
����������
�������

Citation: Ono, S.; Takata, J.; Kataoka,

M.; I, T.; Shin, K.; Sakamoto, H.

Privacy-Preserving Feature Selection

with Fully Homomorphic Encryption.

Algorithms 2022, 15, 229. https://

doi.org/10.3390/a15070229

Academic Editor: Quan Qian

Received: 30 May 2022

Accepted: 26 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Privacy-Preserving Feature Selection with Fully
Homomorphic Encryption

Shinji Ono 1, Jun Takata 1, Masaharu Kataoka 1, Tomohiro I 1, Kilho Shin 2 and Hiroshi Sakamoto 1,*

1 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi 820-8502, Japan;
ono.shinji514@mail.kyutech.jp (S.O.); takata.jun903@mail.kyutech.jp (J.T.);
kataoka.masaharu403@mail.kyutech.jp (M.K.); tomohiro@ai.kyutech.ac.jp (T.I.)

2 Computer Centre, Gakushuin University, 1-5-1 Mejiro, Toshimaku, Tokyo 171-8588, Japan;
kilhoshin314@gmail.com

* Correspondence: hiroshi@ai.kyutech.ac.jp

Abstract: For the feature selection problem, we propose an efficient privacy-preserving algorithm.
Let D, F, and C be data, feature, and class sets, respectively, where the feature value x(Fi) and the
class label x(C) are given for each x ∈ D and Fi ∈ F. For a triple (D, F, C), the feature selection
problem is to find a consistent and minimal subset F′ ⊆ F, where ‘consistent’ means that, for any
x, y ∈ D, x(C) = y(C) if x(Fi) = y(Fi) for Fi ∈ F′, and ‘minimal’ means that any proper subset of F′

is no longer consistent. On distributed datasets, we consider feature selection as a privacy-preserving
problem: assume that semi-honest parties A and B have their own personal DA and DB. The goal is
to solve the feature selection problem for DA ∪ DB without sacrificing their privacy. In this paper, we
propose a secure and efficient algorithm based on fully homomorphic encryption, and we implement
our algorithm to show its effectiveness for various practical data. The proposed algorithm is the
first one that can directly simulate the CWC (Combination of Weakest Components) algorithm on
ciphertext, which is one of the best performers for the feature selection problem on the plaintext.

Keywords: CWC algorithm; oblivious sorting; TFHE; IND-CPA

1. Introduction
1.1. Motivation

This study proposes a secure feature selection protocol that works effectively as a
preprocessor for traditional machine learning (ML). Let us consider a scenario where differ-
ent data owners are interested in private ML model training (e.g., logistic regression [1],
SVM [2,3], and decision tree [4,5]) on their combined data. There is a large advantage to
securely training these ML models on distributed data due to competitive advantage or
privacy regulations. Feature selection is the problem of finding a subset of relevant features
for model training. Using well-chosen features can lead to more accurate models, as well
as speedup during model training [6].

Consider a data set D associated with a feature set F and a class variable C, where
all feature values x(Fi) (Fi ∈ F) and the corresponding class label x(C) are defined for
each datum x ∈ D. In Table 1, for example, we show a concrete example. Given a triple
(D, F, C), the feature selection problem is to find a minimal F′ ⊆ F that is relevant to the
class C. The relevance of F′ is evaluated, for example, by I(F′; C), which measures the
mutual information between F′ and C. On the other hand, F′ is minimal, if any proper
subset of F′ is no longer consistent.

To the best of our knowledge, the most common method for identifying favorable
features is to choose features that show higher relevance in some statistical measures.
Individual feature relevance can be estimated using statistical measures such as mutual
information and Bayesian risk. For example, at the bottom row of Table 1, the mutual
information score I(F1; C) of each feature Fi to class labels is described. We can see that F1

Algorithms 2022, 15, 229. https://doi.org/10.3390/a15070229 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070229
https://doi.org/10.3390/a15070229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15070229
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070229?type=check_update&version=1

Algorithms 2022, 15, 229 2 of 18

is more important than F5, because I(F1; C) > I(F5; C). F1 and F2 of Table 1 will be chosen
to explain C based on the mutual information score. However, a closer examination of
D reveals that F1 and F2 cannot uniquely determine C. In fact, we find x2 and x5 with
x2(F1) = x5(F1) and x2(F2) = x5(F2) but x2(C) 6= x5(C). On the other hand, we can see that
F4 and F5 uniquely determine C using the formula C = F4⊕ F5 while I(F4; C) = I(F5; C) = 0.
As a result, the traditional method based on individual feature relevance scores misses the
correct answer.

Table 1. An example dataset shown in [7].

D F1 F2 F3 F4 F5 C

x1 1 0 1 1 1 0
x2 1 1 0 0 0 0
x3 0 0 0 1 1 0
x4 1 0 1 0 0 0
x5 1 1 1 1 0 1
x6 0 1 0 1 0 1
x7 0 1 0 0 1 1
x8 0 0 0 0 1 1

I(Fi; C) 0.189 0.189 0.049 0.000 0.000

Thus, we concentrate on the concept of consistency: F′ ⊆ F is considered to be
consistent if, for any x, y ∈ D, x(Fi) = y(Fi) for all Fi ∈ F′ implies x(C) = y(C). In machine
learning research, consistency-based feature selection has received a lot of attention [8–12].
CWC (Combination of Weakest Components) [8] is the simplest of such consistency-based
feature selection algorithms, and even though CWC uses the most rigorous measure, it
shows one of the best performances in terms of accuracy as well as computational speed
compared to other methods [7]. Throughout the proposed secure protocol, none of the
parties learns the values of the data as all computations are done over ciphertexts. Next,
the parties train an ML model over the pre-processed data using existing privacy-preserving
training protocols (e.g., logistic regression training [13] and decision tree [14]). Finally, they
can disclose the trained model for common use.

To design a secure protocol for feature selection, we focus on the framework of
homomorphic encryption. Given a public key encryption scheme E, let E[m] denote a
ciphertext of integer m; if E[m+ n] can be computed from E[m] and E[n] without decrypting
them, then E is said to be additive homomorphic, and if E[mn] can also be computed, then
E is said to be fully homomorphic. Furthermore, modern public key encryption must
be probabilistic: when the same message m is encrypted multiple times, the encryption
algorithm produces different ciphertexts of E[m].

Various homomorphic encryption schemes have been proposed to satisfy these ho-
momorphic properties over the last two decades. The first additive homomorphic en-
cryption was proposed by Paillier [15]. Somewhat homomorphic encryption that allows
a sufficient number of additions and a limited number of multiplications has also been
proposed [16–18], and we can use these cryptosystems to compute more difficult problems,
such as the inner product of two vectors. Gentry [19] proposed the first fully homomorphic
encryption (FHE) with an unlimited number of additions and multiplications, and since
then, useful libraries for fully homomorphic encryption have been developed, particularly
for bitwise operations and floating-point operations. TFHE [20,21] is known as the fastest
fully homomorphic encryption that is optimized for bitwise operations.

For the private feature selection problem, we use TFHE to design and implement our
algorithm. In this case, we assume two semi-honest parties A and B: each party complies
with the protocol but tries to infer as much as possible about the secret from the infor-
mation obtained. The parties have their own private data DA and DB and they jointly
compute advantageous features for DA ∪ DB while maintaining their privacy. The goal
is to jointly compute the CWC algorithm result on D = DA ∪ DB without revealing any
other information.

Algorithms 2022, 15, 229 3 of 18

In this paper, we describe the simplest case where there are two data owners, and they
perform the cooperative secure computation. More generally, there are many data owners,
and they encrypt with their own public keys. Since homomorphic operations cannot be
applied to two data encrypted with different public keys, a simple approach would be
for the server to attempt to re-encrypt them with some common public key. However,
there is no guarantee that the server or the new public key can be trusted. To solve this
problem, the framework of multi-key homomorphic encryption was proposed. This allows
FHE operations on data encrypted with different keys, i.e., we can extend the two-party
computation model to a more general case because TFHE has the required property. Using
this property, its application to the framework of oblivious neural network inference [22]
has been proposed.

This should be a realistic requirement, if one wants to draw some conclusions from
data that are privately distributed over more than one party. Multi-party computation
(MPC) can provide effective technical solutions to realize this requirement in many cases.
In MPC, certain computations that essentially rely on the distributed data are performed
through cooperation among the parties. In particular, fully homomorphic encryption
(FHE) is one of the critical tools of MPC. One of the most significant advantages of FHE-
based MPC is thought to be that FHE realizes outsourced computation in a simple and
straightforward manner: parties encrypt their private data with their public keys and send
the encrypted data to a single trusted party with sufficient computational power to perform
the required computation; although the computational results of the trusted party may be
incorrect, if some malicious parties send incorrect data, honest parties are at least convinced
that their private data have not been stolen as far as the cryptosystem used is secure. In
contrast, when a party shares his/her secret with other parties to perform MPC, even if
it uses a secure secret sharing scheme, collusion of a sufficient number of compromised
parties may reveal the party’s secret. In general, it is difficult to prove the security of MPC
protocols for the situation where we cannot deny the existence of active malicious parties,
and hence, the security is very often proven assuming that all the parties are at worst
semi-honest. In reality, however, even this relaxed assumption is unable to hold. Thus, the
property that a party can protect its private data only relying on its own efforts should be
counted as an important advantage of FHE-based MPC.

On the other hand, the current implementations of FHE are thought to be signifi-
cantly inefficient, and consequently, their ranges of application are actually limited. This is
currently true, but may not be true in the future: the Goldwasser–Mmicali (GM) cryptosys-
tem [23] is considered as the first scheme with provable security. Unfortunately, because the
GM cryptosystem encrypts data in a bitwise manner, it has turned out not to have sufficient
efficiency in time and memory to be used in the real world. In 2001, however, RSA-OAEP
was finally proven to have both provable security and realistic efficiency [24,25], and is
widely used through SSL/TLS. Thus, studying FHE-based MPC does not merely have
theoretical meaning, but also will yield significant contributions in terms of application to
the real world in the future.

In this paper, we propose an MPC protocol which relies on FHE-based outsourced
computation as well as mutual cooperation among parties. The target of our protocol is
to perform the computation of CWC, a feature selection algorithm known to be accurate
and efficient, preserving the privacy of the participating parties. If we fully perform CWC
by FHE-based outsourced computation, we have to pay unnecessarily large costs in time
in the phase of sorting the features of CWC. Therefore, in our proposed scheme, we add
ingenuity so that two parties cooperate with each other to sort the features efficiently.

Converting CWC into its privacy-preserving version based on different primitives
of MPC—for example, based on secret sharing techniques—is not only interesting but
also useful both in theory and in practice. We will pursue this direction as well in our
future work.

Algorithms 2022, 15, 229 4 of 18

1.2. Our Contribution and Related Work

Table 2 summarizes the complexities of the proposed algorithms in comparison to the
original CWC on plaintext. The baseline is a naive algorithm that can simulate the original
CWC [8] over ciphertext using TFHE operations. The bottleneck of private feature selection
exists in the sorting task over ciphertext, as we mention in the related work below. Our main
contribution is the improved algorithm, shown as ‘improved’, which significantly reduces
the time complexity caused by the sorting task. We also implement the improved algorithm
and demonstrate its efficiency through experiments in comparison to the baseline.

Table 2. Time and space complexities of the baseline and improved algorithms for secure CWC, where
k is the number of features and m, n are the numbers of positive and negative data, respectively. We as-
sume that the time of the respective operation (e.g., encryption/addition/multiplication/comparison)
in FHE is O(1).

Algorithm Time Space

CWC on plaintext [8] O(kmn + k log k) O(kmn)
secure CWC (baseline) O(kmn log k + k log2 k) O(kmn)

improved O(kmn + k log2 k + k log k log mn) O(kmn)

There are mainly two private computation models, secret sharing-based MPC and
public key-based MPC, and secret sharing-based MPC currently has an advantage. On the
other hand, we focus on the convenience of FHE. Public key-based MPC can establish a
simple mechanism to obtain results while keeping the learning model possessed by the
server and the personal information of many data owners confidential from each other,
relying only on cryptographic strength. The secret sharing-based MPC is faster but requires
at least two trusted parties that do not collude with each other, which creates a different
problem to cryptographic strength.

Other drawbacks of public key-based MPC are its security against the chosen plaintext
attack (CPA) and computational cost. TFHE is, however, computationally secure against
the chosen ciphertext attack (CCA), which assumes a stronger adversary than CPA so
that an attacker cannot obtain meaningful information from plaintext or ciphertext within
polynomial time.

In this section, we discuss related work on private feature selection as well as the
benefits of our method. Rao [26] et al. proposed a homomorphic encryption-based private
feature selection algorithm. Their protocol allows the additive homomorphic property
only, which invariably leaks statistical information about the data. Anaraki and Samet [27]
proposed a different method based on the rough set theory, but their method suffers from
the same limitations as Rao et al., and neither method has been implemented. Baner-
jee et al. [28], and Sheikhalishahi and Martinellil [29] have proposed MPC-based algorithms
that guarantee security by decomposing the plaintext into shares, as a different approach
to the private feature selection, while achieving cooperative computation. Li et al. [30]
improved the MPC protocol on the aforementioned flaw and demonstrated its effectiveness
through experiments.

These methods avoid partial decoding under the assumption that the mean of feature
values provides a good criterion for feature selection. This assumption, however, is heavily
dependent on data. The most important task in general feature selection is feature value-
based sorting, and CWC and its variants [7,8,11] demonstrated the effectiveness of sorting
with the consistency measure and its superiority over other methods. On ciphertext, this
study realizes the sorting-based feature selection algorithm (e.g., CWC).

We focus on the learning decision tree by MPC [31] as another study that employs
sorting for private ML, where the sorting is limited to the comparison of N values of
fixed length in O(N log2 N) time by a sorting network. In the case of CWC, however,
the algorithm must sort N data points, each of which has a variable length of up to M,
so a naive method requires O(MN log N + N log2 N) time. Our algorithm reduces this

Algorithms 2022, 15, 229 5 of 18

complexity to O(MN + N log2 N + N log N log M), which is significantly smaller than the
naive algorithm depending on M and N. Through experiments, we confirm this for various
data, including real datasets for ML.

Although sorting itself is not ML, a fast-sorting algorithm is an important preprocess
for ML model training. In the previous result [7], it was shown that sorting-based feature
selection can classify with higher accuracy than other heuristic methods. Furthermore, pre-
processing by sorting has proven to be an important task in decision tree model training [31].
On the other hand, it is also well known that sorting can speed up ML model training. For
example, in SVM, which is widely used in text classification and pattern recognition, the
problem of finding the convex hull of n points in Euclidean space can be reduced from
O(n2) to O(nlogn) time by preprocessing it with an appropriate sorting algorithm.

2. Preliminaries
2.1. Consistency Measure

First of all, we review the notion of the consistency measure employed in our problem.
A consistency measure µ : 2F → [0, ∞) for a feature set F is a function to represent how far
the data deviate from a consistent state and is required to satisfy determinisity (µ(F) = 0 if
and only if F is consistent) and monotonicity (F ⊆ G implies µ(F) ≥ µ(G)). The following
consistency measures satisfy this requirement.

• µbin(F) = 0, F is consistent; 1, otherwise (binary consistency [11])
• µicr(F) = ∑x(Pr(F = x)−maxc Pr(F = x, C = c)) (ICR [32])
• µrs(F) = 1−∑c

FDC=c
|D| , FD = {DF=x | DF=x ⊆ D} (rough set [33])

• µie(F) = ∑x ∑c 6=c′
|DF=x,C=c |·|DF=x,C=c′ |

|D|2 (inconsistent pair [34])

The fully homomorphic encryption used in this study is specialized for binary opera-
tions. Therefore, among these consistency measures, we employ µbin.

2.2. CWC Algorithm over Plaintext

We generally assume that the dataset D associated with F and C contains no errors,
i.e., if x(Fi) = y(Fi) for all i, x(C) = y(C). When D contains such errors, they are removed
beforehand and D contains not more than one x ∈ D with the same feature values.

In Algorithm 1, we describe the original algorithm for finding a minimal consistent
feature for two-class data. Given D with Fi and C = {0, 1}, a datum x ∈ D of x(C) = 1
is referred to as a positive datum and y ∈ D of y(C) = 0 is referred to as a negative
datum. Let n represent the number of positive data and m = |D| − n. We consider
two-dimensional bit array Bi[1..n][1..m] such that, for any 1 ≤ p ≤ n and 1 ≤ q ≤ m,
Bi[p][q] = 0 if xp(Fi) = yq(Fi) and Bi[p][q] = 1 otherwise, where xp is the p-th positive
datum (1 ≤ p ≤ n) and yq is the q-th negative datum (1 ≤ q ≤ m). Bi[p][q] = 0 means that
Fi is not consistent with the pair (xp, yq) because xp(Fi) = yq(Fi) despite xp(C) 6= yq(C).
Recall that Fi is said to be consistent only if x(Fi) = y(Fi) implies x(C) = y(C) for any
x, y ∈ D. As a result, ||Bi|| is defined to be the number of 1s in Bi.

For a subset F′ ⊆ F, F′ is said to be consistent, if for any p ∈ [1, n] and q ∈ [1, m], there
exists i such that Fi ∈ F′ and Bi[p][q] = 1 hold. CWC uses this to remove irrelevant features
from F in order to build a minimal consistent feature set. We note that finding the smallest
consistent feature set is clearly NP-hard. There is a simple reduction from the minimum set
cover to this problem as follows: given S1, . . . , Sk ⊆ S (|S| = n) with the intention that Si is
regarded as Bi in CWC, covering any element of S corresponds to the condition that for
any j ∈ {1, . . . , n}, there exists at least one i such that Bi[j] = 1.

Since the point of Bi is that it contains information, for every pair of data across
different classes, whether Fi is consistent with the pair or not, it can be easily extended
to multi-class data that have more than two classes. Although we focus on two-class
data for the sake of simplicity, for multi-class data, the mn-factors in the complexities are
replaced with the number of pairs of data across different classes, which is upper bounded
by |D|(|D| − 1)/2. Moreover, in extending to multi-class data, it is convenient to consider

Algorithms 2022, 15, 229 6 of 18

Bi as an appropriately serialized one-dimensional bit string because there is no way to
represent it as a dense two-dimensional bit array. Hence, in what follows, we treat Bi as a
bit string.

Algorithm 1 The algorithm CWC for plaintext

1: Input: A dataset D associated with features F = {F1, . . . , Fk} and class C = {0, 1}.
2: Output: A minimal consistent subset S ⊆ F.
3: Sort F1, . . . , Fk in the incremental order of ||Bi||.
4: Let π be the sorted indices of {1, . . . , k}.
5: for i = 1, . . . , k do
6: if F \ {Fπ[i]} is consistent then
7: update F ← F \ {Fπ[i]}
8: end if
9: end for

Table 3 shows an example of D, and Table 4 shows the corresponding Bi. Consider
the behavior of CWC in this case. All Bi (1 ≤ i ≤ 4) are computed as preprocessing. Then,
the features are sorted by the order ||B2|| = 5 ≤ ||B4|| = 5 ≤ ||B3|| = 6 ≤ ||B1|| = 8 and
π = (2, 4, 3, 1). By the consistency order π, CWC checks whether Fπ[i] can be removed
from the current F. Using the consistency measure, CWC removes F2 and F4 and the
resulting {F1, F3} is the output. In fact, we can predict the class of x by the logical operation
x(F1) ∧ x(F3).

Table 3. An example dataset D with F = {F1, F2, F3, F4} and C = {0, 1}. The data consist of two
positive data {x1, x2} and five negative data {y1, y2, y3, y4, y5}.

xi ∈ D F1 F2 F3 F4 C

x1 0 1 1 0 1
x2 0 0 1 1 1

yi ∈ D F1 F2 F3 F4 C

y1 1 0 1 0 0
y2 1 1 0 0 0
y3 0 1 0 1 0
y4 1 0 1 0 0
y5 1 1 0 0 0

Table 4. The bit string Bi for the example dataset D of Table 3. Each column (xp, yq) is 0 if xp(Fi) =

yq(Fi). For example, B1 = (1, 1, 0, 1, 1, 1, 1, 0, 1, 1) because xp(F1) = yq(F1) only for the two pairs
(x1, y3) and (x2, y3).

Bi (x1, y1) (x1, y2) (x1, y3) (x1, y4) (x1, y5) (x2, y1) (x2, y2) (x2, y3) (x2, y4) (x2, y5)

B1 1 1 0 1 1 1 1 0 1 1
B2 1 0 0 1 0 0 1 1 0 1
B3 0 1 1 0 1 0 1 1 0 1
B4 0 0 1 0 0 1 1 0 1 1

2.3. Security Model
2.3.1. Indistinguishable Random Variables

Let N denote the set of natural numbers. A function ε : N→ [0, 1] is called negligible,
if ∀c > 0, ∃k, ∀n ≥ k, ε(n) < 1/nc. Let X = {Xk | k ∈ N} and Y = {Yk | k ∈ N} be
sequences of random variables such that Xk and Yk are defined over the same sample space.
We say that X and Y are indistinguishable, denoted by X ≡c Y, if, and only if, Pr[Xn = Yn] is
a negligible function.

Algorithms 2022, 15, 229 7 of 18

2.3.2. Security of Multi-Party Computation (MPC)

Although the discussion of this section can be extended to MPC schemes which involve
more than two parties, merely for simplicity, we focus on the case where only two parties
are involved.

A two-party protocol is a pair Π = (P1,P2) of PPT Turing machines with input and
random tapes. Let xi be an input of Pi and yi be an output of Pi, respectively.

We assume a semi-honest adversary A and consider a protocol (A,P2), replacing P1 in
Π byA, whereA takes x1 as input and apparently follows the protocol. Let REALΠ,A(x1, x2)
denote the random variable representing the output (y1, y2) of (A,P2), and we define the
class REALΠ,A = {REALΠ,A(x1, x2)}x1,x2 = {y1, y2}x1,x2 .

On the other hand, letF denote the functionality that the protocol Π is trying to realize,
i.e., F is a PPT that simulates the honest (P1,P2) so that F (x1, x2) ≡ (P1(x1),P2(x2)).
Here, we assume a completely reliable third party, denoted by F . In this ideal world,
for this F and any adversary B acting as P1 with input x′1, possibly x′1 6= x1, we define the
random variable IDEALF ,B(x1, x2) = (B(x1,F1(x′1, x2),F2(x′1, x2))), where Fi(·, ·) denotes
the i-th component of the output of F (·, ·) for i = 1, 2. Similarly, we denote the class
IDEALF ,B = {IDEALF ,B(x1, x2)}x1,x2 .

Using such random variables, we define the security of protocol Π as follows.

Definition 1. It is said that a protocol Π securely realizes a functionality F if, for any attacker A
against Π, there exists an adversary B, and REALΠ,A ≡c IDEALF ,B holds.

The definitions stated above can be intuitively explained as follows. Exactly conform-
ing to the protocol, a semi-honest adversary A plays the role of P1 to steal any secrets. The
information sources which A can take advantage of are the following three:

1. the input tape to P1;
2. the conversation with P2;
3. the execution of the protocol.

While the information that A can obtain from the first and third sources is exactly x1
and y1, respectively, we call the information from the second source a view.

To denote it, we use the symbol ViewP1 .
Since the protocol inevitably requires that A obtains the information of x1 and y1,

the security of the protocol questions what A can obtain, in addition to what can be
computationally inferred from x1 and y1. If there exists such information, its source must
be ViewP1 .

The security criterion of simulatability requires that ViewP1 can be simulated on the
input of x1 and y1. In more formal terms, there exists a PPT Turing machine Sim that
outputs a view on the input of x1 and y1 such that the output view cannot be distinguished
from ViewP1 by any PPT Turing machine. When ViewP1 is simulatable, we see that Sim can
generate by itself what Sim can obtain from ViewP1 . Therefore, Sim cannot cannot obtain
any information in addition to what Sim can compute from x1 and y1.

2.3.3. IND-CPA

Indistinguishability against chosen plaintext attack (IND-CPA) is an important criterion
for the secrecy of a public key cryptosystem. We let Π = (Gen, Enc, Dec) denote a public
key cryptosystem consisting of key generation, encryption, and decryption algorithms. To
describe IND-CPA, we introduce the IND-CPA game played between an adversary A and
an oracle O: A is a PPT Turing machine, and k is the security parameter.

1. O generates a public key pair (sk, pk)← Gen(1k).
2. A generates two messages (m0, m1) of the same length arbitrarily and throws a query

(m0, m1) to O.
3. On receipt of (m0, m1), O selects b ∈ {0, 1} uniformly at random, computes c =

Enc(pk, mb), and replies to A with c.

Algorithms 2022, 15, 229 8 of 18

4. A guesses on b by examining c and outputs the guess bit b′.

We view b and b′ as random variables whose underlying probability space is defined
to represent the choices of the public key pair, b and b′. The advantage of the adversary A
is defined as follows to represent the advantage of A over tossing a fair coin to guess O’s
secret b:

AdvA = 2 · Pr[b′ = b]− 1.

when we let

Pr[b′ = 0|b = 0] =
1
2
+ α0 and Pr[b′ = 1|b = 1] =

1
2
+ α1,

We have
AdvA = α0 + α1

This definition of the advantage is consistent with the common definition found in
many textbooks:

AdvA = Pr[b′ = 0|b = 0]− Pr[b′ = 1|b = 0]

Definition 2. A public key cryptosystem Π is secure in the sense of IND-CPA, or simply IND-CPA
secure, if AdvA as a function in k is a negligible function.

2.4. TFHE: A Faster Fully Homomorphic Encryption

The proposed private feature selection is based on FHE. We review the TFHE [21], one
of the fastest libraries for bitwise addition (this means XOR ‘⊕’) and bitwise multiplication
(AND ‘·’) over ciphertext. On TFHE, any integer is encrypted bitwise: For `-bit integer
m = (m1, . . . , m`), we denote its bitwise encryption by E[m] ≡ (E[m1], . . . , E[m`]), for short.
These bitwise operations are denoted by f⊕(E[x], E[y]) ≡ E[x ⊕ y] and f·(E[x], E[y]) ≡
E[x · y] for x, y ∈ {0, 1} and the ciphertexts E[x] and E[y]. The same symbol is used to
represent an encrypted array. For example, when x and y are integers of length ` and `′,
respectively, E(x, y) denotes

E[x, y] ≡ (E[x], E[y]) ≡ ((E[x1], . . . , E[x`]), (E[y1], . . . , E[y`′])).

TFHE allows all arithmetic and logical operations via the elementary operations
E[x ⊕ y] and E[x · y]. In this section, we will consider how to build the adder and com-
parison operations. Let x, y represent `-bit integers and xi, yi represent the i-th bit of x, y,
respectively. Let ci represent the i-th carry-in bit and si is the i-th bit of the sum x + y.
Then, we can obtain E[x + y] by the bitwise operations of ciphertexts using si = xi ⊕ yi ⊕ ci
and ci+1 = (xi ⊕ ci) · (yi ⊕ ci)⊕ ci. We can construct other operations such as subtraction,
multiplication, and division based on the adder. For example, E[x − y] is obtained by
E[x + (−y)], where (−y) is the bit complement of y obtained by yi ⊕ 1 for all i-th bits.
On the other hand, we examine the comparison. We want to obtain E[x <?y] without
decrypting x and y where x <?y = 1 if x < y and x <?y = 0 otherwise. We can obtain the
logical bit for x <?y as the most significant bit of x + (−y) over ciphertexts here. Similarly,
for the equality test, we can compute the encrypted bit E[x =?y].

Adopting these operations of TFHE, we design a secure multi-party CWC. In this
paper, we omit the details of TFHE (see, e.g., [20,21]).

We should note that the secrecy of TFHE definitely impacts the security of our scheme.
In fact, in our two-party feature selection scheme, the party B sends his/her inputs in an
encrypted form to the party A, and A performs the computation of feature selection on the
encrypted inputs. If the encrypted inputs could be easily infiltrated, any ingenious devices
to secure the scheme would be meaningless.

Therefore, in designing our scheme, it was a matter of course to require our FHE
cryptosystem to be IND-CPA secure. In fact, TFHE is known to be IND-CPA secure.
Regarding this, we should note the following:

Algorithms 2022, 15, 229 9 of 18

• By definition, encryption with an ID-CPA cryptosystem is probabilistic. That is, the
result E[x] of encryption unpredictably differs every time the encryption is performed.
For this reason, by E[x|t], we denote a ciphertext generated at time t. In particular,
the notation of E[x|∗] means that the ciphertext has been generated at a time different
from any other encryption events.

• When we consider the IND-CPA security of an FHE cryptosystem, we should note that
the way in which the oracle O generates c with D(c) = mb is not unique. For example,
the oracle may compute c from two ciphertexts of additive shares of mb, say E[r] and
E[mb ⊕ r], by c = f⊕(E[r], E[mb ⊕ r]). The IND-CPA security of an FHE cryptosystem
should require that A cannot guess b with effective advantage, no matter how c has
been generated. This, however, holds, if the result of performing E[x], f⊕(E[x], E[y])
and f·(E[x], E[y]) distributes uniformly, and TFHE is known to satisfy this condition.

3. Algorithms
3.1. Baseline Algorithm

We present the baseline algorithm, a privacy-preserving variant of CWC. In this
subsection, we consider a two-party protocol, in which a party B has its private data and
outsources CWC computation to another party A, where this protocol can be extended to
more than two data owners using the multi-key homomorphic encryption [22]. During the
computation, party A should not gain other information than the number n of positive data,
the number m of negative data, and the number k of features. It should be noted that party
B can hide the actual number of data by inserting dummy data and telling A the inflated
numbers n and m. Dummy data can be distinguished by adding an extra bit that indicates
that the datum is a dummy if the bit is 1. The values of features and dummy bits of data in
each class are encrypted by B’s public key and sent to A.

The baseline algorithm consists of three tasks: computing encrypted bit string E[Bi],
sorting E[Bi]s, and executing feature selection on E[Bi]s. In the baseline algorithm, all
inputs are encrypted and they are not decrypted until the computation is completed. Thus,
for simplicity, we omit the notation E in the following presentation.

3.1.1. Computing Bi

We can compute Bi[m(p− 1) + q] by (xp(Fi)⊕ yq(Fi)) ∨ xp(d) ∨ yq(d), where xp(d)
and yq(d) represent the dummy bits for data xp and yq, respectively. (xp(Fi) ⊕ yq(Fi))
becomes 0 if Fi is inconsistent for the pair of xp and yq. Since we want to ignore the
influence of dummy data, the part ‘∨xp(d) ∨ yq(d)’ is added to make the whole value 1
(meaning that it is consistent) when one of xp and yq is a dummy. It takes O(kmn) time and
space in total.

3.1.2. Sorting Bs

We can compute ‖Bi‖ in encrypted form by summing up the values in Bi in O(mn log(mn))
time (noting that each operation on integers of log(mn) bits takes O(log(mn)) time). In-
stead, we can set an upper bound bmax of the bits used to store the consistency measure to
reduce the time complexity to O(mnbmax).

Then, sorting Bs in the incremental order of consistency measures can be accomplished
using any sorting network in which comparison and swap are performed in encrypted
form, without leaking information about feature ordering. It should be noted that in this
approach, the algorithm must spend Θ(mn + log k) time to swap (or pretend to swap)
two-bit strings and original feature indices of log k bits regardless of whether the two
features are actually swapped or not. Because this is the most complex part of our baseline
algorithm, we will demonstrate how to improve it. Using an AKS sorting network [35] of
size O(k log k), the total time for sorting Bis is O(mnbmax + (mn + bmax + log k)k log k).

In our experiments, we employ a more practical sorting network of Batcher’s odd-
even mergesort [36] of size O(k log2 k). A simple oblivious radix sort [37] in the O(k log k)

Algorithms 2022, 15, 229 10 of 18

algorithm under the assumption that the bit length of each integer is constant was re-
cently proposed.

3.1.3. Selecting Features

Let (Fπ(1), . . . , Fπ(k)) be the sorted list of features. We first compute a sequence
of bit strings (Z2, . . . , Zk) of length mn each such that Zi[h] =

∨k
j=i+1 Bπ(j)[h] for any

2 ≤ i ≤ k and 1 ≤ h ≤ mn; namely, Zi is the bit array storing the cumulative or
each position h for Bπ(i+1), Bπ(i+2), . . . , Bπ(k). Note that Zi[h] = 0 indicates that the set
{Fπ(i+1), Fπ(i+2), . . . , Fπ(k)} of features is inconsistent with regard to a pair (xp, yq) satisfy-
ing h = m(p− 1) + q, and {Fπ(i+1), Fπ(i+2), . . . , Fπ(k)} is inconsistent if and only if the bit
string Zi contains 0. See Table 5 for Zs in our running example. The computation requires
O(kmn) time and space.

Table 5. Sorted Bs for the example dataset D of Table 3 and the corresponding Zis.

i π(i) Bπ(i) Zi

1 2 B2 = 1 0 0 1 0 0 1 1 0 1 Z1 = 1 1 1 1 1 1 1 1 1 1
2 4 B4 = 0 0 1 0 0 1 1 0 1 1 Z2 = 1 1 1 1 1 1 1 1 1 1
3 3 B3 = 0 1 1 0 1 0 1 1 0 1 Z3 = 1 1 0 1 1 1 1 0 1 1
4 1 B1 = 1 1 0 1 1 1 1 0 1 1 Z4 = 0 0 0 0 0 0 0 0 0 0

We simulate Algorithm 1 on encrypted Bs and Zs for feature selection. Furthermore,
we use two 0-initialized bit arrays, R of length k and S of length mn. R[i] is meant to store 1
if the i-th feature (in sorted order) is selected. S is used to keep track of the cumulative or
for the bit strings of the currently selected features. Namely, S[h] is set to

∨`
α=1 Bπ(jα)[h] if `

features {Fπ(j1), . . . , Fπ(j`)} have been selected at this time.
Assume that we are in the i-th iteration of the loop of Algorithm 1. Note that, at this

time, F contains features {Fπ(i), Fπ(i+1), . . . , Fπ(k)} and currently selected features, and
F \ {Fπ(i)} is consistent if

∧mn
h=1(Zi[h] ∨ S[h]) is 1. Because we keep Fπ(i) in F if F \ {Fπ(i)}

is inconsistent, the algorithm sets R[i] = ¬∧mn
h=1(Zi[h] ∨ S[h]). After computing R[i], we

can correctly update S by S[h] ← S[h] ∨ (R[i] ∧ Bπ(i)[h]) for every 1 ≤ h ≤ mn in O(mn)
time. Therefore, the total computational time is O(kmn).

3.1.4. Summing Up Analysis

The sorting step takes O(mnbmax + (mn + bmax + log k)k log k) time. Because CWC
works with any consistent measure, we do not need to use ‖Bi‖ in full accuracy, so we assume
that bmax is set to be constant. Under the assumption, we obtain the following theorem.

Theorem 1. For the two-party feature selection problem, we can securely simulate CWC in
O(kmn log k + k log2 k) time and O(kmn) space without revealing the private data of the par-
ties under the assumption that TFHE is secure.

Proof. According to the discussion above, computing Bi for all features takes O(kmn) time
and space, sorting features takes O(mnbmax + (mn + bmax + log k)k log k) = O(kmn log k +
k log2 k) time, and selecting features takes O(kmn) time.

Finally, party A computes in O(k log k) time an integer array P with P[h] = R[h] · π(h),
which stores the original indices of selected features. In the outsourcing scenario, party
A simply sends P to party B as the result of CWC. In the joint computing scenario, party
A randomly shuffles P to conceal π to B. As a result, we can securely simulate CWC in
O(kmn log k + k log2 k) time and O(kmn) space.

3.2. Improvement of Secure CWC

Sorting is a major bottleneck for private CWC. The reason for this is that pointers
cannot be moved across ciphertexts. For example, consider the case of a secure integer. Let

Algorithms 2022, 15, 229 11 of 18

the variables x and y contain integers a and b, respectively. In this case, by performing the
secure operation a <?b, the result is obtained as a <?b = c ∈ {0, 1}. Using this logical bit c,
we can swap the values of x and y in O(1) time, satisfying x < y by the secure operation
x ← c · a + c̄ · b and y← c̄ · a + c · b.

In the case of CWC, however, each integer i of feature Fi is associated with the bit
string Bi. Since any x cannot be decrypted, we cannot swap the pointers appropriately.
Therefore, the baseline algorithm swaps Bi explicitly. As a result, the computation time for
sorting increases to O(mnk log2 k). Our main contribution is to improve this complexity to
O(mnk + k log2 k) by reducing the cost for such explicit sorting.

Based on the FHE, we propose the improved secure CWC (Algorithm 2), which reduces
the time complexity to O(mnk + k log2 k). An example run of Algorithm 2 is illustrated in
Figure 1. As shown in this example, the party A can securely sort k randomized features
in O(k log2 k) time using a suitable sorting network, and then, according to the result of
sorting, A swaps each associated bit string of length nm in O(kmn) time. Following this
preprocessing, the parties securely obtain minimal consistent features by decrypting the
output of CWC. Finally, we have the following result.

Algorithm 2 Improved secure CWC between parties A and B

1: Preprocessing:
Party A has EB[F] = EB[F1, . . . ,Fk] for Fi = (Fi, ‖Bi‖, Bi) encrypted with party B’s
public key, where each datum x is encrypted at time 0 as EB[x|0].

2: Party A:
Generates ri for i = 1, . . . , n uniformly at random.
Sends (E B[Bi + ri|1], EA[ri|1]) for i = 1, . . . , n.

3: Party A:
Calculates EB[i|2] for i = 1, . . . , n.
Securely sorts (EB[Fi|0], EB[‖Bi‖|0], EB[i|2]) for i = 1, . . . , n in increasing order of ‖Bi‖.
As a result, obtains (EB[Fij |3], EB[‖Bij‖|3], EB[ij|3]) for j = 1, . . . , n.
Generates a permutation π ∈ Sn uniformly at random and memorizes it.
Sends (EB[iπ(1)|3], . . . , EB[iπ(n)|3]) .

4: Party B:
Decrypts (iπ(1), . . . , iπ(n)).
Generates r′i for i = 1, . . . , n uniformly at random.
Sends (EB[Biπ(j)

+ riπ(j)
+ r′iπ(j)

|4], EA[riπ(j)
+ r′iπ(j)

|4]) for j = 1, . . . , n.
5: Party A:

Decrypts riπ(j)
+ r′iπ(j)

for j = 1, . . . , n.

Obtains EB[Biπ(j)
|5] j = 1, . . . , n.

Obtains EB[Bij |5] j = 1, . . . , n through permutation by π−1.
6: Party A:

Simulates CWC for resulting EB[F].

Theorem 2. Algorithm 2 can simulate CWC in O(kmn + k log2 k + k log k log mn) time and
O(kmn) space under the assumption that FHE executes each bit operation in O(1) time.

Proof. Compared to the baseline, additional space is required for π and ri and r′i . Thus,
the space complexity remains O(kmn). For the time complexity, the main task is to sort
k-triple (Fi, ‖Bi‖, Bi) in the increasing order of ‖Bi‖. The improved algorithm sorts only
the pairs xi = (Fi, ‖Bi‖) of integers, where the size of xi is O(log k + log mn) bits. For
each xi, xj, we can check if ‖Bi‖ ≤ ‖Bj‖ in O(log mn) time and we can swap them in
O(log k + log mn) time using homomorphic operations in FHE. It follows that the time
for sorting all xi (i = 1, . . . , k) is O(k log k(log k + log mn)) time. After sorting the pairs,
the algorithm moves all Bi to the correct positions according to the rank of xi (i = 1, . . . , k).
This cost is O(kmn). Therefore, time complexity is O(kmn + k log2 k + k log k log mn).

Algorithms 2022, 15, 229 12 of 18

Figure 1. An example run of Algorithm 2. For simplicity, we omit the clock time in each ciphertext.
(1): Parties A and B jointly compute Bi and ‖Bi‖ for each feature Fi (same as the baseline algorithm).
(2): A securely sends Bi; B cannot learn anything. (3): A appends encrypted index i for each Fi. (4): A
sorts only (Fi, ‖Bi‖) by ‖Bi‖. (5): A sends the sorted indices with random permutation; B cannot
learn anything. (6): B sends Bi; A cannot learn anything from it. (7): A decrypts the noise and obtains
the correct order of Bij ; A cannot learn anything. (8): A simulates CWC the same as the baseline.
(9): Party A, B share the resulting features.

Theorem 3. Algorithm 2 is secure under the assumption that the employed FHE is IND-CPA secure.

Proof. We show the security by constructing simulators for parties A and B, respectively.
B’s view (what B can obtain from A) is the following:

• (EB[Bi + ri|1], EA[ri|1]) for i = 1, . . . , n;
• EB[iπ(1)|3], . . . , EB[iπ(n)|3].

Their probability distributions are uniform and independent of each other. Hence,
the simulator for B can replace them with

Algorithms 2022, 15, 229 13 of 18

• (EB[Bi + r′′i |6], EA[r′′i |6]) for i = 1, . . . , n and r′′i , which are selected uniformly at
random;

• EB[π
′(1)|6], . . . , EB[π

′(n)|6] for π′ ∈ Sn, which is selected uniformly at random.

Note that, even if an adversary knows Bi, it is computationally impossible to distin-
guish between EB[Bi + r′′i |6] and EB[r′′i |6] by the IND-CPA security of the cryptosystem EB.

Next, we construct a simulator Sim for the party A. Although what A can obtain from
B is {(

EB[Biπ(j)
+ riπ(j)

+ r′iπ(j)
|4], EA[riπ(j)

+ r′iπ(j)
|4]
)∣∣∣j = 1, . . . , n

}
this is equivalent to {EB[Bij |5] | j = 1, . . . , n} after decryption and permutation.

On the other hand, the sequence (i1, . . . , in) is not explicitly given to A, and A recog-
nizes it through the alignment between

• (EB[‖Bi1‖|3], . . . , EB[‖Bin‖|3]) and
• (EB[Bi1 |5], . . . , EB[Bin |5]).

Therefore, we define A’s view to be

ViewA =
{(

EB[‖Bij‖|3], EB[Bij)|5]
)∣∣∣j = 1, . . . , n

}
with ‖Bi1‖ ≤ · · · ≤ ‖Bin‖.

On the other hand, we define the view that Sim should generate as follows. While A can
generate {EB[‖Bij‖|3] | j = 1, . . . , n} with ‖Bi1‖ ≤ · · · ≤ ‖Bi2‖, A needs B’s cooperation to
generate {EB[Bij |5] | j = 1, . . . , n}. Without B’s cooperation, Sim selects π′ ∈ Sn uniformly
at random, and generates its own view to be

ViewSim =
{(

EB[‖Bij‖|3], EB[Bπ′′(j)|∗]
)∣∣∣j = 1, . . . , n

}
.

Sim can compute EB[Bπ′′(j)|∗] from EB[0|∗] and EB[Bπ′′(j)|0] taking advantage of the
homomorphic property of the encryption system EB.

Furthermore, we define a distinguisher D as a PPT Turing machine that tries to
distinguish between ViewA and ViewSim on the input of {(EB[‖Bi‖|0], EB[Bi|0]) | i =
1, . . . , n}.

When we let Pr[Y = A | X = A] = 1/2 + α1 and Pr[Y = Sim | X = Sim] = 1/2 + α2,
the advantage of D is defined as α1 + α2.

We show that, if D’s advantage α is not negligible, we can construct a PPT attacker
Attck that can break the IND-CPA security of the encryption system EB with a non-
negligible advantage. Our attacker Attck plays the IND-CPA game, exploiting an oracle
OIND as follows:

1. Attck generates B1, B2 with ‖B1‖ ≤ ‖B2‖;
2. Attck lets x1 = ‖B1‖ and x2 = ‖B2‖ and throws a query (x1, x2) to OIND;
3. OIND selects i ∈ {1, 2} uniformly at random and sends c = EB[xi| − 1] to Attck;
4. Attck initializes D by inputting (EB[‖B1‖|0], EB[‖B1‖|0]), (EB[‖B2‖|0], EB[‖B2‖|0]);
5. First query. Attck throws to D the query: (EB[‖B2‖|2], c), (EB[‖B2‖|2], EB[B2|2]);
6. If D replies with A, Attck outputs 1 and terminates.
7. Second query. Attck generates c′ by adding EB[0|3] to c. Note that DB(c′) = DB(c)

holds. Attck throws to D the query: (EB[‖B1‖|3], EB[B2|3]), (EB[‖B2‖|3], c′).
8. If D replies with Sim, Attck outputs 1 and terminates.
9. Attck outputs 2.

We evaluate Attck’s advantage as follows. We assume DB(c) = x1. The probability of
this case is 1/2. The probability that D replies with A to the first query or D replies with
Sim to the second query is

1
2
+ α1 +

1
2
+ α2 − (

1
2
+ α1)(

1
2
+ α2) =

3
4
+

α

2
− α1α2 ≥

3
4
+

α

4
,

Algorithms 2022, 15, 229 14 of 18

since the first and second queries are mutually independent.
When assuming DB(c) = x2, we see that Pr[D outputs Sim at the first query]− 1/2

is negligible. Otherwise, D can be used as an attacker to break the IND-CPA security of EB.
Therefore, Pr[Attck outputs 2]− 1/4 is negligible. Consequently, we have

Pr[Attck’s guess is right] ≥ 1
2

(
3
4
+

α

4

)
+

1
2
· 1

4
=

1
2
+

α

8
.

Since we assume that α is not negligible, neither is α/4.

4. Experiments

We implemented the baseline and improved algorithms for secure CWC in C++ using
the TFHE library (https://tfhe.github.io/tfhe (accessed on 28 January 2021)).

The experiments were carried out on a machine equipped with an Intel Core i7-6567U
(3.30 GHz) processor and 16GB of RAM. In the following, m (resp. n) is the number of
positive (resp. negative) data and k is the number of features.

Table 6 summarizes the running time of the baseline algorithm (naive implementa-
tion of Algorithm 1 using TFHE) for random data generated for k ∈ {10, 50, 100} and
mn ∈ {100, 500, 1000}. The complexity analysis shows that the running time increases in
proportion to mn. This experimental result confirms this in real data. The table clearly
shows that the sorting process is the bottleneck.

Table 6. Running time (s) of baseline algorithm (naive secure CWC). Task 1: computing Bis. Task 2:
sorting Bis. Task 3: feature selection.

k mn Task 1 Task 2 Task 3

100 60.3 835.8 111.9
10 500 300.5 4252.4 558.1

1000 601.4 8867.0 1114.2

100 301.8 6292.6 589.3
50 500 1502.9 30,364.6 2941.0

1000 3007.0 62,124.6 5919.7

100 603.7 16,148.5 1179.0
100 500 3005.9 76,315.2 5952.5

1000 6014.1 154,143.5 11,867.0

Table 7 compares the running time of preprocessing in the baseline and improved
algorithms. According to the results, the proposed algorithm significantly improves the
bottleneck in naive CWC for secure computing. We should note that the baseline and
improved algorithms both compute exactly the same solution as the CWC on plaintexts.
We also show the details of the improved algorithm: ‘sorting’ means the time for sorting of
the triples (Fi, ||Bi||, i) of integers; ‘other task’ means the time for remaining tasks, including
generating/adding/subtracting random noise ri, moving Bi, decrypting integers, etc.

Table 7. Running time (s) of baseline and improved algorithms. Here, ‘baseline’ is same as Task 2 in
Table 6 (i.e., the bottleneck); ‘improved:’ is the running time of corresponding task in the improved
algorithm, where ‘sorting’ and ‘other tasks’ are the details.

k mn Baseline Improved: Sorting Other Tasks

100 835.8 203.7 69.4 134.2
10 500 4252.4 286.2 89.5 196.6

1000 8867.0 302.5 98.9 203.6

100 16,148.5 3311.2 1865.5 1445.7
100 500 76,315.2 4601.9 2647.7 1954.1

1000 154,143.5 4671.4 2660.8 2010.5

https://tfhe.github.io/tfhe

Algorithms 2022, 15, 229 15 of 18

Table 8 displays the running time of the improved algorithm for real data available
from the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/index.php
(accessed on 26 January 2022)), because, since these datasets contain more than three
feature/class values, we treated them as a binary classification between one feature/class
and the other.

Table 8. Running time (s) of improved algorithm for real data in UCI Machine Learning Repository.

Dataset k mn Time Sorting Other Tasks

Letter 16 196 252.2 80.6 171.4
Breast
Cancer

10 2464 312.6 103.1 209.5

Covertype 54 979 1653.5 836.9 816.6

We demonstrated that the proposed algorithm works well for real-world multi-level
feature selection problems. We only evaluated the running time in this experiment, but the
relevance of the extracted features is guaranteed because the secure CWC algorithm pro-
duces the same solution as the original [8].

5. Conclusions

On the basis of fully homomorphic encryption, we proposed a faster private feature
selection algorithm that allows us to securely compute functional features from distributed
private datasets. Our algorithm can simulate the original CWC algorithm, which chooses
favorable features by sorting. In addition to the improvement in computational complexity,
the proposed algorithm solves the private feature selection problem in practical time for a
variety of real data. One of the remaining challenges is to improve sorting at a lower cost
because CWC does not always require exact sorting. Then, ambiguous sorting possibly
reduces the computation time, maintaining solution quality. At this time, the proposed
algorithm is not applicable to real numbers for feature value. This is because TFHE [21]
is not suitable for floating-point operations. Extending the TFHE library to enable secure
feature selection for real-valued data is a future challenge.

A well-known feature selection method is to filter features by computing Gini impurity
scores [14]. In this method, the optimal threshold for filtering is determined by the order of
sorting of each feature. However, since sorting is time-consuming even for secret sharing-
based MPC [38], a simpler method of determining the threshold by calculation has been
proposed [30], and its effectiveness has been confirmed by experiments. On the other
hand, this study focuses on consistency measure-based feature selection. As we mentioned
previously, the consistency measure-based method has been confirmed to have advantages
over other methods. This study proposes the first secure protocol that enables consistency
measure-based feature selection in practical time.

We next compare our proposal with other methods in the framework of private feature
selection. A secret sharing-based MPC using the distributed secure sum is proposed [29].
In this method, it is known that statistical information about the data is leaked during the
computation. The authors in [30] propose an honest-majority three-party protocol that im-
proves on the drawback of [29]. This method is fast but requires at least two trusted parties.
In addition, [30] considered both semi-honest and malicious adversaries, but in this study,
the parties are assumed to be semi-honest. A feature selection using homomorphic encryp-
tion was proposed in [26]. This method uses only the additive homomorphic property in a
two-party model, which limits its computational power. Therefore, statistical information
about the data is leaked because partial decryption is required during communication be-
tween the parties. Moreover, this protocol has not been implemented. The recent approach
by [39] is not based on cryptography and does not provide a formal privacy guarantee, and
it leaks information through the disclosure of intermediate representations. Although our
method is inferior to secret sharing-based MPC in terms of practical computing time, it

https://archive.ics.uci.edu/ml/index.php

Algorithms 2022, 15, 229 16 of 18

can handle feature selection from many data owners, even in situations where only they
themselves can be trusted, and does not leak information during computation.

In addition, we discuss future issues and prospects related to secret computation with
FHE, which were not discussed in detail in this study. First, this study assumes that the
data are consistent, which cannot be applied to real-world data. If the data are inconsistent,
e.g., when the data are merged, there are two entries with the same feature values they but
are classified into different classes, the party can ignore these entries without decoding.
Since the outsourced party can perform a comparison of two integers without decoding,
they can use the encrypted logical bit to change the class label of these irrelevant entries to
a special value, effectively ignoring them.

Next, we consider how to speed up the computation of real numbers using FHE.
CKKS [40] and TFHE are the current state-of-the-art methods for computing real numbers
on FHE. CKKS speeds up arithmetic operations on real numbers by converting reals to
integers through scaling, performing arithmetic operations on the integers, and then con-
verting the results back to reals. However, CKKS has the drawback that it cannot compute
nonlinear functions (e.g., ReLU) or perform comparison operations, making it difficult to
apply to ML. On the other hand, TFHE can evaluate comparison operations and NAND
circuits, making all computations theoretically possible. Unfortunately, the runtime on
TFHE has an overhead of approximately 10,000 times that on the plaintext, and thus the
GPGPU-based architecture is currently being studied for speedup. Currently, the fastest im-
plementation is around 20 times faster than algorithms on CPUs [41]. Thus, the application
and speedup of TFHE to ML is a promising research area for the future.

In conclusion, it should be noted that with the development of FHE, practical algo-
rithms for more challenging problems such as large-scale genome analysis (GWAS) [42,43]
and deep learning [44–46] are emerging.

Author Contributions: Conceptualization, H.S.; methodology, T.I., K.S. and H.S.; software, S.O., J.T.
and M.K.; validation, S.O., J.T. and M.K.; formal analysis, T.I., K.S. and H.S.; investigation, T.I., K.S.
and H.S.; resources, S.O., J.T. and M.K.; data curation, S.O., J.T. and M.K.; writing—original draft
preparation, T.I., K.S. and H.S.; writing—review and editing, T.I., K.S. and H.S.; visualization, H.S.;
supervision, H.S.; project administration, H.S.; funding acquisition, H.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded in part by JSPS KAKENHI (Grant Number 21H05052, 18H04098).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, S.; Zhang, Y.; Dai, W.; Lauter, K.; Kim, M.; Tang, Y.; Xiong, H.; Jiang, X. HEALER: Homomorphic computation of ExAct

Logistic rEgRession for secure rare disease variants analysis in GWAS. Bioinformatics 2015, 32, 211–218. [CrossRef] [PubMed]
2. Liu, F.; Ng, W.K.; Zhang, W. Encrypted SVM for Outsourced Data Mining. In Proceedings of the 2015 IEEE 8th International

Conference on Cloud Computing, New York, NY, USA, 20 August 2015; pp. 1085–1092.
3. Qiu, G.; Huo, H.; Gui, X.; Dai, H. Privacy-Preserving Outsourcing Scheme for SVM on Vertically Partitioned Data. Secur. Commun.

Netw. 2022, 2022, 9983463. [CrossRef]
4. Bost, R.; Ada Popa, R.; Tu, S.; Goldwasser, S. Machine learning classification over encrypted data. In Proceedings of the Network

and Distributed System Security Symposium, San Diego, CA, USA, 8–11 February 2015.
5. Khedr, A.; Gulak, G.; Vaikuntanathan, V. SHIELD: Scalable Homomorphic Implementation of Encrypted Data-Classifiers. IEEE

Trans. Comput. 2016, 65, 2848–2858. [CrossRef]
6. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014 40, 16–28. [CrossRef]
7. Shin, K.; Kuboyama, T.; Hashimoto, T.; Shepard, D. SCWC/SLCC: Highly scalable feature selection algorithms. Information 2017,

8, 159. [CrossRef]
8. Shin, K.; Xu, X.M. Consistency-based feature selection. In Proceedings of the 13th International Conference on Knowledge-Based

and Intelligent Information and Engineering Systems, Santiago, Chile, 28–30 September 2009; pp. 28–30.

http://doi.org/10.1093/bioinformatics/btv563
http://www.ncbi.nlm.nih.gov/pubmed/26446135
http://dx.doi.org/10.1155/2022/9983463
http://dx.doi.org/10.1109/TC.2015.2500576
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.3390/info8040159

Algorithms 2022, 15, 229 17 of 18

9. Almuallim, H.; Dietteric, T.G. Learning boolean concepts in the presence of many irrelevant features. Artif. Intell. 1994, 69, 279–30.
[CrossRef]

10. Liu, H.; Motoda, H.; Dash, M. A monotonic measure for optimal feature selection. In Proceedings of the 10th European Conference
on Machine Learning, Chemnitz, Germany, 21–23 April 1998; pp. 101–106.

11. Shin, K.; Fernandes, D.; Miyazaki, D. Consistency measures for feature selection: A formal definition, relative sensitivity
comparison, and a fast algorithm. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona,
Spain, 16–22 July 2011; pp.1491–1497.

12. Zhao, Z.; Liu, H. Searching for interacting features. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, 6–12 January 2007; pp. 1156–1161.

13. De Cock, M.; Dowsley, R.; Nascimento, A.C.A.; Railsback, D.; Shen, J.; Todoki, A. High performance logistic regression for
privacy-preserving genome analysis. BMC Med. Genom. 2021, 14, 23. [CrossRef] [PubMed]

14. Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and Regression Trees, 1st ed.; Taylor and Francis: Oxfordshire, UK,
1984.

15. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International Conference
on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; pp. 223–238.

16. Attrapadung, N.; Hanaoka, G.; Mitsunari, S.; Sakai, Y.; Shimizu, K.; Teruya, T. Efficient two-level homomorphic encryption
in prime-order bilinear groups and a fast implementation in webassembly. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, Incheon, Korea, 4 June 2018; pp. 685–697.

17. Boneh, D.; Goh, E.J.; Nissim, K. Evaluating 2-DNF formulas on ciphertexts. In Proceedings of the Theory of Cryptography
Conference, Cambridge, MA, USA, 10–12 February 2005; pp. 325–341.

18. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (leveled) fully homomorphic encryption without bootstrapping. In Proceedings of
the 3rd Innovations in Theoretical Computer Science, Cambridge, MA, USA, 8–10 January 2012; pp. 309–325.

19. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM Symposium on Theory of
Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.

20. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast fully homomorphic encryptionover the torus. J. Cryptol. 2020,
33, 34–91. [CrossRef]

21. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast Fully Homomorphic Encryption Library, August 2016. Available
online: https://tfhe.github.io/tfhe (accessed on 28 January 2021).

22. Chen, H.; Dai, W.; Kim, M.; Song, Y. Efficient Multi-Key Homomorphic Encryption with Packed Ciphertexts with Application to
Oblivious Neural Network Inference. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, London, UK, 11–15 November 2019; pp. 395–412.

23. Goldwasser, S.; Micali, S. Probabilistic Encryption. J. Comput. Syst. Sci. 1984, 28, 270–299. [CrossRef]
24. Fujisaki, E.; Okamoto, T.; Pointcheval, D.; Stern, J. RSA-OAEP is secure under the RSA assumption. In Proceedings of the 21st

Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2001; pp. 260–274.
25. Bellare, M.; Rogaway, P. Optimal Asymmetric Encryption. In Proceedings of the Workshop on the Theory and Application of

Cryptographic Techniques, Perugia, Italy, 9–12 May 1994; pp. 92–111.
26. Rao, V.; Long, Y.; Eldardiry, H.; Rane, S.; Rossi, R.A.; Torres, F. Secure two-party feature selection. arXiv 2019, arXiv:1901.00832.
27. Anarakia, J.R.; Samet, S. Privacy-preserving feature selection: A survey and proposing a new set of protocols. arXiv 2020,

arXiv:2008.07664.
28. Banerjee, M.; Chakravarty, S. Privacy preserving feature selection for distributed data using virtual dimension. In Proceedings of

the 20th ACM International Conference on Information and Knowledge Management, Glasgow Scotland, UK, 24–28 October
2011; pp. 2281–2284.

29. Sheikhalishahi, M.; Martinelli, F. Privacy-utility feature selection as a privacy mechanism in collaborative data classification. In
Proceedings of the 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, Poznan,
Poland, 21–23 June 2017; pp. 244–249.

30. Li, X.; Dowsley, R.; Cock, M.D. Privacy-preserving feature selection with secure multiparty computation. In Proceedings of the
38th International Conference on Machine Learning, Online, 18–24 July 2021; pp. 6326–6336.

31. Abspoel, M.; Escudero, D.; Volgushev, N. Secure training of decision trees with continuous attribute. Proc. Priv. Enhancing Technol.
2021, 2021, 167–187. [CrossRef]

32. Dash, M.; Liu, H. Consistency-based search in feature selection. Articial Intell. 2003, 151, 155–176. [CrossRef]
33. Pawlak, Z. Rough Sets, Theoretical Aspects of Reasoning about Data; Kluwer Academic Publishers: Alphen aan den Rijn, The Nether-

lands, 1991.
34. Arauzo-Azofra, A.; Benitez, J.M.; Castro, J.L. Consistency measures for feature selection. J. Intell. Inf. Syst. 2008, 30, 273–292.

[CrossRef]
35. Ajtai, M.; Szemerédi, E.; Komlós, J. An O(n log n) sorting network. In Proceedings of the 15th Annual ACM Symposium on

Theory of Computing, Boston, MA, USA, 25–27 April 1983; pp. 1–9.
36. Batcher, K.E. Sorting networks and their applications. In Proceedings of the American Federation of Information Processing

Societies Spring Joint Computing Conference, Atlantic City, NJ, USA, 30 April–2 May 1968; pp. 307–314.

http://dx.doi.org/10.1016/0004-3702(94)90084-1
http://dx.doi.org/10.1186/s12920-020-00869-9
http://www.ncbi.nlm.nih.gov/pubmed/33472626
http://dx.doi.org/10.1007/s00145-019-09319-x
https://tfhe.github.io/tfhe
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://dx.doi.org/10.2478/popets-2021-0010
http://dx.doi.org/10.1016/S0004-3702(03)00079-1
http://dx.doi.org/10.1007/s10844-007-0037-0

Algorithms 2022, 15, 229 18 of 18

37. Hamada, K.; Chida, K.; Ikarashi, D.; Takahashi, K. Oblivious Radix Sort: An Efficient Sorting Algorithm for Practical Secure
Multi-party Computation (iacr.org). 2014. Available online: https://eprint.iacr.org/2014/121 (accessed on 26 January 2022).

38. Goodrich, M. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm running in O(nlogn) time. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, New York, NY, USA, 31 May–3 June 2014; pp. 684–693.

39. Ye, X.; Li, H.; Imakura, A.; Sakurai, T. Distributed collaborative feature selection based on intermediate representation. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 4142–4149.

40. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of the
International Conference on the Theory and Application of Cryptology and Information Security, Online, 30 November 2017;
pp. 409–437.

41. Matsuoka, K.; Hoshizuki, Takashi Sato, T.; Bian, S. Towards Better Standard Cell Library: Optimizing Compound Logic Gates for
TFHE. In Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, New York, NY,
USA, 15 November 2021; pp. 63–68.

42. Bos, J.W.; Lauter, K.; Naehrig, M. Private predictive analysis on encrypted medical data. J. Biomed. Inform. 2014, 50, 234–243.
[CrossRef]

43. Lauter, K.; López-Alt, A.; Naehrig, M. Private Computation on Encrypted Genomic Data. In Proceedings of the 3rd International
Conference on Cryptology and Information Security in Latin America, Florianópolis, Brazil, 17–19 September 2014; pp. 3–27.

44. Dowlin, N.; Gilad-Bachrach, R.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. CryptoNets: Applying neural networks to
Encrypted data with high throughput and accuracy. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 201–210.

45. Bourse, F.; Minelli, M.; Minihold, M.; Paillier, P. Fast Homomorphic Evaluation of Deep Discretized Neural Networks. In
Proceedings of the 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2018; pp. 483–512.

46. Badawi, A.A.; Jin, C.; Lin, J.; Fook Mun, C.; Jun Jie, S.; Hong Meng Tan, B.; Nan, X.; Mi Mi Aung, K.; Chandrasekhar, V.R. Towards
the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs. IEEE
Trans. Emerg. Top. Comput. 2021, 9, 1330–1343. [CrossRef]

https://eprint.iacr.org/2014/121
http://dx.doi.org/10.1016/j.jbi.2014.04.003
http://dx.doi.org/10.1109/TETC.2020.3014636

	Introduction
	Motivation
	Our Contribution and Related Work

	Preliminaries
	[Answer2-2]Consistency MeasureThis subsection is newly inserted
	CWC Algorithm over Plaintext
	Security Model
	Indistinguishable Random Variables
	Security of Multi-Party Computation (MPC)
	IND-CPA

	TFHE: A Faster Fully Homomorphic Encryption

	Algorithms
	Baseline Algorithm
	Computing Bi
	Sorting Bs
	Selecting Features
	Summing Up Analysis

	Improvement of Secure CWC

	Experiments
	Conclusions
	References

