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Abstract: In this paper, we obtain the Complex Natural Resonances of an object from the backscattered
response in the frequency domain with a novel rational function approximation method based on
both Vector Fitting and Cauchy methods. We determine the system order and an initial set of poles,
which are used as a basis for a rational function approximation. The results from the simulations
and experiments show an improvement in the reconstructed signals and the accuracy of the CNRs
calculated, with an increased tolerance to the critical Signal-to-Noise Ratio. This is being used in the
problem of GPR landmine humanitarian detection in Colombia.
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1. Introduction

The identification of buried objects using Ground Penetrating Radar (GPR) is usually
considered as an imaging problem. However, analyzing the image without any knowledge
of the target provides only little information about the object itself. For that reason, alterna-
tive algorithms in the time and the frequency domain calculate the natural resonances of
objects, which are based on the object’s material and shape as a signature.

In this context, the Singularity Expansion Method (SEM), initially proposed by Baum
in 1971 [1], states that the electromagnetic Complex Natural Resonances (CNRs) of an
object can be calculated from the backscattered late time response in the time domain [2,3].
This has been used in the evaluation of geological formations, buried objects, and other
radar operations, for example [4,5]. In Equation (1), which is the starting SEM time-domain
equation, the signal y(t) is decomposed in complex residues Ri and poles si = αi + jωi,
each with a damping factor and a complex frequency. This Singular Value Decomposition
(SVD) based data processing has been used before as preprocessing for data sets with
hidden eigenvalues in large data sets; here, this decomposition is also used to analyze
data [6].

y(t) ≈∑
i

Rie−sit. (1)

A comparison of CNRs’ extraction methods in the time and frequency domain is pre-
sented in [7]. These methods are currently being used in the study of landmine detection for
humanitarian purposes; so, the validation of the poles and residues of GPR backscattered
signals through the accuracy of the reconstruction for buried objects is critical for this re-
search. The Complex Natural Resonances that lead to target identification are considerably
sensitive to the signal–noise ratio (SNR). Then, the recovery of the backscattered signal
(not only the reflection of the incident wave) before the relevant information disappears
into the noise is crucial for the pole validation stage and the posterior object identification
problem [8].
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1.1. Cauchy Method

In the frequency domain, SEM is carried out by the rational function approximation
in (2), with H( fi) as the transfer function in the frequency domain, assuming the response
is that of an LTI system [9,10], presented in Equation (2):

H( fi) ≈
A( fi)

B( fi)
=

∑P
k=0 ak f k

i

∑Q
k=0 bk f k

i

, i = 1, 2, . . . , N. (2)

Here, P and Q are the numerator and denominator orders, and the initial values before
a Singular Value Decomposition (SVD) can calculate the actual system order are a guess
with P = (N − 3)/2 and Q = P + 1. The coefficients ak and bk are calculated as the final
result to find the poles and residues for the system.

The system described in Equation (3), which for a given frequency sample i is described
in Equation (4), is the basis for the polynomial expansion matrix [C] in Equation (5).

A( fi)− H( fi)B( fi) = 0 (3)

a0 + a1 fi + · · · + aP f P
i − H( fi)b0 − · · · − H( fi)b1 f1 − H( fi)bQ f Q

i = 0. (4)

Notice how the resulting matrix in Equation (4) has samples to the power of P and Q
to find the parameters ak and bk.

[
A −B

][a
b

]
=
[
C
][a

b

]
= 0 (5)

This is solved through Singular Value Decomposition for the initial rank determination
and either Total Least Square (TLS) or QR decomposition methods in order to find the
solution vector for a and b [9].

1.2. Vector Fitting Method

Correspondingly, we have the rational function approximation used in Vector Fitting
(VF) [11,12]. With a set of initial resonances defined by the user, this methodology replaces
these poles with an improved set of poles via a scaling procedure in the frequency domain.
The problem to be linearly solved is defined in Equation (6),[

σ(s) f (s)
σ(s)

]
=

[
∑N

n=1
cn

s−ān
+ d + sh

∑N
n=1

c̃n
s−ān

+ 1

]
, (6)

where f (s) is the frequency domain input signal, σ(s) is an unknown function having the
same poles of f (s), N is the number of CNRs (different from Cauchy’s Method N), h and
d are real values, ān presents a set of starting complex conjugate poles, and cn and c̃n are
the complex conjugate residues. Then Equations (7) and (8) derived from Equation (6) are
solved as an overdetermined linear problem.

N

∑
n=1

cn

s− ān
+ d + sh =

(
N

∑
n=1

c̃n

s− ān
+ 1

)
f (s) (7)

or
(σ f ) f it(s) = σf it(s) f (s). (8)

Now, Equations (9) and (10) show how the poles of f (s) become equal to the zeros of
σf it(s); so, calculating this will lead to a good approximation of the original function.
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(σ f ) f it(s) = h

N+1

∏
n=1

(s− zn)

N

∏
n=1

(s− ān)

, σf it(s) =

N

∏
n=1

(s− z̃n)

N

∏
n=1

(s− ān)

. (9)

Leading to

f (s) = (σ f ) f it(s)σf it(s) = h

N+1

∏
n=1

(s− zn)

N

∏
n=1

(s− z̃n)

. (10)

Although this vector fitting approximation of the signal takes advantage of the same ān
in both (σ f ) f it(s) and σf it(s), which are positioned taking the original signal into account
again, it does not include a system order calculation or the initial poles position. Therefore,
it can not be used for system CNR extraction that leads to system identification from scratch.

The algorithm proposed here, the Vector Fitting–Cauchy Method (VCM), can use both
models to find CNR in a system and reduce the numerical noise for the final pole location
in the complex plane. The formulation and validation for VCM is an extension to the
preliminary results presented in [13].

In Section 2, the VCM is presented, while in Section 3 the backscattering scenarios for
the frequency domain signals processed are described, alongside examples of the recon-
structions and CNRs extracted. Then, Section 4 contains the results for VCM that validate
the reconstructions and CNRs calculated, as well as a comparison with the Cauchy Method.

2. Vector Fitting–Cauchy Method

VCM starts with the frequency response of a system Y(s) and its transfer function
approximation as a ratio of uk and vk as in Equation (11), again with P = (N − 3)/2 and
Q = P + 1 as the initial guess for the system order. This selection of the initial resonances
is based on Cauchy’s initial set of poles, before an SVD calculates the approximate system
order according to the number of singular values in the linear prediction matrix.

Y(s) =

P

∑
k=0

uksk
i

Q

∑
k=0

vksk
i

(11)

This motivates again a TLS solution to find the transfer function parameters a and b
from the matrix system in Equation (5). The SVD of this matrix [C] results in Equation (12).

[U][S][V]′
[

u
v

]
= 0 (12)

The matrix [S] is diagonal with nonnegative elements in decreasing order and, accord-
ing to the spacing of floating-point numbers δ, the selection of singular values σ (i.e., the
rank R of the matrix) can be calculated and used in Equation (13), as in the TLS–Cauchy
Method, to also set a new value for P and Q keeping P = Q− 1 always.

P + Q + 2 = R + 1 (13)

Now, this new number of coefficients is used to reconstruct [C] as [C1] and, from there,
determine the solution vector from the last column of the matrix [V1]′ after applying an
SVD. These values are uk and vk, and from there, we have an initial pole and rank guess
of the system response. In other words, from Equations (11)–(13), we have only the initial
resonances information to start the following new calculation.
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A partial fraction expansion as in Equation (2) gives us the basic poles that are to be
included in the TLS problem proposed in Equation (7), producing Equation (14),

Y(s) =
uPsP + uP−1sP−1 + · · ·+ u0

vQsQ + vQ−1sQ−1 + · · ·+ v0
=

R1

s− a1
+

R2

s− a2
+ · · · + RN

s− aN
, (14)

where R and a are the residues and their respective poles for a set of damped sinusoidal
that could form the original frequency response. If we use Equation (7), we have an
overdetermined matrix system to be solved by a least square approach. For a frequency
sample, we have

Aix = bi, with (15)

Ai =
[

1
si−a1

· · · 1
si−aN

1 si
− f (si)

sia1
· · · − f (si)

siaN

]
, (16)

x =
[
R1 · · · RN d h R̃1 · · · R̃N

]T , and (17)

bi = f (si) (18)

The vector [x] is the starting point to calculate the zeros in σf it(s), i.e., the poles
of f (s). After this, the residues associated can be calculated with the rational function
approximation

f (s) =
N

∑
n=1

Rn

s− R̃n
+ d + sh, (19)

which is again solved as a least square problem. Reconstructing the signal with residues cn,
the poles c̃N , d, and sh, and comparing it to the input signal gives us the validation for the
CNRs calculated here. We include an overview of the method in Figure 1.

Figure 1. General steps in the VCM algorithm to find CNRs from a frequency domain signal. A
reconstructed signal could be compared to the input one for validation purposes.

3. Backscattering Scenarios

To validate the results of the VCM and also carry out a comparison with the regular
and most updated Cauchy Method from [9], a set of simulated and experimental signals
were constructed. The idea is to compare the fidelity of the reconstruction of both methods
by the Feature Selective Validation (FSV) approach [14]. FSV, proposed by Duffy et al., is
used for the comparison of electromagnetic compatibility signals, as it would be executed
by expert engineers.
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The reconstruction of the input signal using each CNRs’ extraction method uses the
complete set of poles and residues extracted and has no manual CNR selection process as
the intention is to automate these algorithms as much as possible.

For this reason, the plots in the complex plane also contain resonances that could
be considered as errors, because they are not complex conjugated, out of range, or in the
positive and real part of the complex plane.

3.1. Simulation

Backscattering scenarios were simulated in CST Microwave Studio to obtain the
frequency response signals processed afterward with the Cauchy and VCM methods. A
perfectly conducting thin wire, sphere, plate, and cylinder were used as canonical objects,
illuminated with a plane wave and placing electric field probes in different positions. An
example of the simulated backscattering signals of a metal sphere and the comparison of its
reconstructions are presented in Figure 2. Here, the difference in the input signal for both
approximations is small compared to the dimension of the data; however, it is calculated
using FSV.

Figure 2. Metal sphere signal approximation using the Cauchy and VCM methods.

On the other hand, the set of CNRs calculated for this scenario is presented in Figure 3,
where the pole shifting in VCM leads to changes in the reconstructed signal.



Algorithms 2022, 15, 235 6 of 15

Figure 3. CNRs calculated with the Cauchy and VCM methods for a simulated metal sphere.

3.2. Experimental

A corner reflector, a cylinder, and a detonator frequently used in the manufacturing of
Improvised Explosive Devices (IEDs) in Colombia were the metallic objects used for the
two experimental setups. The frequency response was obtained using a VNA up to 3 GHz
for free space and up to 6 GHz for the buried scenarios, two TSA600 Vivaldi antennas,
and three distances from the source to the object. Furthermore, clutter, antenna coupling,
and the background for the experimental signals were removed using the GPR signal
acquisition methodology presented in [15].

Figures 4 and 5 show the experimental configuration for the metal cylinder in free
space, Figure 6 shows an example of the reconstructed signals in the frequency domain,
and Figure 7 shows the calculated CNRs in the complex plane. The difference in the
reconstructed signals and poles location between Cauchy and VCM becomes more evident
in the experimental signals, and it was again calculated using FSV. The difference in the
reconstructions for the frequency domain input signals using Cauchy and VCM methods
was evaluated with FSV. The curves appear to be similar, but only the numerical evaluation
will provide a real comparison, as in Section 4. Again, the SVD-based system order
calculation and linearized problem solution can be treated as in [16].
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Figure 4. Free space experimental setup with no objects.

Figure 5. Free space experimental setup with a metal cylinder.

Figure 6. Frequency domain backscattered signal obtained from a metal cylinder in free space at
60 m.
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Figure 7. CNRs calculated with Cauchy and VCM that were used to reconstruct the backscattered
signals of the metal cylinder in free space.

Now, in the experimental setup for buried objects, the same antennas were used, this
time targeting the objects buried 15 cm. Figures 8 and 9 present the configuration. Both
experiments included IED detonators used in Colombia; the one used here is shown in
Figure 10 with an approximate dimension of 54 mm.

Again, as an example of the results to be shown in the next section, the backscattered
frequency domain signal for the metal detonator and its associated CNRs for both the
Cauchy and VCM methods are displayed in Figures 11 and 12.

The CNR of the highest frequency (imaginary part) for VCM in the complex plane
represents a more accurate length of the detonator.

Figure 8. Buried objects experimental setup, soil alone.
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Figure 9. Buried objects experimental setup with a metal IED detonator.

Figure 10. Electric IED detonators commonly used in Colombia. The approximate dimension is
54 mm, with a diameter of 4 mm.
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Figure 11. Backscattering signal reconstruction with the Cauchy and VCM methods corresponding
to an electric metal detonator for IEDs in Colombia.

Figure 12. CNRs calculated with both the Cauchy and VCM methods using the frequency response
of an electric metal detonator for IEDs in Colombia.

4. Results and Comparison

Among the simulations and experiments, 30 signals were obtained, each one processed
with VCM to calculate the corresponding CNRs of a metallic object. After this, FSV provided
us with a numerical value for the comparison between the reconstruction and the input
signal, as shown in Table 1. The execution time in MATLAB 2021a using a core i7 computer
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with 12 GB RAM and the number of samples used are also shown in the results for the
simulation setups in Table 2. As the signal became more complex, the CNR extraction
method reduced its accuracy. This means that the resonances of the object were less valid
for postprocessing and analysis.

Table 1. Categories for the similarity of the two signals according to the FSV results.

FSV Categories for Result Value v

Excellent vs. <= 0.1

Very good 0.1 < vs. <= 0.2

Good 0.2 < vs. <= 0.4

Fair 0.4 < vs. <= 0.8

Poor 0.8 < vs. <= 1.6

Extremely poor v > 1.6

Table 2. Simulated scenarios’ FSV results for VCM, with execution time and the number of sam-
ples used.

FSV # of Samples Execution Time
(ms)

Simulation

Thin-Wire

0.001 37 98.5

0.001 37 99.7

0.002 37 118.9

Cylinder

0.063 21 95.3

0.041 21 95.7

0.014 21 92

Plate

0.0001 21 95.8

0.0002 21 94.8

0.0004 21 97.3

Sphere

0.02 37 102

0.077 37 122.1

0.037 37 105.6

Average 0.021 29 101

The average FSV for the simulated signals was 0.021, which classifies the reconstruction
with VCM in these scenarios as Excellent. For the experimental signals, the results are
shown in Table 3, where the average FSV result was 0.1989 being classified in the Very
Good category.

Now, although the validation in the simulated and experimental scenarios resulted
in a Very Good reconstruction on average, we also compared the VCM results against the
Cauchy method, which is the most updated frequency domain CNR calculation method
used in GPR. The average FSV result for the Cauchy method was 0.161, while for VCM
it was 0.128. Furthermore, in Figure 13, the values of the FSV result for each scenario
are shown.
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Table 3. Free space and buried objects scenarios’ FSV results for VCM, with execution time and the
number of samples used.

FSV # of Samples Execution Time
(ms)

Experimental
Scenarios

Free Space

Corner
Reflector

0.18 37 96.07

0.076 37 97.2

0.121 37 97.2

Metal
cylinder

0.124 37 171.7

0.119 37 99.1

0.164 37 103.6

Detonator
0.171 37 103.3

0.155 37 98.8

0.111 37 107.2

Buried objects

Corner
reflector

0.275 30 100.2

0.262 30 98

0.277 30 99.3

Metal
cylinder

0.381 30 99.8

0.329 30 100.4

0.204 30 104.2

Detonator
0.322 30 101.1

0.126 30 106.1

0.183 30 98.4

Average 0.199 34 105

Figure 13. FSV results for both the Cauchy and VCM methods, according to the comparison of the
input signals and the corresponding reconstruction in the simulated and experimental setups.

Here, the Cauchy method outperformed in execution time for all backscattered signals
with an average of 61 ms, while for VCM, it was 103 ms. In addition, the reconstruction
accuracy for the simulated scenarios was also better in the Cauchy method by 0.0116 in the
FSV factor. For all experimental setups, the VCM’s FSV factor was always below Cauchy’s,
having a more accurate reconstruction; hence, its CNRs’ extracted were more reliable in
these scenarios by 24.2%.

As the accuracy of the reconstructed signal, i.e., the accuracy of the CNRs calcu-
lated with previous frequency domain methods is considerably affected by noise, the
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VCM algorithm was designed. An evaluation of the similarity between the input and
the reconstructed signal (FSV) and increasing noise scenarios demonstrated the increased
signal-to-noise tolerance of VCM and were used for a noise impact evaluation. Figure 14
summarizes these concepts.

Figure 14. Summary of the signal-to-noise tolerance improvement and evaluation.

The FSV results data from all scenarios, starting with the simulations, then the free
space, and then the buried samples, are considered to have a decreasing SNR, i.e., the
backscattering response of interest hides in the response noise as the scenario becomes
more complex. If we arrange the information in this manner, an understanding of how well
this CNR extraction algorithm performs as noise increases is displayed in Figure 15.

Figure 15. FSV result for all backscattering scenarios arranged according to increasing signal noise.
The green line corresponds to a moving average and is higher for buried objects scenarios.
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Here, the FSV result increasing alongside the noise and the green line corresponding
to a moving average suggest that the signal recovery diminishes in precision as the SNR
decreases. This agrees with Dudley in [8], which stated that only approximations to
resonances in lossy mediums with frequency-dependent attenuation are ever available in
the limits of vanishing noise.

5. Conclusions and Future Work

Here, we presented the Vector Fitting–Cauchy Method (VCM) and validation of the
CNRs calculated with frequency-domain methods using FSV. These preliminary results
show an advantageous procedure for calculating more reliable resonances from backscat-
tered signals originating from buried objects. As the SNR and the effects on recovery are
critical, VCM provides an alternative to previous CNR extraction methods for object recog-
nition. More experiments in different soils will provide a better insight into its behavior
in different soil conditions that emulate the landmine context in Colombia. These GPR
operations for identifying IEDs is of high interest, and this method, alongside other SEM
approaches, are currently being studied and used.

The CNR reliability increase, coming from the validation with FSV and the more
accurate pole locations, show a better reconstruction of the signals, and the VCM can be
improved in the future by refining the general procedure and reducing the numerical noise
in all the matrix operations.
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SVD Singular Value Decomposition
CNR Complex Natural Resonances
LP Linear Prediction matrix
LTI Linear Time Invariant system
H Transfer Function in frequency domain
VF Vector Fitting
VCM Vector Fitting–Cauchy Method
FSV Feature Selective Validation
GPR Ground Penetrating Radar
SEM Singularity Expansion Method
TLS Total Least Square
SNR Signal-to-Noise Ratio
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