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Abstract: In the last few years, federated learning (FL) has emerged as a novel alternative for
analyzing data spread across different parties without needing to centralize them. In order to increase
the adoption of FL, there is a need to develop more algorithms that can be deployed under this novel
privacy-preserving paradigm. In this paper, we present our federated generalized linear model (GLM)
for horizontally partitioned data. It allows generating models of different families (linear, Poisson,
logistic) without disclosing privacy-sensitive individual records. We describe its algorithm (which
can be implemented in the user’s platform of choice) and compare the obtained federated models
against their centralized counterpart, which were mathematically equivalent. We also validated
their execution time with increasing numbers of records and involved parties. We show that our
federated GLM is accurate enough to be used for the privacy-preserving analysis of horizontally
partitioned data in real-life scenarios. Further development of this type of algorithm has the potential
to make FL a much more common practice among researchers.

Keywords: federated learning; Personal Health Train; vantage6

1. Introduction
1.1. Federated Learning

In the past few years, there has been a surge in the amount of potential data available
for gathering [1]. Machine learning (ML) and artificial intelligence (AI) have leveraged
this and have allowed the development of numerous analytic tools across many different
industries, such as healthcare, banking, and manufacturing, among many others [2–5].

Due to the inherent complex nature of systems and processes, data are usually frag-
mented in silos across parties. For example, parties could have collected different data
features for the same group of individuals (i.e., vertically partitioned data). Alternatively,
parties could have gathered the same features but for a different group of individuals
(i.e., horizontally partitioned data) [6]—the latter being the focus of this work.

In the traditional way of working, data fragmentation is solved by pooling the data
from all parties into a single location. In other words, each party generates a copy of its
data. Then, these copies are brought together and centralized by a trusted party, which
then proceeds with analyzing the data and obtaining a global model. Unfortunately, this
centralized approach is undesirable due to several operational, organizational, and political
challenges. For example, once a copy of the data is created and is shared outside its point
of origin, is very hard to keep control of it. Sometimes, the costs of integrating huge
amounts of data scattered across different parties can make centralization infeasible [7].
More importantly, there are increasing privacy and security concerns and requirements that
make merging the data in a single point infeasible. Users are more and more concerned
that their private data are being used for commercial or political purposes without their
consent [8]. Moreover, regulatory bodies all around the world have started implementing
laws that regulate responsible data management and use, such as the California Consumer
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Privacy Act (CCPA, 2020) in California, USA and the General Data Protection Regulation
(GDPR, 2018) in Europe, among many others [9–11].

Federated learning (FL) has emerged as an alternative paradigm to overcome these
shortcomings [12]. In this approach, the process of generating the global model is dis-
tributed among the parties. Instead of sharing their data, the involved parties perform
computations on them, generating aggregated statistics (often encrypted) that are then
shared to generate the global model. This keeps the original data undisclosed and safe at
their original location, greatly reducing the risk of leaking privacy-sensitive information
while generating global models that are very close (if not practically identical) to their
centralized counterparts [13].

Several ML/AI algorithms have been implemented as their corresponding federated
counterparts for analyzing horizontally partitioned data [14], such as decision trees [15],
support vector machines [16], hierarchical training [17], gradient boosting decision
trees [18,19], logistic regression [20], Cox Proportional Hazard model [21], and neural
networks [22,23], among others. However, in spite of their versatility (Section 1.2), the
implementation of generalized linear models (GLMs) has received little attention.

1.2. Generalized Linear Models

The term generalized linear model (GLM) refers to a large class of models popularized
by McCullagh and Nelder [24]. In these models, the response variable yi is assumed to
follow an exponential family distribution with mean µi, which is assumed to be some (often
non-linear) function of xT

i β.
There are three components to any GLM. First, there is the random component, which

describes the probability distribution of the response variable y. We will consider only
cases in which the observations come from a distribution in the exponential family with
probability density function as given by Equation (1):

f (y, θ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
(1)

Here, θ is the canonical parameter (such that E(y) = µ = b′(θ) and Var(y) = a(φ)b′′(θ)).
It is straightforward to show that the canonical parameter for y ∼ N(µ, σ2) is θ = µ, and

the canonical parameter for y ∼ Bin(n, π) is θ = logit(π) = log
(

π
1−π

)
.

Secondly, there is a systematic component, which defines how the linear combination
of the explanatory variables x = (x1, x2, . . . , xk) define the linear predictor Equation (2),
where β must be estimated:

η = xT β (2)

Lastly, there is a link function g(·), which specifies the link between the random and
the systematic components (depending on how the mean function is expressed). The most
commonly used link function for a normal model is η = µ, while for a binomial model, it is
η = logit(π). Note that whenever η = g(µ) = θ, we say that the model has a canonical link.

1.2.1. Estimation of a Centralized GLM

In order to estimate a GLM, we need to calculate the maximum likelihood estimation
(MLE) for β. Using the canonical link η = θ, the log likelihood can be written as in
Equation (3):

l =
n

∑
i=1

log
(

f (yi, θi)
)
=

n

∑
i=1

yiθi − b(θi)

a(φ)
+ c(yi, φ) (3)

To find the MLE, we use Fisher’s scoring algorithm for which the generic (t + 1)-th
step can be calculated using Equation (4):
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β(t+1) = β(t) +
(
−E

[
l′′
(

β(t))])−1
l′(β(t)) (4)

where l′ and l′′ are the first and second derivative of the log-likelihood, which are given by
Equation (5) and Equation (6), respectively:

l′(β(t)) =
δl

δβ j
=

n

∑
i=1

δli
δθi

δθi
δµi

δµi
δηi

δηi
δβ j

=
n

∑
i=1

yi − µ

Var(yi)

(
δµi
δηi

)
xij (5)

E
[
l′′
(

β(t))] = E
(

δ2l
δβ jδβk

)
= −

n

∑
i=1

1
Var(yi)

(
δµi
δηi

)2

xijxik (6)

where xij and xik are the j-th and k-th element of the covariate vector for the i-th observation.
Using algebra and matrix notation, we can rewrite them as Equations (7) and (8):

δl
δβ

= XT A(y− µ) (7)

−E
(

δ2l
δβ jδβk

)
= XTWX (8)

where X = (x1, . . . , xK)
T , A = diag

[
Var(yi)

(
δηi
δµi

)]−1
and W = diag

[
Var(yi)

(
δηi
δµi

)2]−1
.

With this, the Fisher Scoring iteration of Equation (4) can be rewritten as Equation (9):

β(t+1) = β(t) +
(
XTWX

)−1XT A(y− µ) (9)

and considering that Xβ = η and A = W δη
δµ , we can rewrite it as Equation (10):

β(t+1) =
(
XTWX

)−1XTWz (10)

where z = η + δη
δµ (y−µ). This way, Fisher Scoring can be regarded as Iteratively Reweighted

Least Squares (IRWLS) carried out on a transformed version of the response variable. The
IRWLS algorithm can be described as in Algorithm 1, where g(·) is the link function,
∆g′ = δµ

δη is the derivative of the inverse-link function g′(·) with respect to the linear
predictor, and w = w1, . . . , wn are arbitrary weights assigned to the units (which equal to 1
by default).

In this paper, we present our federated implementation of a GLM for horizontally
partitioned data. The manuscript is organized as follows. Section 2 describes the algorithm
of the presented federated GLM in detail, how it was implemented, and its validation process
for both accuracy and execution time. These results are shown in Section 3, where they
are also discussed in detail. We also show examples where our federated GLM is being
used as well as discuss possible improvements for it. Section 4 closes the paper with our
overall conclusions.



Algorithms 2022, 15, 243 4 of 12

Algorithm 1 Fisher Scoring-based Centralized GLM

1: procedure

2: initialize β(0)

η = Xβ(0)

dev(0)

3: loop
4: compute µ = g′(η)

z = η + y−µ
∆g′

W = w ∆g′2

Var(µ)

5: update β(j) =
(
XTWX

)−1XTWz
η = Xβ(j)

6: compute dev(j)

7: if |dev(j) − dev(j−1)| < ε then
return β(j)

break loop
8: else

j = j + 1
9: end if

10: end loop

11: end procedure

2. Materials and Methods

We assume that all the involved parties have previously agreed on what variables will
be used as an input to the model as well as the variable to be predicted, and they have
consistently harmonized their data.

2.1. Setup

Our presented federated GLM algorithm is designed to run on a server–client ar-
chitecture [6], as shown in Figure 1. In this scenario, (1) the user sends a task (i.e., the
instruction to run a specific algorithm) to the server. When received, (2) the server manages
and synchronizes the execution of the algorithm across all nodes (i.e., parties). In short,
(3) each node accesses its own local data and executes the requested algorithm with the
given parameters. Afterwards, the node outputs a set of intermediate results (often in
the form of preliminary coefficients), which are sent back to the server. Then, using these,
(4) the server computes a first version of the global solution and sends it back to the nodes,
which use it to compute a new set of results. This process is repeated iteratively until (5) the
global solution converges or after a fixed number of iterations, yielding the final version of
the (federated) model.

2.2. Algorithm for a Federated GLM

Here, we describe the algorithm of a federated version of the GLM model. The main
idea behind it is that the components of Equation (10) can be (partially) computed at each
party k and put together afterwards without ever bringing the data together.

Let us consider M ≥ 2 parties (e.g., data registries, hospitals, banks, etc.) holding an
exclusive partition of the full dataset. Let us denote by nm the number of observations in the
m-th data source such that the total sample size of the study is given by n = n1 + · · ·+ nM.
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Figure 1. Required server–client architecture needed for executing the presented federated GLM
algorithm. Notice that the data never leave their corresponding party.

The first and the expected second derivatives of Equations (5) and (6) can be rewritten
as in Equations (11) and (12), respectively:

l′(β(t)) =
M

∑
m=1

nm

∑
i=1

yi − µ

Var(yi)

(
δµi
δηi

)
xij (11)

E
[
l′′
(

β(t))] = − M

∑
m=1

nm

∑
i=1

1
Var(yi)

(
δµi
δηi

)2

xijxik (12)

Therefore, using the matrix form, we can rewrite Equation (10) as Equation (13):

β(t+1) =

[
M

∑
m=1

(
XT
(m)W(m)X(m)

)]−1[ M

∑
m=1

(
XT
(m)W(m)z(m)

)]
(13)

where X(m) is the (nm × K)-matrix of covariates for party m, W(m) is the correspondent
K-dimensional diagonal matrix of weights, and zm is the nm-vector of adjusted dependent
variable of the m-partition.

The federated algorithm is described in Algorithm 2. Note that the proposed algorithm
is mathematically equivalent to the one used for centralized data (Section 1.2.1), but it does
not require the data to be pooled together.

The federated GLM was implemented in R v. 4.1.3 [25]. Its code as well as the code
used for its validation (Section 2.3) is publicly available in our GitHub repository (accessed
14 June 2022).

2.3. Validation

We validated two important aspects of our federated GLM: accuracy and execution
time. For both cases, we used artificial data generated using Python v. 3.8 [26]. The rest
of the validation was completed using R v. 4.1.3 [25] and was performed in a laptop
running Windows 10® (64 bit) with an Intel® Core i7 CPU running at 1.8 GHz and 32 GB
of RAM.

2.3.1. Accuracy

In order to demonstrate the accuracy of our federated GLM, we generated three
models, each from a different family (with its corresponding linking function) and with an
appropriate dataset. These are summarized as follows.

https://github.com/IKNL/vantage6-algorithms/tree/glm/models/glm


Algorithms 2022, 15, 243 6 of 12

Algorithm 2 Federated GLM

Initialization Server
1: initialize β(0)

Initialization Node m
2: initialize η(m) = X(m)β

(0)

3: initialize µ(m) = g′(η(m))

4: initialize dev(0)
(m)

= f (y(m)µ(m), w(m))

1: loop
Node m

2: compute z(m) = η(m) +
y(m)−µ(m)

∆g′
(m)

3: compute W(m) = w(m)

∆g′2
(m)

Var(µ(m))

4: compute and return to Server
(

XT
(m)W(m)X(m)

)
and

(
XT
(m)W(m)z(m)

)
Server

5: update β(t+1) =

[
∑M

m=1

(
XT
(m)W(m)X(m)

)]−1[
∑M

m=1

(
XT
(m)W(m)z(m)

)]
6: return to Nodes β(t+1)

Node m
7: compute η(m) = X(m)β

(t+1)

8: compute µ(m) = g′(η(m))

9: calculate dev(t+1)
(m)

= f (y(m)µ(m), w(m))

10: return to Server dev(t+1)
(m)

Server
11: compute dev(t+1) = ∑M

m=1 dev(t+1)
(m)

12: if |dev(t+1) − dev(t)| < ε then
return β(t+1)

break loop
13: else

t = t + 1
14: end if
15: end loop

Linear Regression

This model assumes a Gaussian distribution of the error and uses an identity link
function. Notice that this particular case corresponds to that of a general linear model (not
to be confused with a GLM; in other words, a general linear model is a specific case of a
GLM). The target variable y was generated according to Equation (14):

y = 0.25x1 + 0.5x2 + ζ (14)

where

x1 =∼ N (1, 1) (15)

x2 =∼ N (2, 1) (16)

ζ =∼ N (0, 1) (17)
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Poisson Regression

This model assumes a Poisson distribution of the error and uses a log link function.
The target variable y was generated according to Equation (18):

y = round(e0.25x1+0.5x2+ζ) (18)

where x1, x2, and ζ were defined the same way as in the previous model (Equation (15),
Equation (16) and Equation (17), respectively).

Logistic Regression

This model assumes a binomial distribution and uses a logit link function. In this case,
the data were generated using scikit-learn v. 1.0.2 [27]. They consisted of normally
distributed clusters of points (with a standard deviation of 1) around vertices of a 2D plane
(since we chose to use two features, x1 and x2) [28].

In all cases validating the federated GLM’s accuracy, the data comprised 3000 records,
which were randomly split into three simulated parties with 1000 records each. The
federated GLM was run using a mock server–client architecture. This was available
from our previously developed open-source priVAcy preserviNg federaTed leArninG
infrastructurE for Secure Insight Exchange—vantage6 [29]. In short, it recreated a server
and the nodes of all three parties locally (which is sufficient for verifying the mathematical
implementation of the algorithm), making the development and testing very practical. We
set the algorithm to stop its execution if it converged (i.e., if the difference between the
coefficients across iterations was smaller than 1× 10−8) or if it reached 50 iterations (the
latter condition was never reached; the algorithm converged in all the presented cases).

Afterwards, we compared the federated GLM output to their centralized counterpart,
which can be considered the gold standard. Here, the data were all put together as if they
were all available to a single party. Then, a (centralized) GLM was generated using R’s
glm function from the stats package [25]. Specifically, we compared the federated and
centralized models’ coefficients, standard errors, p-, and z-values. Tables were generated
using the package stargazer v. 5.2.3 [30].

2.3.2. Execution Time

We were also interested in validating how the federated GLM’s execution time esca-
lates under different circumstances. For this purpose, we ran numerous simulations. All of
them used the same mock server–client architecture and parameters described earlier.

First, we explored the impact of increasing the number of records while keeping the
number of parties constant. Using the same corresponding data for each family as before,
we simulated a total of 30, 300, . . ., 3,000,000 records in a three-party scenario (i.e., each
party had 10, 100, . . ., 1,000,000 records).

Afterwards, we explored the impact of increasing the number of parties while keeping
the number of records constant. Using the same setup as before, we simulated scenarios
with 2, 3, . . . , 10 parties with a total of 10,000 records. Records were distributed randomly
and practically evenly among parties (e.g., in a three-party scenario, two parties would
have 3333 records, while the remaining one would have 3334).

In both of these validations, in order to obtain a proper idea of the performance and to
account for the variability due to inherent randomness in the data generation process, each
case was simulated 100 times. We only measured the time (in seconds) from the beginning
to the end of the federated GLM execution. In other words, we discarded the time it took
to generate the data, since in a real-life situation, each party would already have their own
data at hand.

3. Results and Discussion

Table 1 shows a comparison between the results of the centralized and the federated
GLMs. We can see that in all cases, the output of both types of models is practically identical.
This demonstrates that our implementation of a federated GLM is capable of generating an
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equivalent model of that using a centralized approach but without the need of sharing any
data among the involved parties.

Table 1. Comparison of the centralized vs. federated GLMs

Family Parameter
Coefficients Std. Error p-Values z-Values

C F C F C F C F

Linear
(Intercept) 0.069 0.069 0.045 0.045 0.129 0.129 1.520 1.520
x1 0.221 0.221 0.017 0.017 0 0 12.763 12.763
x2 0.499 0.499 0.018 0.018 0 0 27.212 27.212

Poisson
(Intercept) 0.595 0.595 0.021 0.021 0 0 28.465 28.465
x1 0.269 0.269 0.007 0.007 0 0 37.220 37.220
x2 0.446 0.446 0.007 0.007 0 0 62.566 62.566

Logistic
(Intercept) 0.104 0.104 0.064 0.064 0.106 0.106 1.617 1.617
x1 2.593 2.593 0.093 0.093 0 0 27.802 27.802
x2 −0.054 −0.054 0.051 0.051 0.291 0.291 −1.055 −1.055

C: centralized; F: federated.

After this, we were confident that the results of our federated GLM were practi-
cally identical to those of its centralized counterpart. Thus, we proceeded to validate its
execution time.

Figure 2 shows the execution time as a function of the total number of records in a
fixed three-party scenario. For all three families, we can see that the execution time remains
relatively constant from 30 until 30,000 records. In this case, the execution time of the linear
model is ∼0.5 s, while for both logistic and Poisson families, it is ∼5 s. However, there
is a large increase after that, with the linear family having approximately a 10× increase
reaching ∼5 s and the logistic and Poisson families having approximately a 6× increase
reaching ∼30 s.

Figure 2. Execution time for the different families (linear, Poisson, logistic) of the GLM. In this case,
the number of parties was kept constant (at 3), while the total number of records went from 30 to
3,000,000 with increasing order of magnitude. Thus, the scale of the x-axis is logarithmic. Each
scenario was simulated 100 times. Data points represent the mean of the execution time, while error
bars represent ±1 standard deviation. The lines of each family were slightly shifted along the x-axis
to avoid overlap between them.

Figure 3 shows the execution time as a function of the number of parties while keeping
the total number of records constant (at 10,000). We can see that for all three families, there
is a constant increase in execution time as a function of the number of parties. This makes
sense, since a larger number of parties implies a larger number of communications between
them and the server for each iteration of the algorithm. The linear family still remains as
the fastest model by far, which is followed by the logistic and Poisson families.
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Figure 3. Execution time for the different families (linear, Poisson, logistic) of the GLM. In this case,
the number of records was kept constant (at 10,000), while the number of parties was 2, 3, . . . , 10.
Each scenario was simulated 100 times. Data points represent the mean of the execution time, while
error bars represent ±1 standard deviation. The lines of each family were slightly shifted along the
x-axis to avoid overlap between them.

We should mention that the execution times shown here are just indicative and can only
provide an idea of how the algorithm escalates with increasing numbers of records/parties.
However, these times will very likely be different when used in a real-life scenario due
to a variety of reasons. First of all, this study was performed using a mock server–client
architecture, which simulates a server and the nodes in a local environment. In this setup,
the server–node communication is very efficient, since there is practically no overhead
caused by network operations. In real life, said overhead is very likely to be larger due to
low internet connection speeds, varying network infrastructures, etc., yielding a slower
execution [31]. Moreover, the data used for the validation were generated artificially with
relatively simple relations between variables. Real-life data can be much more complex,
which can cause the algorithm to take a larger number of iterations to converge (with the
possibility of not converging at all).

There are several ways that the presented federated GLM algorithm can be used in
real-life analyses. If the parties have an FL infrastructure up and running, they could either
implement it from scratch according to their particular needs (based on the description
given on Section 2.2) or they could use our provided implementation. As mentioned
earlier, this was completed in R. However, it can be used in either R or Python through the
provided wrappers. If the parties do not have an FL infrastructure, the easiest way is to
use it as part of vantage6. An exhaustive description of the platform is given by Moncada-
Torres et al. [29] and Smits et al. [32], while its documentation can be found on its website
https://vantage6.ai/ (accessed 14 June 2022).

Our federated GLM is already being used in real-life analyses. For example, it has
been applied by Wenzel et al. as a logistic regression to identify women with early stage
cervical cancer at low risk of lymph node metastasis. This subpopulation of women
is very specific and the number of incidences tends to be quite low, making drawing
conclusions from a small patient cohort difficult. In said study, the authors have used
our federated GLM to generate a logistic regression that uses data from three different
parties (namely, cancer registries across three different European countries). This way,
they increased the number of patients for their analysis and generated a more powerful
model that supports identifying women with early stage cervical cancer with a low risk
of lymph node metastasis, allowing for a more conservative treatment [33,34]. In another
interesting use case, Hamersma used our federated GLM as a basis for performing stratified
propensity score matching [35] (which in turn reduced confounding bias by indication)
between breast cancer subpopulations of two international cancer registries. Afterwards,
the authors compared quality indicators between them—all of it without having to pool
data together [36]. Needless to say, these are only a couple of examples where our presented

https://vantage6.ai/
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federated GLM has been used. Its applications can go well beyond oncology or health care,
after all.

There are a few aspects of our federated GLM that could be improved. For example,
decreasing communication overhead is known to be a bottleneck for all FL applications [37].
Communication could be more efficient using parallelism in each training round [23]
or by actively managing parties’ contributions based on the status of their conditions
(e.g., network speeds, time required for local updates) [38]. Model update time could also
be decreased by transmitting only part of the updated local model by the parties [39].

4. Conclusions

In this paper, we presented our federated GLM, which allows generating models of
different families (linear, Poisson, logistic) in a privacy-preserving manner. The algorithm
can be implemented in the platform of choice of the user or it can be utilized out-of-the-box
using the provided implementation in our infrastructure for FL, vantage6. We validated
its performance by comparing it with its centralized counterpart, which can be considered
the gold standard. Given the mathematical equivalence of the two algorithms, our fed-
erated GLM reproduced outputs that are practically identical to those obtained when all
the data were pooled together. We also validated its execution time as a function of the
number of records and number of parties. Both validations demonstrated the usability of
our federated GLM for analyzing horizontally partitioned data without disclosing informa-
tion at a record level. Further development of this type of algorithm has the potential of
making privacy-preserving analyses methods, such as FL, a much more common practice
among researchers.
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