f_f algorithms

Article

A New String Edit Distance and Applications

Taylor Petty *(, Jan Hannig 2(%, Tunde I. Huszar

check for
updates

Citation: Petty, T.; Hannig, J.; Huszar,
T.I; Iyer, H. A New String Edit
Distance and Applications.
Algorithms 2022, 15, 242. https://
doi.org/10.3390/a15070242

Academic Editor: Frank Werner

Received: 11 May 2022
Accepted: 11 July 2022
Published: 12 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

3 and Hari Iyer 2

Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill,

Chapel Hill, NC 27599, USA; jan.hannig@unc.edu

Information Technology Laboratory, Statistical Engineering Division, National Institute of Standards and
Technology, Gaithersburg, MD 20899, USA; hariharan.iyer@nist.gov

Applied Genetics Group, Material Measurement Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA; tuende huszar@nist.gov

Correspondence: taylor.petty@unc.edu

Abstract: String edit distances have been used for decades in applications ranging from spelling
correction and web search suggestions to DNA analysis. Most string edit distances are variations of
the Levenshtein distance and consider only single-character edits. In forensic applications polymor-
phic genetic markers such as short tandem repeats (STRs) are used. At these repetitive motifs the
DNA copying errors consist of more than just single base differences. More often the phenomenon of
“stutter” is observed, where the number of repeated units differs (by whole units) from the template.
To adapt the Levenshtein distance to be suitable for forensic applications where DNA sequence
similarity is of interest, a generalized string edit distance is defined that accommodates the addition
or deletion of whole motifs in addition to single-nucleotide edits. A dynamic programming imple-
mentation is developed for computing this distance between sequences. The novelty of this algorithm
is in handling the complex interactions that arise between multiple- and single-character edits. Foren-
sic examples illustrate the purpose and use of the Restricted Forensic Levenshtein (RFL) distance
measure, but applications extend to sequence alignment and string similarity in other biological areas,
as well as dynamic programming algorithms more broadly.

Keywords: string edit distance; Levenshtein distance; short tandem repeat; dynamic programming;
massively parallel sequencing; next-generation sequencing; DNA identification

1. Introduction

String similarity is an important tool for many applications, including web search
completion suggestions [1], spelling correction [2], and ontology alignment [3]. Some of
the tools developed in the field of string similarity carry over well to DNA applications,
such as DNA-protein matching, sequence assembly, and local similarity searches [4], as
well as Longest Common Substring and Longest Common Subsequence algorithms [5].
Determining similarity of DNA strands is important in phylogenetics, and the volume
of available data continues to increase over time. Alignment-free methods have been
developed, in part to account for issues that arise when traditional sequence alignment
is pushed to its limit. These include the use of geometric representations in various
dimensions, as well as graph theory [6].

Most string edit distances consider only single character edits and are variations of
Levenshtein distance. These standard string edit distances are inadequate for analyzing
similarity between DNA sequences in forensic applications where the goal is to identify the
individual who is the source of the DNA in a crime sample. To fill this gap, a new string
edit distance is defined, referred to as Restricted Forensic Levenshtein (RFL) distance, that
accommodates the addition or deletion of one or more motifs (consecutively repeating
sequences of nucleotides 2 to 6 base pairs long) as edit types separate from single-nucleotide
insertion, deletion, and substitution. This makes the problem of computing the distance

Algorithms 2022, 15, 242. https:/ /doi.org/10.3390/a15070242

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070242
https://doi.org/10.3390/a15070242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-8449-8034
https://orcid.org/0000-0002-4164-0173
https://orcid.org/0000-0002-1469-6876
https://doi.org/10.3390/a15070242
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070242?type=check_update&version=2

Algorithms 2022, 15, 242

20f22

much more difficult. To address this, a dynamic programming algorithm for computing
the RFL distance between sequences has been developed. Forensic examples are used to
illustrate the purpose and use of RFL distance but the applications extend to sequence
alignment and string similarity in other biological applications. The algorithm’s novel
contribution is in efficiently handling the complex interactions that arise between multiple-
and single-character edits.

1.1. Background

DNA-based human identification is an extremely powerful tool with many important
applications such as identification of perpetrators of crimes, disaster victim identification,
DNA typing of skeletal remains, and relationship testing [7-9]. The same methods are also
applicable in food authenticity, poaching, and counter-bioterrorism [10]. DNA measure-
ment technologies have made great strides recently, and now even minute quantities of
DNA can be reliably measured [10].

In forensic DNA testing, genetic material present at a crime scene is extracted and
amplified through the polymerase chain reaction (PCR). In principle, this technology
replicates specific regions of the human genome present in the sample by a repeated
process of doubling. Errors may get introduced to the products during the PCR process,
and these error sequences are called artifacts. Traditionally, analysis of the amplified DNA
products is carried out via a length-based measurement using capillary electrophoresis (CE);
however, with the introduction of sequencing to the workflow, the amplified products now
enter the process of massively parallel sequencing (MPS) providing a sequencing-based
measurement for an allele. After the sequencing is complete, the generated data can be
used as an input for bioinformatics pipelines. The data analysis provides details about
the measured quantity of the expected PCR product sequences (here referred to as parent
alleles) and numerous artifact sequences related to the range of genetic markers examined
in these assays. In typing a standard single-source sample for a set of autosomal markers,
the sequences observed should include one to two different parent alleles (depending
on whether the sample was homozygous or heterozygous at the autosomal locus) and
numerous artifact sequences that are present because of copying errors in the amplification
and sequencing process. Each detected sequence is quantified by the number of sequences
observed and is commonly referred to as the depth of coverage (DoC). Along with the parent
alleles there are artifacts that are also detected and are often present at a low DoC, and
therefore easily distinguishable from the parent alleles. Each of the artifacts is an error
sequence of a true parent, and one can generally infer which parent it came from, but
occasionally the parent sequences are similar enough that it is difficult to tell which is
the actual parent sequence. For single-contributor DNA samples, this is typically not an
issue, but crime scene samples motivating this work are rarely from a single individual.
Crime scene samples often consist of multiple individuals, contributing different amounts
of genetic information. For example, in a complex mixture (e.g., three contributors at 70%—
25%-5%) it can be challenging to determine the respective parent allele of each contributor
and their corresponding artifact(s).

In this light, quantifying what it means for nucleotide sequences to be similar becomes
a crucial task, which has led to the notion of a generalized Levenshtein distance that
allows gains and losses of multiple letters at once (here the change of multiple bases
at once in the sequence string), and the development of an algorithm to calculate it. A
major contribution of the proposed algorithm is in handling the exponential explosion
of complexity when multiple-character edits and single-character edits interact, which
requires careful techniques to resolve.

1.2. Short Tandem Repeats

The DNA identification community commonly uses short tandem repeats (STRs) as
their genetic marker of choice [11,12]. STR typing methods are accurate and sensitive [13].
The work in this paper is designed for the analysis of DNA samples in forensic applications,

Algorithms 2022, 15, 242

30f22

but the methods presented here can be applied in other areas that use STR analysis. An STR
is a region of DNA that contains consecutively repeating motifs. To the left and right of this
repeating region is a non-repeating section of DNA called a flanking region. For example:

ACTCC ATG ATG ATG ATG GGTTCTGA

Here the motif ATG is repeated four times, which is represented in a short format
as [ATG]4.

As sequencing technology has developed, individual nucleotides within STR regions
in the human genome can be measured increasingly economically and accurately, whereas
in the past people were limited to measuring the total length of the targeted sequence. The
standard length-based CE methods do not allow for the detection of intra-motif variations.
For a real-data example, consider a sample with a two-allele locus with repeat regions

A: [TCTA]J8 [TCTG]1 [TCTA]1

and
B: [TCTA]10.

Note A and B are identical by length. When both alleles at a locus share the same length
but differ by sequence, they are known as isometric heterozygotes, and CE methods cannot
discriminate between them. CE types both of these alleles as 10, an allele with a length of
ten repeats, and classifies this sample as homozygous at this locus. By recognizing variation
at the sequence level, the power to discriminate between individuals increases [14]. If an
artifact sequence C = [TCTA]7 [TCTG]1 [TCTA]1 was detected in the sequencing output, it
would be reasonable to infer that there is a higher likelihood of it being an error derived
from A rather than B, since fewer changes are required to edit A into C than B into C.
Consequently, it would make sense to infer that the artifact is related to A. With CE, A
and B are viewed as identical, and no such conclusions about the artifact can be made.
As crime scene samples are most often mixtures, the additional resolution of the alleles
and artifacts provided by the use of sequencing can be advantageous compared to solely
length-based analysis.

In STR regions, motifs often expand and contract as a unit. This phenomenon of
slippage of the polymerase on the template is referred to as stutter. The artifacts of in
vitro stutter products are consistently present in measurable quantity and therefore are
accounted for in routine forensic DNA analysis [15]. Furthermore, stutter occurs in vivo in
STR regions even at conservative estimates at least 3—4 orders of magnitude more often than
other random point mutations [16]. To reflect this, a generalization of string edit distance
was used to capture similarity between sequences in MPS output. The goal was to include
the addition or deletion of a motif as an edit type with a cost that can vary independently
from single-nucleotide edits, to reflect the fact that these motif losses and expansions
(called backward and forward stutter, respectively) occur consistently across various in vitro
applications [17]. The proposed algorithm is also applicable to in vivo methods such as
rare disease diagnosis and cancer progression tracking that use STR markers including
their stutter [16].

It is desirable to develop a distance that gives high-frequency artifacts a lower distance
to the true alleles than low-frequency artifacts, so it is important to capture both reverse and
forward stutter as low-cost events. Standard string edit distances such as the Levenshtein
distance modify one character at a time, so the cost of dropping or adding a multi-character
motif is necessarily equal to the sum of the costs of dropping or adding the individual
characters. Furthermore, unique motifs can stutter within a single STR region, with each
motif having a potentially unique cost. Beyond the issue of edit cost, stutters and single-
character edits can interact in complicated ways, and algorithms like the Levenshtein
distance and its relatives do not begin to address the issues that arise in that interaction.

String edit distances have been in use for decades, with many papers published on
different applications. Review of the literature revealed diverse uses, but multi-character

Algorithms 2022, 15, 242

4 0f22

extensions of edit distances were rarer. One paper described a spelling correction algorithm
using a generalized metric that allows for generic word-to-word edits [18]. The aim and
methods described in the study are different than those presented here; however, if the
code and details for implementation were included in [18], direct comparison with the
independent method presented here would be of interest. Another paper working with
multi-character edits introduces some theoretical ideas relevant to dictionary based searches
and generalizations of the Damerau-Levenshtein distance [19], but their searches are ap-
proximate and require symmetry, which cannot be used here since insertions and deletions
of both characters and motifs happen with different frequencies. There is a variation on the
dynamic programming approach that allows for generalized edits from one substring to
another with non-symmetric costs, but it also prohibits multi- and single-character edit in-
teractions, and no code or software was available for comparative testing [20]. Generalized
edit distances were infrequently mentioned in the literature, and attempts to find compara-
ble algorithms described with code attached were unsuccessful. The work presented in this
paper uses an algorithm readily available for public use that also allows for a large set of
overlapping edits.

The ideas behind the RFL distance are applicable to any situation requiring a minimal
edit distance solved via dynamic programming, notable among which is graph edit dis-
tance [21]. By extending the idea of precomputed motifs to other dynamic programming
settings, one could consider a minimal graph distance that allows the addition or loss of an
entire subgraph as its own edit to have an individual cost. Therefore, this idea could have
implications wherever graph edit distances are used, such as handwriting recognition [22],
fingerprint recognition [23], and cheminformatics [24].

The proposed algorithm to compute RFL distance has fully customizable costs, and is
therefore capable of reflecting the idea that lower costs correspond to higher probability
edits. This connects to the notion that more frequent events would be favored in a maximum
likelihood approach over lower probability events. The Python code for the RFL algorithm
is available on GitHub [25].

2. Restricted Forensic Levenshtein Distance

The proposed algorithm handles both single- and multiple-character edits, as well as
their interactions. The single-character part of the algorithm is built on the original Leven-
shtein distance, which will be reviewed below. An introduction of the RFL distance follows.

2.1. Levenshtein Distance Quverview

String edit distances are based on the minimal number of operations required to
transform one string into another. This gives a way to measure dissimilarity of objects in
the non-Euclidean space of strings, using the notion that two strings that are similar should
differ in only a few characters, while two strings that are dissimilar would require many
changes to turn one into the other. The edit distance proposed here could be viewed as
a generalization of the Levenshtein distance [26], which counts the minimal number of
single-character deletions, insertions, and substitutions required to transform one string
into another. For example, the distance from CAT to CGT is one, from CAT to CA is
one, and from CAT to CATTG is two. Other edit distances exist, with different edits
allowed. Damerau-Levenshtein considers indels, substitutions, and transpositions [27],
while the longest common subsequence metric only looks at indels [28]. Rather than having
a common cost of 1, substitution, insertion, deletions, etc. can each have their own unique
cost [29].

The calculation of minimal edit distance is typically done via dynamic program-
ming [30]. The standard dynamic programming solution to Levenshtein will be briefly
discussed below because it is crucial to understanding the novel contributions of the
proposed algorithm. Examples will be presented to maximize clarity.

Algorithms 2022, 15, 242

50f22

2.2. Forensic Distance Overview

The STR regions of DNA that are currently used for forensic identification were histor-
ically selected based on the polymorphic length variations of these markers observed in the
population. Most of these are tetranucleotide repeats, but di-, tri-, penta- or hexanucleotide
repeats also exist in the tandem oriented arrays. At sequence level a trinucleotide marker
can be described as a string such as ACTACTACTACT, or abbreviated, as in [ACT]4. Back-
ward stutter refers to losing a motif, or [ACT]3 in this example. Less-common forward
stutter refers to gaining a motif, or [ACT]5 here. There are other possibilities, such as sub-
stitution, e.g., [ACT]4 to changing into an [ACT]2 AGT [ACT]1 via a C — G substitution,
but the individual single-character edits are significantly rarer than motif stutter, and are
already taken into account under the classical Levenshtein distance.

Stutter is more common than insertion or deletion, so it is modeled as a separate edit
type. This enables the cost of stutter in the edit distance to be lowered to reflect its higher
probability, instead of modeling it as the sum of individual nucleotide changes. In order
to accomplish this, the RFL algorithm includes a step of looking at a set of substrings of
various lengths with their associated costs from a precomputed dictionary. Whereas the
standard dynamic programming solution looks back a single letter, the proposed approach
looks back several letters. The particular dictionary of substrings is what gives the RFL
algorithm the title “restricted”, since the size of the dictionary limits how far back the
algorithm looks.

A naive approach would be to count the difference in the number of motifs and use
the classical Levenshtein distance of the flanking regions, but this method misses vast
numbers of edit interactions, and further misinterprets single-character edits in the STR
region as stutter, e.g., [ACT]4 editing to [ACT]3 AGT would be qualified under a naive
approach as back stutter, since there is one fewer ACT motif, but inspection clearly reveals
a C— G substitution. The complexity of the solution developed in this paper comes from
the correct distinction of single-character edits and stutter, and the interaction of multi-
and single-character edits. For example, the sequence [ACT]4 could change to [ACT]5
via forward stutter, then a C could be deleted, for a final result of [ACT]4 AT. This final
string could have been attained by inserting the letters A and T from the original [ACT]4,
but another option was the forward stutter and single nucleotide deletion. Different edits
contribute different (customizable) costs, so one route may be more optimal than the other
depending on the parameters. Extending these interactions across multiple edits becomes
exponentially complex, as motifs can stutter forward and then characters can insert into the
middle of that motif, for example, or a SNP could occur which turns a substring into a motif
that can then stutter back, and neither of these would be detected by a naive approach.
For example, if ACT were the motif, detecting the string GACGT as a three-edit insertion
(one forward stutter, two single-character insertions) instead of five, or detecting TCT as a
two-edit deletion instead of three, is a powerful capability, especially when considering
that each edit can have vastly different costs.

The RFL algorithm handles insertions, deletions, and substitutions, the addition and
deletion of prespecified character motifs, and the overlapped interactions of the multi-
and single-character edit types. A comparison between classical Levenshtein, the naive
approach, and the RFL algorithm is shown in Table 1.

Theoretical complexities arise when considering these edit interactions, as addressed
in Example 1, Section 2.3.3, and Appendix A.1. These complexities are unbounded, so it
is necessary to restrict the search space. However, the flexible parameter restrictions are
required to accurately model the underlying sequence behavior.

A data-driven approach requires knowing which motifs at each locus stutter at signifi-
cant rates. For the design of the RFL algorithm, sequence analysis data from 22 autosomal
STRs was used from a set of 661 samples from four U.S. populations. The sequence data was
previously generated using the PowerSeq Auto/Y System kit (Promega Corp., Madison,
WI, USA) and was analyzed using STRait Razor v3.0 [31]. The output files were used

Algorithms 2022, 15, 242

6 of 22

to identify motifs of length 2—-6 that were the basis of observed stutter artifacts at each
autosomal locus. This analysis is described in Section 3.1.

Table 1. Edits Accounted for in String Edit Distances.

Operations Accounted for Classical Naive RFL
Levenshtein Forensic
Single-character edits v v v
Pure motif stutter v v
Distinguishing stutter and v
single-character edits
Multi- and single-character v

edit interactions

2.3. Details of the RFL Algorithm

The foundation of the RFL algorithm is built on the Levenshtein distance. In this
section, a perspective on the standard dynamic programming algorithm for classical Leven-
shtein is discussed, then Weighted Levenshtein is discussed, and lastly the novel modifica-
tions are presented. Zero-based indexing for strings will be used, with s[i : j] to represent
the substring of s from the i-th to the (j — 1)th character, inclusive. Similarly, s[i :] will
represent the substring composed of the ith character up to and including the last character,
and s|: j] will represent the first j characters, up to index j — 1, inclusive.

2.3.1. A Perspective on Dynamic Programming

From this point on, a working knowledge of the Levenshtein distance is assumed,
with the following perspective. To compute the distance between strings a and b with unit
edit costs, the base case is that one of the strings is empty. If a is the empty string then
insert each character of b, and the number of those insertions is the cost. If b is the empty
string, delete each character of 4, and the number of those deletions is the cost. If the first
characters of a and b are the same, then delete a[0] and b[0] for no cost and the overall
distance will be the same as the Levenshtein distance between the remainder of the strings
a[l:] and b1 :] (denoted as tail(a) and tail(b), respectively).

In case the first characters of 2 and b do not match, the standard dynamic programming
algorithm for Levenshtein distance effectively aligns the leading character of a with the
leading character of b, then modifies the leading character of 4 to match the leading character
of b. Once the leading characters of the strings match, the matching leading characters can
be deleted for free.

For example, in order to compute the Levenshtein distance from AGTCT to GACT,
the A must be deleted and the first T switched to an A, for a cost of two. This eyeball
calculation only works for simple examples, so Figure 1 illustrates this perspective on the
classical Levenshtein algorithm.

Delete A, Delete
top row both Gs top row
(cost 1) (cost 0) (cost 1)

Delete all
(cost 0)

Figure 1. The steps to compute the Levenshtein distance from AGTCT to GACT.

Note that in Figure 1 there could have been an additional T concatenated to the
beginning of AGTCT and then immediately deleted. This would have been a valid edit,

Algorithms 2022, 15, 242

7 of 22

but not a minimal one. At each step the minimal cost must be taken, and this will be
accomplished via dynamic programming. For a n,-character string a and an nj-character
string b, the dynamic programming algorithm constructs an (1, + 1) x (1, + 1) matrix,
and overall it is O(n,n;) in time complexity.

2.3.2. A Note on Weighted Edit Distance

In a setting where different edits happen with different frequencies, one might want
to weight edits differently from each other. This could be because DNA exhibits higher
rates of changing a particular character to another, or in spelling correction because certain
letters are closer to others on the keyboard. For example, inserting an A could be penalized
more than any other letter, and substituting C for the letter G could be incentivized. This
could be done by raising the insertion cost of an A to 2 and lowering the substitution cost of
G — Cto 0.5. The edit distance algorithm remains the same, but whenever those edits are
performed, the cost is different. This might change the optimal edit path from one string to
another. Normally, converting CAT into TGT would be two substitutions: C — T and A —
G. In the case where all substitution costs are equal to 4 and insertion and deletion costs
are still equal to 1, the previous edit path involving two substitutions would cost a total
of 8, and a new minimal-cost path would be CAT — AT — T — GT — TGT, which would
cost 4. This could be made much more complicated by changing every possible edit cost to
be different than every other. The dynamic programming algorithm solution is able to take
any possible assortment of costs and compute the minimal cost given those parameters.

This can easily make the distance non-commutative, i.e., it is a directed distance. In
a case where the substitution cost of C — G is 3, but all other costs remain equal to 1,
then the distance from CAT to GAT is 2 (delete C, insert G; this is still less costly than
changing C to G directly), but the distance from GAT to CAT is 1 (changing G to C still
costs 1). Therefore the distance hereafter is referred to as being from a sequence s to another
sequence {, which represents that the edits begin at s and change into ¢. A library for the
weighted Levenshtein, optimized in Cython, is available [32].

2.3.3. Restricted Forensic Levenshtein Distance

Here the full steps of the RFL algorithm are presented. To compute the distance
between strings a and b, if a is the empty string, simply insert each character of b, and the
number of those insertions is the cost. If b is the empty string, delete each character of
a, and the number of those deletions is the cost. If the first characters of a and b are the
same, then delete a[0] and b[0] for no cost and the overall distance will be the same as the
Levenshtein distance between the remainder of the strings a[1 :] and b1 :| (denoted as
tail(a) and tail(b), respectively).

In case the first characters of 2 and b do not match, line the two strings on top of each
other with a[0] aligned to b[0], with all edits being made to the parent string a (this becomes
important later, when the distance becomes asymmetric). The goal of the RFL algorithm is
to make the leading characters of the strings match, in which case the matching leading
characters can be deleted for free. For instance, the distance from CAT to CGT is the same
as from AT to GT, since the leading C does not require editing. Returning to the aligned
strings a and b, there are three options. The first is that the leading character of a can be
changed into the leading character of b, which corresponds to substitution errors in PCR.
A new leading character of a can be inserted to match the leading character of b, which
corresponds to insertion. Lastly, the leading character of a can be deleted so that the new
leading character of 2 matches the leading character of b, which corresponds to deletion.

The goal is to be able to include the deletion or insertion of multiple consecutive letters
as a separate edit type at a reduced cost. The classical Levenshtein solution is capable of
gaining or losing multiple letters, but the cost will always be the sum total of the costs of
the necessary single-character interim operations.

The classical Levenshtein algorithm looks at a character and determines what op-
eration at that position gives the lowest cost to change a single letter at that spot when

Algorithms 2022, 15, 242

8 of 22

changing one string into another. It does this iteratively, breaking the original problem
into sub-problems by addressing a single letter at a time. The RFL modification further
looks at multiple characters at once. This will correspond to looking back several positions
within the dynamic programming matrix. Only particular substrings will be allowed as
their own edit types, as opposed to any general substring. The RFL solution is to create a
dictionary of multi-character substrings and their associated insertion and deletion costs.
When a substring—for example CTG—needs to be inserted or deleted, the relevant cost
associated with that substring in the dictionary is retrieved, and that option is included for
the algorithm to consider when taking a minimum cost step at that index. This substring
CTG corresponds to looking back three steps in the dynamic program.

For the sake of illustration, assume unit costs for all edits, and consider AAAGA, the
motif at the Penta D locus. If AAAGA is permitted to be added or deleted all at once, then
inserting AAAA will be cheaper if AAAGA is first built and then the G deleted. Inserting
AAA would cost the same either way: inserting 3 As, or inserting AAAGA (+1) and then
deleting an A (+1) and deleting a G (+1). Inserting AAAGTA would cost 2 (+1 to stutter
and +1 to insert), as opposed to costing 6 by inserting one at a time. The RFL algorithm
needs to account for this, or else it would give the string AAAGTA a cost of 6 because the
motif AAAGA is “broken” by the T.

The question naturally arises: if costs are being precomputed for different substrings,
which substrings should be included? Suppose that for a specific motif (e.g., AAAGA),
all possible substrings and their associated costs were included. Note that any string with
the letters AAAGA (in that order) would be cheaper to insert by first stuttering forward
and then adding letters in between, instead of adding them one by one. This is shown
in Example 1 to motivate the need for restricting the search space. The resolution of this
example after the restrictions are in place will be shown in Example 3.

Example 1. To build the string
A(TTTD)A(TTTT)A(TTTT)G(TTTT)A

using edit operations starting with an empty string, 21 letters would need to be inserted, for a cost
of 21. This would cost 4 less overall by inserting the motif AAAGA first via stutter (cost of 1) and
then inserting all the remaining nucleotides in between (cost of 16), for a total cost of 17. This is
true for an unboundedly long string, with any number of characters in between the motif characters
as long as the letters AAAGA are present in that order.

Even if a string had the letters A...A...A...G...A with 2000 nucleotides in between
each letter, by including it in the dictionary, the algorithm would qualify it as a modified
stutter motif. Thus, not only is an infinite (or virtually infinite) dictionary impossible, it
is undesirable and potentially absurd. In addition, there is no evidence to suggest that
PCR results in such drastic numbers of errors. The faithfulness of the polymerase used
in PCRs for STR typing has improved enough that these only err sporadically, which is
supported by the fact that only small deviations were observed in artifacts in this study.
Such assignment of stutter cost over excessive length of the string is undesirable, therefore
a limit to the extent of the modification was incorporated.

The appendix contains more detailed discussion regarding the complex cases that
arise when considering this additional edit type, but a few examples are included here.
As mentioned previously, it is possible to have intra-motif substitutions and indels. The
STR [ACT]4 could give rise to [ACT]2 AT [ACT]1. The difference in the number of ATG
motifs here is 4 — 3 = 1, but there was no stutter—just deletion of the letter C. Including
the interaction of stutter with other edit types quickly explodes complexity in the minimal
cost computation.

Thus, for every possible nucleotide sequence of length < 2k — 1, where k is the length
of the motif, the classical, weighted Levenshtein distances of both inserting these strings
from scratch or deleting them are computed, with the requirement that the edit path of
that substring contains exactly one stutter. Specifically, the precomputed insertions contain

Algorithms 2022, 15, 242

9 of 22

short sequences of letters with an associated cost, assuming the edit path begins with a
motif insertion. The precomputed deletions contain the same strings as the insertion list,
but with the cost of deleting, assuming the edit path ends with a motif deletion. These
data are stored in a pair of dictionaries. In the GitHub resource, this function is called 1sdp,
an acronym standing for Levenshtein Stutter Dictionary Pair. Specifics are illustrated in
Example 2.

Example 2. For the motif TCTA, the stutter dictionary d has two keys: ‘insert cost” and delete
cost’. Each of these keys gives a dictionary d[key| of substrings and their associated costs. A selection
is given as follows, where all edit costs equal to one—note that the insert and delete dictionaries will
always contain the same entries, but different entries are shown here to demonstrate different costs:

d = {insert cost:
{TCTA: 1,
TCTAT: 2,
A: 4,
GGGGGGG: 8,
s

delete cost:

{TCTATGG: 4,
TCT: 2,
TCTA: 1,

)

Note that strings like 'GGGGGGG’ and A’ cost more to insert in this dictionary than they do
in classical Levenshtein, since the RFL algorithm first inserts a motif for a cost of 1 before modifying
it into the desired string. A symmetric fact holds for deletion entries. However, since RFL includes
classical Levenshtein operations and takes the lowest-cost path, inserting the string ‘A" will be
considered both as a cost 1 edit (from the classical Levenshtein solution) and a cost 4 edit (from the
dictionary), with the lower cost option being taken.

In Example 1, a sequence was shown to demonstrate that an unbounded search space
would not be desirable even if it was possible. Example 3 explains how the restriction

affects the answer on that use case.

Example 3. In Example 1, it was illustrated that the string

A(TTTD)A(TTTT)A(TTTT)G(TTTT)A

would cost 21 to insert from a blank string if no motifs were considered, but it would cost 17 if the
cost dictionary for the motif AAAGA contained strings of arbitrary length. The length of the motif
AAAGA leads to a bound of 2 x 5 — 1 = 9 on the dictionary substrings. The RFL algorithm with
this bound in place will see parts of the parent string and insert them from the dictionary when
it is cheaper to do so. For example, the edit path from a blank string to the motif AAAGA costs
1 via forward stutter and the edit distance from AAAGA to the first six characters of the string,
ATTTTA, costs 4 (three substitutions and one insertion), so to insert the first six characters of the
string totals 5, whereas inserting each letter individually costs 6. As the RFL algorithm moves along
the string, the next place it becomes cheaper to use the dictionary is when inserting ATTTTGT,
which would cost 7 with single-character edits, but instead costs 6 via the dictionary (since AAAGA
— ATTTTGT requires three substitutions and an insertion). There are no other places where the
RFL algorithm finds a more optimal route. Although an unbounded search space would give a cost

Algorithms 2022, 15, 242

10 of 22

of 17 and a classical Levenshtein would give a cost of 21, the RFL algorithm with the 2k — 1 bound
gives a cost of 19.

It must be noted that the sequence in Example 3 was given as an extreme example.
Motifs stutter in the data both forward or backward with notable frequency, with vastly
fewer single-character edits. It would be vanishingly rare to see as many insertions as this
extreme example demonstrates. Although it is a single straightforward step to change the
dictionary to include more substrings, doing so will not reflect the true relative frequency
of stutter versus single-character insertions and deletions. Each dictionary key accounts for
exactly one stutter, whether forward or in reverse. Once substrings of length 2k or more are
being considered, it is much more likely that two stutters are at play instead of one, and the
case of two stutters is already well-accounted for in the RFL implementation as it stands,
since each motif will get treated separately. Rare, more complex theoretical exceptions are
described in Appendix A.1.

In the RFL algorithm, all edits are fully customizable. Every edit from one nucleotide
to another can be set with a unique cost, and every relevant motif can stutter forward and
backward with unique costs.

The classical Levenshtein distance separately considers the cost of an insertion, dele-
tion, or substitution, and takes the minimum of the three at each step to expand the matrix
via dynamic programming. To account for all the substrings accessible via stutter, the
RFL algorithm considers the same possibilities as classical Levenshtein, and additionally
considers at each step the options of inserting or deleting any I-character portion, where I
ranges from 1 to 2k — 1, and where the respective cost is defined by the pre-built dictionary.

2.3.4. How Restricted to Be?

Stopping at string length 2k — 1 is a parameter easily changed by generating a longer
dictionary via the 1sdp function. The RFL algorithm intakes the dictionary and can look
back as far as the dictionary allows. Previously discussed in Section 2.3.3 was the motivation
to consider only motifs that are slightly modified. Insertions were so rare in the data
analysed in this study that by the time an additional k individual nucleotides have been
inserted into a motif of length k, it is desirable for the proposed algorithm to be looking at a
potential pair of motifs instead of one highly mutated motif. If an STR DNA sequence is
gaining or losing 2k characters at once, it is more likely due to two separate stutters than to
a single stutter that was then affected by an additional k inserts or deletes. Furthermore, in
this data set, stutter and substitutions are much more common than deletions, and all are
more common than insertions, giving more reason to cap the string length.

These lists of strings and their associated costs are computationally intensive to create
(although still generally under a minute on a personal laptop), but once one is made (stored
as a dictionary in Python for fast lookups) it can be used any number of times, as long as
the motif and costs stay the same. Expanding this dictionary for completeness could be
another area for further research.

2.3.5. Multiple Motifs and Time Complexity

Some forensic DNA loci have multiple motifs (e.g., [ACT]5 [AGGT]12). A pair of
stutter dictionaries is computed for every motif, and at each step in the RFL algorithm the
dictionaries of each motif are checked. This allows for any number and combination of
preset motifs to be included in the calculation, each with fast dictionary lookups.

The proposed algorithm allows any prespecified set of motifs. For every additional
motif, two inner for-loops are added at each step in the dynamic programming matrix to
check the cost of inserting and deleting anywhere from 1 to 2k; — 1 characters from the
dictionary associated with that motif of length k;. Because there are two for-loops running
through the list of all motifs, and within each of them there is another for-loop running
through 1 to 2k; — 1 characters for motif i, the algorithm grows in complexity by those
factors. Where the classical Levenshtein distance is O(n,n;) for strings of length 1, and n,,

Algorithms 2022, 15, 242

11 0f 22

the RFL distance theoretically requires O(n,n,mk) time, where m is the number of motifs
and k is the length of the largest motif max(k;), assuming O(1) dictionary lookup speed.
However, in applications with standard autosomal STRs, motifs are all of length at most 5
(2k; — 1 <9), so this algorithm can be considered as O(n,n,m), growing with the number
of motifs considered as well as the lengths of the strings. Additionally, standard autosomal
STRs have no more than a handful of motifs to be considered—a maximum of three, in this
work—so the asymptotic growth becomes O(n,n;) once more.

2.4. Implementation of the RFL Distance

Consider two strings, a and b, where |a| = m and |b| = n, with zero-based indexing
used throughout. The goal of the RFL algorithm is to construct an (m + 1) x (1 + 1) matrix
d, where each d[i, j] is equal to the distance from the first i characters of a to the first j
characters of b, resulting in the output d[m, n]. Recall that the distance is not commutative,
so “parent” refers to 2 and “child” refers to b (since the string b originally began at 2 and
went through edits to turn into b).

Throughout this section, recall the mechanics behind Example 1. The first characters
of the parent and child are aligned, and the algorithm then modifies the parent. With each
edit the parent is modified to make the leading characters of both strings match, which
characters can then be removed for free, and thus the modifications eventually lead to a
pair of empty strings and the cost of each step tallied.

2.4.1. Building the First Row

The cost of editing an empty string into an empty string is 0, so d[0, 0] is always 0. The
element 4|0, 1] is the cost of editing an empty string into the first character of the child string
b. A list of cost options at this step will be made and then the minimal cost option taken.
Obtaining the first character can either be done by inserting it directly or by stuttering
forward a motif and then deleting characters back. For example, if the first character of the
string b was G, and the motifs being considered were GGC and ATTC, then the following
costs would be appended to the options list:

* The insert cost of the character G

* The cost of stuttering forward GGC plus the cost of the weighted Levenshtein distance
from GGC to G.

* The cost of stuttering forward ATTC plus the cost of the weighted Levenshtein distance
from ATTC to G.

Each motif can have a different stutter cost associated with it that can vary across loci,
and in forensic applications forward stutter will be more expensive than backward since
it is a rarer artifact. In this example, GGC might cost 3 to stutter forward and 1 to stutter
backward, while ATTC might cost 2 to stutter forward and 0.5 to stutter backward.

The quantity d[0, 1] is the minimum of the computed options, and the algorithm moves
forward to d[0,2]. Now there are several possibilities:

e d[0,1] + the cost of inserting the second character via pure insertion (i.e., the cost of
inserting b[1], using 0-based indexing)

e d[0,1] + the cost of inserting the second character via the stutter dictionary (for each
stutter dictionary)

e d[0,0] + the cost of inserting the first two characters via the stutter dictionary (for each
stutter dictionary)

Furthermore, in general, for each motif, if the motif lengths are k;, for every length j
less than or equal to 2k; — 1, substrings of characters from j positions back to the current
can be checked, and if less costly those characters can be inserted via the stutter dictionary.
It is impossible to look back further than the beginning of the string, however.

To construct the first row d|0, :], pseudocode outlined in Listing 1 is followed. Building
the first column d[:, 0] follows similarly.

Algorithms 2022, 15, 242

12 of 22

Listing 1. Building the first row of the dynamic programming matrix in the RFL algorithm.

parent_length = length of parent

child_length = length of child

k = length of longest motif being considered

lookback = 2k - 1

d = matrix of zeros with parent_length + 1 rows and child_length + 1 columns

for i from 1 to child_length:

O©Oo0O~NOUd WN -

find d[0, i], the cost of modifying a blank string into the first i characters
of the child string
10| # d[0, 0] is always O, the cost of editing an empty string into an empty string

12| options = []

13

14| # d[0, i - 1] is the cost of inserting the first i - 1 characters of the child
string

15| options.append(d[0, i - 1] + cost of inserting character i)

16

17| # look back 1, 2, ..., and 2k - 1 characters in the string (or back to the first

character, whichever comes first)
18] for j from 1 to min(lookback, i):

20| # find the cost of inserting the last j characters up to and including character i
, assuming a forward stutter happened first

21

22| S = the j characters immediately preceding and including character j of the child
string

23

24| for every motif being considered:

25

26| # if there are motifs of unequal size, there will be substrings in the dictionary
of the larger motif that are out of reach of the smaller motif, since the
dictionary for a motif of length L only includes strings of length 2L - 1

28| if S is not too long for the forward-stutter dictionary for this motif:

30| options.append(d[0, i - j] + cost of inserting S from dictionary)

32| # the cost at this location is the smallest cost out of the options considered
33| d[0,i] = minimum of the options list

2.4.2. Filling Out the Matrix

This step combines the complexity of building the first row and column. At each point
d[i, j], the algorithm looks back at the previous entries d[i — 1, j],d[i,j —1],and d[i — 1,j — 1]
and adds the costs of deletion, insertion, and substitution, respectively. Additionally, for
each motif length, it looks back at d[i — r, j| and d[i, j — r|, for reverse and forward stutter,
respectively, for r from 1 to 2k; — 1 for each motif i of length k;. After considering all these
costs, the entry d[i, j] is the minimum.

In Listing 2, d[m — 1,n — 1] is the distance from the first m — 1 characters of the parent
to the first n — 1 characters of the child. Because of zero-based indexing, parent[m — 1] is
the m-th character of the parent.

To demonstrate the RFL algorithm in depth, a fully worked example is given in
Appendix A.2.

2.4.3. Practical Implementation

The RFL algorithm is written in Python, compatible with NumPy and therefore
Numba, which increases the speed over the same algorithm in pure Python by a factor
of about 30 via an @njit wrapper. However, the Numba-optimized version of the algo-
rithm only works if including the possibility of stuttering a single motif, due to limitations
in the implementation with Numba’s inherent dictionary types. Based on testing of the
weighted-levenshtein package (written in Cython) [32], the RFL algorithm has potential
for significant increases in speed. In preliminary testing, modifying the data structures to
integer-coded arrays and rearranging the way the cost dictionaries are stored can accelerate
the computations by more than an order of magnitude via Numba. Furthermore, prelimi-
nary testing of a Numba prototype for the base Levenshtein algorithm suggests that in the
case of DNA, Numba can meet or exceed the speed of the generic Cython package.

Algorithms 2022, 15, 242

13 of 22

Listing 2. Building the dynamic programming matrix in the RFL algorithm.

for every row m from 1 to parent_length:
for every column n from 1 to the child_length:

substitution: look up and to the left a single step
options.append(d[m - 1, n - 1] + cost of changing character m of the parent into
character n of the child)

1
2
3
4| options = []
5
6
7

9| # insertion: look back one column
10| options.append(d[m, n - 1] + cost of inserting character n of the child)

12| # deletion: look up one row

13| options.append(d[m - 1, n] + cost of deleting character m of the parent)

14

15| # forward stutter: look back 1, ..., 2k - 1 columns, or back to the first column
if 2k - 1 steps would be out of range

16| for i in 1, ..., min(lookback, n):

17

18| 8 = the i characters immediately preceding and including character n of the child
string

19

20| for every motif being considered:

21

22| if S is not too long for the forward-stutter dictionary for this motif:

24| options.append(d[m, n - i] + cost of inserting S (from forward-stutter dictionary)

25

26| # back stutter: look back 1, ..., 2k - 1 rows, or back to the first row if 2k - 1
steps would be out of range

27| for i in 1, ..., min(lookahead, m):

28

29|S = the i characters immediately preceding and including character m of the parent
string

30

31| for every motif being considered:

32

33| if S is not too long for the back-stutter dictionary for this motif:
35| options.append(d[m - i, n] + cost of deleting S from back-stutter dictionary
37| # the distance from the first m characters of the parent to the first n characters

of the child is attained by taking the smallest of the options at this step
38| d[m,n] = min(options)

2.5. Validation of the Algorithm

The ideas in Section 4 of [20] can be adapted to provide theoretical justification for
the RFL distance. Ukkonen’s proof is for when all of the string edits can be performed
in parallel, i.e., no edit interactions such as a forward stutter followed by a substitution
within the stuttered motif (e.g., ” — AATT — AACT). The RFL distance is specifically
designed to address edit interactions that cannot be performed in parallel. However, with
the 1sdp cost dictionaries in place, the larger family of dictionary edits can once again be
performed in parallel because the edit interactions are already built in, and Ukkonen’s
justification holds, although their implementation is different and no code was available
for comparison testing.

Various examples have been computed to verify the RFL distance behaves as it should
with different costs when compared to the Cython package [32].

3. Results and Discussion

An overarching goal of this work was to develop a metric that was inversely propor-
tional to sequence relative frequency in MPS data analysis output. A demonstration of the
effect of the RFL distance algorithm using the result from Table 2 is shown in Figure 2.

Algorithms 2022, 15, 242

14 of 22

Table 2. High-stutter motifs at CODIS-20 and PENTA loci, based on 661 individuals, using a
threshold of 0.167 Allele Coverage Ratio (ACR)—the ratio of the second-highest count to the highest—
to determine homo- vs. heterozygosity in identifying true alleles. For each motif, LUS summary
statistics are taken across all alleles. Back stutter rate is the average of all single-stutter proportions
resulted from amplification and sequencing, averaged across all loci where parents with that motif
were present. The last two columns describe how many alleles and unique alleles with the relevant
motif at each locus were present in the data. This analysis is described further in Section 3.1.

Mean Total Unique
) Median Min Max on-LUS Parents Parents
Locus Motif LUS LUS LUS Back at Locus at Locus
Stutter with with
Rate Motif Motif
CSF1PO TCTA 11 4 15 0.0219 (163) 1159 17
D10S1248 GGAA 14 8 19 0.0291 (190) 1182 13
D12S391 TAGA 12 7 19 0.0279 (115) 1287 84
D12S391 CAGA 6 3 10 0.0085 (67) 1287 84
D13S317 TATC 12 7 16 0.0183 (105) 1219 30
D13S317 AATC 2 2 3 0.0021 (56) 803 10
D165539 GATA 11 5 14 0.0214 (123) 1207 17
D18S51 AGAA 15 9 24 0.0249 (125) 1242 27
D195433 TCCT 13 7 18 0.0218 (133) 1194 22
D1S1656 TATC 13 9 17 0.0332 (141) 1270 30
D1S1656 AC 6 5 6 0.0059 (26) 1270 30
D21S11 TATC 12 7 15 0.0224 (96) 1264 79
D21S11 TGTC 6 4 8 0.0021 (21) 1264 79
D2251045 ATT 12 5 16 0.0316 (233) 1179 13
D2S1338 GGAA 13 8 17 0.0221 (80) 1269 69
D251338 GGCA 7 3 9 0.0033 (34) 1269 69
D25441 CTAT 11 7 14 0.0188 (114) 1205 24
D351358 CTAT 13 5 17 0.0309 (143) 1238 26
D351358 CTGT 2 2 4 0.0035 (85) 987 19
D5S818 ATCT 12 7 15 0.0257 (119) 1237 31
D75820 CTAT 10 6 13 0.0163 (96) 1229 30
D851179 CTAT 12 8 15 0.0251 (115) 1237 34
D851179 CTGT 2 2 3 0.0013 (51) 20 6
FGA GAAA 14 9 19 0.0211 (109) 1247 32
Penta D GAAAA 11 5 17 0.0051 (47) 1236 18
Penta E TTTTC 12 5 25 0.0114 (89) 1240 25
THO1 AATG 7 5 11 0.008 (63) 1165 12
TPOX AATG 9 5 13 0.0113 (90) 1140 14
VWA ATAG 12 3 16 0.0247 (146) 1242 32
VWA ACAG 4 3 6 0.0023 (50) 1242 32
VWA GATG 3 3 4 0.0019 (8) 81 2
Classical Levenshtein Restricted Forensic Levenshtein
wn 0.7 w 0.7
3 3
206 S o6
.TEI 0.5 _E' 0.5
S04 S04
§ 0.3 i 0.3
202 £ 02
201 201
o] o
o 0.0 a 0.0
0 5 10 15 20 0 5 10 15 20
Distance from True Parent Distance from True Parent
(a) Classical Levenshtein. (b) Restricted Forensic Levenshtein.

Figure 2. Proportion by distance plots at a CSF locus with unit edit costs. The RFL distance in (b)
fixes the non-monotonicity of the classical Levenshtein in (a).

Algorithms 2022, 15, 242

15 of 22

The non-monotonic plot in Figure 2 has a peak in frequency at a distance of 4 from the
true parent sequence in the file, corresponding to stutter of an entire tetranucleotide motif
being a more common occurrence than deleting 3 or 5 characters individually. The RFL
distance counts this stutter with a cost of 1, thus giving monotonicity. In loci with motifs
of other lengths, the frequency peak appears at that particular length. In loci exhibiting
multiple motifs, there are increases in frequency at both lengths. There are smaller spikes
at a distance of twice the motif length (a distance of 8 in Figure 2), corresponding to double
stutter, but they are much less noticeable.

This metric also has applications in deconvolution, as shown in the following example
of real data in a known mixture of two people at the locus D851179. According to Table 2,
the RFL algorithm uses the motifs CTAT and CTGT. Two true alleles at this locus are
p1 = [CTAT]12 and p, = [CTAT]2 CTGT [CTAT]10. The artifact a = [CTAT]2 CTGT [CTAT]9
also appears in the results. It is desirable to capture sequence dissimilarity corresponding
to decreased likelihood of an artifact being from a given allele. Using the Levenshtein
distance with unit costs, the distance from p; to a is equal to 1, since the only edit required
is changing the third A to a G. The Levenshtein distance from p; to a is equal to 4, since
the motif CTAT must be removed letter-by-letter. However, when using the RFL distance,
CTAT can be removed for a cost of 1, so then the distances between the artifact and each
true allele are both equal to 1, and the deconvolution is less clear. Future work will fit costs
to the data that vary by edit type to more confidently infer which parent was more likely
the origin for the artifacts in cases such as this.

Another way to compare the two metrics is by visualizing the pairwise distances of
output in two dimensions. Uniform Manifold Approximation and Projection (UMAP) is one
method of performing this dimension reduction technique [33]. The UMAP algorithm was
applied to all pairwise RFL distances and original Levenshtein distances of a 3:1 mixture at
locus D151656. The locus is typed with three true alleles, with the higher contributor being
homozygous and contributing three times as much DNA as the lower contributor, who
was heterozygous for this locus. The RFL distance showed more defined clustering than
classical Levenshtein across many combinations of hyperparameters, supporting the notion
that the RFL distance captures PCR artifact similarity better than classical Levenshtein.
Figure 3 shows a plot made with a representative combination of hyperparameters, where
each artifact is colored by which parent it is closest to (there were no ties).

Base Levenshtein, nn 80, min_dist 0.1 RFL, nn 80, min_dist 0.1

30] L)

20 °

’ ’ O Q
0

10 Parent Allele Parent Allele
? -10 : (1’
-20 . . c 2 15 .2
-30 20 -10 0 10 20 30 40 20 -10 0 10 20 30 40
(a) Levenshtein, nn = 80, min_dist = 0.1. (b) RFL, nn = 80, min_dist = 0.1.

Figure 3. UMAP plots for a ground-truth-known mixture of three parts homozygous contributor to
one part heterozygous contributor at the locus D151656. Each point represents a sequence, and the
colors represent which parent that sequence is closest to. The RFL distance gives better clustering
of artifacts.

3.1. Selecting Motifs for Each Locus

The RFL algorithm requires a motif or set of motifs to include as options to lose or
gain. The original motivation for the RFL algorithm was to address the high rates of stutter,

Algorithms 2022, 15, 242

16 of 22

particularly back stutter, that appear in sequencing data analysis output. In order to give
the algorithm the correct motifs to use, the available true allele sequences were exhaustively
searched for any motif of length 2-6 that repeated at least twice consecutively.

For every locus, and for every potential motif identified at that locus, the back stutter
rates were computed for all available files by taking the count of the stuttered artifact
sequence divided by the sum of all reads for the locus. The results were then filtered to
include only loci that showed back stutter at a mean rate of at least 0.001 across samples.
Major stutter is the loss of a motif that decreases the longest uninterrupted stretch (LUS), i.e.,
stutter that results in the maximum number of consecutive motifs being reduced. Similarly,
minor stutter is the loss of a motif that does not decrease the LUS. This differentiation
was made because stutter in a LUS region was more common than stutter outside of a
LUS region by several orders of magnitude in the data. Many places in the data showed
stretches of a motif at locations other than the LUS region. For example, in every true allele
at the locus CSF1PO, a locus with only one STR motif, there were two other locations of
that motif repeating in lower numbers than the LUS in the data.

Motifs were grouped by self-permutations, e.g., if ATAG consecutively repeated at
a sequence at least twice, usually TAGA and AGAT would as well. Within each group of
self-permutations the motif with the highest mean LUS was chosen, using alphabetization
to break ties. The final step was to take the motif at each locus with the largest mean LUS
(there were no ties). This final candidate was chosen as the primary motif at the locus—in
essence, the motif that had the highest mean stutter rate at that locus.

Next, every primary motif in every sequence in the data was substituted with the
non-nucleotide letter Z, and the entire motif-finding process was repeated to look for
secondary motifs—the motifs that stutter second-most at each locus. This mechanic of
replacing the primary motifs with the letter Z ensured there was no overlap of primary and
secondary motifs.

This process was iterated until no motifs with high stutter rates and LUS remained.
Only VWA had candidate motifs for the tertiary round, and no loci had candidates for
quaternary motifs.

Combining the three rounds of processing gives Table 2. Within each locus, the rows
are sorted in order of the rounds of analysis (and thus in order of stutter frequency).

4. Conclusions

A new string dissimilarity measure is proposed with a flexible and publicly available
algorithm for implementing it. It has shown promise in ongoing forensic applications thus
far, but generalized Levenshtein with multi-character edits could have uses with in vivo
sequences as well. Applications in graph edit distance and consequent potential uses in
handwriting recognition, fingerprint recognition, and cheminformatics were also discussed.
Allowing the interaction of edit types—such as a motif stuttering forward, then undergoing
indels or substitutions within, before, or after that motif-is a novel addition that expands
the useful applications of this work, and is accomplished via the dictionary structure in
a way that is fast, feasible, and open to further speed optimization. It allows for a more
accurate picture of the stutter phenomenon and how similar two STR sequences truly are
when any stutter is expected, whether from PCR or in vivo polymerase slippage.

In practice, this work and the associated code available can benefit those analyzing
STR sequencing data, manufacturers and developers providing software tools to accurately
recognize and label sequences from these data types, thus, indirectly contributing to reliable
reporting of STR sequence data, both in the forensic genetics and the medical diagnosis
fields where accuracy in interpretation of STR sequence data is crucial. To count the number
of edit operations to get from one sequence to another, set all edit costs to one (this will
be symmetric, since every operation will have an inverse of equal cost). This is a useful
first pass on sequence similarity. Optimizing the costs to reflect the frequency of the edits
in the data requires a kit-specific understanding of artifact frequencies, since those would
be used to determine the relative costs of each operation. Applications such as sequence

Algorithms 2022, 15, 242

17 of 22

alignment may use costs motivated by traits other than pure artifact frequency, depending
on the information desired.

Further work could be done to penalize the overall number of edit operations in
addition to the cost of each individual operation. It would also be a simple addition
to consider transpositions as a separate possible edit operation, though for the original
application it was unnecessary.

The restrictions in place because of the stutter dictionary have proven helpful for
several reasons, but do limit effectiveness in rare cases. A motif inserting in the middle of
another motif, for example, would not be detected by the RFL algorithm, and neither would
a motif spread apart by too many single-character intra-motif insertions (len(motif)—1
insertions, in particular). Although this limit is easily changeable in the code, the way
the algorithm is written requires a hard cap. For forensic applications, however, when
the strings are only a few edits apart and insertions are rare, the restrictions do not limit
effectiveness.

5. Disclaimer

Any commercial equipment, instruments, materials, or software identified in this
paper are to foster understanding only. Such identification does not imply recommendation
or endorsement by the National Institute of Standards and Technology, nor does it imply
that the materials, equipment, or software identified are necessarily the best available for
the purpose.

Author Contributions: Conceptualization, T.P,,]. H. and H.I.; methodology, T.P,, J.H. and H.L; soft-
ware, T.P; validation, T.P, J.H. and H.I; formal analysis, T.P.,, J. H. and H.L; investigation, T.P;
resources, T.L.H. and H.I; data curation, T.P. and T.L.H.; writing—original draft preparation, T.P.;
writing—review & editing, T.P., T.I.H., H.I. and J.H.; visualization, T.P.; supervision,].H. and H.I;
project administration,].H. and H.I,; funding acquisition, J.H., H.I. and T.I.H. All authors have read
and agreed to the published version of the manuscript.

Funding: The research of T.P. and J.H. was supported in part by the National Science Foundation
under Grant No. DMS-1916115 and 2113404. TI1.H. was funded by the NIST Special Programs Office
(Forensic Genetics Focus Area).

Institutional Review Board Statement: All work has been reviewed and approved by the National
Institute of Standards and Technology Research Protections Office. This study was determined to be
“not human subjects research” (often referred to as research not involving human subjects) as defined
in U. S. Department of Commerce Regulations, 15 CFR 27, also known as the Common Rule (45 CFR
46, Subpart A), for the Protection of Human Subjects by the NIST Human Research Protections Office
and therefore not subject to oversight by the NIST Institutional Review Board.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are from the National
Institute of Standards and Technology, but restrictions apply to the availability of these data, which
were used under license for the current study, and so are not publicly available. For inquiries, please
contact Hari Iyer at hariharan.iyer@nist.gov.

Acknowledgments: Thank you to Katherine B. Gettings, Peter M. Vallone, Lisa A. Borsuk, and the
NIST Applied Genetics Group for sharing the data. Special thanks to Katherine B. Gettings for
in-depth discussion related to the underlying biological concepts and data details.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Algorithms 2022, 15, 242

18 of 22

Abbreviations

The following abbreviations are used in this manuscript:

STR Short Tandem Repeat

RFL Restricted Forensic Levenshtein
PCR Polymerase Chain Reaction

CE Capillary Electrophoresis

MPS Massively Parallel Sequencing
DoC Depth of Coverage

ACR Allele Coverage Ratio

Appendix A

In this appendix, further details of the complexities and examples of the Restricted
Forensic Levenshtein algorithm are shown.

Appendix A.1. Complexities

Allowing for the possibility of both single- and multiple-character gains and losses in
interaction makes the algorithm exponentially more complex. The insert costs are computed
via the weighted Levenshtein distance as if the edit path was first stuttered forward, then
edited from the motif (with no stutters) to the string. The delete costs are computed by
forcing the string to edit back into a motif, then adding the cost for dropping a motif.

In a case where the motif is AAAGA and all edit costs are equal to 1, evidently the cost
of inserting or deleting a single A or G would be 1; however, in the constructed dictionary
the cost of these operations are set to 5 each, resulting from a forward stutter (1) and the
removal of the remaining 4 letters (4 x 1). The cost of inserting or deleting a letter not part
of the main motif, e.g., T, is set to 6 in the dictionary, as it is calculated with the same steps
as before (5) and an additional change of the last remaining letter to T (1). Strings of all
lengths up to 2k — 1 are also included in the dictionary, i.e., costs of insertion or deletion
are set for strings AAA to 3, AAAGAT to 2 and AAACGATC to 4, and so forth.

Cost can be set asymmetrically for insertions and deletions. If insertion costs were
changed to 2 but deletions, substitutions, and stutters remained at a cost of 1, the dictionary
entries would change. The string AAA in this dictionary would have an insert cost of 3
(blank - AAAGA (+1) — AAA (+2)), but a delete cost of 5 (AAA — AAAGA (+4 for two
inserts) — blank (+1 for stutter)).

It gets more complicated when one considers adding two or three motifs at once, as
shown in Example Al.

Example A1. In this example the motif is AAAGA. Forward stutter is followed by many individual
letters inserted in between, as shown:

A(TTTTAAAGATTTT)AAGA.

To get to the same string, another route would be to stutter once and then insert another motif
in between the letters of the motif that is already there, along with other insertions, as follows:

A(TTTT)AAAGA(TTTT)AAGA.

The RFL distance does not address stutter-within-stutter, in either the forward or backward
direction. Beginning an attempt to do so would require allowing the second stutter to take place at
any point in the first motif, e.g., for the motif AAGG, consider ACAAGG)AGG, AA(AAGG)GG,
and AAG(AAGG)GG, in addition to accounting for all the single-character operations that could
take place on either motif, and once again bounding above by some maximum number of possible
single-character insertions.

Additionally, the RFL distance does not include cases where more than k — 1 characters
are inserted or deleted between an outer motif’s characters, where k is the longest motif,
since the maximum length of strings included in the lookup dictionary is 2k — 1.

Algorithms 2022, 15, 242

19 of 22

Appendix A.2. A Worked Example

The example below is shown with unit costs for all operations. The motif is ACG. First
an original Levenshtein example is computed in detail, followed by an RFL example. The
distance being computed is from ACG to ACGTCG.

Each matrix entry is equal to the distance from the parent string (up to that row) and
the child string (up to that column). For example, the bold 4 in Table A1 corresponds to the
distance from A to ACGTC. The value at the bottom-right of Table A1 (i.e., 3) is the least
costly solution for the edits from parent to child. This follows the intuition that in the base
Levenshtein distance, the necessary edits to get from ACG to ACGTCG are three insertions
in sequence, each with a cost of 1.

Table Al. Standard Levenshtein.

A C G T C G

0 1 2 3 4 5 6

A 1 0 1 2 3 4 5
C 2 1 0 1 2 3 4
G 3 2 1 0 1 2 3

The RFL distance between the same two strings with the same motif as in Table A1 is
computed in Table A2.

Table A2. Restricted Forensic Levenshtein.

A C G T C G

0 1 2 1 2 3 3

A 1 0 1 2 2 3 4
C 2 1 0 1 2 2 3
G 1 2 1 0 1 2 2

The following paths can be described from Table 2: A to ACG requires two edits, either
via A = AC — ACG or A — AACG — ACG, while A to ACGTC requires three, via A —
T — ACGT — ACGTC, and AC to ACGTCG also requires three, via AC - ACACG —
ACTCG — ACGTCG.

The final function value is given in the bottom right corner of the matrix in Table A2,
representing the RFL distance from ACG to ACGTCG. This value of 2 is obtainable via the
edit path ACG —+ ACGACG — ACGTCG.

Changing a few individual edit costs will give different optimal paths. In the following
example, the cost of inserting a motif (forward stutter) is 2, backward stutter costs 0.5,
switching from A to T costs 1.5, switching from A to C costs 0.5, and insertingaCora T
costs 2. All other costs remain equal to 1. The dynamic programming matrix computed
with modified costs is shown in Table A3.

Table A3. RFL with modified costs.

A C G T C G
0 1 3 25 4.5 6.5 6.5
A 1 0 2 3 4 7
C 1.5 1 0 1 3 5
G 0.5 1.5 1 0 2 4

The previous three examples are shown below, but now with updated costs.

Algorithms 2022, 15, 242

20 of 22

In the previous example, there were two paths from A to ACG that each cost 2. A —
AC (+2) — ACG (+1) now costs 3, and A — AACG (+2.5) — ACG (+1) now costs 3.5. The
former path cost matches the cost of 3 in Table A3, and is thus still a minimal path, but the
latter is no longer minimal.

In the previous example, A to ACGTC cost 3. Now the same path A — T (+1.5) —
ACGT (+2.5) = ACGTC (+2) costs 6, which matches Table A3.

For AC to ACGTCG, there was a path that cost 3, but now the cost should be 5 to match
Table A3. AC — ACACG (+2.5) — ACTCG (+1.5) - ACGTCG (+1) costs 5, as desired.

Other cost combinations are possible. For example, if the cost of forward stutter was
raised higher than 3 while keeping unit costs for insertion, forward stutter would never be
reflected in a minimal edit path because it would always be cheaper to insert the motifs
individually instead of stuttering them together.

Appendix A.3. An Algorithmic Limitation

It is possible to weight the costs unequally enough that interferes with the output of
the original Levenshtein. If the insert cost of C is 5, but every other edit cost is 1, then
the actual cost of inserting a C is 2, since one could insert any other letter (+1) and then
substitute in a C (+1). However, the Levenshtein function in the Weighted Levenshtein
package available in Python does not reflect this. It will return lev(*’, C) = 5, not 2.

Forcing all insert costs to be the same in a given example actually avoids this issue
altogether—for example, the stringdist package in R does not allow for individual
insertions to have different costs from one another [34,35]. All deletions must cost the same,
as well, as do substitutions.

If the insert cost of C is 1.5, for example, and every other edit cost is 1, then the cost of
inserting a C is legitimately 1.5, since any other possible path returns at least 2. In order to
have truly minimal-cost answers, then, it is necessary to enter in the individual edit costs
in the standard Levenshtein function as minimal (e.g., insertion cost of any letter needs to
be less than the sum of any other possible edit sequence to insert that letter indirectly).

Insertion is not the only place where this is a problem. If the cost of A — T was 5, but
all other costs were 1, then A — C — T would cost 2, so A — T should cost 2. A similar
example could be constructed for deletion.

The same does not hold true for stutter, however. If the forward stutter cost was raised
to 15 and the backward stutter cost raised to 10 in the RFL algorithm, the matrix for the
RFL distance (which is equal to the standard Levenshtein matrix) is shown in Table A4.

Table A4. RFL with high stutter penalties.

A C G T C G

0 1 2 3 4 5 6

A 1 0 1 2 3 4 5
C 1 1 0 1 2 3 4
G 3 2 1 0 1 2 3

There are no costs of 10 or higher, since it is never cheaper to stutter than to address
each nucleotide separately. Thus, the addition of motifs to the Weighted Levenshtein
package does not suffer from the same weaknesses. Because it uses the package as a base,
though, it still has the same problems as the original Levenshtein distance with the other
edit operations.

The solution to this issue is a pre-processing step to ensure that the individual edit
costs are already optimal prior to the application of the Levenshtein distance. It is more
complicated than, e.g., ensuring that a two-step insert-substitute path is not cheaper than
direct insertion. Pathological counterexamples exist that require more than two steps—a
demonstration is shown in Example A2.

Algorithms 2022, 15, 242 21 of 22

Example A2. In a case where the following costs are set:

. Cost to inserta C, T, or G: 10

e Costtoinsertan A: 1

e Costof T+C,A—C,orA— G:10
* Costof G+C,A—=TorT—G:1

Then in order to insert a C, it is cheaper to edit " — A — T — G — C for a total cost of 4
than it is to insert a C directly (10), but one cannot go " — A — C (cost of 11) or " - A =T —
C (cost of 12).

In the application the RFL was designed for, however, all deletions cost the same, all
insertions cost the same, and all substitutions cost the same, so this issue is avoided.

The RFL algorithm is based on the idea that the sequences undergoing the edits in
PCR should take the cheapest, most frequent path. Here distance is defined to be the lowest
possible cost of any edit path between the strings (regardless of whether the minimal path
is itself unique), with no penalty on the number of steps. The implementation of edit count
penalization to the algorithm is an area of interest for future work.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Rinartha, K.; Suryasa, W.; Kartika, L.G.S. Comparative Analysis of String Similarity on Dynamic Query Suggestions. In
Proceedings of the 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), Batu,
Indonesia, 9-11 October 2018; pp. 399-404. [CrossRef]

Alberga, C.N. String Similarity and Misspellings. Commun. Acm 1967, 10, 302-313. [CrossRef]

Cheatham, M.; Hitzler, P. String Similarity Metrics for Ontology Alignment. In Proceedings of the The Semantic Web—ISWC 2013;
Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira,] X., Aroyo, L., Noy, N., Welty, C., Janowicz, K., Eds.; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 294-309.

Chang, W.L; Lawler, E.L. Sublinear approximate string matching and biological applications. Algorithmica 1994, 12, 327-344.
[CrossRef]

Alsmadi, I; Nuser, M. String Matching Evaluation Methods for DNA Comparison. Int. J. Adv. Sci. Technol. 2012, 47, 13-32.

Qi, X;; Wu, Q.; Zhang, Y,; Fuller, E.; Zhang, C.Q. A Novel Model for DNA Sequence Similarity Analysis Based on Graph Theory.
Evol. Bioinform. 2011, 7, EBO.S7364. [CrossRef] [PubMed]

Butler, J.M. The future of forensic DNA analysis. Philos. Trans. R. Soc. 2015, 370, 20140252.
doi: doi: 10.1098/rstb.2014.0252. [CrossRef] [PubMed]

Clayton, T.; Whitaker, J.; Maguire, C. Identification of bodies from the scene of a mass disaster using DNA amplification of short
tandem repeat (STR) loci. Forensic Sci. Int. 1995, 76, 7-15. [CrossRef]

Andelinovi¢, S.; Martin, P; Sutlovi¢, D.; Erceg, I.; Huffine, E.; de Simén, L.F; Albarrdn, C.; Definis-Gojanovié¢, M.;
Ferndndez-Rodriguez, A.; Garcia, P.; et al. DNA typing from skeletal remains: Evaluation of multiplex and megaplex
STR systems. Croat. Med. J. 2001, 42, 260-266.

Budowle, B.; Schmedes, S.E.; Wendt, ER. Increasing the reach of forensic genetics with massively parallel sequencing. Forensic
Sci. Med. Pathol. 2017, 13, 342-349. [CrossRef]

Urquhart, A.; Kimpton, C.P.; Downes, T.].; Gill, P. Variation in Short Tandem Repeat sequences—A survey of twelve microsatellite
loci for use as forensic identification markers. Int. J. Leg. Med. 1994, 107, 13-20. [CrossRef]

Alford, R.L. Rapid and efficient resolution of parentage by amplification of short tandem repeats. Am. J. Hum. Genet. 1994,
55,190-195.

Frégeau, C.; Fourney, R. DNA typing with fluorescently tagged short tandem repeats: A sensitive and accurate approach to
human identification. BioTechniques 1993, 15, 100-119.

Gettings, K.B.; Kiesler, K.M.; Faith, S.A.; Montano, E.; Baker, C.H.; Young, B.A.; Guerrieri, R.A.; Vallone, PM. Sequence variation
of 22 autosomal str loci detected by next generation sequencing. Forensic Sci. Int. Genet. 2016, 21, 15-21. [CrossRef]

Brookes, C.; Bright, J.A.; Harbison, S.; Buckleton, J. Characterising stutter in forensic STR multiplexes. Forensic Sci. Int. Genet.
2012, 6, 58-63. [CrossRef]

Raz, O.; Biezuner, T.; Spiro, A.; Amir, S.; Milo, L.; Titelman, A.; Onn, A.; Chapal-Ilani, N.; Tao, L.; Marx, T.; et al. Short tandem
repeat stutter model inferred from direct measurement of in vitro stutter noise. Nucleic Acids Res. 2019, 47, 2436-2445. [CrossRef]
Daunay, A.; Duval, A.; Baudrin, L.G.; Buhard, O.; Renault, V.; Deleuze,].F.; How-Kit, A. Low temperature isothermal amplification
of microsatellites drastically reduces stutter artifact formation and improves microsatellite instability detection in cancer. Nucleic
Acids Res. 2019, 47, e141. [CrossRef]

Brill, E.; Moore, R.C. An improved error model for noisy channel spelling correction. In Proceedings of the 38th Annual Meeting
of the Association for Computational Linguistics, Hong Kong, China, 3-6 October 2000; pp. 286—293. [CrossRef]

Boytsov, L. Indexing methods for approximate dictionary searching. Acm J. Exp. Algorithmics 2011, 16, A8—A9. [CrossRef]

http://doi.org/10.1109/EECCIS.2018.8692996
http://dx.doi.org/10.1145/363282.363326
http://dx.doi.org/10.1007/BF01185431
http://dx.doi.org/10.4137/EBO.S7364
http://www.ncbi.nlm.nih.gov/pubmed/22065497
http://dx.doi.org/10.1098/rstb.2014.0252
http://www.ncbi.nlm.nih.gov/pubmed/26101278
http://dx.doi.org/10.1016/0379-0738(95)01787-9
http://dx.doi.org/10.1007/s12024-017-9882-5
http://dx.doi.org/10.1007/BF01247268
http://dx.doi.org/10.1016/j.fsigen.2015.11.005
http://dx.doi.org/10.1016/j.fsigen.2011.02.001
http://dx.doi.org/10.1093/nar/gky1318
http://dx.doi.org/10.1093/nar/gkz811
http://dx.doi.org/10.3115/1075218.1075255
http://dx.doi.org/10.1145/1963190.1963191

Algorithms 2022, 15, 242 22 of 22

20.
21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Ukkonen, E. Algorithms for approximate string matching. Inf. Control 1985, 64, 100-118. [CrossRef]

Gao, X,; Xiao, B.; Tao, D.; Li, X. A survey of graph edit distance. Pattern Anal. Appl. 2009, 13, 113-129. [CrossRef]

Fischer, A.; Suen, C.Y,; Frinken, V.; Riesen, K.; Bunke, H. Approximation of graph edit distance based on Hausdorff matching.
Pattern Recognit. 2015, 48, 331-343. [CrossRef]

Neuhaus, M.; Bunke, H. Automatic learning of cost functions for graph edit distance. Inf. Sci. 2007, 177, 239-247. [CrossRef]
Darwiche, M.; Conte, D.; Raveaux, R.; T’Kindt, V. Graph edit distance: Accuracy of local branching from an application point of
view. Pattern Recognit. Lett. 2020, 134, 20-28. [CrossRef]

Petty, T. restricted-forensic-levenshtein. GitHub, 2021. Available online: https:/ /github.com/taylorpetty/restricted-forensic-
levenshtein (accessed on 1 May 2022).

Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 1966, 10, 707-710.
Zhao, C.; Sahni, S. String correction using the Damerau-Levenshtein distance. BMC Bioinform. 2019, 20, 1-28. [CrossRef]
Hirschberg, D.S. Algorithms for the longest common subsequence problem. JACM 1977, 24, 664—675. [CrossRef]

Wagner, R.A.; Lowrance, R. An Extension of the String-to-String Correction Problem. JACM 1975, 22, 177-183.
doi: 10.1145/321879.321880. [CrossRef]

Rane, S.; Sun, W. Privacy preserving string comparisons based on Levenshtein distance. In Proceedings of the 2010 IEEE
International Workshop on Information Forensics and Security, Seattle, WA, USA, 12-15 December 2010; pp. 1-6.

Woerner, A.E; King,].L.; Budowle, B. Fast STR allele identification with strait razor 3.0. Forensic Sci. Int. Genet. 2017, 30, 18-23.
[CrossRef]

Su, D. weighted-levenshtein. Python Software Foundation, 2018. Available online: https://pypi.org/project/weighted-levenshtein/
(accessed on 1 May 2022).

McInnes, L.; Healy, J.; Melville,]. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2016,
arXiv:1603.00278.

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2021.

van der Loo, M. The stringdist package for approximate string matching. R J. 2014, 6, 111-122.

http://dx.doi.org/10.1016/S0019-9958(85)80046-2
http://dx.doi.org/10.1007/s10044-008-0141-y
http://dx.doi.org/10.1016/j.patcog.2014.07.015
http://dx.doi.org/10.1016/j.ins.2006.02.013
http://dx.doi.org/10.1016/j.patrec.2018.03.033
https://github.com/taylorpetty/restricted-forensic-levenshtein
https://github.com/taylorpetty/restricted-forensic-levenshtein
http://dx.doi.org/10.1186/s12859-019-2819-0
http://dx.doi.org/10.1145/322033.322044
http://dx.doi.org/10.1145/321879.321880
http://dx.doi.org/10.1016/j.fsigen.2017.05.008
https://pypi.org/project/weighted-levenshtein/

	Introduction
	Background
	Short Tandem Repeats

	Restricted Forensic Levenshtein Distance
	Levenshtein Distance Overview
	Forensic Distance Overview
	Details of the RFL Algorithm
	A Perspective on Dynamic Programming
	A Note on Weighted Edit Distance
	Restricted Forensic Levenshtein Distance
	How Restricted to Be?
	Multiple Motifs and Time Complexity

	Implementation of the RFL Distance
	Building the First Row
	Filling Out the Matrix
	Practical Implementation

	Validation of the Algorithm

	Results and Discussion
	Selecting Motifs for Each Locus

	Conclusions
	Disclaimer
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3

	References

