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Abstract: Video streaming has become a major usage scenario for the Internet. The growing popular-
ity of new applications, such as 4K and 360-degree videos, mandates that network resources must be
carefully apportioned among different users in order to achieve the optimal Quality of Experience
(QoE) and fairness objectives. This results in a challenging online optimization problem, as networks
grow increasingly complex and the relevant QoE objectives are often nonlinear functions. Recently,
data-driven approaches, deep Reinforcement Learning (RL) in particular, have been successfully
applied to network optimization problems by modeling them as Markov decision processes. How-
ever, existing RL algorithms involving multiple agents fail to address nonlinear objective functions
on different agents’ rewards. To this end, we leverage MAPG-finite, a policy gradient algorithm
designed for multi-agent learning problems with nonlinear objectives. It allows us to optimize
bandwidth distributions among multiple agents and to maximize QoE and fairness objectives on
video streaming rewards. Implementing the proposed algorithm, we compare the MAPG-finite
strategy with a number of baselines, including static, adaptive, and single-agent learning policies.
The numerical results show that MAPG-finite significantly outperforms the baseline strategies with
respect to different objective functions and in various settings, including both constant and adaptive
bitrate videos. Specifically, our MAPG-finite algorithm maximizes QoE by 15.27% and maximizes
fairness by 22.47% compared to the standard SARSA algorithm for a 2000 KB/s link.

Keywords: video streaming; resource allocation; reinforcement learning; policy gradient

1. Introduction

Video streaming has become a major usage scenario for Internet users, accounting
for over 60% of downstream traffic on the Internet [1]. The growing popularity of new
applications and video formats, such as 4K and 360-degree videos, mandates that network
resources must be apportioned among different users in an optimal and fair manner in order
to deliver a satisfactory Quality of Experience (QoE). There are many factors impacting the
quality of experience of the video streaming service; for example, the peak signal-to-noise
ratio (PSNR) of the received video [2] or the structural similarity of the image (SSIM) [3].
In particular, the stall time during streaming is a critical performance objective, especially
for services that require a low response time and highly rely on customer experience, e.g.,
online video streaming and autonomous vehicle networks [4]. Further, the streaming
device impacts the bitrate and, in turn, affects the QoE parameter (see [5] and the citations
within). The online optimization of stall time and QoE in a dynamic network environment
is a very challenging problem that can be analyzed as an optimization problem [6] or
learning problem [7]. Traditional optimization-based approaches often rely on precise
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models to crystalize the network system and the underlying optimization problems. For
instance, the authors in [8] construct the QoE-aware utility functions using a two-term
power series model, while the authors in [9] leverage both “bSoft probe” and “Demokritos
probe” to model the QoE measurement by analyzing the weight factors and exponents
of all video-streaming service parameters, as well as quantifying the “Decodable Frame
Rate” of three different types of frames. However, these model-based approaches cannot
solve the online QoE optimization with incomplete or little knowledge about future system
dynamics.

Recently, Reinforcement Learning (RL) has been proven as an effective strategy in
solving many online network optimization problems that may not yield a straightforward
analytical structure, such as Wireless Sensor Network (WSN) routing [10], vehicle net-
works spectrum sharing [11], data caching [7], and network service placement [12]. In
particular, deep RL employs neural networks to estimate a decision-making policy, which
self-improves based on collected experiential data to maximize the rewards. Compared
with traditional model-based decision-making strategies, deep RL has a number of benefits:
(i) it does not require a complete mathematical model or analytical formulation that may
not be available in many complex practical problems; (ii) the use of deep neural networks
as function approximators makes the RL algorithms easily extensible to problems with
large state spaces; and (iii) it is capable of achieving a fast convergence in online decision
making and dynamic environments that evolve over time.

The goal of this paper is to develop a new family of multi-agent reinforcement learning
algorithms to apportion download bandwidth on the fly among different users and to
optimize QoE and fairness objectives in video streaming. We note that existing RL algo-
rithms often focus on maximizing the sum of future (discounted) rewards across all agents
and fail to address inter-agent utility optimization, aiming at balancing the discounted
reward received by each individual agent. Such inter-agent utility optimizations are widely
considered in video streaming problems, e.g., to optimize the fairness of network resource
allocation and to maximize a non-linear QoE function of individual agent’s performance
metrics. More precisely, in a dynamic setting, the problem being solved must be modeled
as an MDP, where agents take actions based on some policy π and observed system states,
causing the system to transition to a new state. A reward rk is fetched for each agent k.
The transition probability to the new state is dependent only on the previous state and
the action taken in the previous state. RL algorithms aim to find an optimal policy π to
maximize the sum of (discounted) rewards ∑∞

t=1 γt ∑k rk(t) for all users. However, when
QoE and fairness objectives are concerned, a nonlinear function f , such as the fairness
utility [13] and sigmoid QoE function reported by [14], must be applied to the rewards
received by different agents, resulting in the optimization of a new objective f (r̄1, r̄2, . . .),
where r̄k = 1

T ∑T
t=1 γtrk(t) is the average discounted reward for each agent k in a finite

time T. It is easy to see that such nonlinear functions will potentially violate the memoryless
rule of MDP which is required for RL since the optimization objective now depends on
all past rewards/states. In this paper, we will develop a new family of multi-agent rein-
forcement learning algorithms to optimize such nonlinear objectives for QoE and fairness
maximization in video streaming.

We propose Multi-agent Policy Gradient for Finite Time Horizon (MAPG-finite) for the
optimization of nonlinear objective functions of cumulative rewards of multiple agents with
a finite time horizon. We employ MAPG-finite in online video streaming with the goal of
maximizing QoE and fairness objectives by adjusting the download bandwidth distribution.
To this end, we quantify the stall time for online video streaming with multiple agents
under a shared network link and dynamic video switching by the agents. At the end of
the time horizon, a nonlinear function f (·) of the agents’ individual cumulative rewards is
calculated. The choice of f (·) is able to capture different notions of fairness—e.g., the well-
known α-fairness utility [13] that incorporates proportional fairness and max–min fairness
as special cases, and the sigmoid-like QoE function reported by [14] that indicates that users
with a mediocre waiting time tend to be more sensitive than the rest—and thus balances
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the performance received by different agents in online video streaming. We leverage the
RL algorithm proposed in [15] to develop a model-free multi-agent reinforcement learning
algorithm to cope with the inter-agent fairness reward for multiple users. In particular, this
RL algorithm modifies the traditional policy gradient to find a proper ascending direction
for the nonlinear objective function using random sampling. We improve the convergence
of the proposed algorithm to at least a local optimal of the target optimization problem.
The proposed multi-agent algorithm is model-free and shown to efficiently solve the QoE
and fairness optimization in online video streaming.

To demonstrate the challenge associated with optimizing nonlinear objective functions,
consider the example shown in Figure 1. Two users, A and B, share a download link for
video streaming. Due to the bandwidth constraint, the link is only able to stream one
high-definition (HD) video and one low-definition (LD) video at a time. In each time slot
t, the two users’ QoE, denoted by rA(t) and rB(t), are measured by a simple policy that
multiplies the quality of the content (from one to five stars) and the resolution of the video
(1 for LD and 2 for HD). The service provider is interested in optimizing a logarithmic utility
of the users’ aggregate QoE, i.e., u = ln(∑t rA(t)) + ln(∑t rB(t)) (which corresponds to the
notion of maximum proportional fairness [13,16]), for the two time slots t = {1, 2}. It is
easy to see that, in Case 1, user A received rA(1) = 6 in time slot 1 and user B rB(1) = 4.
If we stream HD to user A and LD to user B in the next time slot, then the total received
utility becomes ln(6 + 6) + ln(4 + 4) ≈ 4.56, whereas the opposite assignment achieves a
higher utility ln(6 + 3) + ln(4 + 8) ≈ 4.68. However, in Case 2, choosing user A in time
slot 2 to receive HD and user B LD gives the highest utility of ln(2 + 6) + ln(5 + 4) ≈ 4.28.
Thus, the optimal decision in time slot 2 depends on the reward received in all past time
slots (while we have only shown the rewards in time slot 1 for simplicity in this example).
In general, the dependence of the utility objective on all past rewards implies a violation of
the Markovian property, as the actions should only be affected by the currently observed
system state in MDP. This mandates a new family of RL algorithms that are able to cope
with nonlinear objective functions, which is the motivation of this paper.

x 2

x 2
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C
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e 
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Case HD at Slot 2 Fairness Optimal Choice

Case 1
User A ln 12 + ln 8 = 4.56

User B HD
User B ln 9 + ln 12 = 4.68

Case 2
User A ln 8 + ln 9 = 4.28

User A HD
User B ln 5 + ln 13 = 4.17

Time slot 1: history Time slot 2: choose HD user

User A

User A User B

User B User A

User A User B

User B

Figure 1. An illustrative example showing that the optimal choice of bandwidth assignment must
depend on past rewards/states in order to maximize a logarithmic fairness objective.
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We note that, in video streaming optimization, the action space for learning-based
algorithms can still be prohibitively large, since the bandwidth assignment decisions are
continuous (or at least fine-grained if we sample the continuous decision space), whereas
the action space suitable for RL algorithms should be small as the output layer sizes
of neural networks are limited. The action space for bandwidth assignment increases
undesirably with both the growing number of users and the increasing amount of network
resources in the video streaming system.

To overcome this challenge, we propose an adaptive bandwidth adjustment process.
It leverages two separate reinforcement learning modules running in parallel, each tasked
to select a target user to increase or decrease their current bandwidth by one unit. This
effectively reduces the action space of each RL module to exactly the number of users in
the system, while both learning modules can be trained in parallel with the same set of
data through backpropagation. This technique significantly reduces the action spaces in
MAPG-finite and makes the optimization problem tractable.

To evaluate the proposed algorithm, we develop a modularized testbed for the event-
driven simulation of video streaming with a multi-agent bandwidth assignment. In partic-
ular, a bandwidth assigner is developed to observe the agent states, obtain an optimized
distribution from the activated action executor, and then adjust the bandwidth of each agent
on the fly. We implement this distribution-generating solution along with the model-free
multi-agent deep policy gradient algorithm, and compare the performance with static and
dynamic baseline strategies, including “Even” (which guarantees balanced bandwidths
for all users), “Adaptive” (which assigns more bandwidth to users consuming higher bi-
trates), and SARSA (which is a standard single-agent RL-driven policy that fails to consider
inter-agent utility optimization). By simulating various network environments, as well as
both constant and adaptive bitrate policies, we validate that the proposed MAPG-finite
outperforms all other tested algorithms. With Constant Bitrate (CBR) streaming, MAPG-
finite is able to improve the achieved QoE by up to 169.66%, and the fairness by up to 8.28%
compared with baseline strategies. Further, with the Adaptive Bitrate (ABR) streaming, up
to a 41.25% QoE improvement can be obtained.

We conclude that the key contributions of this work are:

• We model the bandwidth assignment problem for optimizing QoE and fairness ob-
jectives in multi-user online video streaming. The stall time is quantified for general
cases under system dynamics.

• Due to the nature of the inter-agent fairness problem, we propose a multi-agent learn-
ing algorithm that is proven to converge and leverages two reinforcement learning
modules running in parallel to effectively reduce the action space size.

• The proposed algorithm is implemented and evaluated on our testbed, which is able
to simulate various configurations, including different reward functions, network
conditions, and user behavior settings.

• The numerical results show that MAPG-finite outperforms a number of baselines,
including “Even”, “Adaptive”, and single-agent learning policies. With CBR, MAPG-
finite achieves up to a 169.66% improvement in the achieved QoE, and a 8.28% im-
provement in the logarithmic fairness; with ABR, MAPG-finite achieves up to a 41.25%
WoE improvement.

2. Related Work

Multi-Agent Reinforcement Learning: In the past, the Multi-agent Reinforcement
Learning (MARL) technique [17] has been discussed for scenarios where all of the agents
make decisions individually to achieve a global optimal. Existing works include coordi-
nated reinforcement learning [18], which coordinates both the action selections and the
parameter updates between users; sparse cooperative Q-learning [19], which allows agents
to jointly solve a problem when the global coordination requirements are available; ref. [20],
which uses the max-plus algorithm as the elimination algorithm of the coordination graph;
ref. [21], which compares multiple known structural abstractions to improve the scalability;
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and ref. [22], which automatically expands an agent’s state space when the convergence
is lacking. Apart from the standard Q-learning [23] and policy gradient [24] algorithms,
there is rich literature on meta-heuristic algorithms for reinforcement learning. In [25],
an ant-colony optimization method for swarm reinforcement learning is provided, which
improves empirically over the Q-learning-based methods by using parallel learning in-
spired by ant swarms. Building on biological inspired algorithms, ref. [26] provides a
genetic algorithm to search for parameters for deep-reinforcement learning. In addition, the
authors of [27] study a modification of ant colony optimization by considering ε-greedy
policies combined with Levy flight for random exploration in order to search for possible
global optima. In addition, the authors of [28] consider a multi-period optimization using
an ant-colony-optimization-inspired algorithm relaxation-induced neighborhood search
algorithm for performing a search in large neighborhoods.

Recently, along with the development of neural networks and deep learning, the
deep-MARL [29] is proposed to resolve real-world problems with larger state spaces. With
various aspects of deep-MARL researched, such as investigating the representational power
of network architectures [30], applying deep-MARL with discrete-continuous hybrid action
spaces [31], enhancing the experience selection mechanism [32], etc., real-world applications
can be solved, including wireless sensor networks (WSN) routing [10], vehicle networks
spectrum sharing [11], online ride-sourcing (driver–passenger paring) services [33,34],
video game playing [35], and linguist problems [29]. Comparing with existing work, our
proposed solution in this paper focuses on optimizing inter-agent fairness objectives in
reinforcement learning.

Video Streaming Optimization: In order to improve the performance of data stream-
ing, various techniques have been proposed. The mostly discussed method is Adaptive
Bitrate (ABR) [36] streaming, which dynamically adjusts the streaming bitrate to reduce
the stall time. The different algorithms include BBA [37], Bola [38], FastMPC [39], LBP [40],
FastScan [36], and Pensieve [41]. In addition to ABR and bandwidth allocation considered
in this paper, caching is also a popular technique to reduce the stall time and further
improve QoE. Inspired by the LRU cache replacement policy, ref. [42] analyzes an alter-
native gLRU designed for video streaming application, and DeepChunk [7] proposes a
Q-learning-based cache replacement policy to jointly optimize the hit ratio and stall time.
Within an edge network environment, the placement of calculations will also affect the
streaming performance, thus work [12] breaks the hierarchical service placement problem
into sub-trees, and further solves it using Q-learning.

For video streaming services still using Constant Bitrate (CBR) systems, ref. [43]
proposed QUVE, which estimates the future network quality and controls video-encoding
accordingly. The study in [44] considers maximizing QoE by optimizing the cache content
in edge servers. This is different from our setup, where we consider caching chunks at client
devices. Similar to us, ref. [45] also provides a bandwidth allocation strategy to maximize
QoE. However, they use model-predictive control, whereas we pose it as a learning problem
and use reinforcement learning. The study in [46] considers a multi-user encoding strategy
where the encoding schemes for each user vary depending on their network condition.
However, the study uses a Markovian model and does not take the possible future network
conditions into account. In [47], a future dependent adaptive strategy is considered, where
the TCP throughput and success probability of a chunk download are estimated. Similar
to us, the authors of [48] consider a reinforcement learning protocol to maximize the QoE
for multiple clients. However, they use average client QoE at time t as a reward for time t
and use deterministic policies learned from Q-learning [23]. We show that our formulation
outperforms standard Q-learning algorithms by considering stochastic policies and rewards
as a function of the QoE of the clients.

Our work, by using a model-free deep-RL policy [15], aims to maximize the overall
quality of experience of multiple agents. To measure the QoE, ref. [14] considers the web
page loading time as a factor, ref. [49] tracks graphic settings, and [50] focuses on mobile
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networks, such that the signal-to-noise ratio, load, and handovers matter. More mapping
methodologies can be found in the survey [51].

3. System Model

We consider a server with a total bandwidth of B stream videos to users in set
[K] = {1, 2, · · · , K}, in which, all of the users are consuming videos continuously. We
consider a streaming session to be divided into nonidentical logical slots. In each time
slot, all of the users will maintain requesting/playing chunks from the same videos. Once
any user k ∈ [K] starts a request for a new video in the current time slot l, the slot counter
increments, thus the new slot l + 1 starts for all users in [K], even if the video does not
change for users k′ ∈ [K]/{k}. Using the logical time slot setting described above, at
time slot l ∈ [L] = {1, · · · , L}, a user k ∈ [K] consumes downloading rate dk(l) ≥ 0 to
fetch video vk, which is coded with bitrate rk(l). The downloading speed is limited by
∑k∈K dk(l) = B, ∀l ∈ [L], and may update for all users when the time slot increments in the
system. The video server continuously sends video chunks to the user with downloading
speed dk(l), and the user plays the video with bitrate rk(l), which is defined by the property
of the video. For Adaptive Bitrate (ABR) videos, we update the bitrate of the chunk on
starting a new slot only. Thus, all of the chunks sent in slot l are of bitrate rk(l). For Constant
Bitrate (CBR) videos, rk(l) may remain constant across time slots l ∈ [L] if multiple slots
span the video vk. A list of the key variables used in this paper can be seen in Table 1.

Table 1. List of the key variables used in this paper.

Variable Description

K number of clients in the system
k index for agents, runs from 1 to K
B total bandwidth of the system
l slot index
L total slots considered

dk(l) download rate for user k in slot l
rk(l) bitrate of chunk sent to user k in slot l
vk(l) index of video streamed by user k in slot l

m chunk index of the video vk(l)

tk(l, m)
time at which user k starts playing chunk m for

video vk(l)

t′k(l, m)
time at which server starts sending chunk m for

video vk(l)

t̄k(l, m)
time at which user k finishes playing chunk m

for video vk(l)

In each slot, we reset the clock to zero. We use t′k(l, m) to denote the time when the
server starts to send the m-th chunk of video vk in the time slot l, tk(l, m) to denote the time
when the user starts to play video chunk m, and t̄k(l, m) to denote the moment that chunk
m is finished playing. For analysis, we consider that the size of each chunk is normalized
to 1 unit.

With our formulation, there will be two classes of users in a time slot l. The first class
is of users who requested a new video and triggered the increment of the time slot to l.
Since the user has requested a new video, it can purge the already downloaded chunks
for the previous video. Users in this class may observe a new downloading rate dk(l) and
video bit rate rk(l). The second class of users are those who do not request a new video,
but a new streaming rate dk(l) is assigned to them because some other user k′ ∈ [K] has
requested a new video and triggered a slot change. For these users, the video bitrates will
remain the same from the previous slot l − 1, or be adjusted solely by the ABR streaming
policy when CBR or ABR policies are activated, whereas, for the downloading rate dk(l), it
is updated by the bandwidth distribution policy. Note that a resource allocation scheme
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may still allocate bandwidth to the user such that dk(l) = dk(l − 1); however, this may not
be always true.

Next, we calculate the stall time in a slot l for both classes of users.

3.1. Class 1: User Requests a New Video

We first calculate the stall durations for user k that has requested a video change. As
shown in Figure 2, user k starts to fetch a video from the beginning of the slot l. We assume
that the chunk m is played in time-slot l; if not, the calculations for the stall duration for
those chunks will be studied in Case 2. With the given downloading speed and bitrate, we
can observe the relationships between t′(l, m), t(l, m), and t̄(l, m):

t′k(l, m) =

{
t′k(l, m− 1) + 1

dk(l)
, m > 1,

0, m = 1,
(1)

tk(l, m) =

{
max(t′k(l, m), t̄k(l, m− 1)), m > 1,
t′k(l, m), m = 1,

(2)

t̄k(l, m) = tk(l, m) +
1

rk(l)
, m ≥ 1. (3)

Download Playback

Downloading rate 𝑑𝑘 Stream bitrate 𝑟𝑘

1

2

1

2

3

T
im

e slo
t 𝑙

−
1

T
im

e slo
t 𝑙𝑡𝑘(𝑙, 1)

𝑡𝑘(𝑙, 2)

𝑡𝑘(𝑙, 3)

𝑡𝑘
′ 𝑙, 1

𝑡𝑘
′ 𝑙, 2

ҧ𝑡𝑘(𝑙, 1)

ҧ𝑡𝑘(𝑙, 2)

ҧ𝑡𝑘(𝑙, 1)

3

𝑡𝑘
′ (𝑙, 3)

Figure 2. The stall time calculation for users request a new video triggering the system to move to
slot l.

Since we will be limiting the analysis for user k in slot l, we drop the subscript k
and the argument l from tk(l, m), t′k(l, m), and t̄k(l, m) for brevity. Let T denote the time
elapsed in time slot l, and let Ts(l, T, k) denote the stall time in slot l till elapsed time T for
user k. Clearly, when the video downloading speed is equal to or higher than the video
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bitrate (dk(l) ≥ rk(l)), the user only has to wait for the first chunk to arrive, and then
experience a stall-free video playback. Otherwise, for dk(l) < rk(l), three conditions need
to be considered for T. If T is smaller than or equal to t(1), no video chunk has been played
and the stall time is exactly the time elapsed T in the time slot. Otherwise, if T lands in an
interval in which a video chunk m is being played, the stall time of T is equal to the stall
time of t(m), and if T lands in an interval where the user is waiting for the chunk m + 1
to be downloaded, the stall time needs an additional wait after the m-th chunk is played.
Hence, the stall time until the end of the slot l, Ts(l, T, k), can be defined as a recursive
conditional function,

Ts(l, T, k) =


Ts(l, t(m), k), t(m) < T ≤ t̄(m),

dk(l) < rk(l), m ≥ 1,
T − t̄(m)+ t̄(m) < T ≤ t(m + 1),
Ts(l, t(m), k), dk(l) < rk(l), m ≥ 1,
min(T, t(1)), otherwise.

(4)

In the condition of dk(l) < rk(l), the stall time before the m-th chunk is downloaded is
the key to obtaining the stall time of T. The stall time of t(m) fits the second condition of
Equation (4). Thus, we have:

Ts(l, t(m), k) = Ts(l, t(m− 1), k) + t(m)− t̄(m− 1), m > 1. (5)

According to Equations (1)–(3), the difference between t(m) and t̄(m − 1) can be
calculated. Thus, Equation (5) can be written in a recursive form:

Ts(l, t(m), k) =

{
Ts(l, t(m− 1), k) + 1

dk(l)
− 1

rk(l)
, m > 1,

1
dk(l)

, m = 1,
(6)

and further solved as:

Ts(l, t(m), k) =
m

dk(l)
− m− 1

rk(l)
, m ≥ 1. (7)

Finally, substitute Ts(tk(l, m)) into Equation (4); the stall time of time slot length T is

Ts(l, T, k) =



m
dk(l)
− m−1

rk(l)
, t(m) < T ≤ t̄(m),

dk(l) < rk(l), m ≥ 1,
T − m

rk(l)
, t̄(m) < T ≤ t(m + 1),

dk(l) < rk(l), m ≥ 1,
min(T, t(1)), otherwise.

(8)

Note that, if some other user k′ 6= k requests a new video triggering an increment in
the time slot from l to l + 1, the stall duration analysis will fall to the second class of users.
We discuss the stall duration for the second class of users in the next section.

3.2. Class 2: Users Continuing with the Old Video

We now discuss the stall time model for users who continue the video from time slot
l − 1 to time slot l (Figure 3).
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Figure 3. The stall time calculation for users who continue with the video from previous time slot.

Assume that, in the previous time slot l− 1, the total slot duration is T′. At the moment
of T′, a chunk—denoted by 0—is being downloaded. As a result of the chunks that were
continuously downloaded, by evaluating T′ and the download speed dk(l − 1), we can
calculate the length or ratio of chunk 0, which has not been downloaded by

l0 = 1− dk(l − 1) ·
(

T′ mod
1

dk(l − 1)

)
. (9)

Note that, since the length of the chunks are normalized, we have: lm = 1, ∀m 6= 0.
Downloaded with speed dk(l), the leftover chunk 0 with length l0 needs time l0/dk(l)

to be ready for the user to play it. Following the continuous downloading rule, in time
slot l, we have t′(1) = l0/dk(l). Then, similar to Equation (1), the rest of the t′(m) can be
recursively obtained.

t′(m) =


t′(m− 1) + 1

dk(l)
, m > 1,

l0
dk(l)

, m = 1,
0, m = 0.

(10)

We denote the last chunk being played in time slot l − 1 as chunk −n, which is the
video chunk ahead of chunk 0 by n, and we denote its finish time calculated in the previous
time slot by t̄′(−n). If n = 1 and t̄′(−1) ≤ T′, we know that all chunks before chunk 0 have
finished playing in slot l− 1. Otherwise, chunk −n is being played half-way at the moment
of the time slot transition. For the latter case, user k will continue the play of video chunk
−n at the beginning of time slot l. Then, in the new time slot l, because the video bitrate is
not changed, chunk −n will be finished at t̄(−n) = t̄′(−n)− T′. Since, at the beginning
of slot l, chunk 0 is being downloaded, we know that chunks in interval {−n, · · · ,−1}
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in t are all ready to be played. Therefore, we can derive the play finish time of chunks
{−n, · · · ,−1} in slot l as:

t̄(m) =

{
t̄(m− 1) + 1

rk(l−1) , −n < m ≤ −1,
t̄′(m)− T′, m = −n.

(11)

As the download finish time t′(1) and play finish time t̄(−1) are defined, the leftover
video chunk 0 is played at time t(0) = max(t′(1), t̄(−1)) and finished at t̄(0) = t(0) +
1/rk(l).

With all of the leftover chunk issues tackled, we finally obtain the chunk time equations
for time slot l:

t′(m) =

{
t′(m− 1) + 1

dk(l)
, m > 1,

l0
dk(l)

, m = 1,
(12)

t(m) = max(t′(m + 1), t̄(m− 1)), m ≥ 0, (13)

t̄(m) =


t(m) + 1

rk(l)
, m > 0,

t(m) + 1
rk(l−1) , 0 ≥ m > −n,

t̄′(m)− T′, m = −n.
(14)

With all of the time equations obtained, we can now calculate the stall time using the
similar procedure shown in the previous sub-section. Since, for m < 0, all of the chunks
are being played stall-free, if the slot ends at time T < t̄(−1), the stall time will be zero.
From chunk m > 0, it is possible that the stall appears between the gap where chunk
m− 1 is finished, while chunk m is not downloaded yet (t̄(m− 1) < t(m) = t′(m + 1)).
If T happens to be in this gap, the stall time Ts(T) will be the accumulated waiting time
of chunks [0, m − 1] (denoted as Ts(t(m− 1))) plus the additional time between T and
t̄(m− 1). Otherwise, if T happens to be during when a chunk m is being played, then the
stall time Ts(T) should be the accumulated stall time for chunks {0, · · · , m}, which can be
denoted as Ts(l, t(m), k).

Ts(l, T, k) =


Ts(l, t(m), k), t(m) < T < t̄(m),

m ≥ 0,
Ts(l, t(m), k)+ t̄(m) ≤ T ≤ t(m + 1),
T − t̄(m), m ≥ −1,
0, otherwise.

(15)

3.3. Quality of Experience

The goal of this work is to maximize the inter-agent QoE utility for all users. In this
paper, we consider the fairness utility functions in [13] and optimize the inter-agent fairness
with two existing evaluations—the sigmoid-like QoE function and the logarithmic fairness
function. By analyzing real-world user rating statistics, a sigmoid-like relationship between
the web page loading time and the user QoE was reported in [14]. Inspired by that, we
draw a similar nonlinear, sigmoid-like QoE curve to map the streaming stall time ratio, and
verify that (i) reducing the stall time for users who already have a very low stall time or
(ii) increasing the stall time for users who already suffer from a high stall time does not
impact the QoE values, while (iii) users with a mediocre QoE are more sensitive to stall
time changes:

f (x) =
1

1 + e10(x−0.35)
. (16)
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We also consider a logarithmic utility function that achieves the well-known propor-
tional fairness [13] among the users:

f (x) = log2(−x + 2). (17)

It is easy to see that, with the unit stall time decrease, this utility function provides (i) a
larger QoE increment for users experiencing a higher stall time and (ii) a smaller increment
for users already enjoying a good performance with a low stall time.

In both Equations (16) and (17), x represents the stall time ratio for playing a video. It
is defined by

x(Lv, k) = ∑
l∈Lv

Ts(l, Tl , k)
Tl

, (18)

where Lv denotes the time slots that video v has been played in, and Ts(l, Tl , k) denotes the
stall time for user k in time slot l with slot length Tl .

We note that (16) is only one representative QoE function, while other functions may
be used. Suppose that, in L time slots, Vk(L) is the set of videos played by user k. Then, the
total QoE of the L time slots obtained by user k is given as:

Qk = ∑
v∈Vk(L)

f (x(Lv, k)), (19)

and, for all users, the total QoE is

Q(L) = ∑
k∈K

Qk. (20)

Substituting (19) and (18) in (20), we have

Q(L) = ∑
k∈[K]

∑
v∈Vk(L)

f

(
∑

l∈Lv

Ts(l, Tl , k)
Tl

)
. (21)

Note that the QoE function defined in Equation (19) assigns a higher quality of expe-
rience to a lower stall time. The QoE metric remains constant for small stall times. If the
stall times are lower than a certain value and are not noticeable, the QoE does not vary,
as obtained in the sigmoid-like function of Equation (19). In addition, the QoE decreases
rapidly with increasing stall times and remains zero if the stall times exceed a certain value,
therefore ruining the viewing experience.

4. Problem Formulation

In this section, we propose a slice assignment system to distribute the download
link bandwidth to users. Let π̄(l) = (π1(l), · · · , πK(l)) be a vector in [0, 1]K such that
∑k∈K πk(l) = 1. Each element πk(l) denotes the portion of the total bandwidth that user k
is assigned to. By this definition, user k’s downloading bandwidth dk(l) under policy π̄(l)
can be calculated as πk(l)B.

The Multi-Agent Video Streaming (MA-Stream) optimization problem is defined as
the following:

Problem MA-Stream :

max ∑
k∈[K]

∑
v∈Vk(L)

f

(
∑

l∈Lv

Ts(l, Tl , k)
Tl

)
, (22)

s.t. ∑
k∈[K]

dk(l) = B ∀l ∈ {1, · · · , L}, (23)

var. π̄. (24)
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We now discuss the MA-Stream optimization problem described in Equations (22)–(24).
Equation (22) denotes the sum of the quality of experience for each user k ∈ [K] across
each video played in L time slots. The control variable is the policy π (in Equation (24)),
which directly controls the bandwidth allocation. This gives the constraint in Equation (23)
where the sum of allocated bandwidths, dk(l), to each user k ∈ [K] can be, at most, the
total bandwidth of the system for all slots l ∈ [L]. Moreover, the QoE for any video is a
non-linear function of the cumulative stall durations over each chunk in the video played.

We utilize the deep reinforcement learning technique to optimize the bandwidth
distribution π̄(l). In the following sub-sections, we define the state, action, and objective
for the decision making.

4.1. State

At time slot l, the observed state is defined by a 4K dimensional vector s(l) =
(v1(l), · · · , vK(l), d1(l), · · · , dK(l), z1(l), · · · , zK(l), c1(l), · · · , cK(l)), where vk(l) denotes
the video bitrates, dk(l) represents the currently assigned download speeds, zk(l) tracks
the accumulated stall time for the current playing video until slot l, and ck(l) counts the
number of chunks that are downloaded but not yet played for user k ∈ [K]. For brevity,
we use the notation s(l) = (v̄(l), d̄(l), z̄(l), c̄(l)), where v̄(l) = (v1(l), · · · , vK(l)), d̄(l) =
(d1(l), · · · , dK(l)), z̄(l) = (z1(l), · · · , zK(l)), c̄(l) = (c1(l), · · · , cK(l)). We will expand the
corresponding vector when necessary. By considering the variables vk(l) and dk(l), the
learning model should be able to estimate the downloaded and played video chunk in-
formation in the current time slot l, while zk(l) and ck(l) provide the objective-related
history information.

4.2. Action and State Transition

At the beginning of time slot l, in order to find the optimal download speed dis-
tribution, multiple decisions are needed to adjust the observed speed distribution. We
utilize two decision processes to obtain the optimal distribution π̄(l) while maintaining the
constraint shown in Equation (23). One of the processes is a decreasing process that decides
for which user the download speed will be decreased by one unit of rate, and the other
process is an increasing process that decides the user that will obtain the released one unit
of download speed.

The download speed distribution is iteratively adjusted to a final distribution by
recursively running the decreasing and increasing decision processes. A distribution will
not be assigned to the system until the final decision is concluded, and the system will
not transit into the next time slot. Assuming, at time slot l, with the observed state
s(l) = (v̄(l), d̄(l), z̄(l), c̄(l)), actions a−, a+, a− 6= a+ are made by the decreasing and
increasing processes. The intermediate state s(τ′) can be derived by

s(τ′) = (v̄(l), d1(l), · · · , da−(l)− 1, · · · ,

da+(l) + 1, · · · , dK(l), z̄(l), c̄(l)). (25)

Now, this intermediate state s(τ′) is used in the decision making for both processes.
New actions will be made to push the distribution towards the final state. Finally, at state
s(τ), when both the increasing and decreasing processes give the same action a+ = a−, the
distribution π̄ is obtained as π̄(l) = (d1(τ), d2(τ), ..., dK(τ))/B.

According to π̄(l), the system distributes the bandwidth to each user for the time slot
l. The next time slot l + 1 will be triggered when a user switches its playing video. We
assume that the new content request for all users follows Poisson arrival processes with
arrival rate λk for user k, so the mean value of slot duration Tl can be derived by 1/ ∑k∈K λk,
and the probability that user k triggers the state transition is λk/ ∑κ∈K λκ . For time slot
l + 1, the initial system state s(l + 1) = (v̄(t + 1), d̄(t + 1), z̄(t + 1), c̄(t + 1)) should have
video bitrates vκ(l + 1) = vκ(l), (∀κ ∈ K, κ 6= k) if CBR is activated as the bitrate policy,
and downloading speeds d(l + 1) = π̄(l)B calculated in the previous time slot.
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The accumulated stalls z̄(l) can be calculated using Equations (4) and (15). Let vk(l)
be the video played by the user k in time slot l, and let lvk(l),0 be the time slot where user k
starts playing video vk(l). Let Tl′ denote the length of time slot l′; we have

zk(l) =
l−1

∑
l′=lvk(l),0

Ts(l′, Tl′ , k). (26)

The number of remaining chunks c̄(l) can easily be tracked during the downloading/playing
procedures, and observed whenever the information is needed. Both the downloading and
playing processes can be monitored. For the downloading process, let cd(l) = hd(l) + ρd(l),
where hd(l) ∈ N denotes the chunk of the video being played at the beginning of time
slot l being downloaded, and ρd(l) ∈ [0, 1) denotes the ratio or percentage of chunk
hd(l) that has been completed. The similar mechanism holds for the playing process,
cp(l) = hp(l) + ρp(l). Using both of the processes, the remaining chunks c(l) can be
calculated by c(l) = cd(l)− cp(l) in any time slot l.

4.3. Feedback

As pointed out in Equation (22), the goal of the controller is to maximize the average
QoE. For our RL algorithm to learn an optimal policy to maximize the objective, every slot
provides a feedback of the value of the objective calculated from the average stall times for
all users.

In Section 4.2, we mention, that when the decreasing and increasing processes take
decisions a−(τ′) 6= a+(τ′), the state transition only happens in a logic domain instead of
the realistic time domain. During this intermediate state transition, no real stall time calcu-
lations exist and we assign zero rewards for actions a−(τ′) 6= a+(τ′) in the intermediate
state before converging to π̄(l)B. When the final distribution is achieved (a+ = a−), the
slot duration Tl can be obtained and, hence, stall times Ts(l, Tl , k) can be calculated for all
users. We can also obtain rewards from the calculated stall times using Equation (21).

The complete schema is presented in Algorithm 1.

Algorithm 1 Proposed MA-Stream Algorithm

1: Input: Set of users [K], maximum bandwidth B
2: for slot l ≥ 0 do
3: Observe state s(l) as described in Section 4.1
4: Compute bandwidth allocations dk(l) for all k ∈ [K] using RL engine
5: while No user switches video do
6: Continue streaming with dk(l) for all k ∈ [K]
7: Store Stall duration, Ts(l, Tl , k) for slot l for all k ∈ [K]
8: end while
9: end for

5. Policy Gradient for MA-Stream

In the previous section, we define the network streaming problem MA-Stream for
multiple users. Note that the objective defined in Section 4.3 is a nonlinear function
(Equation (19)) of the total stall duration until the current time instant. At any time slot l,
the reward not only depends on the stall times observed by the users in the slot l, but also
on the stall times observed by users in the previous time slots. Hence, the decision-making
module needs to track not only the current state but also the history of the decision and the
rewards obtained to select the current action. Hence, we are not able to utilize standard
RL algorithms that require modeling the problems into MDP. To this end, we leverage
Multi-agent Policy Gradient for Finite Time Horizon (MAPG-finite) [15], a novel multi-
agent policy gradient RL algorithm that aims to solve optimization problems without the
requirements of MDP modeling. In the following Section 5.2, we give a short description of
this algorithm.
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5.1. Standard RL Algorithms

Standard RL problems consider an agent that interacts with a Markov decision process
M. The agent, at time t, observes the state st of the environment and plays action at to
obtain a reward rt, causing the environment to transition to state st+1 [52]. Let the next
state transition probability be P a

ss′ = P(st+1 = s′|st = s, at = a) and the expected reward
of playing action a in state s beRa

s = E[rt|st = s, at = a]. The goal of the agent is to find a
policy π(s, a; θ) = P(at = a|st = s, θ) parameterized on θ that maximizes the discounted
cumulative reward

Vπ(s0) = Eπ

[
∞

∑
t=0

γtrt|s0

]
, (27)

where s0 is the initial state, and γ < 1 is a discounted factor. Using the linearity of
cumulative rewards in Equation (27), the state action value function Qπ(s, a) for policy π
is defined as

Qπ(s, a) = Ra
s + γ ∑

s′
∑
a
P a

ss′π(s, a; θ)Vπ(s′). (28)

Based on Equation (28), many algorithms have been proposed, e.g., SARSA [53–55],
Q-learning [23], policy gradient [24], etc. Based on these fundamental algorithms, many
deep-learning-based implementations are also proposed [52].

In many network optimization problems, the reward metrics are nonlinear when
multiple subjects are jointly optimized. One typical example is resource fairness among
agents/users in one network [13,56]. With a nonlinear reward function, the decision-making
engine must be aware of the historical decisions and states in the past. To demonstrate the
requirement of policies that require history, we take the following example. Suppose that
there are K = 2 users who share the network resource and we want to allocate this network
resource fairly between the two users. If we use proportional fairness, the fairness for the
two users can be calculated as the sum of the logarithms of the QoE indicators of the two
users. We call the users 1 and 2, and we assume that both users 1 and 2 start with the same
video. In slot 1, the bandwidth allocated to user 1 is higher than user 2 (d1(1) > d2(1)).
This results in higher stall times for user 2 compared to user 1.

Now, in the next time slot 2, user 2 switches the video with a video bitrate that is the
same as the previous video, and user 1 continues with the old video. Then, since the video
bitrates remain the same, allocating a higher download rate to user 2 (d2(2) > d1(1)) will
result in lower stall times for user 2 and, hence, the fairness can be maximized. This requires
the controller to ensure that the decisions at time slot 2 are made taking into account the
decision made in time slot 1. However, the state defined in Section 4.1 does not store the
cumulative stall duration of the previous video for the user triggering the current time slot.
The algorithm used in this paper to deal with such a nonlinear problem is explained in the
next subsection.

We further note that one possible way to tackle the non-Markovian nature is to
introduce a high-order Markov model by including the objective value until time slot l − 1
in the state. This approach, however, potentially increases the state space dramatically to
(SA)L, where S is the number of states and A is the number of actions that the controller
can take. Hence, we consider a multi-agent learning algorithm in the next session, which
does not require the use of high-order Markov models and allows an individual agent to
improve its policy.

5.2. Model-Free Multi-Agent Policy Gradient Algorithm

In [15], a novel model-free algorithm is proposed in order to solve the nonlinear (in
time) optimization problems in a finite time horizon scenario. Like the traditional deep
policy gradient RL algorithm, the MAPG-finite algorithm utilizes the observed system state
s(t) as the input of a neural network that is parameterized by θ, then takes the output of the
neural network to be the decision policy πθ , which indicates the action probabilities. Finally,
according to the policy π, an action is randomly chosen to interact with the environment.
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With a proper training process, the neural network is improved by the reward feedback.
Expectedly, the neural network parameter θ should evolve to stage θ∗, which maximizes
the objective function f :

θ∗ = arg max
θ

f
(
(1− γ)J1

πθ
, ..., (1− γ)JK

πθ

)
, (29)

where Jπθ
k denotes the long term reward obtained by agent k running policy πθ :

Jk
π = Es0,a0,s1,a1,...

[
lim

L→∞

L

∑
l=0

γl f (Ts(l, Tl , k))

]
, (30)

s0 ∼ ρ0(s0), al ∼ π(al |sl), sl+1 ∼ P(sl+1|sl , al). (31)

Since the objective function f is differentiable (refer to Equation (16)), the gradient
estimation for Equation (29) can be obtained by:

Oθ f = ∑
k∈[K]

∂ f
∂(1− γ)Jπ

k
Oθ Jπ

k

= (1− γ)(O(1−γ) J̄π f )T(Oθ J̄π),

where J̄π = (Jπ
1 , ..., Jπ

K )
T , in which, J̄π

k denotes the expected cumulative reward, and is
further estimated as

Ĵπ
k =

1
N

N

∑
n=1

L

∑
l=0

Ts(l, Tl , k). (32)

In each episode n, time slots l runs from 0 to L. Finally, with learning rate β, the step
parameter update can be shown as:

θi+1 = θi + β(1− γ)
(
O(1−γ) J̄π f ( ˆ̄J)

)T
(Ôθ J̄π), (33)

and further utilized for gradient ascent in the neural network.
We now state a formal result of convergence to a stationary point from the gradient

ascent steps.

Lemma 1. For a policy function parameterized with a neural network with softmax activations,
and function f with continuous gradients, Equation (33) converges to a stationary point.

Proof. Since we use softmax activations, the gradient of policy π,∇θπ is also continuous in
θ, and, obtaining the continuity of ∇π Jπ

k from Theorem 2 in [24] with respect to parameter

θ, we have the continuity of ∇θ Jπ
k . Using the continuity of gradient ∂ f

∂Jπ
k

from the definition
of f , the continuity of∇θ Jπ

k , and Proposition 3.4 in [57], we have the convergence of policy
to a stationary point.

6. Evaluation

We conduct a hybrid simulation on a network containing five users over a shared
downloading link, and evaluate the performance of the proposed learning algorithm. In
particular, three users prefer to watch HD videos (with desired bitrates at 8 Mbps and
5 Mbps), whereas the other two users watch videos at a lower resolution (with desired
bitrates at 2.5 Mbps and 1 Mbps). The video durations of all users follow an exponential
distribution with an identical 120 s average. We run the simulation on both channels
with different bandwidths, i.e., 1500 KB/s and 2000 KB/s channels. In both settings, our
proposed algorithm is shown to substantially outperform the baseline policies (relying on
heuristics and single-agent learning) in terms of the QoE reward and fairness.
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6.1. Evaluation Setup
6.1.1. Evaluated Policies

We evaluate our model-free MAPG-finite algorithm along with three baselines, which
are denoted by “Even”, “Adaptive”, and SARSA policies, as follows.

Policy MAPG-finite: Our proposed algorithm leverages a model-free, multi-agent
policy gradient to optimize the download bandwidth distribution among agents. Recall
that, in the algorithm, multiple decisions/actions are made to either increase or decrease
the download speed of specific users by one unit. During the training process, the two
decision-making processes (to increase and decrease download speeds) need to perform
a random exploration in a non-cognitive fashion, which often leads to a long exploration
time and, thus, a slow convergence in the optimal policy. Suppose that the bandwidth
distribution at time t is πt. To mitigate this problem during training, we suspend the
exploration process if the same bandwidth distribution is observed again in the future, i.e.,
πt+x = πt for some x ∈ N+.

Policy “Even”: The downloading bandwidth is evenly distributed to all users in the
system. For instance, when the total bandwidth is 1500 KB/s, each of the five users will
receive 300 KB/s for its downloading speed, regardless of its demand and preference. This
one-size-fits-all policy equally distributes bandwidth among the users.

Policy “Adaptive”: The download bandwidth is split between the users in proportion
to their desired video bitrates. This policy guarantees that users with a high data rate
demand (i.e., those watching the high-resolution video) receive a higher downloading
speed, whereas users with a low data rate demand receive a lower speed. Specifically, user
k will be assigned a bandwidth of dk = vkB/∑κ∈K vκ , where vκ is the desired video bit rate
of user κ.

Policy SARSA: This policy leverages single-agent learning, SARSA [53–55], to dis-
tribute the download bandwidth to the users. It uses a standard policy gradient strategy
with the same state/action definition of our proposed MAPG-finite. Without considering
the nonlinear reward function feature, this policy simply utilizes the sum of the step re-
ward as its immediate reward for learning. Note that we make the same state variables,
including reward-related history information z̄(l), known to the SARSA policy to boost the
performance of this baseline.

6.1.2. Reward Functions

Our proposed MAPG-finite algorithm allows for the maximization of any nonlinear
reward in a finite time period. We consider two reward functions in the evaluation, namely
QoE and fairness, to compare the performances achieved by different policies.

For the QoE reward, we use a sigmoid-like function to measure the reward with
respect to the stall time. In particular, we choose parameters in Equation (16) to match a
stall-to-QoE curve reported by [14]. We plot our fitted reward function in Figure 4a, which
matches well with the reported stall-to-QoE curve in [14]. In addition, for the fairness
objective, we choose a logarithmic utility function shown in Equation (17) and Figure 4b of
the users’ received stall time. By maximizing the logarithmic function, the proportional-fair
QoE assignment between the users [13] is obtained.

Naturally, our proposed multi-agent learning algorithm is able to learn and optimize
any reward functions, linear or nonlinear. We note that, even when the exact function is
unknown, the model-free algorithm can still be trained and evaluated using the real-world
user traces.
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(a) A sigmoid QoE function.
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(b) A logarithmic fairness function.

Figure 4. The reward functions used to evaluate the performances of different bandwidth assignment
algorithms. The QoE function is defined by Equation (16), and the fairness function is defined by
Equation (17).

6.1.3. Users and Videos

We implement a network with five users and both high- and low-resolution videos.
In particular, three users prefer to watch high-resolution videos with bitrates of 8 Mbps
(1080p) and 5 Mbps (720p) (similar to Youtube videos [58]), whereas the other two users
consume 2.5 Mbps (480p) and 1 Mbps (360p) videos randomly.

The video durations for all users follow an independent, identical exponential dis-
tribution with an average of 2 min. Thus, the combined video switching rate for all five
users is once every 24 s. When a user elects to switch video, a random video is selected
and starts streaming. Note that the new video may have the same or different bitrate to the
previous video. For example, when user 1 finished watching a video, the new video will
have a bitrate of 8 Mbps or 5 Mbps with the same 50% probabilities. The user preferences
and their corresponding probabilities are shown in Table 2.

Table 2. Simulated user preferences.

User Resolutions Bitrates Probabilities

1 1080p
720p

8 Mbps
5 Mbps

0.5
0.5

2 1080p
720p

8 Mbps
5 Mbps

0.5
0.5

3 1080p
720p

8 Mbps
5 Mbps

0.5
0.5

4 480p
360p

2.5 Mbps
1 Mbps

0.5
0.5

5 480p
360p

2.5 Mbps
1 Mbps

0.5
0.5

6.1.4. Implementation

We implement a testbed using Python 3.5. The workflow of the testbed is depicted
in Figure 5. First, at the beginning of a new cycle, according to the video switching rates
(which result from the known video duration distributions), the video switch module
randomly schedules a user who will be the next candidate to change their video. The
users then start downloading video chunks continuously, and their download timers record
the timestamp when each chunk is successfully downloaded (i.e., t′m+1 in Figure 3). Next,
based on the download timestamps and the bitrate of the current video, the playback timer
schedules the playback and further obtains tm and ¯tm. With all timestamps confirmed, the
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stall calculator is able to calculate the stall time for the user/videos. Such a stall time is
transferred to the distribution module for training and evaluation. Finally, the chosen user
randomly picks a new video from its video library at the end of the current cycle.

Users

1 2 3 4 5

Video Switch

Bandwidth Assigner

Action 

Execution

MAPG-finiteUser 1

Video 

Library

Current 

Video

Playback 

Timer

Download 

Timer

Download 

Rate

Stall Calculator

𝑓(∙)

Action Sender

Neural Network

State Listener

Stall 

Listener

①

②

③

④

⑤

⑥

⑦

⑧

Figure 5. The implementation of our testbed, where the blocks on the left and right show the internal
architectures of an individual user module and the MAPG-finite engine, respectively. The four
state variables (v(t), d(t), z(t), c(t)) are collected/calculated by each user and delivered to the action
execution module (via 2©, 4©, 3©, 1©→ 6©). The action is then sent back to each user via 7©→ 5©.

Recall that, from Section 4, the state variables utilized for MAPG-finite decision making
include video bitrates, downloading speeds, accumulated stall time, and residue video chunks,
which can be reported through output paths 2©, 4©, 3©, and 1©, respectively, in Figure 5.
The state variables are then collected by the state listener through input path 6©. Further,
utilizing the neural network, a bandwidth distribution—as the action—is decided and sent
by the action sender to all of the users via 7©. For training and evaluation purpose, a copy
of the stall ratio is also sent from 3© to 8©. It is processed by the reward function f (·) to
calculate either the QoE (Equation (16)) or the fairness (Equation (17)) reward. Finally, the
reward is delivered to the neural network for policy backpropagation, and also logged for
experiment evaluation. By input path 5© of each user, the users adjust their download rates
according to the bandwidth decision from 7©. At this point, the testbed completes one
workflow cycle and prepares to initiate the next cycle, starting with the video switch.

Using the modularized testbed implemented in this project, we are able to evaluate
different policies under various environment configurations, including with different
reward functions, network conditions, and user behavior settings. We note that, with some
minor logic adjustments, we can even test the streaming performance in a discrete time
domain, while this paper focuses on continuous time evaluations.

6.2. Evaluation Results

The numerical results for the QoE reward function (Equation (16)) is depicted in
Figure 6. It is shown that our proposed MAPG-finite algorithm outperforms the static
“Even” and dynamic “Adaptive” strategies by 23.34% and 169.66% (in terms of achieved
QoE) with the shared download link of 1500 KB/s. With the 2000 KB/s download link,
MAPG-finite still obtains a 15.30% and 32.58% higher QoE reward than the “Even” and
“Adaptive” policies, while the improvement becomes smaller because of a smaller marginal
QoE improvement when the stall time is already small under a higher bandwidth. As
for the SARSA policy, it is unable to cope with the nonlinear utility function and fails to
achieve much improvement over its initial decision policy—“Even”. Since the QoE reward
function is nonlinear to the assigned bandwidth, we also observe that the “Adaptive” policy
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(allocating bandwidth proportional to desired video bitrate) performs worse than “Even”
in both cases.

Even Adaptive SARSA MAPG-finite

0

2

4

6

·103

3877.05

1773.3

3799.9

4781.884935.52
4292.47

4936.76

5690.77

Policies

Q
o
E

1500 KB/s 2000 KB/s

Figure 6. The QoE reward comparison. With the 1500 KB/s download link, MAPG-finite outperforms
“Even” by 23.34%, “Adaptive” by 169.66%, and SARSA by 25.84%. With the 2000 KB/s download
link, MAPG-finite outperforms “Even” by 15.30%, “Adaptive” by 32.58%, and SARSA by 15.27%.

These can be further seen from Table 3, which shows the stall time and reward
breakdown of different policies. Apparently, the “Adaptive” policy achieves a similar stall
time for both HD and LD users, whereas the “Even” policy sacrifices the performance
of HD users, and, in return, significantly reduces the stall time of LD users, leading to a
higher overall QoE. More precisely, according to the QoE reward curve shown in Figure 4a,
the reward boost for the LD users is much greater than the loss suffered by the HD users,
which finally results in the overall QoE improvement in the “Even” policy.

As a learning-based algorithm, MAPG-finite can achieve a substantially better per-
formance, since it is aware of the current network conditions and system states, in order
to optimize the bandwidth distribution between the users. For example, when a user has
enough cached chunks for future playback, its bandwidth can be temporarily turned over
to the other users, who recently started playing a new video or are suffering from a stall.
Thus, all users are able to obtain increased QoE rewards under the MAPG-finite strategy,
compared with the baselines.

Table 3. Reward breakdown for QoE function on 1500 KB/s download link.

Policy Total Reward
User Average

User Stall Ratio Reward

“Even” 3877.05 1, 2, 3 (HD)
4, 5 (LD)

0.64
0.13

0.07
0.86

“Adaptive” 1773.30 1, 2, 3 (HD)
4, 5 (LD)

0.51
0.59

0.20
0.14

MAPG-finite 4781.88

1
2
3
4
5

0.34
0.50
0.39
0.07
0.08

0.52
0.27
0.44
0.91
0.91

Results for the fairness reward function are shown in Figure 7. We note that, due
to the use of the logarithmic fairness function, the improvement appears to be smaller
when measured by the fairness reward than by the QoE reward, while the gains should be
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interpreted in the “multiplicative” sense. Our proposed MAPG-finite still outperforms the
“Even” and “Adaptive” strategies (in terms of the logarithmic fairness reward) by 4.83% and
6.75% for the 2000 KB/s downloading link, and 8.28% and 2.30% for the 2500 KB/s link.

1 
 

 
 
Figure 7 
 

 

Figrue 9 

Figure 7. The fairness reward comparison. With the 2000 KB/s download link, MAPG-finite outper-
forms “Even” by 4.83%, “Adaptive” by 6.75%, and SARSA by 22.47%. With the 2500 KB/s download
link, MAPG-finite outperforms “Even” by 8.28%, “Adaptive” by 2.30%, and SARSA by 30.15%.

With the 2500 KB/s downlink, Table 4 shows that the dynamic “Adaptive” strategy
achieves similar performances for all users, leading to a better fairness reward than the
“Even” policy, which creates more difference between the HD and LD users that have
significantly different bitrate requirements. On the other hand, our MAPG-finite strategy
reduces the average stall ratio of HD users by 38.46%, with a cost of a 37.50% higher
stall ratio for LD users compared to the “Even” policy. This way, it is able to reduce
the stall ratio deviation of all users from 0.1698 to 0.0712, and improves the fairness
reward. Comparing with the “Adaptive” policy, MAPG-finite has an approximately 30%
higher stall ratio deviation. However, the optimization object, known as the proportional
fairness utility [13], is not solely about “equalizing” different users’ performances. (To
illustrate this, we construct a “Low Dev” policy in Table 4 that has a close-to-zero stall ratio
deviation but a low fairness reward.) The use of a proportional fairness reward function
indeed balances two important objectives—efficiency (i.e., assigning more bandwidth to
users that can achieve a higher reward per unit bandwidth) and fairness (i.e., balancing
different users’ performances). MAPG-finite is able to attain the highest reward under
the choice of proportional fairness utilities, demonstrating its ability to achieve complex
optimization objectives.

The evaluation results show that the “Even”, “Adaptive”, and SARSA policies fail to
perform consistently under different application scenarios and network conditions, whereas
our learning-based MAPG-finite policy is able to achieve the highest reward. Figure 8
depicts the average download rate distribution decided by the MAPG-finite policy. The
gray bars represent the average video bitrates requested by the users.
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Table 4. Reward breakdown for fairness function on 2500 KB/s download link.

Policy Total Reward User Average
Users Stall Ratio Reward

“Even” 7796.12 1, 2, 3 (HD)
4, 5 (LD)

0.39
0.08

0.67
0.93

“Adaptive” 8251.66 1, 2, 3 (HD)
4, 5 (LD)

0.18
0.28

0.86
0.77

MAPG-finite 8441.75 1, 2, 3 (HD)
4, 5 (LD)

0.24
0.11

0.80
0.91

“Low Dev” 8263.49 1, 2, 3 (HD)
4, 5 (LD)

0.22
0.20

0.82
0.84

The white bars represent the average download rate achieved by our MAPG-finite
policy (for presentation purposes, the unit of download rates is converted from KB/s
to Mbps). It is can be seen that, in order to maximize the fairness reward, MAPG-finite
ensures that (i) for users with the same HD preference (e.g., users 1, 2, and 3), the same
average downloading bandwidth is assigned to obtain a similar stall time for these users,
and (ii) for users watching videos with lower desired bitrates, less bandwidth is assigned
to balance the stall time, since video chunks are consumed at a slower pace. According
to Figure 7, the “Adaptive” policy achieves a lower fairness reward than “Even” under
the total download link of 2000 KB/s, which indicates that proportionally adjusting the
download bandwidth does not always achieve a better result when fairness is concerned.
Through the exploration and training of RL, MAPG-finite is able to self-teach, improve,
and finally converge to an optimal policy, making the model-free suitable for bandwidth
allocation with complex networks and objectives that often do not have a straightforward
mathematical formulation.
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D
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Video Bitrate

Download Rate

Figure 8. Average download bandwidth for all tested users based on the MAPG-finite strategy with
the fairness reward function on 2500 KB/s download link. MAPG-finite assures the same average
bandwidths for users with HD preferences, and lower bandwidths for users who desire lower bitrates.

To further illustrate the agility of our proposed MAPG-finite algorithm, we perform
another evaluation on a 1500 KB/s downlink, with an ABR streaming algorithm imple-
mented. Figure 9 depicts the QoE performances for this evaluation. We utilize a basic
buffer-based ABR algorithm proposed in [37]. Each time a video chunk is requested, if
the last chunk downloaded is already being played, the bitrate is adjusted to 80% of the
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max bitrate of the video to avoid a high stall time. When the number of residue cached
chunks is more than three, the agent starts to request for the max bitrate, and, thus, a better
display quality is obtained. Comparing Figure 9 with Figure 6, all policies receive higher
rewards under ABR due to the benefits of bitrate adaptation. We note that MAPG-finite
still outperforms the “Even” policy by 21.94%, the “Adaptive” policy by 41.25%, and the
SARSA policy by 37.11% . In this evaluation, we choose the buffer-based strategy for ABR
due to its efficiency for implementation. According to the numerical results, our proposed
MAPG-finite is able to adapt well to a dynamic bitrate environment. We are aware that
new ABR policies—some are engined by RL algorithms themselves—have been proposed
and evaluated [36,38–41] to improve the streaming quality. The key aim of the evaluation
was to show that the proposed framework can work on ARB streaming strategies, not to
compare the different streaming strategies. Thus, any streaming algorithm can be used
in our evaluations and our results show that an efficient bandwidth distribution among
multiple agents can be achieved with the proposed algorithms, where each agent uses any
of the ABR/CBR streaming algorithms.

1 
 

 
 
Figure 7 
 

 

Figrue 9 Figure 9. QoE reward comparisons with ABR feature activated/deactivated. The total download
bandwidth is 1500 KB/s. MAPG-finite achieves 21.94%, 41.25%, and 37.11% more than the “Even”,
“Adaptive”, and SARSA policies.

7. Conclusions

In this paper, we model the MA-Stream problem, which apportions bandwidth to
multiple users in a video streaming network, to maximize nonlinear, non-convex objectives
such as QoE and fairness objectives. We propose a novel multi-agent reinforcement learning
algorithm MAPG-finite that is able to work with nonlinear objective functions to solve this
optimization problem.

Using our testbed implemented in Python, we verify that our proposed solution
outperforms existing baseline policies (including “Even”, “Adaptive”, and single-agent
SARSA) measured by both QoE and fairness. Our algorithm improves QoE by 15.27%
and fairness by 22.47% for the 2000 KB/s link data link. Further, it is able to adapt well in
collaboration with the existing Adaptive Bitrate (ABR) streaming algorithm by improving
the QoE by more than 30% over the adaptive algorithm. The interaction between the
bandwidth distribution and ABR policies could be considered in future work to further
improve the performance of video streaming. Another interesting future work is to perform
large-scale experiments with network scale users.
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