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Abstract: Digitization is changing our world, creating innovative finance channels and emerging
technology such as cryptocurrencies, which are applications of blockchain technology. However,
cryptocurrency price volatility is one of this technology’s main trade-offs. In this paper, we explore
a time series analysis using deep learning to study the volatility and to understand this behavior.
We apply a long short-term memory model to learn the patterns within cryptocurrency close prices
and to predict future prices. The proposed model learns from the close values. The performance of
this model is evaluated using the root-mean-squared error and by comparing it to an ARIMA model.
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1. Introduction

Cryptocurrencies, which reside on the blockchain, are a novel, new form of mone-
tary value with their own ever-changing prices. Blockchain systems are decentralized,
meaning cryptocurrency transactions are verified and available to all users for verification,
transparency, and maximum accountability. This currency’s technology is lucrative and
becoming a sought-after investment as opposed to typical transactions through clearing
houses and banks. Additionally, cryptocurrency is a revolutionary technology that could
disrupt societal structures due to the anonymous nature of its transactions. Thus, due to its
groundbreaking potential and the mania behind its investment potential, the currency’s
prices are extremely volatile. Bitcoin, in particular, has the highest price of all cryptocurren-
cies. As the coin’s appraisal can change in thousands of dollars in a matter of a few days,
the U.S. Securities and Exchange Commission advises that high risk accompanies these
investments [1].

Artificial intelligence (AI) presents an effective way to predict future prices to coun-
teract cryptocurrency coins’ acute volatility, which can otherwise discourage venture
capitalists from supporting a company that utilizes cryptocurrency [2]. Furthermore, the
concept of pairing AI with economic trading creates an effective pairing that is an attractive
business endeavor. For instance, a present-day, increasingly popular innovation is the
automated trading of digital investment assets by AI, which is poised to become the norm
of the future with very little human oversight [3]. The aforementioned automated trading
of assets is not possible without the writing of a Python program that knows the best time
to execute trades. Similarly, AI is applied in this experiment to predict the future price of
cryptocurrencies on several different blockchains, including the Electro-Optical System
and Ethereum.

Considering that the blockchain and cryptocurrency technologies are relatively novel,
there is a need for research into analyzing cryptocurrency patterns and behavior. Previous
research papers have explored currencies such as Bitcoin [4]. However, we seek to expand
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on this research by analyzing other lesser-known coins such as the Electro-Optical System
(EOS) token and Dogecoin. Researching these other technologies is vital as they serve
different purposes; for example, the EOS and Ethereum coins are used to drive the operation
of decentralized apps (DApps). If research explores the potential of this coin and finds
it prospectively valuable, then it can drive the development and use of such apps for
“gaming, finance, [or] social media” [5]. The creation of such apps can present a lucrative
and convincing case for companies to consider. Thus, the goal of this paper is to create a
model that can appraise the potential of a cryptocurrency through its historical close prices
to find its economic potential. While the model is not meant to take the coin’s purpose into
consideration, it still has the potential to bring attention to a coin that has a high investment
value. The research question is whether this can be attained through only analyzing the
cryptocurrency’s close price with a long short-term memory AI model.

Long short-term memory (LSTM) is a neural network, which is a form of AI, that
ingests information and processes data using a gradient-based learning algorithm [6].
This algorithm’s accuracy improves as it is provided more data. Thus, we propose that
LSTMs are effective in predicting cryptocurrency price as the LSTM model can analyze
pre-existing historical price data dating back many years. Additionally, the model can
ideally output the predicted price in several timetables, such as a week, a month, or a year
into the future. If successful, the predictions can assist in convincing venture capitalists to
invest in cryptocurrency products with potentially high returns; the prediction can also
entice investors into buying a coin that is poised to increase in price, which results in a
price increase, which repeats. Thus, the main purpose of this research is to provide insight
into any cryptocurrency coin and how its price will perform in the future. LSTM has
been designed for forecasting and allows for many applications to time series analysis,
such as COVID-19 prediction [7] or stock market prediction [8]. While both applications
explore rapid changes and offer promising results, a question remains: this paper’s research
question asks: Is LSTM an accurate model for predicting volatile cryptocurrency prices?

2. Literature Review

One of the first studies to attempt to predict cryptocurrency using non-linear neural
networks—conducted by Maiti, Vyklyuk, and Vukovic and published in 2020—found that
the non-linear models were preferable to linear models as the former’s error was lower than
the latter, giving more accurate predictions. This study also found that some elements of
the cryptocurrency’s historical data were not helpful in prediction, such as the volume [9].

Another study released in 2022 by Critien, Gatt, and Ellul sought to expand the
prediction beyond merely yielding a direction; instead of reporting whether the price
would go up or down, the model would report “the magnitude of the price change” [10].
The study leveraged not only historical price data for Bitcoin, but also Twitter posts to
glean public sentiment about the currency. An important distinction of this study is that it
used a bidirectional LSTM, which is a model composed of two LSTMs: one for historical
price data and one for Twitter posts. Its accuracy of 64.18% was achieved by using 450 days
of historical data [10].

Furthermore, a 2022 study by Sarkodie, Ahmed, and Owusu used COVID-19 data,
such as the number of cases and deaths, to determine whether cryptocurrencies such as
Bitcoin would rise or fall in price. The study made use of the Romano–Wolf algorithm to
test this correlation [11]. In particular, it deemed Bitcoin to be very highly correlated with
deaths due to COVID-19, correspondingly fluctuating 90.50% of the time [11].

Lastly, a 2019 study by Azari utilized an autoregressive integrated moving average
(ARIMA) approach to predict the price of Bitcoin [12]. In this study, the model’s effective-
ness was evaluated by examining the mean-squared error; the findings reported a very low
level of prediction error [12].

Scientific papers such as these have proven that using artificial intelligence and neural
networks yields accurate results in predicting cryptocurrency. However, as many parame-
ters can be tweaked in this prediction goal (such as using volume data of the currencies,
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using extraneous data such as COVID-19 statistics, or utilizing different forms of neural
networks), we aim to determine whether it is possible to gain accurate predictions using
only close price data and an LSTM. We also explore whether the LSTM is more accurate
than the ARIMA model. Our research hypothesis is that the LSTM will provide a more
accurate model, in that its predictions will produce a smaller root-mean-squared error
(RMSE).

3. Datasets

This paper utilizes data obtained through the Python module yfinance [13], which
downloads statistics regarding a stock ticker or cryptocurrency; the module’s functions can
be customized and executed with various parameters. We used the period parameter, set
to max, to download historical prices of a cryptocurrency from the first day of its debut
on the market to the present day when the program is executed (otherwise called the
maximum period since it encapsulates the entire lifetime of the currency). Additionally,
yfinance can provide different cryptocurrency data intervals, such as every minute, every
five minutes, every hour, each day, and more. We also elected to use the one-day interval as
we are predicting close prices: the cryptocurrency’s price at the end of the day. The yfinance
module uses data from Yahoo Finance [14], which is the source for Figure 1: a line graph of
the EOS-USD cryptocurrency’s close price. Figure 1 begins at 9 November 2017 because
that is the day that EOS-USD debuted on the market.

While yfinance provides other ticker data such as Open, High, Low, and Volume, this
paper does not discuss the use of such values in prediction—only the close values.
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Figure 1. Line graph of EOS price from 9 November 2017 to 30 June 2022. Generated utilizing price
data from the yfinance Python module [13], which scrapes from Yahoo Finance [14].

4. Architecture

Our architecture is based on the execution of four phases. The four phases are depicted
in Figure 2. The phases are: (1) retrieving data from yfinance, (2) isolating the close prices
from other data that are irrelevant to the prediction, (3) training the LSTM with historical
close prices to predict future ones, and (4) plotting the prediction model, respectively.

Such an architecture, especially the incorporation of LSTM, is established and has
been used numerous times in previous scientific literature [10,15–17]. We expand upon
this preexisting work by using only the close prices; by conducting benchmarks in several
computing environments; and by comparing the root-mean-squared error in correlation
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with the number of epochs used during LSTM training. Lastly, we compare our LSTM
model with an ARIMA model to gauge the accuracy and quality of the predictions.

Figure 2. The process of producing a time series cryptocurrency prediction line graph using LSTM.

5. Implementation

A first approach for predicting cryptocurrency was to gain the close data by scraping
financial websites. A Python module to initially achieve this was BeautifulSoup, but the
module was not an ideal solution as the script had to be rewritten every time the financial
websites’ structure or layout changed. Additionally, to predict lesser-known cryptocurren-
cies such as EOS, we also explored Kaggle; however, the datasets provided there were not
a viable option as they were deprecated and out of date. Thus, the most promising method
we found was to download historical price data through the yfinance Python module, which
returns the close values from the day of its first appearance on the market to the latest
available price.

Our neural network framework of choice is the long short-term memory (LSTM) model
because it has a memory capacity. As we are using a time series dataset, which means the
data are historical and regularly occur over a period of time, the memory capacity is ideal.
The model can remember historical patterns and use them to generate predictions [17].

The Jupyter notebook iterates through a Python function, which normalizes the data
using min–max normalization; fits a long short-term memory model using Keras, a Python
deep-learning API; undergoes model predictions; saves the figures of predictions; and
outputs a log file with detailed benchmarks. The notebook can be altered to include other
cryptocurrency tickers as long as they are available on Yahoo Finance. The notebook is also
able to analyze traditional stock tickers.

The Python pseudocode for the Jupyter notebook program is shown in Figure 3.
The code contains multiple loops that iterate through the hyperparameters, including

each cryptocurrency, each quantity of epochs, and the number of repeats so that the results
can be presented in a statistically sound manner. The program also allows us to perform
multiple runs and to select the best set of parameters for maximum accuracy. For more
details about the program, the code on GitHub is available and open-source [18].

The notebook’s first phase involves downloading the cryptocurrency’s historical data
using yfinance [13]. The data undergo normalization so that the model accuracy is easier to
compare between different cryptocurrencies with widely different values. Next, the close
data are isolated because this experiment only focuses on the close price. The close data
were divided into a training set and test set, which were subsequently split into their own x
and y sets for the purposes of the Keras LSTM model.

The learning model contains 250 units within its LSTM cell and is run through a
dropout layer of 0.2 to prevent overfitting. Additionally, the model is run through a dense
layer of 1 unit dimensionality to connect the neurons of the previous dropout layer. A
diagram of the sequence of layers is shown in Figure 4. A visual description of the long
short-term memory principle is showcased in [19].
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LSTM Benchmark Program: yfinance-lstm-all-figures.ipynb

...
counter = 0
for each epoch in epochs:

for each crypto in cryptos:
get_crypto(crypto)
for each i in range(repeat):

lstm_crypto_benchmark(crypto,
id=i,
epoch=epoch)

counter = counter + 1
write_benchmark_to_log_file()

...

LSTM Benchmark Analysis Program: yfinance-lstm-analysis-final.ipynb

...
analyze_log_file()
...

Figure 3. Python pseudo-code to run the crypto benchmarks is split up into two parts: (1) to run the
LSTM prediction and create the benchmark and (2) to run the analysis to create the figures.

After the model was trained through 50 epochs, the Python notebook generated Figure 162

6, a line graph of the prediction model. 163

The number of training epochs can affect the model’s Root Mean Square Error (RMSE), 164

which details how close the prediction line is to the actual close prices in United States 165

Dollars (USD). As demonstrated in Figure 10, more epochs reduce the Root Mean Square 166

Error (but the change becomes negligible after around 100 epochs). 167
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RMSE values. The values are normalized since the cryptocurrencies have vastly different 169

prices, but the normalization details the predictions’ accuracies and evenly compares them 170

after removing the artificial valuation. 171

Figure 8 also shows the impact that epochs have on the accuracy of the prediction 172

model. Figure 8 contains two graphed lines: a blue line representing the price of the EOS 173

coin and a red line representing the model’s prediction of the price. As the number of 174

training epochs increases, the prediction becomes more and more accurate to the actual 175

price that the cryptocurrency was valued at on the market. In Figure 8, the green history line 176

depicted in the legend is not shown because the graph is zoomed in to the later prediction 177

phase, where the historical price data becomes the blue true line instead of green. 178

Lastly, cryptocurrencies other than EOS such as Bitcoin, Ethereum, and Dogecoin 179

can be analyzed as well. Figure 9 demonstrates the prediction models generated for these 180
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6. Benchmark 182

The program was run on two computers (see Table 1). One computer was a 64-bit 183

Windows 10 Home Edition (21H1) computer with an AMD Ryzen 5 3600 processor (3.6 184

GHz). Its memory was dual-channel 16 GB RAM clocked at 3200 MHz; its graphics card was 185

a GTX 1660 Ventus XS OC. Another computer was a 64-bit Ubuntu 20.04.4 LTS with an AMD 186

Ryzen 9 5950X processor (5.1 GHz), whose memory was 126 GB. The Ubuntu computer’s 187

graphics card was an RTX 3090. Table 1 lists the specifications of the Windows machine and 188

the Ubuntu Linux machine, including the allocated computer memory during runtime and 189

Python version. The StopWatch module was used from the package cloudmesh-common 190

[20] to print these specifications and to measure the training time. 191

Figure 3. Python pseudo-code to run the crypto benchmarks is split up into two parts: (1) to run the
LSTM prediction and create the benchmark and (2) to run the analysis to create the figures.

Our architecture allows easy modification of the entire model with more layers, but
also the adaptation of the hyperparameters.

Version June 26, 2022 submitted to Algorithms 6 of 12

Layer (type) Output Shape Parameter Count

lstm (LSTM) (None, 250) 252000
dropout (Dropout) (None, 250) 0

dense (Dense) (None, 1) 251
Total parameters: 252,251
Trainable parameters: 252,251
Non-trainable parameters: 0

lstm_input

InputLayer

input:

output:

[(None, 10, 1)]

[(None, 10, 1)]

lstm

LSTM

input:

output:

(None, 10, 1)

(None, 250)

dropout

Dropout

input:

output:

(None, 250)

(None, 250)

dense

Dense

input:

output:

(None, 250)

(None, 1)

Figure 4. Parameters of the LSTM model and the diagram of the sequential model, including the
layers of LSTM.

Figure 5. Visual depiction of one layer of long short-term memory [19].

Figures 15 and 16 show the total runtime of the program per cryptocurrency. The 192

runtime becomes much longer when training prediction models with many epochs; most 193

of the time resides in the training portion, whereas the prediction portion only takes, at 194

most, one second. 195

7. Model Comparison 196
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In Table 3, we compare the average times of an individual optimization conducted 207

either by LSTM or ARIMA on a particular dataset. As we can see, the ARIMA model is 208
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model was run on ten different epoch values five times, resulting in 50 runs to identify the 210

best model fit. So, the time for LSTM is significantly higher but results in significantly better 211

predictions. However, when looking at the number of epochs, we ran on more epochs 212

than we needed. We could have easily reduced the number of epochs to 4 instead of 10. 213

Figure 4. Parameters of the LSTM model and the diagram of the sequential model, including the
layers of LSTM.

Figures 5–7 use the EOS-USD dataset of close prices from 9 November 2017 to
30 June 2022. Within the trained model, only the 200 days at the end of the dataset
are predicted so that the model learns from all of the prior days.

After the model was trained through 100 epochs, the Python notebook generated
Figure 5, a line graph of the prediction model. Since it is hard to see the difference between
the blue line (with the true close prices) and the red prediction line of the last 200 days,
Figure 6 zooms into that point for human readability.

Figure 7 also shows the impact that epochs have on the accuracy of the prediction
model. Figure 7 contains two graphed lines: a blue line representing the price of the EOS
coin and a red line representing the model’s prediction of the price. As the number of
training epochs increases, the prediction becomes more and more accurate with respect to
the actual price that the cryptocurrency was valued at on the market. In Figure 7, the green
history line depicted in the legend is not shown because the graph is zoomed in to the later
prediction phase, where the historical price data become the blue true line instead of green.
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Figure 5. EOS-USD price overlayed with the latest 200 days predicted by LSTM ran through 100
epochs of training.
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Figure 6. Zoomed-in graph for readability (same as Figure 5, but scaled x- and y-axis).
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(a) 5 Epochs
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(b) 25 Epochs
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(c) 50 Epochs
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(d) 100 Epochs

Figure 7. Effect of EOS-USD prediction model based on the number of epochs completed.
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Lastly, cryptocurrencies other than EOS such as Bitcoin, Ethereum, and Dogecoin can
be analyzed as well. Figure 8 demonstrates the prediction models generated for EOS and
Bitcoin, whereas Figure 9 demonstrates the prediction models generated for Ethereum and
Dogecoin.
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Figure 8. EOS and Bitcoin prediction models with 100 epochs of training. (a) EOS-USD close prices
overlayed with prediction values. (b) Zoomed-in prediction values for EOS-USD. (c) BTC-USD close
prices overlayed with prediction values. (d) Zoomed-in prediction values for BTC-USD.
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Figure 9. Ethereum and Dogecoin prediction models with 100 epochs of training. (a) ETH-USD close
prices overlayed with prediction values. (b) Zoomed-in prediction values for ETH-USD. (c) DOGE-
USD close prices overlayed with prediction values. (d) Zoomed-in prediction values for DOGE-USD.
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The number of training epochs can affect the model’s RMSE, which details how close
the prediction line is to the actual close prices in United States Dollars (USD). As demon-
strated in Figure 10, more epochs reduce the RMSE (but the change becomes negligible
after around 100 epochs).

Figure 10 overlays each predicted cryptocurrency on a line graph after normalizing the
RMSE values. The values are normalized since the cryptocurrencies have vastly different
prices, but the normalization details the predictions’ accuracies and evenly compares them
after removing the artificial valuation.
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Figure 10. Normalized root-mean-squared error over number of training epochs.

6. Benchmark

The program was run on two computers (see Table 1). One computer was a 64-bit Win-
dows 10 Home Edition (21H1) computer with an AMD Ryzen 5 3600 processor (3.6 GHz).
Its memory was dual-channel 16 GB RAM clocked at 3200 MHz; its graphics card was
a GTX 1660 Ventus XS OC. The other computer was a 64-bit Ubuntu 20.04.4 LTS with
an AMD Ryzen 9 5950X processor (5.1 GHz), whose memory was 126 GB. The Ubuntu
computer’s graphics card was an RTX 3090. Table 1 lists the specifications of the Windows
machine and the Ubuntu Linux machine, including the allocated computer memory during
runtime and the Python version. The StopWatch module was used from the package
cloudmesh-common [20] to print these specifications and to measure the training time.

Table 1. Ubuntu computer benchmark details regarding the specifications of the computer at the
time of program execution.

Attribute Linux Windows
R9-5950X R5-3600

CPU cores 16 6
CPU threads 32 12

CPU frequency 5083.4 MHz 3600.0 MHz
RAM available 112.9 GiB 2.3 GiB

RAM total 125.7 GiB 16.0 GiB
Python 3.10.5 3.10.5

Processor AMD64 Ryzen 9 5950X AMD64 Ryzen 5 3600
OS Ubuntu 20.04.1 Windows 10.0.19043

Furthermore, Figures 11 and 12 plot the training time in seconds over number of
epochs that the LSTM model was run through on the Windows and Ubuntu operating
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systems, respectively. Similarly, Figures 13 and 14 plot the prediction time for Windows and
Ubuntu, while Figures 15 and 16 plot the entire program runtime (training and prediction
phases included) for Windows and Ubuntu. The runtime becomes much longer when
training prediction models with many epochs; most of the time resides in the training
portion, whereas the prediction portion only takes, at most, one second.
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Figure 11. Windows training time over training epochs.
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Figure 12. Ubuntu training time over training epochs.
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0 50 100 150 200
Epochs

0

200

400

600

800

1000

Ti
m

e 
in

 s

Total time
EOS
BTC
ETH
DOGE

Figure 15. Windows total program runtime based on cryptocurrency and number of training epochs.
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Figure 16. Ubuntu total program runtime based on cryptocurrency and number of training epochs.

7. Model Comparison

We compared the LSTM algorithm against an ARIMA model. For the ARIMA model,
we used (p,d,q) = (5,1,0) for the autoregressive, differences, and moving average parameters,
respectively, as they gave ideal results for the tested input data. For the LSTM models, we
selected the model that resulted in the best fit. The comparison of the RMSE is shown in
Table 2. We see that the best LSTM model we identified significantly outperformed the
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ARIMA model. The difference is bigger for cryptocurrencies with overall smaller values as
they have percentually larger fluctuations, which the LSTM algorithm seems to be able to
handle better. Most importantly, the system is self-learning, and only the input data are
used, so that there is no need to, for example, identify ARIMA parameters (p,d,q). This
simplifies the model identification.

Table 2. RMSE model comparison.

Cryptocurrency LSTM RMSE ARIMA RMSE Improvement Using
LSTM vs. ARIMA

EOS 0.119 0.436 +72.8%
BTC 1334.755 1718.339 +22.3%
ETH 117.655 136.605 +13.9%

DOGE 0.007 0.025 +72.0%

In Table 3, we compare the average times of an individual optimization conducted
either by LSTM or ARIMA on a particular dataset. As we can see, the ARIMA model
is significantly faster for each estimation model run. We also need to consider that the
LSTM model was run on ten different epoch values five times, resulting in 50 runs to
identify the best model fit. Therefore, the time for LSTM is significantly higher, but results
in significantly better predictions. However, when looking at the number of epochs, we ran
on more epochs than we needed. We could have easily reduced the number of epochs to 4
instead of 10. Nevertheless, for this study, it was important to identify suitable epochs, so
that future runs target a minimal number of them. We also could have terminated runs that
showed a non-promising loss function in contrast to previous experiments.

Table 3. Runtime comparison 5950X.

Cryptocurrency LSTM ARIMA

EOS 186.24 s 39.03 s
BTC 356.79 s 27.19 s
ETH 215.48 s 33.47 s

DOGE 216.00 s 83.53 s

8. Conclusions

Our model provides as an excellent base model to add further input parameters such
as the High, Low, and Volume data of the cryptocurrencies, as well as being able to add other
hyperparameters and changes to the model layers. Our LSTM approach produces a more
accurate RMSE than the ARIMA model at the cost of a longer runtime.

The prediction lines had a minimal deviation from the actual recorded close values.
Additionally, the model has very high accuracy as the predictions had a minimal root-mean-
squared error, meaning the predicted value was close to the actual price. The model must be
hyperparametrized to account for variables such as investor sentiment. Furthermore, our
naive approach of only one-day prediction, based on regular time series, does not produce
a high-quality result with an expedient response because our response has a one-day delay.

The managerial implications of our findings include the possibility of creating a
product for investors, who can build upon our model to add other hyperparameters,
creating an even more accurate model to predict cryptocurrency price. The limitations of our
paper are that we have not explored the architecture of introducing such hyperparameters
in a detailed manner.

For future research, the model can accept a hyperparameter such as sentiment analysis
of tweets from Twitter pages or even simply the measurement of tweet volume.
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