
����������
�������

Citation: Fandinno, J.; Pearce, D.;

Vidal, C.; Woltran, S. Comparing the

Reasoning Capabilities of

Equilibrium Theories and Answer Set

Programs. Algorithms 2022, 15, 201.

https://doi.org/10.3390/a15060201

Academic Editor: Giovanni

Amendola

Received: 1 April 2022

Accepted: 2 June 2022

Published: 8 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Comparing the Reasoning Capabilities of Equilibrium Theories
and Answer Set Programs
Jorge Fandinno 1 , David Pearce 2,* , Concepción Vidal 3 and Stefan Woltran 4

1 College of Information Science & Technology, University of Nebraska Omaha, 6001 Dodge St.,
Omaha, NE 68182, USA; jfandinno@unomaha.edu

2 Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, 28040 Madrid, Spain
3 Computer Science and Information Technologies, University of Corunna, 15008 A Coruña, Spain;

concepcion.vidalm@udc.es
4 Databases and Artificial Intelligence Group (E192-02), Institute of Logic and Computation,

Technische Universität Wien, 1040 Vienna, Austria; stefan.woltran@tuwien.ac.at
* Correspondence: david.pearce@upm.es

Abstract: Answer Set Programming (ASP) is a well established logical approach in artificial intel-
ligence that is widely used for knowledge representation and problem solving. Equilibrium logic
extends answer set semantics to more general classes of programs and theories. When intertheory
relations are studied in ASP, or in the more general form of equilibrium logic, they are usually under-
stood in the form of comparisons of the answer sets or equilibrium models of theories or programs.
This is the case for strong and uniform equivalence and their relativised and projective versions.
However, there are many potential areas of application of ASP for which query answering is relevant
and a comparison of programs in terms of what can be inferred from them may be important. We
formulate and study some natural equivalence and entailment concepts for programs and theories
that are couched in terms of inference and query answering. We show that, for the most part, these
new intertheory relations coincide with their model-theoretic counterparts. We also extend some
previous results on projective entailment for theories and for the new connective called fork.

Keywords: answer set programming; equilibrium logic; intertheory relations; projective entailment;
forks in ASP

1. Introduction

Answer Set Programming (ASP) is a popular environment for knowledge representa-
tion and problem solving in artificial intelligence. Thanks to efficient answer set solvers,
there are now many applications of this technique in diverse domains. Equilibrium logic [1]
provides a logical foundation for ASP and extends the stable model semantics to arbitrary
propositional and first order theories. It has also proved instrumental in generating novel
extensions for temporal and epistemic reasoning under answer set semantics. Answer
set programs are typically employed to provide one or more representations of problem
solutions in the form of models or answer sets. Unlike Prolog, ASP was not traditionally
designed to be used as a query answering system. Accordingly, the study of logical relations
between programs, beginning with [2], has focused mainly on a comparison of their answer
sets. This is how the principle relations of strong and uniform equivalence as well as their
relativised and projective versions are understood [2–5]. Strong and uniform equivalence
were first considered in the Datalog domain [6,7]; since then, many nonmonotonic for-
malisms have been investigated in this regard, including default logic [8], causal logics [9],
argumentation frameworks [10,11], and preference-based formalisms [12–14], to mention
just a few examples. Results on strong equivalence and related notions have proved to be
useful in many different contexts, such as program simplification [15] or forgetting [16].

Nevertheless, query answering is important in a number of domains where ASP can be
applied. In such cases, we are interested in comparing the logical consequences of different

Algorithms 2022, 15, 201. https://doi.org/10.3390/a15060201 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15060201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3917-8717
https://orcid.org/0000-0001-7407-326X
https://orcid.org/0000-0002-5561-6406
https://orcid.org/0000-0003-1594-8972
https://doi.org/10.3390/a15060201
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15060201?type=check_update&version=3

Algorithms 2022, 15, 201 2 of 20

programs, to see, for example, under what conditions they agree in their answering of
queries. This motivates the challenge of defining and analysing equivalence and entailment
relations between programs that are formulated in terms of inference and query answering.
Similar notions turn up in other logic-based reasoning systems. In Datalog, there is the well-
known concept of query containment [17]. In description logics for reasoning over ontologies,
there is the concept of query inseparability (see e.g., [18]); similarly, in abstract argumentation,
strong equivalence with respect to argument acceptance has been investigated [11].

In ASP, two programs are said to be equivalent if they have the same stable models
and strongly equivalent if they remain equivalent under the addition of any new set of
rules [2]. If only new facts can be added, the relation is known as uniform equivalence.
Furthermore, relativised versions of strong and uniform equivalence can be defined to cover
the case that the newly added rules or facts are in a specific language. Projective equivalence
is the appropriate concept in case we are interested in model equivalence with respect
to a restricted sublanguage of the programs. All these relations have been studied and
characterised in the literature (as cited above). In [19], weak and strong forms of entailment
between programs were also defined and analysed. In this case, we are concerned with the
relative strength of theories.

In the rest of the article, we formulate new intertheory and inter-program relations
based on inference and show that, in most cases, they coincide with their well-known
model-theoretic counterparts. This means that they can be studied using familiar concepts
and techniques. We work throughout in the non-classical logic HT of here-and-there, which
provides a basis for equilibrium logic and hence for the stable model semantics of ASP.
HT is of particular importance in this context due to the way in which HT models relate
to theory equivalences. In Section 2, we recall the basic features of HT and equilibrium
logic, and we define three types of consequence relations for equilibrium theories. Section 3
deals with strong and uniform equivalence relations, showing how the standard notions
compare with their counterparts formulated in terms of inference. An analogous procedure
for relativised equivalence follows in Section 4. In Section 5, we turn to entailment relations
between theories. In other words, we deal with the relative strength of theories in terms
of both their stable models and their question answering capabilities. Section 6 examines
projective entailment and equivalence relations; here, we generalise some of the charac-
terisations obtained in previous work. We include projective entailment and equivalence
for standard logic programs and also cover two further cases. One is the extension to
arbitrary propositional theories. The other deals with an extension of the usual vocabulary
of programs to include a new type of disjunction connective, ‘ | ’, called fork, introduced
in [20]. As explained in Section 6.2, the intuitive meaning of this construct is that when we
form the stable models of Π1 | Π2, they correspond to the union of the stable models from
Π1 and Π2. This continues to be the case when further rules Π′ are added.

ASP is well suited to formalise rule-based policies and often one is interested in the
consequences that can be derived from such policies, given relevant background information
and data. It follows that the kinds of intertheory correspondences we have been studying
are relevant when we want to compare different policies in a logical manner. We include in
Section 7 some paragraphs describing an outline of how such a policy formalisation might
look in the case of access control policies, a domain in which logic programs have been
successfully applied in the past. This sketch may help to illustrate how our intertheory
relations may provide useful concepts for reasoning about such policies.

There is a substantial body of literature devoted to logical relations between answer
set programs and between theories in equilibrium logic. It is beyond the remit of this article
to describe all the many characterisation results and their applications. However, in the
concluding Section 8, we list some additional research articles where the reader can find
many of the most important results. We moved some of the longer proofs, especially those
from Section 6, to an Appendix A.

Algorithms 2022, 15, 201 3 of 20

2. Logical Preliminaries and Basic Definitions

We work in the logic HT of here-and-there first presented in [21]. This is a three-valued
extension of intuitionistic propositional logic. It can be built up in a simple manner by
considering two kinds of truth: provable truth and truth by default applying to propo-
sitions that are not false but not provably true [22]. We also rely on equilibrium logic, a
nonmonotonic extension of HT based on a concept of minimal model [1]. Equilibrium logic
captures the stable model semantics of ASP for arbitrary propositional theories. Moreover,
HT is of great value when studying intertheory relations, because theories and programs
are strongly equivalent if and only if they are logically equivalent in HT.

The language of HT is built up in the usual way from a set At of atoms called the
(propositional) signature. A (propositional) formula ϕ is defined using the usual grammar:

ϕ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ ϕ ∧ ϕ
∣∣∣∣∣∣ ϕ ∨ ϕ

∣∣∣∣∣∣ ϕ→ ϕ

where p is an atom p ∈ At. Greek letters ϕ, ψ, γ and their variants stand for formulas. We

also consider derived operators ¬ϕ
def
= (ϕ→ ⊥), > def

= ¬⊥ and ϕ↔ ψ
def
= (ϕ→ ψ)∧ (ψ→

ϕ). A literal is an atom p or its negation ¬p. A theory is a set of formulas. A (general)
program is a set of implications of the form α → β where α is a conjunction of literals
and β a disjunction of literals. A disjunctive logic program is a program such that for each
of its implications α → β, β is a disjunction of atoms. In other words, the formulas of a
disjunctive program have precisely the form of what are usually called logic programming
rules, where α is the rule body and β is the rule head. We denote theories and programs
by upper-case Greek letters, Γ, Π, Σ . . ., and At(Π) denotes the set of atomic formulas
present in Π. Throughout the article, we restrict attention to finite languages, theories, and
programs.

A model-theoretic semantics for HT can be based on the usual possible-worlds models
for intuitionistic logic (see e.g., [23]), but HT is complete for frames F = 〈W,≤〉 (where,
as usual, W is the set of points or worlds and ≤ is a partial-ordering on W) having exactly
two worlds, say h (‘here’) and t (‘there’) with h ≤ t. As usual, a model is a frame together
with an assignment i that associates to each element of W a set of atoms, such that if w ≤ w′,
then i(w) ⊆ i(w′). An assignment is then extended inductively to all formulas via the usual
rules for conjunction, disjunction, implication, and negation in intuitionistic logic, namely

⊥ 6∈ i(w)
(ϕ ∧ ψ) ∈ i(w) iff ϕ ∈ i(w) and ψ ∈ i(w)
(ϕ ∨ ψ) ∈ i(w) iff ϕ ∈ i(w) or ψ ∈ i(w)
(ϕ→ ψ) ∈ i(w) iff for all w′ s.t. w ≤ w′, ϕ ∈ i(w′) implies ψ ∈ i(w′)
¬ϕ ∈ i(w) iff for all w′ s.t. w ≤ w′, ϕ 6∈ i(w′)

Although the final clause is obtained from those for→ and ⊥, we include it to make it
clear that ¬ϕ is true at either world just in case ϕ 6∈ i(t). It is convenient to represent an
HT model as an ordered pair 〈H, T〉 of sets of atoms, where H = i(h) and T = i(t) under
a suitable assignment i; by h ≤ t, it follows that H ⊆ T. When H = T, we say that the
interpretation 〈H, T〉 is total. Note that in a model 〈H, T〉, H represents the set of certain or
provable atoms whereas T represents the set of true atoms of either kind.

We writeM, w |= ϕ to denote that a formula ϕ is true or forced at world w in an HT
modelM, i.e., ϕ ∈ i(w). Then, ϕ is true inM, in symbolsM |= ϕ, ifM, h |= ϕ. A formula
ϕ is said to be a consequence of a theory Π, in symbols Π |= ϕ, ifM |= ϕ for each modelM
of Π. We denote by Th(M) the collection of all formulas true inM.

Equilibrium Logic

To define equilibrium logic, we first introduce a partial ordering � on HT models.

Definition 1. Given any two models, 〈H, T〉, 〈H′, T′〉, we set 〈H, T〉� 〈H′, T′〉 if T = T′ and
H ⊆ H′.

Algorithms 2022, 15, 201 4 of 20

This leads to the following notion of equilibrium.

Definition 2. Let Π be a theory and 〈H, T〉 a model of Π. Then, 〈H, T〉 is said to be an equilib-
rium model of Π if it is minimal under � among models of Π, and it is total.

In other words, a model 〈T, T〉 of Π is in equilibrium if there is no model 〈H, T〉 of Π
with H ⊂ T. In this case, we say that T is a stable model or answer set of Π. Equilibrium
logic is the logic determined by the equilibrium models of a theory. Our terminology is
justified by the following property:

Proposition 1 ([24]). Let Π be a disjunctive logic program. Then, a set of atoms T is a stable model
(or answer set) of Π (in the standard sense [25]) if and only if 〈T, T〉 is an equilibrium model of Π.

Because a theory or program under stable model semantics usually possesses more
than one stable or equilibrium model, different notions of inference can be considered
depending on the particular problem domain represented by the theory. The more usual
relation in ASP is sceptical inference; however, there are applications where a credulous
form of inference is more appropriate. We also include a third type of prudent inference.
For a theory Π, we denote by E(Π) the set of its equilibrium models. We say that a theory
Π is stable if E(Π) 6= ∅. When it is clear that we are dealing with an equilibrium model or
any total (i.e., classical) modelM, we also simply denote it by its corresponding set M of
(true) atoms.

Definition 3 (Equilibrium consequence). The relations of equilibrium consequence, credulous
(Π |=c ϕ), sceptical (Π |=s ϕ), and prudent (Π |=p ϕ) are defined as follows. Let Π be a theory.
Then,

• Π |=c ϕ if Π is stable and ϕ ∈ ⋃M∈E(Π) Th(M);
• Π |=s ϕ if Π is stable and ϕ ∈ ⋂M∈E(Π) Th(M)

• Π |=p ϕ if Π is stable and ϕ ∈ Th(
⋂
M∈E(Π)(M))

These relations differ: Take for instance Π = {a ∨ b}. We have, E(Π) = {{a}, {b}}.
Thus, Π |=c a but not Π 6|=s a nor Π 6|=p a. Moreover, Π |=s a ∨ b but Π 6|=p a ∨ b. In
general, we have that Π |=p ϕ implies Π |=s ϕ and Π |=s ϕ implies Π |=c ϕ. In our
example, Π |=p ¬a (because ∅ |= ¬a) but Π 6|=s ¬a because {a} 6|= ¬a.

3. Equivalence Notions

Based on these relations, we now can define different notions of equivalence between
theories.

Definition 4. Let Π1 and Π2 be theories and α ∈ {c, s, p}. Then, Π1 ≡α Π2 states that for any
formula ϕ, Π1 |=α ϕ iff Π2 |=α ϕ.

We are now able to compare theories in further different ways:

Definition 5. Let Π1 and Π2 be theories and α ∈ {c, s, p}. Then,

• Π1 ≡s Π2 holds iff for any further theory Π, (Π1 ∪Π) ≡ (Π2 ∪Π).
• Π1 ≡u Π2 holds iff for any set X of atoms, (Π1 ∪ X) ≡ (Π2 ∪ X).
• Π1 ≡s

α Π2 holds iff for any further theory Π, (Π1 ∪Π) ≡α (Π2 ∪Π).
• Π1 ≡u

α Π2 holds iff for any set X of atoms, (Π1 ∪ X) ≡α (Π2 ∪ X).

The first two relations are well known. Following standard terminology, we say that
Π1 and Π2 are equivalent if E(Π1) = E(Π2), strongly equivalent if Π1 ≡s Π2 and uniform
equivalent if Π1 ≡u Π2. These relations are well understood. Π1 and Π2 are strongly
equivalent if and only if they are equivalent in the logic HT; in other words, they have the

Algorithms 2022, 15, 201 5 of 20

same HT models [2]. Uniform equivalence on the other hand is captured by a special set of
HT countermodels [26] (see also [3,27]).

Evidently, if theories are equivalent, then their inference relations are also equivalent
for all types of inference. However, what happens if two theories have different equilibrium
models; can we always separate them in terms of sentences they entail? The following
lemma answers this in the affirmative for credulous and sceptical inference. To simplify
notation, we treat an equilibrium model as a set of atoms M.

Lemma 1. Let Π1 and Π2 be stable theories such that E(Π1) 6= E(Π2); say that Π1 has an
equilibrium model M that is not an equilibrium model of Π2. Then:

(i) There exists a sentence ϕ such that M |= ϕ but ϕ is false in all equilibrium models of Π2.
Hence, Π1 |=c ϕ, Π2 6|=c ϕ, and so Π1 6≡c Π2.

(ii) There exists a sentence ψ such that M 6|= ψ but Mi |= ψ for each equilibrium model
Mi ∈ E(Π2). Hence, Π2 |=s ψ whereas Π1 6|=s ψ and so Π1 6≡s Π2.

Proof. (i) For each Mi ∈ E(Π2), we know that M ∩ (U \Mi) 6= ∅ or Mi ∩ (U \M) 6= ∅
with U = At(Π1 ∪Π2). Set

ϕi =
∧

a∈M∩(U\Mi)

a ∧
∧

b∈Mi∩(U\M)

¬b

Then, M |= ϕi, for each i, so M |= ϕ where ϕ =
∧

ϕi and Π1 |=c ϕ. However, for any
Mi ∈ E(Π2), Mi 6|= ϕ which implies that Π2 6|=c ϕ.

(ii) Similarly, for each equilibrium model Mi of Π2 either there is some atom a ∈ M
such that Mi |= ¬a or else there is some atom b ∈ U \M such that M′ |= b, where U is the
set of atoms in Π1 ∪Π2. Set

ψi =
∨

a∈M∩(U\Mi)

¬a ∨
∨

b∈(U\M)∩Mi

b

Then, ψ =
∨

ψi holds in each equilibrium model of Π2 and so Π2 |=s ψ. By inspection
M 6|= ψ and so Π1 6|=s ψ.

Now it is straightforward to characterise entailment equivalence.

Proposition 2. The following conditions hold:

• Π1 ≡c Π2 iff Π1 ≡s Π2 iff E(Π1) = E(Π2).
• Π1 ≡α Π2 implies Π1 ≡p Π2 for α ∈ {c, s}.

The next results show that in the strong-equivalence setting, the choice of the con-
sequence operator does not play a role. Together with the observation from above, we
conclude that all three notions are characterised by the logic of here-and-there.

Proposition 3. The following propositions are equivalent:

(i) Π1 ≡s Π2;
(ii) Π1 ≡s

c Π2;
(iii) Π1 ≡s

s Π2;
(iv) Π1 ≡s

p Π2.

Algorithms 2022, 15, 201 6 of 20

Proof. (Parts (i)–(iii)) Clearly (i) implies (ii) and (iii). However, if (i) does not hold, then
there is a theory Π such that E(Π1 ∪Π) 6= E(Π2 ∪Π). Apply Lemma 1 to conclude that
neither Π1 ≡s

c Π2 nor Π1 ≡s
s Π2 holds.

Π1 ≡s Π2 ⇔ ∀Π, E(Π1 ∪Π) = E(Π2 ∪Π)

⇔ ∀Π, Π1 ∪Π ≡c Π2 ∪Π by Proposition 1

⇔ Π1 ≡s
c Π2

⇔ ∀Π, E(Π1 ∪Π) = E(Π2 ∪Π)

⇔ ∀Π, Π1 ∪Π ≡s Π2 ∪Π by Proposition 2

⇔ Π1 ≡s
s Π2

Proof. (Π1 ≡s Π2 ⇔ Π1 ≡s
p Π2) It suffices to show that Π1 ≡s

p Π2 ⇒ Π1 ≡s Π2.
Suppose then that Π1 6≡s Π2. Hence, there exists a Π such that (Π1 ∪Π) 6≡c (Π2 ∪Π). By
Proposition 2 we can assume Y ∈ E(Π1 ∪Π) \ E(Π2 ∪Π). Consider

Π′ = {
∧

y∈Y
¬¬y ∧

∧
z∈U\Y

¬z}

where U is the set of atoms occurring in Π1 ∪Π2 ∪Π. Then, Y is the only equilibrium
model of Π1 ∪Π ∪Π′ whereas E(Π2 ∪Π ∪Π′) = ∅. This can be seen as follows. The only
HT models of Π′ are of the form (X, Y) with X ⊆ Y. Because no X ⊂ Y is an HT-model
of Π1 ∪Π (by assumption Y ∈ E(Π1 ∪Π)), no X ⊂ Y is an HT-model of Π1 ∪Π ∪Π′.
Thus, Y is the only equilibrium model of Π1 ∪Π∪Π′. On the other hand, from assumption
Y /∈ E(Π2 ∪Π) we can have two cases:

(a) (Y, Y) is not an HT-model of Π2 ∪Π. Then, Y obviously cannot become an equilib-
rium model of Π2 ∪Π ∪Π′, or

(b) (Y, Y) is an HT-model of Π2 ∪Π but then there exists X ⊂ Y such that (X, Y) is
an HT-model of Π2 ∪Π. By definition of Π′, (X, Y) is then also an HT-model of
Π2 ∪Π ∪Π′, and so Y cannot be an equilibrium model of Π2 ∪Π ∪Π′.

Then, we can conclude that Y /∈ E(Π2 ∪Π ∪Π′) and, because Y is the only classical (total)
model of Π2 ∪Π ∪Π′, it follows that E(Π2 ∪Π ∪Π′) = ∅.

Now, using the fact that Π1 ∪Π ∪Π′ has a unique equilibrium model, there obviously
exists a (non-tautological) ϕ such that (Π1 ∪ (Π ∪Π′)) |=p ϕ and (Π2 ∪ (Π ∪Π′)) 6|=p ϕ.
Hence, Π1 6≡s

p Π2.

Note that this argument applies to disjunctive logic programs as well (using constraints).

Uniform Equivalence

For the sceptical and credulous cases, the situation with respect to uniform equivalence
follows precisely the previous pattern.

Proposition 4. The following conditions are equivalent:

(i) Π1 ≡u Π2;
(ii) Π1 ≡u

c Π2;
(iii) Π1 ≡u

s Π2;

Algorithms 2022, 15, 201 7 of 20

Proof.

Π1 ≡u Π2 ⇔ ∀X ⊆ At, E(Π1 ∪ X) = E(Π2 ∪ X)

⇔ ∀X ⊆ At, Π1 ∪ X ≡c Π2 ∪ X by Proposition 2

⇔ Π1 ≡u
c Π2

⇔ ∀X ⊆ At, E(Π1 ∪ X) = E(Π2 ∪ X)

⇔ ∀X ⊆ At, Π1 ∪ X ≡s Π2 ∪Π by Proposition 2

⇔ Π1 ≡u
s Π2

For the prudent case, consider the empty theory and the theory containing the for-
mula a ∨ b. These two theories are not uniformly equivalent. In fact, they are not even
ordinarily equivalent because the former has as its unique stable model ∅ and the latter
has two stable models {a} and {b}. Note that the intersection of all stable models is in both
cases ∅, so they are ordinarily equivalent with respect to prudent queries. Furthermore, we
get the same stable models if we add to these theories the contexts {a}, {b}, and {a, b}. So,
they are also uniformly equivalent for prudent consequence.

4. Relativised Equivalence

As usual, we consider theories Π1, Π2, etc. and now make explicit languages L, L′,
etc. As before, we view a language as a set of atoms. A theory is said to be in the language
L if all its atomic formulas belong to L.

Definition 6. Let Π1 and Π2 be theories.

(i) Π1 and Π2 are strongly equivalent relative to L, in symbols Π1 ≡sL Π2, iff for any (empty
or non-empty) set Σ of L formulas, Π1 ∪ Σ and Π2 ∪ Σ are equivalent, i.e., have the same
equilibrium models.

(ii) Π1 and Π2 are uniformly equivalent relative to L, in symbols Π1 ≡uL Π2 , iff for any
(empty or non-empty) set X of L literals, Π1 ∪ X and Π2 ∪ X are equivalent, i.e., have the
same equilibrium models.

We can now apply these definitions to different relativised versions of strong and
uniform equivalence.

Definition 7. Let Π1 and Π2 be theories and α ∈ {c, s, p}. Then,

• we write Π1 ≡s,L
α Π2 if for any further theory Π in L, (Π1 ∪Π) ≡α (Π2 ∪Π);

• we write Π1 ≡u,L
α Π2 if for any set X of L atoms, (Π1 ∪ X) ≡α (Π2 ∪ X).

Proposition 5. For any theories Π1, Π2 and α ∈ {c, s}, Π1 ≡s,L
α Π2 iff Π1 ≡sL Π2; similarly

Π1 ≡u,L
α Π2 iff Π1 ≡uL Π2.

Proof. The right to left directions are obvious. For the other direction, suppose for instance
that Π1 and Π2 are not strongly equivalent relative to L. Then, for some set of L formulas
Π, Π1 ∪Π and Π2 ∪Π have different sets of equilibrium models. We can apply Lemma 1
again to conclude that Π1 ∪Π and Π2 ∪Π can be separated by different queries, both in the
sceptical and in the credulous sense, i.e., that Π1 ∪Π 6≡s Π2 ∪Π and Π1 ∪Π 6≡c Π2 ∪Π.
The uniform case follows the same pattern.

Π1 ≡s,L
α Π2 ⇔ ∀Π ∈ L, Π1 ∪Π ≡α Π2 ∪Π

⇔ ∀Π ∈ L, E(Π1 ∪Π) = E(Π2 ∪Π) by Proposition 2

⇔ Π1 ≡sL Π2

Algorithms 2022, 15, 201 8 of 20

5. Entailment Relations

In [19], various nonmonotonic entailment relations are defined in terms of (equilib-
rium) models. In particular:

Definition 8 (strong and uniform entailment). Π1 strongly entails Π2, in symbols Π1 |=S Π2,
(respective Π1 uniformly entails Π2, in symbols Π1 |=U Π2) if for any set Γ of formulas (respective
atoms)

E(Π1 ∪ Γ) ⊆ E(Π2 ∪ Γ) (1)

We can also consider entailment relations attuned to query answering.

Definition 9 (weak theory entailment). Let Π1 and Π2 be theories and ω ∈ {c, s, p}. Then, we
write Π1 |∼ω Π2 if for any formula ϕ, if Π2 |=ω ϕ then, Π1 |=ω ϕ.

As in the case of Definition 2, we can compare theories for their deductive strength.

Definition 10 (strong and uniform theory entailment). Let Π1 and Π2 be theories and ω ∈
{c, s, p}. Then,

• we write Π1 |∼s
ω Π2 if for any further theory Π (Π1 ∪Π) |∼ω (Π2 ∪Π);

• we write Π1 |∼u
ω Π2 if for any set X of atoms, (Π1 ∪ X) |∼ω (Π2 ∪ X).

Proposition 6. For any theories Π, Π2:

1. Π1 |∼s
s Π2 ⇔ Π1 |=S Π2

2. Π1 |∼u
s Π2 ⇔ Π1 |=U Π2

Proof. (1). The implication from right to left holds by inspection. For the other direction,
suppose that Π1 6|=S Π2. Then, for some Γ, E(Π1 ∪ Γ) 6⊆ E(Π2 ∪ Γ). Let M ∈ E(Π1 ∪ Γ) \
E(Π2 ∪ Γ). Apply Lemma 1(ii) to conclude that there is a sentence ψ that holds in each
equilibrium model of Π2 ∪ Γ and so Π2 ∪ Γ |=s ψ. Inspection M 6|= ψ, so Π1 ∪ Γ 6|=s ψ, and
hence Π1 6 |∼s

sΠ2.
For (2), the proof is entirely analogous.

The relation Π1 |=S Π2 has been characterised in terms of HT-models.

Proposition 7 ([19]). Π1 |=S Π2 holds iff the following two conditions are satisfied:

(i) Π1 classically entails Π2.
(ii) For any model 〈H, T〉 of Π2 such that 〈T, T〉 |= Π1, 〈H, T〉 |= Π1.

Although the (strong) equivalence concepts are captured in the monotonic logic HT,
the same is not true for strong entailment, because Π1 |= Π2 does not imply Π1 |=S Π2.
However, it is clear that

Π1 |=S Π2 & Π2 |=S Π1 ⇒ Π1 ≡s
s Π2 (2)

By Propositions 1 and 2, we can see that Π1 ≡s
s Π2 if and only if Π1 and Π2 are strongly

equivalent theories. In turn, by the well-known characterisation [2], this means that Π1 and
Π2 are equivalent in HT. It follows that, whereas Π1 |= Π2 does not entail Π1 |=S Π2, it is
easy to see that Π1 ≡HT Π2 implies both Π1 |=S Π2 and Π2 |=S Π1.

Although the strong equivalence concepts for credulous, sceptical, and prudent rea-
soning all agree, in the case of strong entailment, credulous and sceptical reasoning behave
in a kind of dual form.

Proposition 8. Π1 |∼s
s Π2 ⇔ Π2 |∼s

c Π1.

Algorithms 2022, 15, 201 9 of 20

Proof. From Proposition 6, we established that Π1 |∼s
s Π2 holds if and only if (1) is true.

Clearly, if (1) holds then Π2 |∼s
c Π1 by inspection. Suppose then that Π1 |∼s

s Π2 does not hold.
Then, there is an extension Γ of Π1 such that there is an equilibrium model in E(Π1 ∪ Γ)
that is not in E(Π2 ∪ Γ). From the proof of Proposition 3, we can conclude that there is
an extension Γ′ of Π1 ∪ Γ and non-tautological formula ψ such that Π1 ∪ Γ ∪ Γ′ |=c ψ but
Π2 ∪ Γ ∪ Γ′ 6|=c ψ. Furthermore, Π2 6 |∼s

cΠ1.

6. Projective Concepts
6.1. Basic Definitions

Very often we are interested only in certain parts of answer sets or equilibrium models,
and the output of solvers may suppress the unwanted parts. If our query is expressed in a
sublanguage B of the theory, we need only consult the projection of equilibrium models
onto that sublanguage, i.e., we deal with the B-reducts of the equilibrium models (In the
remainder of the article, we use upper-case Latin letters, A, B, etc., to denote (sub)languages,
i.e., regarded as sets of atoms). This is justified by the next lemma. For notation, let M
be a classical model for a language L and B a sublanguage of L. We denote by M|B the
B-reduct of M, i.e., M ∩ B, and where now truth and falsity in M|B is defined only for
formulas expressible in B. Likewise, for any set X of classical models, X|B denotes the set
of their B-reducts.

Lemma 2. Let M be an equilibrium model (of some theory in L) and B a sublanguage of L. Then,
for any B-formula ϕ, M |= ϕ⇔ M|B |= ϕ.

Definition 11 (B-consequence). For ω ∈ {c, s, p}
(i) We say that Π2 is a B-consequence of Π1, in symbols Π1 |∼ω,B Π2, if for any B-formula ϕ,

Π2 |=ω ϕ⇒ Π1 |=ω ϕ.
(ii) We say that Π1 and Π2 are B-inseparable (for ω), in symbols Π1 ≡ω,B Π2, if Π1 |∼ω,B Π2

and Π2 |∼ω,B Π1.

Strong versions of B consequence and inseparability are obtained in the obvious way.

Definition 12 (strong B-consequence). For ω ∈ {c, s, p}:
• We write Π1 |∼s

ω,B Π2 (for strong B-consequence) if for any Π and B-formula ϕ, Π2 ∪
Π |=ω ϕ⇒ Π1 ∪Π |=ω ϕ.

• Similarly for strong B-inseparability: Π1 ≡s
ω,B Π2 if for any Π and B-formula ϕ, Π1 ∪

Π |∼ω,B Π2 and Π2 ∪Π |∼ω,B Π1.
• Relativised versions are easily obtained. e.g., strong B-consequence, relative to A, in

symbols Π1 |∼s,A
ω,B Π2, obtains when for any set Π of A formulas and B-formula ϕ, Π2∪Π |=ω

ϕ⇒ Π1 ∪Π |=ω ϕ.
• Similarly, strong inseparability relative to A is denoted by Π1 ≡s,A

ω,B Π2.

Our previous notion of relativised strong equivalence has a straightforward projective
version.

Definition 13. Let Π1 and Π2 be theories. Π1 and Π2 are strongly equivalent relative to A
projected onto B, in symbols Π1 ≡s,A

B Π2, if for any (empty or non-empty) set Σ of A formulas,
E(Π1 ∪ Σ)|B = E(Π2 ∪ Σ)|B.

Proposition 9. Two theories, Π1 and Π2, are strongly B-inseparable relative to A iff they are
strongly equivalent relative to A, projected onto B.

Proof. See Appendix A.

Algorithms 2022, 15, 201 10 of 20

Definition 14 (strong B-entailment). Let Π1 and Π2 be theories. We say that Π1 strongly
entails Π2 relative to A, projected onto B, in symbols Π1 |∼s,A

B Π2, if for any set Σ of A formulas,
E(Π1 ∪ Σ)|B ⊆ E(Π2 ∪ Σ)|B.

Strong B-entailment and (relativised) strong B-consequence coincide for ω = s.

Proposition 10. For any theories Π1, Π2:

Π1 |∼s,A
B Π2 ⇔ Π1 |∼s,A

s,B Π2 (3)

Proof. See Appendix A.

6.2. Forks and Projective B-Entailment for Theories

We have seen that there is good agreement between equivalence and entailment
concepts defined in terms of equilibrium models and their analogous counterparts couched
in terms of consequence or query answering. As expected, in the case of (projective) strong
entailment, the agreement is with the sceptical version of strong B-consequence. For the
standard model-theoretic concepts, many characterisation results are known (see Section 8).
In the case of projective entailment and equivalence, the main results are those of [3], which
apply to disjunctive logic programs (see also the recent work [28]). For the remainder of
the article, we consider projective concepts for programs and propositional theories and
also make use of the concept of fork.

In [20], the language of logic programs was extended to include a new construct ‘ | ’,
called fork, whose intuitive meaning is that the stable models of Π1 | Π2 correspond to
the union of stable models from Π1 and Π2 in any context Π′, that is SM[(Π1 | Π2) ∧Π′]
= SM[Π1 ∧Π′] ∪ SM[Π2 ∧Π′]. (Remark: SM[Π] denotes the collection of stable models of
Π. Because a program (or theory) is in our case finite, we can also regard it as a conjunction
of its formulas. This allows us to write expressions such as Π ∧ Γ or Π | Γ with the
obvious meaning). Using the construct of fork, [20] studied the property of projective
strong equivalence (PSE) for forks: two forks satisfy PSE for a vocabulary V iff they yield
the same stable models projected on V for any context over V. This property corresponds
to the one defined in Definition 13 for the case A = B. [20] also provides a semantic
characterisation of PSE that allows one to prove that it is always possible to forget (under
strong persistence) an auxiliary atom in a fork—something shown to be false in standard
HT. Now, we recall some definitions from [19,20].

Definition 15. Given T ⊆ At, a T-supportH is a set of subsets of T, that isH ⊆ 2T , satisfying
H 6= ∅ iff T ∈ H.

To increase the readability of examples, we can write a support as a sequence of
interpretations between square brackets. For instance, possible supports for T = {a, b} are
[{a, b} {a}], [{a, b} {b} ∅] or the empty support [].

It is well-known that, given a propositional formula ϕ, the set:

{H ⊆ T | 〈H, T〉 |= ϕ}

is always a T-support denoted by J ϕ KT . Moreover, in [3], it was shown that H ⊆ 2T is a
T-support iff there exists a propositional formula ϕ such thatH = J ϕ KT .

Algorithms 2022, 15, 201 11 of 20

Example 1.

J¬p→ q KT =


[] if T = ∅
[∅, {p}] if T = {p}
[{q}] if T = {q}
2T if T = {p, q}

J p ∨ q KT =


[] if T = ∅
[{p}] if T = {p}
[{q}] if T = {q}
[{p}, {q}, {p, q}] if T = {p, q}

If A ⊆ At, we say that a T-supportH is A-feasible iff there is no H ⊂ T inH satisfying
H ∩ A = T ∩ A. (Remark: If H = J ϕ KT , for some ϕ and T ⊆ V, suppose that H is V-
unfesasible. Then, there exists H ⊂ T with H ∩V = T ∩V = T such that H ∈ H. In this
case, T would never be a stable model of ϕ ∧ λ if λ ∈ L(V). Notice that 〈H, T〉 |= ϕ and
〈H, T〉 |= λ).

Lemma 3 (Lemma 7 from [20]). Given T ⊆ A ⊆ At and any T-support H, there is a proposi-
tional formula ϕT ∈ LA such that J ϕT KT = H and J ϕT KY = [] for any Y ⊆ A and Y 6= T.

Definition 16. Given T, A ⊆ At, we say that a T-supportH is A-respectful, if for any H, H′ ⊆ T,
with H ∩ A = H′ ∩ A, it follows that H ∈ H iff H′ ∈ H.

Notice that, when ϕ ∈ LA, then, for any T ⊆ At, J ϕ KT is A-respectful.

Lemma 4 (Lemma 13 from [20]). Let T, A ⊆ At be two sets of atoms and H,H′ be a pair of
T-supports. Then:

(i) (H∩H′)A ⊆ HA ∩H′A,
(ii) In addition, ifH is A-respectful, then

(H∩H′)A = HA ∩H′A.

We can define an order relation � between T-supports by saying that, given two
T-supports,H andH′,H � H′ iff eitherH = [] or [] 6= H′ ⊆ H. It is clear that [] and [T]
are the bottom and top elements, respectively, in the class of all T-supports. Going back to
Example 1, it is clear that J¬p→ q KT � J p ∨ q KT , for any T ⊆ {p, q}.
Given a T-supportH, we define its complementary supportH as:

H def
=

{
[] ifH = 2T

[T] ∪ {H ⊆ T | H /∈ H} otherwise

We also consider the ideal ofH:

↓H = {H′ | H′ � H} \ { [] }.

Note that the empty support [] is not included in the ideal, so ↓[] = ∅.
If ∆ is any set of supports:

↓∆ def
=

⋃
H∈∆

↓H = {H′ | H′ � H,H ∈ ∆ } \ { [] }

Definition 17. A T-view is a set of T-supports ∆ ⊆ HT that is �-closed, i.e., ↓∆ = ∆.

A fork is defined using the grammar:

F ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ (F | F)
∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣ ϕ ∨ ϕ
∣∣∣∣∣∣ ϕ→ F

where ϕ is a propositional formula and p ∈ At is an atom. For the definition of T-denotation
of a fork, we use a weaker version of the membership relation, ∈̂, defined as follows. Given
a T-view ∆, we writeH ∈̂ ∆ iffH ∈ ∆ or bothH = [] and ∆ = ∅.

Algorithms 2022, 15, 201 12 of 20

Definition 18 (T-denotation of a fork). Let At be a propositional signature and T ⊆ At a set of
atoms. The T-denotation of a fork F, written 〈〈 F 〉〉T , is a T-view, recursively defined as follows:

〈〈 ⊥ 〉〉T def
= ∅

〈〈 p 〉〉T def
= ↓J p KT for any atom p

〈〈 F ∧ G 〉〉T def
= ↓{H ∩H′ | H ∈ 〈〈 F 〉〉T andH′ ∈ 〈〈G 〉〉T }

〈〈 ϕ ∨ ψ 〉〉T def
= ↓{H ∪H′ | H ∈̂ 〈〈 ϕ 〉〉T andH′ ∈̂ 〈〈ψ 〉〉T }

〈〈 ϕ→ F 〉〉T def
=

{
{2T} if J ϕ KT = []

↓{ J ϕ KT ∪H | H ∈ 〈〈 F 〉〉T } otherwise

〈〈 F | G 〉〉T def
= 〈〈 F 〉〉T ∪ 〈〈G 〉〉T

Given A, B ⊆ At, the concept of (A, B)-certificate of a program Π is used in [3] to
characterise correspondence relations between disjunctive programs. Using denotations,
we can say that a pair (X , T), where X is a set of interpretations and T ⊆ A ∪ B, is an
(A, B)-certificate of a program Π iff there exists Z ⊆ At, such that:

• Z ∩ (A ∪ B) = T or Z ∩ A = T ∩ A and Z ∩ B = T ∩ B.
• J Π KZ 6= ∅ is A-feasible
• X = (J Π KZ

A) \ {Z ∩ A}
It is easy to prove that (minimal) (A, B)-certificates of a program Π correspond to

(maximal) elements of the view 〈〈Π 〉〉TA,B where T ⊆ (A ∪ B) and:

〈〈Π 〉〉TA,B
def
= ↓{ J Π KZ

A | s.t. Z ∩ (A ∪ B) = T and J Π KZ is A−feasible }

In [3], certificates were used to prove:

Lemma 5 (Lemma 1 from [3]). Given two disjunctive programs Π1 and Π2 and two sets A, B, it
holds that: Π1 |∼s,A

B Π2 iff, for each (A, B)-certificate (X , Y) of Π1, there exists an (A, B)-certificate
(X ′, Y) of Π2 with X ′ ⊆ X .

We can now extend this result to show that it holds for general programs and theories
and not only for disjunctive programs:

Theorem 1. Given two programs, Π1 and Π2, and two sets, A, B ⊆ At, we have that:

Π1 |∼s,A
B Π2 iff 〈〈Π1 〉〉TA,B ⊆ 〈〈Π2 〉〉TA,B, for any T ⊆ A ∪ B.

Consequently, we also have:

Theorem 2. Given two programs, Π1 and Π2, and two sets, A, B ⊆ At, it holds that:

Π ≡s,A
B Π2 iff 〈〈Π1 〉〉TA,B = 〈〈Π2 〉〉TA,B, for each T ⊆ A ∪ B

6.3. Projective B-Entailment for Forks

In order to extend Definition 14 and Theorem 1 to the case of forks, we need some
extra definitions and results.

Definition 19 (Definition 7 from [20]). Given a fork F, we say that Z ⊆ At is a stable model of
F (Z ∈ E(F)) iff 〈〈 F 〉〉Z = ↓[Z] or, equivalently, [Z] ∈ 〈〈 F 〉〉Z.

Definition 20. Let F and G be forks and A, B ⊆ At two sets. We say that F strongly entails
G relative to A projected onto B, in symbols F |∼s,A

B G, if for any fork L in LA, E(F ∧ L)|B ⊆
E(G ∧ L)|B.

Algorithms 2022, 15, 201 13 of 20

Definition 21. Let F and G be forks and A, B ⊆ At two sets. We say that F and G are strongly
equivalent relative to A projected onto B, in symbols F ≡s,A

B G, if for any fork L in LA,
E(F ∧ L)|B = E(G ∧ L)|B.

In [20], it was shown that, in case A = B, we have:

Theorem 3. Given F and G two forks and A ⊆ At, the following holds:

F |∼s,A
A G, iff, for any Y ⊆ A, 〈〈 F 〉〉YA ⊆ 〈〈G 〉〉YA

We recall from [20] that when F is a fork and Y ⊆ A ⊆ At:

〈〈 F 〉〉YA = ↓{HA | H ∈ 〈〈 F 〉〉Z s.t. Z ∩ A = Y and H is A-feasible }

In order to extend Theorem 3, suppose that F is a fork, A, B ⊆ At, and Y ⊆ A ∪ B. We
can define the A-view:

〈〈 F 〉〉YA,B
def
= ↓{HA | H ∈ 〈〈 F 〉〉Z s.t. Z ∩ (A ∪ B) = Y andHis A-feasible }

The following theorem generalizes Theorem 2 from [20] (which would be the case for
A = B) because

〈〈 F 〉〉YA,A = 〈〈 F 〉〉YA

Theorem 4. Given F and G two forks and sets A, B ⊆ At, the following holds:

F |∼s,A
B G iff 〈〈 F 〉〉YA,B ⊆ 〈〈G 〉〉YA,B, for any Y ⊆ A ∪ B

We will need the following auxiliary lemmas in order to prove the above theorem.

Lemma 6 (Lemma 6 from [20]). Let A, S ⊆ At be sets of atoms and let L be a fork such that
At(L) ⊆ A. Then, anyH maximal in 〈〈 L 〉〉S is A-respectful.

Lemma 7 (Lemma 18 from [20]). Let A, S, S′ ⊆ At be sets of atoms such that S ∩ A = S′ ∩ A
and let F be a fork such that At(F) ⊆ A. Then, for any �-maximal S-supportH ∈ 〈〈 F 〉〉S, there
existsH′ ∈ 〈〈 F 〉〉S′ such thatHA � H′A.

Proof of Theorem 4. See Appendix A.

Corollary 1. Given the two forks and sets of F and G and sets A, B ⊆ At, the following relation
holds:

F ≡s,A
B G iff 〈〈 F 〉〉YA,B = 〈〈G 〉〉YA,B, for any Y ⊆ A ∪ B

7. An Example Case: Reasoning about Policies

To illustrate briefly the practical relevance of our intertheory relations, let us consider
the case of rule-based policies. In particular, ASP is well suited to represent defaults,
typicalities, and exceptions that may be involved in policy formulations. One policy area
where logical approaches have been employed with success is in the domain of security
and access control. This area has been active for some time, as far back as [29]. Later
works include [30–34]. Bonatti [31] has surveyed the area and suggested several reasoning
problems that can be studied in languages such as Datalog and answer set programming.
We loosely follow his approach and extend it somewhat.

In the case of access control, let us suppose there is a logic program Π expressing the
basic policy in the form of a set of rules. Let us say it might express conditions for accessing
certain restricted Web pages in the University of South Wolverhampton. In addition, there

Algorithms 2022, 15, 201 14 of 20

are contexts C that express additional facts that hold at some times; perhaps this particular
Web area allows different types of access in different periods. Then, there are credentials D
that are also (atomic) facts. Let us say that, in general, only faculty members are allowed to
access the restricted area, so a credential might be f aculty_member(Pedro). Completing the
picture, there are authorisationsA, usually statements saying whether a subject can/cannot
perform the operation on the object—for instance, whether Pedro can access the Web area.
It may be 2- or 3-valued, depending on the context.

Using a logic-based language such as ASP allows us to analyse in a straightforward
manner different kinds of reasoning problems that may arise. As Bonatti observes, the
most basic problem is one of entailment. Is an authorisation ϕ granted by Π and C? This is
the case if Π ∪ C |= ϕ, where |= is a suitable nonmonotonic inference relation, such as the
relation |=s associated with stable model semantics.

The second problem is in fact an abductive, satisfaction problem. Roughly speaking,
given an authorisation request, the problem is to deliver a set of conditions (credentials)
that are sufficient to answer the authorisation positively, if such a set exists. Thus, given a
set D of digital credentials, the abduction problem is to find a subset D′ ⊆ D of credentials
for a given authorisation ϕ and context C, such that

Π ∪D′ ∪ C |=s ϕ

A solution to the abduction problem can provide a suitable explanation. Suppose
that Pedro has only recently joined the faculty but is not yet registered in the appropriate
database. He is denied access with the explanation that a registering process is required
first, i.e., he is informed of a missing credential that will grant him access.

Third, there is the conservative extension problem. Suppose that conditions have
changed and now a new type of user may be admitted, e.g., some students can now
access the area providing they belong to a specific committee. The program Π is enlarged
to a new program, Π′, specifying the new conditions. The context and the set of credentials
is also enlarged. However, we want to be sure that all authorisations that were valid
previously continue to hold in the new situation and also that no loopholes in the system
have been created that would allow unintended authorisations that were previously barred.
In other words, the new program conservatively extends the previous one.

Fourth, there is a related problem of relative strength. We can say that in a given context
C, a policy Π is at least as strong as Π′ if every authorisation request accepted by Π is also
accepted by Π′. So, if Π′ rejects authorisation A, then so does Π. For simplicity, let us
suppress contexts for the moment and consider a policy framework P to be a triple (Π,D,A),
where Π is a theory, possibly in the form of a set of program rules in language L, D is a
set of credentials, comprising certain atomic sentences of L, and A are authorisations. Let
P1 = (Π1,D,A), and P2 = (Π2,D,A) be policy frameworks. Then, we can say that P1 is
at least as strong as P2 if for any ϕ ∈ A, and D ⊆ D:

Π2 ∪ D 6|=s A⇒ Π1 ∪ D 6|=s A (4)

Fifth, there is the problem of policy equivalence which may come in different degrees.
Two policies that admit exactly the same authorisations and rejections in a given context
can be said to be equivalent in that context. A stronger property is that they are equivalent
in all contexts. Furthermore, a still stronger property is that they remain equivalent when
they are extended by adding new policy rules.

Inter-Policy Relations

ASP provides a suitable framework for studying these kinds of reasoning problems.
Aside from being able to deal with issues of entailment, abduction, consistency, and
completeness, the logical approach is well adapted to handle the inter-policy relations
described above. Weak and strong forms of entailment between programs are relevant for
capturing the relation express by (4). For example, a sufficient condition for the relation

Algorithms 2022, 15, 201 15 of 20

to obtain is that for any D ⊆ D, Π2 ∪ D weakly entails Π1 ∪ D in the sense of Definition 9.
This also means that the relation holds if Π2 strongly entails Π1. However, to characterise
this notion precisely we can use the notion of relativised uniform entailment and consider
projections onto the authorisations A.

We can say that two access policies covering the same credentials and authorisations,
P1 = (Π1,D,A), and P2 = (Π2,D,A), are equivalent if they generate the same authori-
sations, and strongly equivalent if they are equivalent when expanded by any new set of
policy rules Π. If Π1 and Π2 are relativised uniform equivalent with respect to D, then P1
and P2 are strongly equivalent. To consider the converse relation, because we only require
policies to deliver the same authorisations, they only need to be equivalent when projected
onto A. So, in this case we are interested in uniform or relativised uniform equivalence
with projection.

8. Conclusions

We defined a selection of correspondence relations between equilibrium theories and
answer set programs. They are based on the inferential capabilities of theories, i.e., how
they answer queries and derive formulas, rather than on their sets of stable models. This
is important for many applications of ASP. In particular, by including relativised and
projective correspondences, we cover many cases that arise in practical applications of ASP.
Not only is theory equivalence of interest but also entailment (and consequence) relations
between theories.

We have shown that these new relations, including both equivalence and consequence
relations, are actually for the most part equivalent to the standard types of correspondence
defined in terms of stable and equilibrium models that have been studied in the past.
Finite theories and programs that are not equivalent or not in an entailment relation can be
separated by queries of the following kind: conjunctions of literals in the case of credulous
inference and disjunctions of literals in the case of sceptical inference.

What this implies is that the large body of known results that characterise intertheory
relations in ASP, as well as the accompanying techniques for deciding whether these rela-
tions obtain in practice, are directly applicable to the types of relations defined here. These
results include the original characterisation of strong equivalence for programs and theories
in the logic HT [2] and the studies of uniform equivalence in terms of HT models [4,27]
and in terms of HT countermodels in [26]. Relativised equivalence was treated in [5] and
more general correspondences including projection in [3] and [28]. Woltran’s work in [5]
was extended in [35] to cover general propositional theories. For an extensive bibliography
of further work on program correspondences, see especially [28].

In Section 6, we extended previous work on projective relations [3,28] in two respects.
First, building on [20], we applied the notions of T-support and T-views to give alternative
characterisations of projective entailment and equivalence that are now extended to general
propositional theories in equilibrium logic. Secondly, we extended previous work on forks
to yield a more general characterisation of projective entailment between forks.

There are many open challenges left for the future. For example, it remains to be
investigated how these new intertheory relations generalise to the case of first-order theories
and programs with variables. Already strong equivalence for first-order theories was
characterised in a quantified version of HT in [36] and uniform equivalence was treated
in [26]. More recently, [37] studied relativised and projective versions of equivalence for
non-ground programs.

Another avenue for study would be to extend the present framework to accommodate
infinite languages and theories. In the case of credulous consequence, for instance, it
seems that finite queries will separate non-equivalent theories in many cases. Consider the
formula

∧
ϕi in the proof of Lemma 1(i). This formula would become an infinite conjunction

in the case of infinite theories, but for each Mi ∈ E(Π2), there is some li from
∧

ϕi that
is false in Mi. So, if the set of equilibrium models of Π2 is finite, we can build a finite

Algorithms 2022, 15, 201 16 of 20

conjunction of literals false in each equilibrium model Mi of Π2 but true in an equilibrium
model M of Π1. So, there is a finite query that can separate the two theories.

Author Contributions: J.F., D.P., C.V. and S.W. have contributed substantially and in equal measure
to the work reported here. This applies in particular to the conceptualisation, methodology, formal
analysis, and writing. The final editing was supervised by D.P. All authors have read and agreed to
the published version of the manuscript.

Funding: This research has received partial support from the European Cooperation in Science &
Technology (COST) Action CA17124. The third author acknowledges the funding of project PID 2020-
116201GB-I00 (Ministerio de Ciencia e Innovación, Spain) and also the financial support supplied by
the Consellería de Educación, Universidade e Formación Profesional (accreditations GPC ED431B
2022/23 and 2019–2022 ED431G-2019/01). The last author has been supported by the Austrian
Science Fund (FWF) grant Y698.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful for the advice and suggestions made by the anonymous referees
of this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ASP Answer Set Programming
HT the logic of here-and-there
PSE projective strong equivalence

Appendix A. Proofs of Results

Proof of Proposition 9. (Right to left). Clearly, if, for any set of A formulas Π, E(Π1 ∪
Π)|B = E(Π2 ∪Π)|B, then these theories answer all B-queries in the same way and so are
strongly inseparable.

(Left to right). Suppose that for some Π, E(Π1 ∪Π)|B 6= E(Π2 ∪Π)|B. Then, we can
apply Lemma 1(i) to some M|B, say, in E(Π1 ∪Π)|B \ E(Π2 ∪Π)|B and build a B-sentence∧

i ϕi that is true in M|B but false in all models in E(Π2 ∪Π)|B. Note that the formulas ϕi
are built as in Lemma 1(i) where now U = B. Likewise for Lemma 1(ii). So, the theories are
not strongly B, ω inseparable relative to A, for ω ∈ {c, s}.

Proof of Proposition 10. (Right to left). Suppose that Π1 |∼s,A
B Π2 does not hold and choose

a model M ∈ E(Π1 ∪ Σ)|B \ E(Π2 ∪Π)|B. Apply Lemma 1(ii), setting U = B, to obtain a
B-formula ψ satisfied by all models in E(Π2 ∪ Σ)|B but not in M. It follows that

Π1 6 |∼s,A
s,B Π2

The following lemma will be useful later.

Lemma A1. Given a program Π and sets L, Z ⊆ At, such that Z |= Π, for any Σ ∈ L the
following assertions are equivalent:

1. Z ∈ E(Π ∪ Σ)
2. J Π KZ is A-feasible and

J Π KZ
A ∩ J Σ KZ∩A = [Z ∩ A].

Algorithms 2022, 15, 201 17 of 20

Proof. 1.⇒ 2.
Take Z ∈ E(Π ∪ Σ) and suppose that 〈H, Z〉 |= Π for some H ⊆ Z such that H ∩ A =

Z ∩ A. Because

〈H, Z〉 |= Σ iff 〈H ∩ A, Z ∩ A〉 |= Σ iff 〈Z ∩ A, Z ∩ A〉 |= Σ iff 〈Z, Z〉 |= Σ

we have that 〈H, Z〉 |= Π ∪ Σ which implies that H = Z. Moreover, if X ⊆ Z satisfies
〈X, Z〉 |= Π and 〈X ∩ A, Z ∩ A〉 |= Σ, then 〈X, Z〉 |= Π ∪ Σ and X = Z. Consequently,
X ∩ A = Z ∩ A.

2.⇒ 1.
Suppose that 〈H, Z〉 |= Π ∪ Σ for some H ⊆ Z. Then, 〈H ∩ A, Z ∩ A〉 |= Σ and

H ∩ A ∈ J Π KZ
A ∩ J Σ KZ∩A. Consequently, H ∩ A = Z ∩ A and H = Z because J Π KZ is

A-feasible.

Proof of Theorem 1. (Right to left) Suppose that Z̃ = Z ∩ B ∈ E(Π1 ∪ Σ)|B for some
Σ ∈ LA and Z ∈ E(Π1 ∪ Σ). By Lemma A1, we know that J Π1 KZ is A-feasible and

J Π1 KZ
A ∩ J Σ KZ∩A = [Z ∩ A].

Take T = Z ∩ (A ∪ B), then J Π1 KZ
A ∈ 〈〈Π1 〉〉TA,B ⊆ 〈〈Π2 〉〉TA,B.

It follows that there is some Z2 ⊆ At such that T = Z2 ∩ (A ∪ B) (which implies that
Z2 ∩ A = T ∩ A = Z ∩ A and Z2 ∩ B = T ∩ B = Z ∩ B = Z̃) being J Π2 KZ2 A-feasible and
J Π2 KZ2

A ⊆ J Π1 KZ
A (or J Π1 KZ

A � J Π2 KZ2
A). Notice that Z2 |= Σ because Z2 ∩ A = Z ∩ A and

Z |= Σ. Moreover:

J Π2 KZ2
A ∩ J Σ KZ2∩A ⊆ J Π1 KZ

A ∩ J Σ KZ∩A = [Z ∩ A] = [Z2 ∩ A]

This implies that Z2 ∈ E(Π2 ∪ Σ) and Z̃ = Z2 ∩ B ∈ E(Π2 ∪ Σ)|B.
(Left to right)
Take T ⊆ A ∪ B and J Π1 KZ

A ∈ 〈〈Π1 〉〉TA,B, for some Z ∩ (A ∪ B) = T such that
[] 6= J Π1 KZ is A-feasible. Let us denote by

D(Z) = {Z′ ⊆ At | Z′ ∩ (A ∪ B) = Z ∩ (A ∪ B) and [] 6= J Π2 KZ′ is A‖ − ‖ f easible}

Take

S = {(X′, Z′) | Z′ ∈ D(Z) and X′ ∩ A ∈ J Π2 KZ′
A ∩ J Π1 KZ

A} ∪ {(X, Z) | X ∩ A ∈ J Π1 KZ
A}

Notice that (Z, Z) ∈ S and (X′, Z′) ∈ S implies (Z′, Z′) ∈ S . Then, S is a total-closed
set of interpretations (A set S of HT interpretations is total-closed if for any 〈H, T〉 ∈ S ,
〈T, T〉 ∈ S). Denote by Π′ the program with signature in A such that models of Π′

correspond to interpretations in S|A.
First of all, we have that Z ∈ E(Π1∪Π′) because (Z∩ A, Z∩ A) ∈ S|A, so Z∩ A |= Π′

or Z |= Π′. Moreover, take X ⊆ Z such that 〈X, Z〉 |= Π1 ∪Π′. Then, 〈X ∩ A, Z ∩ A〉 |= Π′

so X ∩ A ∈ J Π1 KZ
A ∩ J Π1 KZ

A which implies that X ∩ A = Z ∩ A and X = Z because J Π1 KZ

is A-feasible.
Now T ∩ B = Z ∩ B ∈ E(Π1 ∪Π′)|B ⊆ E(Π2 ∪Π′)|B, so there exists Z̃ ∈ E(Π2 ∪Π′)

such that Z̃ ∩ B = Z ∩ B. Because Z̃ |= Π′, we know that (Z̃, Z̃) ∈ S so Z̃ ∈ D(Z). We are
going to show that J Π2 KZ̃

A ⊆ J Π1 KZ
A or equivalently J Π1 KZ

A � J Π2 KZ̃
A ∈ 〈〈Π2 〉〉TA,B. On the

contrary, suppose that X′ ∩ A 6∈ J Π1 KZ
A with X′ ∈ J Π2 KZ̃. Then ,X′ ∩ A ∈ J Π2 KZ̃

A ∩ J Π1 KZ
A

so (X′ ∩ A, Z̃∩ A) ∈ S|A. Because: 〈X′, Z̃〉 |= Π2 ∪Π′, we can deduce that X′ = Z̃ because
Z̃ ∈ E(Π2 ∪Π′). Finally, X′ ∩ A = Z̃ ∩ A = Z ∩ A ∈ J Π1 KZ

A.

Proof of Theorem 4. (Left to right)
Take Y ⊆ A∪ B andHA ∈ 〈〈 F 〉〉YA,B, whereH ∈ 〈〈 F 〉〉Z is A-feasible and Z∩ (A∪ B) =

Y.

Algorithms 2022, 15, 201 18 of 20

We will denote by

D(Y) = {Z′ ⊆ At | Z′ ∩ (A ∪ B) = Y}.

Let us consider the following Y ∩ A-supportH0:

H0 = HA ∩
⋃
{H′A | H′ ∈ 〈〈G 〉〉Z′ withH′A− feasible and Z′ ∈ D(Y)}

By Lemma 3, we know that there exists a formula ϕ ∈ LA such that J ϕ KY∩A = H0 and
J ϕ KT = [], for any T ⊆ A with T 6= Y ∩ A.

Let us prove that Z ∈ E(F ∧ ϕ) by showing that:

[Z] = H∩ J ϕ KZ ∈ 〈〈 F ∧ ϕ 〉〉Z.

Suppose that H ∈ H ∩ J ϕ KZ. Then:

H ∩ A ∈ HA ∩ J ϕ KZ
A implies

H ∩ A ∈ HA ∩H0 implies
H ∩ A ∈ HA ∩HA implies
H ∩ A = Z ∩ A implies
H = Z

Consequently Y ∩ B = Z ∩ B ∈ E(F ∧ ϕ)|B ⊆ E(G ∧ ϕ)|B, so there exists Z̃ ∈ E(G ∧ ϕ)

verifying that Z ∩ B = Z̃ ∩ B. Notice that [Z̃] ∈ 〈〈G ∧ ϕ 〉〉Z̃, so

[Z̃] = H1 ∩ J ϕ KZ̃

for some Z̃-supportH1 ∈ 〈〈G 〉〉Z̃. This implies that

Z̃ ∩ A ∈ (H1)A ∩ J ϕ KZ̃
A ⊆ J ϕ KZ̃∩A.

Then, Z̃ ∩ A = Y ∩ A and so Z̃ ∈ D(Y). Now we will show thatH1 is A-feasible. Suppose
that H ∈ H1 satisfies H ∩ A = Z̃ ∩ A. Then, H ∈ J ϕ KZ̃ because ϕ ∈ LA and Z̃ ∩ A ∈
J ϕ KZ̃

A = J ϕ KZ̃∩A. Then, H ∈ H1 ∩ J ϕ KZ̃ = [Z̃].
Finally, suppose that (H1)A 6⊆ HA, so there exists H ∈ H1 such that H ∩ A 6= Z ∩ A

and H ∩ A ∈ (H1)A ∩HA ⊆ H0. This would imply that H ∈ H1 ∩ J ϕ KZ̃, so H = Z̃ which
is a contradiction.

(Right to left)
Suppose that T ∈ E(F ∧ L)|B for some fork L ∈ LA. Then, T = Z ∩ B with Z ∈

E(F ∧ L). Take Y := Z ∩ (A ∪ B). Because:

[Z] = H∩H′

for some H in 〈〈 F 〉〉Z and H′ ∈ 〈〈 L 〉〉Z, which we can suppose maximal in 〈〈 L 〉〉Z and
then A-respectful by Lemma 6, we can say thatH is A-feasible because if H ∈ H satisfies
H∩ A = Z∩ A; then, H ∈ H′ ∩H and H = Z. This implies thatHA ∈ 〈〈 F 〉〉YA,B ⊆ 〈〈G 〉〉YA,B,

so there exists Z′ ∈ D(Y) and H1 ∈ 〈〈G 〉〉Z′ being A-feasible such that HA � (H1)A or
(H1)A ⊆ HA. We can apply Lemma 7 to deduce that there exists H′′ ∈ 〈〈 L 〉〉Z′ such that
H′A � H′′A.

In order to finish the proof, we only have to show that Z′ ∈ E(G ∧ L) or, equivalently
that:

[Z′] = H1 ∩H′′ ∈ 〈〈G ∧ L 〉〉Z′

Take H ∈ H1 ∩H′′. Then:

Algorithms 2022, 15, 201 19 of 20

H ∩ A ∈ (H1 ∩H′′)A implies
H ∩ A ∈ (H1)A ∩ (H′′)A implies
H ∩ A ∈ HA ∩ (H′)A implies
H ∩ A ∈ (H∩H′)A implies
H ∩ A = Z ∩ A = Z′ ∩ A implies
H = Z′

Notice that we used Lemma 6.

References
1. Pearce, D. Equilibrium logic. Ann. Math. Artif. Intell. 2006, 47, 3–41. [CrossRef]
2. Lifschitz, V.; Pearce, D.; Valverde, A. Strongly equivalent logic programs. ACM Trans. Comput. Log. 2001, 2, 526–541. [CrossRef]
3. Eiter, T.; Tompits, H.; Woltran, S. On solution correspondences in answer-set programming. In Proceedings of the Nineteenth

International Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh, UK, 30 July–5 August 2005; Kaelbling, L.P., Saffiotti,
A., Eds.; Professional Book Center: London, UK, 2005; pp. 97–102.

4. Eiter, T.; Fink, M. Uniform equivalence of logic programs under the stable model semantics. In Logic Programming, Proceedings of
the 19th International Conference, ICLP 2003, Mumbai, India, 9–13. December 2003; Palamidessi, C., Ed.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2916, pp. 224–238.

5. Woltran, S. Characterizations for relativized notions of equivalence in answer set programming. In Logics in Artificial Intelligence,
Proceedings of the 9th European Conference, JELIA 2004, Lisbon, Portugal, 27–30 September 2004; Alferes, J.J., Leite, J.A., Eds.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3229, pp. 161–173.

6. Maher, M. Equivalences of Logic Programs. In Foundations of Deductive Databases and Logic Programming; Minker, J., Ed.; Morgan
Kaufmann: Burlington, MA, UDA, 1988; pp. 627–658.

7. Sagiv, Y. Optimising DATALOG Programs. In Foundations of Deductive Databases and Logic Programming; Minker, J., Ed.; Morgan
Kaufmann: Burlington, MA, UDA, 1988; pp. 659–698

8. Truszczynski, M. Strong and uniform equivalence of nonmonotonic theories—An algebraic approach. Ann. Math. Artif. Intell.
2006, 48, 245–265. [CrossRef]

9. Turner, H. Strong equivalence for causal theories. In Proceedings of the 7th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’04), Fort Lauderdale, FL, USA, 6–8 January 2004; Lifschitz, V., Niemelä, I., Eds.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2923, pp. 289–301.

10. Baumann, R. Normal and strong expansion equivalence for argumentation frameworks. Artif. Intell. 2012, 193, 18–44. [CrossRef]
11. Oikarinen, E.; Woltran, S. Characterizing strong equivalence for argumentation frameworks. Artif. Intell. 2011, 175, 1985–2009.

[CrossRef]
12. Bernreiter, M.; Maly, J.; Woltran, S. Choice logics and their computational properties. In Proceedings of the Thirtieth International

Joint Conference on Artificial Intelligence, Virtual, 19–27 August 2021; pp. 1794–1800.
13. Faber, W.; Konczak, K. Strong equivalence for logic programs with preferences. In Proceedings of the Nineteenth International

Joint Conference on Artificial Intelligence, Edinburgh, UK, 30 July–5 August 2005; Professional Book Center: London, UK, 2005;
pp. 430–435.

14. Faber, W.; Truszczynski, M.; Woltran, S. Abstract preference frameworks—A unifying perspective on separability and strong
equivalence. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July
2013; des Jardins, M., Littman, M.L., Eds.; AAAI Press: Palo Alto, CA, USA, 2013; pp. 297–303.

15. Eiter, T.; Fink, M.; Tompits, H.; Woltran, S. Simplifying logic programs under uniform and strong equivalence. In Proceedings
of the LPNMR 2004, Fort Lauderdale, FL, USA, 6–8 January 2004; Lifschitz, V., Niemelä, I. Eds.; Springer: Berlin/Heidelberg,
Germany, 2004; Volume 2923, pp. 87–99.

16. Gonçalves, R.; Knorr, M.; Leite, J. You can’t always forget what you want: On the limits of forgetting in answer set programming.
In Proceedings of the ECAI 2016, The Hague, The Netherlands, 29 August–2 September 2016; Fox, M.S., Kaminka, G.A., Eds.; IOS
Press: Amsterdam, The Netherlands, 2016.

17. Shmueli, O. Decidability and Expressiveness Aspects of Logic Queries. In Proceedings of the 6th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’87), San Diego, CA, USA, 23–25 March 1987; ACM Press: New York, NY,
USA, 1987; pp. 237–249.

18. Botoeva, E.; Lutz, C.; Ryzhikov, V.; Wolter, F.; Zakharyaschev, M. Query inseparability for ALC ontologies. Artif. Intell. 2019, 272,
1–51. [CrossRef]

19. Aguado, F.; Cabalar, P.; Pearce, D.; Pérez, G.; Vidal, C. A denotational semantics for equilibrium logic. Theory Pract. Log. Program.
2015, 15, 620–634. [CrossRef]

20. Aguado, F.; Cabalar, P.; Fandinno, J.; Pearce, D.; Pérez, G.; Vidal, C. Forgetting auxiliary atoms in forks. Artif. Intell. 2019, 275,
575–601. [CrossRef]

21. Heyting, A. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu
Berlin 1930, 16, 42–56.

22. Cabalar, P.; Pearce, D.; Valverde, A. Stable reasoning. J. Appl. Non Class. Logics 2017, 27, 238–254. [CrossRef]

http://doi.org/10.1007/s10472-006-9028-z
http://dx.doi.org/10.1145/383779.383783
http://dx.doi.org/10.1007/s10472-007-9049-2
http://dx.doi.org/10.1016/j.artint.2012.08.004
http://dx.doi.org/10.1016/j.artint.2011.06.003
http://dx.doi.org/10.1016/j.artint.2018.09.003
http://dx.doi.org/10.1017/S1471068415000277
http://dx.doi.org/10.1016/j.artint.2019.07.005
http://dx.doi.org/10.1080/11663081.2018.1439358

Algorithms 2022, 15, 201 20 of 20

23. van Dalen, D. Logic and Structure; Springer: Berlin/Heidelberg, Germany, 2013.
24. Pearce, D. A new logical characterisation of stable models and answer sets. In Non-Monotonic Extensions of Logic Programming,

Proceedings of the NMELP ’96, Bad Honnef, Germany, 5–6 September 1996; Dix, J., Pereira, L.M., Przymusinski, T.C., Eds.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1216, pp. 57–70.

25. Gelfond, M.; Lifschitz, V. The stable models semantics for logic programming. In Proceedings of the 5th International Conference
on Logic Programming, Seattle, WA, USA, 15–19 August 1988; Kowalski, R., Bowen, A., Eds.; MIT Press: Cambridge, MA, USA,
1988; pp. 1070–1108.

26. Fink, M. Equivalences in answer-set programming by countermodels in the logic of here-and-there. In Logic Programming,
Proceedings of the 24th International Conference, ICLP 2008, Udine, Italy, 9–13 December 2008; Banda, M.G.d., Pontelli, E., Eds.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5366, pp. 99–113.

27. Pearce, D.; Valverde, A. Uniform equivalence for equilibrium logic and logic programs. In Logic Programming and Nonmonotonic
Reasoning, Proceedings of the 7th International Conference, LPNMR 2004, Fort Lauderdale, FL, USA, 6–8 January 2004; Lifschitz, V.,
Niemelä, I., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2923, pp. 194–206.

28. Oetsch, J.; Seidl, M.; Tompits, H.; Woltran, S. Beyond uniform equivalence between answer-set programs. ACM Trans. Comput.
Log. 2021, 22, 2:1–2:46. [CrossRef]

29. Woo, T.Y.C.; Lam, S.S. Authorization in distributed systems: A new approach. J. Comput. Secur. 1993, 2, 107–136. [CrossRef]
30. Bonatti, P.A.; Samarati, P. Logics for authorization and security. In Logics for Emerging Applications of Databases; Chomicki, J.,

Meyden, R.V., Saake, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 277–323.
31. Bonatti, P.A. Datalog for security, privacy and trust. In Datalog Reloaded; de Moor, O., Gottlob, G., Furche, T., Sellers, A., Eds.;

Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–36.
32. Bonatti, P.A. Logic-based authorization languages. In Encyclopedia of Cryptography and Security, 2nd ed.; Henk, C., van Tilborg, A.,

Jajodia, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 734– 736.
33. Craven, R.; Lobo, J.; Ma, J.; Russo, A.; Lupu, E.C.; Bandara, A.K. Expressive policy analysis with enhanced system dynamicity. In

Proceedings of the 2009 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2009, Sydney,
Australia, 10–12 March 2009; Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V., Eds.; ACM: New York, NY,
USA, 2009; pp. 239–250.

34. Gelfond, M.; Lobo, J. Authorization and obligation policies in dynamic systems. In Logic Programming, Proceedings of the 24th
International Conference, ICLP 2008, Udine, Italy, 9–13 December2008, Proceedings; Banda, M.G.d., Pontelli, E., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5366, pp. 22–36.

35. Pearce, D.; Tompits, H.; Woltran, S. Relativised equivalence in equilibrium logic and its applications to prediction and explanation:
Preliminary report. In Proceedings of the LPNMR’07 Workshop on Correspondence and Equivalence for Nonmonotonic Theories
(CENT2007), Tempe, AZ, USA, 14 May 2007; Volume 265.

36. Lifschitz, V.; Pearce, D.; Valverde, A. A characterization of strong equivalence for logic programs with variables. In Logic
Programming and Nonmonotonic Reasoning, Proceedings of the 9th International Conference, LPNMR 2007, Tempe, AZ, USA, 15–17 May
2007; Baral, C., Brewka, G., Schlipf, J.S., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007;
Volume 4483, pp. 188–200.

37. Geibinger, T.; Tompits, H. Characterising relativised strong equivalence with projection for non-ground answer-set programs.
In Logics in Artificial Intelligence, Proceedings of the 16th European Conference, JELIA 2019, Rende, Italy, 7–11 May 2019; Calimeri, F.,
Leone, N., Manna, M., Eds.; of Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11468,
pp. 542–558.

http://dx.doi.org/10.1145/3422361
http://dx.doi.org/10.3233/JCS-1993-22-304

	Introduction
	Logical Preliminaries and Basic Definitions
	Equivalence Notions
	Relativised Equivalence
	Entailment Relations
	Projective Concepts
	Basic Definitions
	Forks and Projective B-Entailment for Theories
	Projective B-Entailment for Forks

	An Example Case: Reasoning about Policies
	Conclusions
	Appendix A
	References

