ported directly to the sgx envi-

ronment without any consideration for architectural differences, the performance overhead
imposed by the SGX environment will be modeled as depicted in Equations (1) and (2).
The secure enclave will have to allocate memory for both input streams as well as the
output join. The size of the input streams is known to the developer beforehand, whilst
the output join’s size can only be determined after the computation is complete. Hence,
the maximum memory required is allocated. We assume the size of the hashtable key
values and auxiliary variables to be negligible in comparison.

#EPCS ≈
(NR × |R|+ NS × |S|+ NR × NS × |J| −MemEncl

4× 103 (1)

TEncl
on ≈ LECall + LOCall + #EPCS × (LEPC + CInit + CShut) + C (2)

During enclave initialization and shutdown (C), all EPC pages must be processed and
deallocated respectively. Hence, the more memory is available to the enclave, the higher
the initialization and shutdown overheads are expected to be. Note that MemEncl refers to
the effective amount of memory available to the enclave as opposed to the total amount of
memory accounted for. For instance, in a 128 Mib Enclave, MemEncl is 93 Mib.

With the introduction of SGX2 [53], the instruction set of SGX was extended to support
dynamic memory allocation and deallocation which allows us to free the memory occupied
by the input tuples as they are being processed into the hashtable. SGX2 also brings an
enhancement to the previous TCS by allowing their allocation at runtime. This is enabled
by the new capability of changing page permissions post-enclave-initiation. However,
as elaborated on in [53], concurrency-related complexity in SGX2 is greatly increased
over SGX1.

In contrast to the single-threaded baseline expressed in Equations (1) and (2), we
consider multiple threads accessing the same enclave. Note that the threads are not
dynamically spawned inside the enclave, but rather defined at the untrusted code level
and access the enclave independently in parallel. In this context, the ECalls and OCalls
performed will evoke a series of EPC page swaps to process the parameters associated;
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the overhead of which will accumulate linearly in the worst-case scenario, as captured by
Equation (3).

TEncl
on ≈ (

NR
MR

+ 1)× (
NS
MS

+ 1)× LECall + C (3)

Finally, we consider a runtime environment whereby multiple secure enclaves are
initialised. Ideally, the enclaves can be locally initialised on the server provided it can
sufficiently scale-up. Or alternatively, an MPI (scale-out) configuration of servers can be
established to provide the resources required. In such configuration, provided proper code
design, the EPC size is no longer a limitation and only a single call into the respective
enclaves need to be made, effectively reducing all hardware-induced overheads to the bare
possible minimum expressed in Equation (4).

TEncl
on = LECall + C (4)

6.1. Optimal Partitioning Configuration

The key observation in Equation (4) motivates the use of an MPI distributed compu-
tational model for efficient stream processing on TEE. Yet, the cautious avoidance of the
computationally expensive EPC page swaps operations is essential to achieve efficiency.
Hence, we adopt the Join-Matrix partitioning scheme as it naturally lends itself to our
distributed model.

Configuring the matrix dimensions of the partitioning scheme is approached prag-
matically. With the assumption that streams R and S are arriving at the same rate (i.e.,
have an equal throughput), a buffering process is established to achieve the join-matrix
dimensions calculated in Equation (5). These dimensions will ensure the efficient use of
enclave memory without triggering extra EPC page swaps. Note that the tuple sizes are
expressed in bytes.

MR = MS = b|−(|R|+ |S|)/2|J| ±
√
(|R|+ |S|)2 − 4 ·MemEncl · |J|

2 · |J| |c (5)

However, when the throughputs of R and S are vastly different, the adoption of a
square matrix will entail large waiting times, negatively impacting the overall performance
of the system. Hence MR and MS need to satisfy the generalized Equation (6) that takes
into account the rate of tuple arrivals, effectively optimising the waiting time during the
batching process. For both cases, the number of batches processed independently by secure
enclaves is expressed in Equation (7).

MR = b|−λR · |R|/2 · λS · |J| − |S|/2 · |J|

± λR ·
√

(|R|+|S|·λS/λR)2−4·MemEncl ·|J|
2·λS ·|J|

|c
MS = λS

λR
·MR

(6)

#Batches = d NR
MR
e · d NS

MS
e (7)

6.2. Optimal Hardware Requirements

Following the batching strategy described in Section 6.1 and considering different
tuple arrival rates, #Encl can take up any value in the range [1, #Batches] applying a
trade-off between runtime and hardware cost. In the event where hardware availability
is not a constraint, the user can always over-allocate enclaves as MPI has been proven to
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successfully scale up to thousands of nodes on a streaming workload [54]. Nonetheless, we
devise Equation (8) to define an upper-bound, past which no performance gain is noted,
with MR and MS being the values expressed in Equation (6).

#Encl = d NR
MR
e+ d NS

MS
e − 1 (8)

6.3. Put It All Together

A good design for parallel stream join processing on SGX is one that benefits the
data from all the security guarantees that TEE offers whilst minimizing the performance
overheard introduced in comparison to running the same join operation in a non-SGX
environment (referred to in what follows as a Native join). Currently, the performance
gap between a Native join and its SGX implementation is quite large and further increases
exponentially as the number of tuples in the input stream increases. This is impractical for
large-scale secure join operations. Hence, considering the current scale-up limitations of
SGX hardware, a model-guided scale-out solution is required to enable the optimal use of
hardware resources available given the metadata provided by the user (See Section 6).

For simplicity, we refer to our custom solution as SecJoin. To investigate the effective-
ness of our model-driven parametrization of SecJoin, we first write an SGX implementation
of the Symmetric Hash Join algorithm following the Join-Matrix partitioning scheme and
execute a join operation over two columns. The experiment is repeated over streams of
incrementally equal sizes. As expected, we notice in Figure 8 that the SGX implementation
matches the Native code in performance at first, then develops a performance gap that
increases exponentially as we increase the number of tuples until the program is eventu-
ally killed by the kernel around the 5000 input mark due to lack of memory. Meanwhile,
the SecJoin implementation consistently delivered a quasi-native performance with negli-
gible overhead and reliable scalability potential. Analysing the sample run utilising 5000
tuples, we realise that over four-fifths of the end-to-end program latency is dedicated to
SGX-induced overheads such as memory page swaps. On the other hand, SecJoin limits
such overheads to a ratio of <5% as illustrated in Figure 9. Although introducing a new
communication overhead due to the use of MPI for data orchestration, SecJoin still achieves
up to 4-folds of improvement in both latency and throughput.

(a) Latency Comparison

Figure 8. Cont.
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(b) Throughput Comparison

Figure 8. Performance Evaluation of SecJoin Compared to Native and SGX Joins.

(a) Native SGX Implementation Latency

(b) SecJoin Implementation Latency

Figure 9. Breakdown of End-to-End Program Execution Time.
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7. Conclusions and Future Works

In this paper, we emphasized the importance of data privacy in join processing and
outlined the current limitations of existing enablers. We conducted a profiling study
to demonstrate that out-of-the-box join algorithms dramatically underperform in a TEE
environment and expressed the need for a hardware-aware design to make the adoption of
privacy practical. We presented our theoretical model to guide the design of such solution
and calculate the different parameters to be considered. We evaluate our model through
SecJoin. Results of the distributed algorithm demonstrated immense scalability potential as
well as performance improvements of up to 4-folds. The Limitation of this study lies in its
applicability to SGX 1 only as SGX 2 was not officially released yet at the time of writing
this paper. We anticipate significant changes to the framework to be brought forth by Intel.
For future works, we would like to extend SecJoin by implementing a dynamic resource
allocation module that can automatically adjust to changing tuple arrival rates, enabling a
true scale-out solution that can be deployed to the cloud. Also, we would like to extend our
study and experimentation to encompass further join algorithms and design considerations
that were not discussed in this work. Finally, we are considering a security-by-design
approach in re-imagining join algorithms for TEE hardware.
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