
����������
�������

Citation: Cao, J.; Li, B.; Fan, M.; Liu,

H. Inference Acceleration with

Adaptive Distributed DNN Partition

over Dynamic Video Stream.

Algorithms 2022, 15, 244.

https://doi.org/10.3390/a15070244

Academic Editor: Fabrizio Marozzo

Received: 6 June 2022

Accepted: 11 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Inference Acceleration with Adaptive Distributed DNN
Partition over Dynamic Video Stream
Jin Cao 1, Bo Li 1, Mengni Fan 2,* and Huiyu Liu 2

1 China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China; caojin@crfsdi.com (J.C.);
libo_02@crfsdi.com (B.L.)

2 School of Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China; liuhuiyu@mail.hust.edu.cn

* Correspondence: fmn@hust.edu.cn

Abstract: Deep neural network-based computer vision applications have exploded and are widely
used in intelligent services for IoT devices. Due to the computationally intensive nature of DNNs,
the deployment and execution of intelligent applications in smart scenarios face the challenge of
limited device resources. Existing job scheduling strategies are single-focused and have limited
support for large-scale end-device scenarios. In this paper, we present ADDP, an adaptive distributed
DNN partition method that supports video analysis on large-scale smart cameras. ADDP applies to
the commonly used DNN models for computer vision and contains a feature-map layer partition
module (FLP) supporting edge-to-end collaborative model partition and a feature-map size partition
(FSP) module supporting multidevice parallel inference. Based on the inference delay minimization
objective, FLP and FSP achieve a tradeoff between the arithmetic and communication resources of
different devices. We validate ADDP on heterogeneous devices and show that both the FLP module
and the FSP module outperform existing approaches and reduce single-frame response latency by
10–25% compared to the pure on-device processing.

Keywords: edge computing; deep learning; distributed AI computing; large-scale video analytics

1. Introduction

Deep neural network (DNN)-based applications are developing rapidly and are
widely used in intelligent services for IoT devices (e.g., video streaming auditing [1],
wearable devices in medical care [2,3]). However, DNN inference is computationally in-
tensive, e.g., VGG-16 requires 15.5 G MACs (multiply-add computations) to classify a
224 × 224 image [4]. However, due to production cost, mobility, and energy consumption
limitations, IoT devices have poor computational power to perform computationally in-
tensive tasks independently. To accomplish intelligent tasks on IoT devices, computing
tasks are usually offloaded to devices with powerful computing power. Cloud servers
are the main target for offloading computational tasks from IoT devices because of their
abundant computational resources. However, with the rapid growth in the number of end
devices, there is an explosion in the quantity of data to be processed that accompanies
it, with nearly 79.4 zettabytes (ZB) of data to be generated and consumed in 2025. The
approach of completely offloading computational tasks to the cloud imposes a strong
computational burden on the cloud. Furthermore, for real-time tasks, the long-distance
data transfer between end devices and cloud computing centers is vulnerable to network
communication conditions, and the QoS is unstable [5,6]. Moreover, uploading the data
completely to the cloud can cause privacy concerns for users and does not have a high
quality of user experience (QoE).

For the above-mentioned problems of cloud computing, edge computing can effec-
tively alleviate them. The edge server is closer to the device side than the cloud, with
more stable data transmission between the end, and the edge also has a large number of

Algorithms 2022, 15, 244. https://doi.org/10.3390/a15070244 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070244
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0206-4107
https://doi.org/10.3390/a15070244
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070244?type=check_update&version=1

Algorithms 2022, 15, 244 2 of 18

computing resources. Therefore, the edge can sink the cloud computing resources and use
edge servers to respond to the intelligent application task requests of IoT devices, which can
effectively alleviate the QoS-dependent network bandwidth problem of cloud computing
and reduce the response latency. Under edge computing, DNN model inference can be
performed in three ways: device inference, edge inference, and collaborative inference.
With the wide application of IoT, the number of end devices is overgrowing, and the
total number of installed IoT devices is expected to reach about 21 billion in 2025. As a
common phenomenon, how the edge provides stable services for multiple end devices is
an important research content.

In the multiended unilateral scenario common in smart cities, many cameras are
predeployed in the city to realize intelligent services such as smart transportation, smart
security check, and traveler location. The cameras are unevenly distributed in the city
and correlate with the density of human traffic. Based on these characteristics, we ana-
lyze the best way to provide intelligent services for smart city stations. Intelligent tasks
are computationally intensive, and end-to-end reasoning requires a large computational
overhead with a high time cost, which is not in line with the design concept of smart cities.
In addition, there are many devices in smart cities, and the edge servers are not sufficient
to complete real-time requests from each end device, which creates high-latency problems,
which is not in line with the design concept of smart cities. As a method that can effectively
utilize the computing resources of the devices and expand the total computing capacity
while guaranteeing the inference delay, edge–end collaboration is the best technical means
to process data in a smart city in real time. Specifically, the quantity of data collected by
devices distributed near dense crowds is greater than that collected by devices in other
locations, and the computing power of devices is fixed. The load of the balanced devices
can effectively accelerate the inference time of model pushing.

The quantity of data collected by smart city sensors is variable, and the computational
overhead per unit of data (a single frame) is stable, so the load balance of the devices can
be achieved by balancing the quantity of data or the calculation cost. That is, the DNN
computation tasks on each frame are divided according to the computational power of the
devices, and the data are assigned to each device based on the model division results.

Therefore, we propose a DNN collaborative inference framework as shown in Figure 1,
which can divide a single frame into multiple parts to achieve finer-grained data volume
balancing. Furthermore, we perform an intralayer division of the model, enabling the
partitioning of DNN computation tasks and parallel inference of the model, effectively
realizing accelerated inference of the model with device load balancing under the edge–end
collaboration. Compared with existing edge–end collaborative inference methods, we have
the following novel contributions:

• We propose a distributed DNN inference framework (ADDP), which can dynami-
cally and unevenly divide the computational tasks of DNN models according to the
end-device computational capacity and network communication conditions, achieve
parallel inference on multiple ends, and ensure the consistency of inference time across
IoT devices as much as possible, in order to maximize the inference acceleration for
DNNs and computational resource utilization for devices.

• We consider the continuous arrival of smart application data on the device and take the
total inference time of the task as the optimization target. Instead of optimizing only
the single DNN inference process, which is more in line with the actual application
scenario, we share the edge’s computation task with the end device’s computation,
effectively reducing the computation burden of the edge.

• We evaluate the ADDP to confirm its superiority by collaboratively reasoning for
widely adopted DNN models on multiple devices in a real network. ADDP reduces
single-frame response latency by 10–25% compared to the pure on-device processing.

The rest of the paper is organized as follows. Section 2 provides a summary of the
literature related to our work. Section 3 proposes a regression model for predicting the
computation time of DNN layers and models the problem of minimizing DNN inference

Algorithms 2022, 15, 244 3 of 18

latency. Section 4 describes the ADDP framework and the modules in it, and designs the
methods for solving the collaborative inference strategy of DNN models in the smart city.
Section 5 evaluates the effectiveness and convergence of the algorithm through experiments,
and simulation results and analysis are presented. Section 6 provides a full-text summary.

Frames From Devices Middle Feature Map Edge

…

Conv
Relu
Pool

FC

Identity...

...

...Device1

Device2

…

Conv
Relu
Pool

…

Conv
Relu
Pool

…

Conv
Relu
Pool

Device3

Figure 1. Schematic diagram of collaborative inference for video streaming tasks.

2. Related Works

Intelligent applications’ collaborative inference approaches can be divided into collab-
orative execution between devices or between devices and cloud/edge. In this section, we
briefly review the DNN model collaborative inference approach, summarize the shortcom-
ings, and then show the advantages of ADDP.

2.1. D2D Inference

DNN collaboration among devices is divided into interlayer cooperation and intralayer
collaboration. The devices in an interlayer cooperation must follow the original structure
of the DNN and calculate successively. AAIoT [7] divided the DNN model under a multi-
layer IoT architecture with hierarchical constraint relations to achieve model collaborative
inference for multiple devices. Hadidi et al. [8] proposed a partitioning algorithm that
simultaneously performs on the data and model. Zhou et al. [9] designed a fusion search
strategy based on dynamic planning, which adaptively performed layer fusion and thus
dynamically distributed the workload according to the heterogeneity of resources to mini-
mize the end-to-end inference latency. Based on the compatibility between the multilayer
structure of a DNN and mobile edge computing (MEC), He et al. [10] deployed the model
to multiple devices in a layered structure by optimizing the device resource occupancy and
realized the distributed inference of DNN. The data transmission delay, processing delay,
and queuing delay were integrated and optimized.

CoEdge [11] considered computational and communication resources and used layer
fusion combined with a workload dynamic adjustment mechanism to achieve load balanc-
ing on heterogeneous devices. Ren et al. [12] proposed a collaborative approach in order to
fully utilize 5G resources, which could perform fine-grained DNN elastic computational
partitioning, and deployed the model on multiple end devices, as well as on the cloud and
edge, to achieve collaborative inference, and finally developed a mobile Web AR application
to verify the effectiveness of the method. EdgeSP [13] designed a multiple-fused-layer-block
parallelization strategy to reduce the communication overhead between devices during
parallel inference, effectively reducing the average task inference delay, and improving
resource utilization by adding early exit branches. Jouhari et al. [14], in order to achieve
inference of complex DNN models by unmanned aerial vehicles (UAVs) while avoiding
air- and ground-generated additional communication delays, proposed a method for a
dynamic collaborative DNN model inference by UAV air-to-air communication, which
improved the real-time DNN inference while effectively utilizing the storage and computa-
tional resources of UAVs. DEFER [15] proposed a distributed edge inference framework
to partition the model and perform distributed inference on resource-constrained devices,
effectively reducing the device energy consumption.

Algorithms 2022, 15, 244 4 of 18

2.2. D2C Inference

The end-to-end collaborative cloud execution of DNNs for model inference is achieved
by offloading some of the DNN model computation tasks. Neurosurgeon [16] split DNNs
in a chain topology with layer granularity by weighing the communication time and
computation time based on the computation time required for different layers of the model
and the size of the data generated. DDNN [17] proposed a distributed deep neural network
that collaborated with end devices, edge devices, and central servers to achieve distributed
inference and designed early exit branches to avoid the need for servers to reason about
simple inputs, effectively improving the performance of the model on IoT devices with
limited resources. To minimize the computation, IONN [18] considered that servers did not
necessarily store models that needed to be offloaded and constructed the model offloading
process and inference process as a directed acyclic graph (DAG). IONN solved the optimal
offloading policy by solving the shortest path of the DAG while avoiding the unnecessary
model structure deployed on the server. This method of solving the optimal partition by
constructing a computational graph has received much research attention. JointDNN [19]
considered the problem of solving multiple cut points by constructing the graph with the
computation time of the layer as the node and the data transfer time was used as the edge,
with energy, latency, QoS, battery consumption, and cloud server blocking as constraints to
obtain the offloading strategy for multiple cut points of the DNN model, by solving the
shortest path from input to output. Edgent [20] adaptively sliced the DNN model based
on the available bandwidth between the edge server and the end device to offload more
computations to the edge server at a smaller cost of transmission delay, thus reducing both
data transmission latency and model computation latency. To avoid suboptimal solutions
due to prediction errors in the execution time of each layer of the model, ANS [21] learned
by observing the delay and used a contextual gambling machine to predict the optimal
cut point.

Dyno [22] raised the priority of key frames to provide differentiation for different
data in the learning process. D3 [23] proposed a dynamic DNN decomposition system
for synergistic inference without precision loss. A regression model was used to estimate
the processing time of DNN layers. The interlayer cut using HPA (heuristic method) was
used to achieve collaborative inference at the cloud edge, and the feature maps of the
convolutional layers were spatially split into blocks using a vertical separation module,
allowing the convolutional layers to execute in parallel at the edge nodes.

3. Preliminary

We aim to build a distributed DNN partition framework to accelerate the inference
process of dynamic video streams on resource-limited devices, where the way to create the
feature map and model cut allocation, memory footprint, and model computation overhead
are the key factors considered. Thus, we further investigated the following two aspects.

3.1. Hierarchical Prediction Model

The model ran on a single device, and the model inference time only included the
computation time of the model. When multiple devices are used for collaborative inference,
the time required for data transfer between devices also needs to be considered to achieve
collaborative inference, and a suitable model allocation strategy needs to be chosen to take
the time to get the model prediction results shorter. Therefore, the computation time of the
model needed to be modeled, while the output data volume was recorded to calculate the
transmission time.

As shown in Figure 2, the model inference time is mainly composed of three parts: end
computation time, communication time, and edge computation time. We set 22 candidate
cut points for ResNet18. The reasoning process on both sides of the cut point was performed
on the terminal device and the edge device, respectively, and the communication time
depended on the size of the feature map. Therefore, the model inference time varied with

Algorithms 2022, 15, 244 5 of 18

the location of the cut point. We tested and counted the results of different split point
selections on a Raspberry Pi and a laptop with Intel CPU chips.

co
nv
0_
1

ma
xp
oo
l

co
nv
1_
1

co
nv
1_
2

co
nv
1_
3

co
nv
1_
4

co
nv
2_
1

co
nv
2_
2

co
nv
2_
3

co
nv
2_
4

co
nv
2_
5

co
nv
2_
1

co
nv
2_
2

co
nv
2_
3

co
nv
2_
4

co
nv
2_
5

co
nv
2_
1

co
nv
2_
2

co
nv
2_
3

co
nv
2_
4

co
nv
2_
5

av
gp
oo
l fc

0

25

50

75

100

125

150

175

Ti
m
e
co

st
 (m

s)

Device
Upload

Edge
Top1 accurac

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Model hierarchical inference time.

3.1.1. Estimation on Inference Delay

In the process of collaborative device inference, the model partitioning configuration
relies on the accurate estimation of the model inference time. Methods exist to execute
DNN models online and determine the inference time; however, due to the dynamic nature
of idle computing resources, it is time-consuming and inaccurate to execute each layer and
count the inference time on end-devices and edge servers. To solve this problem, we used a
regression model that considered the allocatable computing power of devices with DNN
parameters to estimate the inference time of each layer of the DNN. The DNN parameters
included the data dimension and arithmetic type of each layer. According to Roofline [24],
the inference time of the DNN model mainly comes from floating-point operations (FLOPs)
and data access. The FLOPs are mainly present in the convolutional layer, fully connected
layer, normalization layer, etc. They are related to the input size, the number of neurons,
and step length. The data access process is prevalent in each layer of the DNN and is
related to the data size. The DRAM Traffic (DT) is the size of bytes required to access the
storage unit during the model computation, which reflects the model’s demand for storage
unit bandwidth. In access-intensive operators such as ReLU, Concat, etc., access traffic
significantly impacts the model inference time.

Specifically, we defined the theoretical computational peak of device Di as Fi and the
maximum memory bandwidth as MMBi. The height, width, and number of channels
of the input and output data were defined as Hin, Win, Cin, Hout, Wout, Cout, respectively.
For convolutional layers, the FLOPs are also related to the step size s and the size K.
For computationally intensive operators, the computation can be expressed uniformly as
FLOPs = Hout ·Wout · Cin · K2 · Cout. For the access-intensive operator, the computation is
negligible, and the DT can be expressed as

DT = α · Hin ·Win · Cin + β · Hout ·Wout · Cout + γ · Cin · Cout · K2. (1)

The values of α, β, and γ represent the number of times each operator needs to access
the input, output, and operator data (such as convolution kernel) during the calculation
process. The details are shown in Table 1.

We modeled the regression for the computation time of each layer in DNN with Fi,
MMBi, FLOPs, and DT as input parameters. The inference time can be expressed as

Tin f er = Func(Fi, MMBi, FLOPs, DT). (2)

Algorithms 2022, 15, 244 6 of 18

We tested the model inference latencies for all layers on the ResNet family of feature
extractors, including inputs of different lengths in the W dimension. Figure 3 shows that
the actual processing time of our proposed regression model is similar to the predicted
processing time.

Table 1. The operator data traffic reference.

- α β γ

Conv 1 1 1
FC 1 1 1

Norm 1 1 0
Pool 1 1 0

ReLU 1 1 0
Concat 2 1 0

EltWise Add 2 1 0

co
nv
0_
1

ma
xp
oo
l

lay
er0

lay
er1

lay
er2

lay
er3

av
gp
oo
l fc

10−2

10−1

100

101

La
te
nc
y
(s
)

REAL
PREDICT

Figure 3. Estimated and actual value of inference time for each layer of DNN.

3.1.2. Estimation on Communication

During collaborative device inference, the intermediate data cross-device transfer
time affects the device parallelism and thus the overall inference latency. The cross-device
transfer time is related to the data size and the network bandwidth Bi,j, which is monitored
by the analyzer on each device. The intermediate piece of data is the output feature
map from the model cut points, and the size of the feature map is jointly determined by
Hout, Wout, Cout. The transfer time can be calculated by the following equation.

Ttrans =
Lout ·Wout · Cout

Bi,j
(3)

3.2. Optimization Model

A total of m devices perform the same task with an inference model of n layers for
that task. The terminal device Di has a task Taski with task size Pi. The total inference
time Ttotal ∼ O(Tcomputation + Tcommunication) of the model for the collaborative completion
of Taski between devices without considering the tasks on other devices. Because the
inference process of the model is limited by the sequential structure of the layers, when
multiple devices perform the same layer in concert, the required input may be partially
present on other devices. Therefore, the device Dj needs to wait for the required input data
to be inferred or transferred to Dj when reasoning about the lth layer of the model.

Algorithms 2022, 15, 244 7 of 18

We aimed to build the inference latency of all tasks on multiple ends with respect to
the communication bandwidth, the layer where the cut point was located, and the quantity
of data to be processed by the device, and to minimize the total inference latency of the
DNN model through edge-end collaboration. Specifically, for a DNN model, the DNN logic
layers in the model were used as edges to construct the computational graph, assuming
a total of n layers in the model, and a unique identifier vl

k, where vk ∈ D ∪ E, was set for
the lth layer in the device vk according to the order of execution of the logic layers. Then,
according to the data dependencies between the DNN layers, the relation (vl

i , vl+1
j) was

defined as the edge el
i,j when the output of the device vi layer l was used as the input

of the device vj layer l + 1. All the logical layers of the DNN model v1
1, v2

1, . . . , vn
m and

the data association between the logical layers were used to construct a DAG G = (V , E)
as shown in Figure 4, where V = v1

1, v2
1, . . . , vn

m represents the vertices of the graph, and
E l ⊂ V l × V l+1 represents the data dependencies between adjacent DNN layers.

P … … fc

…

P … … fc

… F

𝐷"

𝐷#

𝐸%

𝑒",%% 𝑒",%" 𝑒",%(𝑒",%) 𝑒",%* 𝑒",%+ 𝑒",%, 𝑒",%-

𝑣"(𝑣"" 𝑣") 𝑣"* 𝑣"+ 𝑣",

𝑣#(𝑣#" 𝑣#) 𝑣#* 𝑣#+ 𝑣#,

𝑣#*

𝑣%" 𝑣%# 𝑣%) 𝑣%* 𝑣%+ 𝑣%, 𝑣%"%
𝑒%,%" 𝑒%,%# 𝑒%,%) 𝑒%,%* 𝑒%,%+ 𝑒%,%, 𝑒%,%"%

𝑒",#% 𝑒",#" 𝑒",#(𝑒",#) 𝑒",#* 𝑒",#	+ 𝑒",#, 𝑒",#-

𝑒#,"% 𝑒#,"" 𝑒#,"(𝑒#,") 𝑒#,"* 𝑒#,"	+ 𝑒#,", 𝑒#,"-

𝑒","0

𝑒#,#0

𝑒","0
1

𝑒#,#0
1

Figure 4. Cross -device DNN computation graph.

We used tvl
k to denote the inference time of the model on layer l on the end device vk

as the weights of all vertices in the DAG. For node pairs with data dependencies (vl
i , vl+1

j),

we used tel
i,j to denote the transmission time of data between devices as the weights of all

edges in the DAG. The weights of different edges varied greatly, and the data transfer on
the same device was achieved through memory access, which was much smaller than the
transfer time between devices and therefore negligible, with the constraint tel

i,i = 0. The
transfer time between end devices was smaller than the communication time from end
devices to edge servers with the constraint tel

i,k > tel
i,j, ∀vi, vj ∈ D, ∀vk ∈ E.

4. The Proposed ADDP Framework
4.1. Framework Overview

Figure 5 depicts the DNN collaborative inference acceleration using ADDP. Currently,
ADDP supports two major existing feature extraction networks, including the VGG and
ResNet families. In this section, the task and device situation in a smart city scenario is
described with the various modules of the framework and the data flow between them.
The specific model cutting algorithm is introduced in the next part of this section.

Algorithms 2022, 15, 244 8 of 18

Regression
Model

Model

Parameters

Structure

Weights

Resource Config

TaskGPU BW

CPU1 CPU2 CPU3 CPUn
…

Mem

Offline

Online

c
Decision Module

Infer Table

FSP

CPUcluster

C
FLP

Infer Table

FSP

FLP

Figure 5. ADDP framework.

Device topology and tasks. There are many devices and a high task complexity in a
smart city, which cannot be done in real-time by end inference. Although the computational
resources at the edge are richer than those at the end devices, completing the entire inference
process at the edge cannot satisfy the real-time response constraint of each task. Edge–end
collaboration, as a method that can effectively utilize the computing resources of devices
and expand the total computing capacity while guaranteeing the inference delay, is the best
technical means to process data in the smart city in real-time. We analyzed the best way to
provide intelligent services for smart city stations based on the high number of cameras
and uneven distribution of pedestrian density and devices. The distribution characteristics
of smart city devices and pedestrian flow cause differences in the quantity of data collected
by the devices. The quantity of data collected by devices distributed near dense crowds
is greater than that collected by devices in other locations, but the computing power of
the devices is fixed. Therefore, the best technical means to process data in a smart city in
real-time is to reason in parallel between devices and then collaborate with the edge. For a
smart city, 1-to-N technology can realize the carrier technology of this model’s reasoning
method. The devices are able to communicate with each other, the data volume can be
balanced, and the devices can be aggregated into one computing node from the physical
connection, and then the edge–end collaboration is carried out.

Resource config. We abstracted the resource information of the device and the network
condition into static offline and dynamic online configurations. Offline resource information
includes the CPU information of all end devices and measures the computational power
in the subsequent process without further change. Online updated resource information
includes the edge information, such as GPU arithmetic power, disk capacity, memory
size, the quantity of data collected on each device, and the bandwidth. Offline and online
resource information are both used as configuration information and input to the regression
model to predict the inference time of each layer of the DNN model.

Regression model. Based on the resource information of the device, we applied the
method of Section 3 to predict the computation time of each layer of the DNN model. We
also dynamically adjusted the prediction results according to the changes of online resource
information in resource config to ensure the optimal prediction of the decision module’s
results to the maximum extent. The regression model sends the generated infer table to the
master node and edges involved in the resource config.

DNN model. This part includes parameters, structure, and weights. Parameters
describe the type of operators used in the DNN model, the size of the operators, and the

Algorithms 2022, 15, 244 9 of 18

data dimension. Structure stores the DNN model computational graph and data flow.
Weights hold the parameters necessary for the model to be computed during the inference
process and are only loaded during the model inference process.

Decision module. The decision module determines the selection of the model split
points, which is the core part of the ADDP framework, including two main modules,
feature-map layer partition (FLP) and feature-map size partition (FSP). First, the edge
allocates resources to the task requests of each master node through FLP according to the
received infer table, which is expressed as the decision of the horizontal splitting point
of each model. The master node then inputs the infer table into the FSP and decides the
number of tasks each device should compute in the cluster based on the received horizontal
partitioning policy. The specific task cost is quantified by the size of the data that each
device should process. Finally, the input size table required for each device in a single data
inference is downlinked to all devices.

Distributed inference. The free computing resources of terminal devices and edge
servers are dynamic, and we applied the FLP computing model by a layer strategy after
converging network and resource characteristics. The quantity of data changes dynami-
cally, and the amount of computation per data unit is constant. Applying the feature map
partitioning strategy computed by FSP, we achieved the computational partitioning on the
end device by balancing the computation per unit of data. Each device divides the data
collected by the device according to the input size table issued by the master node. The seg-
mented input data are then transferred to the corresponding device. After a device finishes
inference, it uploads the inference results to the edge for subsequent model inference.

Application in Video Stream. Next, we explain how ADDP works on large-scale
video streams with an object detection application as an example. In a smart city, an AI
camera deployed with an object detection application captures a live video stream and
selects some frames for further detection. For data collection devices in the same region, the
FSP module develops a segmentation policy for each frame based on the device’s arithmetic
power and assigns the segmented patches to the corresponding devices in the region. FLP
is responsible for formulating the partitioning strategy of the feature extraction backbone
network in target detection, and the master node must choose a model partition point to
collaborate with the edge server. The edge server updates the model partition point by
gaming with the connected master node. After inference is completed, the object detection
results (i.e., object bounding boxes and class labels) are recorded into the video. It is worth
noting that to better apply to dynamic video streams, the AI camera and edge server rely
on the contextual relationship of the video stream. For example, when new objects or scene
changes appear in the video, key frames (containing important targets or events) may
appear in the video stream. The presence of key frames increases the density of camera
data acquisition, which affects the partitioning settings of data and target detection models.

4.2. The Horizontal Partition between the Devices Cluster and the Edge
4.2.1. DNN Model Cut-Point Setting

We used computationally intensive operators as feasible model cut points, such as
convolutional layers, pooling layers, etc., and the remaining as additional layers to the
closest computationally intensive layers. For example, the convolutional layer in a common
DNN was immediately followed by a ReLU, which we no longer regarded as a potential
division point, but it was executed on the same device along with the conv. In particular, for
models with a nonchain structure, such as ResNet18, the residual block structure internally,
which will be executed in order of model succession, can be converted into a practically
chained structure, at which point the selection of cut points can be unified.

4.2.2. Multidevice Single-Edge Cut-Point Solution

In a multidevice single-edge smart city scenario, the cut-point configuration chosen
by the master node of each terminal cluster affects the computing power allocation of the
edge server. In this case, it is not beneficial for the terminal device clusters to monopolize

Algorithms 2022, 15, 244 10 of 18

the server resources. Due to the arithmetic capacity of different device clusters, there
are differences in the quantity of data collected. Therefore, different device clusters have
various pursuits for DNN model cutting points. Game theory is a powerful tool for
designing distributed mechanisms that enable end devices to make decisions that satisfy
other terminals and servers in the face of the DNN model and achieve the shortest average
response time for all tasks. Game theory provides a practical framework to analyze the
interactions between multiple clusters of devices that act in their interest and to design
incentive-compatible mechanisms for remote execution of parts of the model so that no
endpoint has an incentive to deviate unilaterally.

Specifically, we modeled the model cut-point solution problem between camera sets
and edge servers in a smart city scenario where an AI camera 1-to-N technology was
deployed as a multiuser cut-point game. Based on this, a distributed cut-point updating
algorithm was proposed to achieve the Nash equilibrium of the game. In Algorithm 1, we
set the DNN model on device Di to execute all remotely, i.e., partition(0) = end. Each node
cluster then interacted with the server to obtain the latest resource allocation information
and made a cut-point update request, iteratively improving its own partitioning decision,
which had impacts on all devices and could reach the optimal global solution in a finite
number of times. The Di cut point partition(t) = i at moment t, and the three parts of DNN
model time overhead returned by the server were Ti

j , Ti
e, Ti

j,e. Based on the server inference

time delay Ti
e, partition(t) and the regression model, we could estimate the arithmetic

power Fe that can be allocated to Di by the time slot t server. Based on the computational
resources Fi of Di, the communication bandwidth Bi, the available server resources Fe, and
the model parameters, we found the optimal cut point partition(t + 1) that applied to this
case. Di sends an update request to the server. If the server allows it, Di adjusts the cut
point. Otherwise, the cut policy remains unchanged.

Algorithm 1 Distributed partition decision algorithm
initialization: each device cluster Di chooses the partition decision partition(0) = end
end initialization:
1: for each device cluster and each decision slot t in parallel do
2: Execute the first partitioni(t) layer of the DNN model
3: Receive the inference time Ti

e and data transmission time Ti
j,e

4: Estimate the computing power Fe that the edge server can allocate to Di
5: Compute the optimal updating partitioni(t + 1) = Func(Fi, Bi, Fe, c f g)
6: if ∆i(t, t + 1) 6= 0 then
7: Send RTU request to the s for contending for the partition update opportunity
8: if receive the permission from s then
9: Update the configuration of the device Di in the next time slot partitioni(t + 1)

10: else
11: Keep the original partition configuration partitioni(t + 1) = partitioni(t)
12: end if
13: else
14: Keep the original partition configuration partitioni(t + 1) = partitioni(t)
15: end if
16: end for

The server Si executes the computation tasks for all end-device offloads as a task queue
and returns the time from the start of the offload until the server gets the result {Ti

e, Ti
j,e}

for the corresponding task. For partition update requests from n end devices, only one is
granted at a time (one is randomly selected to return a permit), and after a finite number of
time slots, the system can reach a balanced state.

Algorithms 2022, 15, 244 11 of 18

4.3. Device Intracluster Feature Map Division

After determining the cut point between device clusters and edge servers, the model
inference tasks per unit of data need to be distributed within device clusters by end-device
computing power. We used a DNN vertical segmentation method divided by feature maps.

4.3.1. Overlap Area Calculation

In DNN architectures, multiple convolutional layers are usually stacked together as
the feature extraction part. In such DNNs, each data element of the feature map in the
intermediate layers depends on a local region in the input feature map. Therefore, we can
decompose the DNN computation task by partitioning the region of the input feature map.
In recently popular backbone networks such as Resnet, DNNs are usually divided into
blocks composed of multiple convolutional layers and connected by a skip-connection. Due
to the branching structure, the mapping relationship of regions connected across blocks in
Resnet is more complicated than that of traditional backbone networks.

Unlike the grid decomposition in Deepthings [25], this paper used a feature-map-
partitioning method in W dimensions, i.e., strip partitioning. The strip segmentation is easy
to scale and can reduce the overlapping area. The local area size is related to the receptive
field of each output data element, and the receptive field (RF) can be calculated by the
following equation

RFl+1 = RFl + (Kl+1 − 1) ·
l

∏
i=0

stridei · dilationl+1. (4)

The Kl+1 denotes the convolution kernel size of the (l + 1)th layer and RF0 = 1. After
calculating the receptive field, the mapping area of the output feature map region in the
input feature map can be calculated based on the receptive field. For any selected column
data Xout in the output feature map, its corresponding input column Xin can be written as:

Xin ,
l

∏
i=0

stridei · Xout ± b
RFl+1

2
c. (5)

When the cross-layer connections are deeper, the RF is more extensive, and there is
considerable overlap between the input regions required for each region of the output
feature map. There are two ways to cope with these overlaps. The first is to communicate
and fuse each layer to avoid overlaps. Unfortunately, this approach introduces a significant
communication overhead and can significantly reduce the parallelism of collaborative infer-
ence because of the waiting for each other. The second approach is to cut the data directly
based on the computed overlap region size, which introduces additional computational
overhead but improves parallelism. We adopted the second approach and propose an
improvement of the padding approach.

4.3.2. Tensor Padding Optimization

When the convolution kernel size is larger than one, the conv operator relies on
the padding of the output tensor. When there is an overlap between cross-layer region
mappings, we must design a reasonable padding strategy to maintain the model’s original
accuracy. Take the tensor x0

out in dimension W of the output feature map as an example, its
mapping region on the input feature map is {x0

in, x1
in, . . . , xn

in|n = ∏l
i=0 ·x0

out + b
RFl+1

2 c}. At
this point, the left region should be padding n columns.

We designed two types of padding implementation. The first one was layered padding,
in which the position and number of columns to be padded were judged at each layer, and
a tensor padding operation was performed. Since there was a logical judgment, layered
padding extended the computation time of each layer. The second type was input padding,
and the corresponding number of tensors were padded directly on the output feature map

Algorithms 2022, 15, 244 12 of 18

based on RF. Since the input size was increased, it also affected the model inference latency.
The comparison of the two padding methods is indicated in the subsequent experiments.

Due to the branching structure in the backbone network, the sensing field of the main
data stream was different from that of the skip-connection, so it was necessary to set differ-
ent padding sizes during the operation. In the face of such a branch structure, Equation (5)
was still applicable. Depending on the RF size, different padding configurations can be set
for various branches.

4.3.3. Data Segmentation

In order to improve the parallelism of all devices within a device cluster, it was
necessary to divide the computational tasks per unit of data according to the actual compu-
tational capacity of the devices. Different devices within the same cluster capture different
quantities of data, which can be seen as all devices jointly processing the captured video
frames by a model vertical partitioning technique based on feature map partitioning. For
example, in a device cluster with n devices, where device Di acquires Pi frames per unit
time, the device cluster can be regarded as acquiring ∑i Pi frames of data per unit time.
We only needed to divide each data frame assigned to these n devices according to the
actual computational speed of Di. Based on the regression model built in Section 3, we
could estimate the inference time of devices at each input data size to search for the parti-
tioning configuration that minimized the variance of inference time for all Di. However,
this search approach had a significant time overhead, prolonging the inference time delay.
DeepSlicing [26] demonstrated that the input data size on the slice dimension was roughly
proportional to the inference latency of multiple consecutive layers in a DNN. Therefore,
we directly sliced the input data on the W dimension based on the ratio of device arithmetic
power, achieving near-optimal device parallelism.

5. Performance Evaluation

In this section, we compare FLP and FSP in ADDP with the current model-cutting
methods to verify their performance.

5.1. Experiment Settings

We built a combined simulation and hardware testbed to validate the ADDP design
and evaluate its performance for video-streaming object detection applications. We used
four Cortex-A72-processor-equipped Raspberry Pi 4s with onboard cameras as end de-
vices. We connect the Raspberry Pi to a common switch without limiting the network
transmission speed to simulate the communication conditions between the end devices in
a real application scenario. The edge server was simulated using a laptop equipped with a
2.6 GHz Intel Core i7 chip.

In addition, limited by the hardware cost, we simulated the game process between one
server and dozens of AI cameras regarding the model-partitioning strategy by numerical
simulation. Three state-of-the-art DNN models that are often used as object detection
backbone networks, namely Vgg16, ResNet18, and ResNet50 were considered in the experi-
ments. We implemented the ADDP framework based on PyTorch and OpenCV, performed
partitioning strategies, and ran deep inference on these models. We evaluated the cutting
method by the inference time of feature extraction models commonly used in computer
vision applications. The layer completion time was the time from the start of DNN infer-
ence to the completion of that layer, and the completion time of the last layer was the total
completion time of that model.

Three model-level partitioning methods were chosen as the baseline of comparison
for FLP.

• Devices: all layers of the DNN model were executed on the terminal cluster, i.e., the
cut point was set to the maximum value of the corresponding model.

• Edge: DNN models of all access devices were executed on the edge server, i.e., the cut
point was set to 0.

Algorithms 2022, 15, 244 13 of 18

• ANS [21]: a built-in online learning module was used to search for the best cut
point based on a novel contextual slot machine algorithm to generate partitioning
decisions dynamically.

We selected three model vertical partitioning methods as the baseline for comparison
of FSP.

• MoDNN [27]: based on the characteristics of convolutional layers with computational
consumption and fully connected layers with storage consumption, a differential
intralayer partitioning approach was performed for different types of DNN layers, the
sliced feature map was assigned to multiple devices for collaborative computation, and
finally the output on each computational node was collected by the master node for the
next layer of inference; the process introduced a significant communication overhead.

• DeepThings [25]: end-to-end slicing of the chain structure of the model, using layer
fusion, divided the feature map process into multiple independent parallelizable
computational tasks, reducing the quantity of data that needed to be communicated,
and avoiding overlapping computation between adjacent task partitions by fusion
slicing (FTP) method and task assignment strategy.

• DeepSlicing [26]: for the shortage of MoDNN and Deepthings, the single feature map
was sliced according to bars to reduce the part of repeated computations, balanced
single-layer slicing and multilayer vertical slicing, and the number of compromises
was used to reduce the duplicated region of feature map and not to divide the parallel
computation tasks too much.

5.2. Results
5.2.1. End-to-End Inference Delay

Figure 6 shows the inference latency comparison of three horizontal segmentation
baseline algorithms with FLP on different DNN models. The input data were generated on
four access devices, the edge server used a GPU, and the transmission rate was fixed to
100 Mbps. It can be seen that the inference latency of Edge is higher than Devices because
Devices is a device cluster including four devices with specific arithmetic capacity. There
is also an additional time cost for clusters of devices to upload data to the edge servers.
ANS and FLP are able to make an effective trade-off between on-device processing and
edge offloading, thus achieving better results than Edge and Devices. FLP is based on
the ADDP framework and has parallel optimization for local device processing and a
reasonable cut-point selection, resulting in less transmission latency than ANS, which is
more prominent for the more complex DNN.

ResNet18 ResNet50 Vgg16
0

100

200

300

400

500

600

Ti
m
e
co
st
 (m

s)

Devices
Edge

ANS
FLP

Figure 6. End-to-end inference delay.

Algorithms 2022, 15, 244 14 of 18

5.2.2. Delayed Changes in the Gaming Process

In the FLP module, the initial cut point of the model was obtained based on a regression
model of the execution time of each layer of the model and the assumption of equal sharing
of edge server resources. However, this cut-point method had a higher inference delay than
the optimal cut point. Figure 7 shows the variation of the average inference delay during
the game based on the FLP module for all access devices. With dozens of access device
clusters, FLP used the game between master nodes to continuously adjust the model cut
points and reach the equilibrium state in a limited time. The equilibrium state horizontal
cutting strategy reduced the DNN model inference time overhead by about 6% compared
to the heuristic cutting method.

0 10 20 30 40
Game steps

88

90

92

94

96

Ti
m
e
co

st
 (m

s)

Game

Figure 7. Delayed variation of DNN inference during FLP gaming.

5.2.3. Comparison of Feature Map Segmentation Methods

The first half of the DNN model in the horizontal cut was executed distributively
inside the device cluster. Figure 8 shows the average inference latency of the three vertical
partitioning methods based on feature map partitioning for the different number of devices.
Overall, within a device cluster, FSP performs better compared to other feature map
partitioning methods. This is due to the strong adaptability of the FSP algorithm to
DNN networks with branching structure and optimization of the input feature maps.
MoDNN suffers from the effect of different devices waiting for each other and has the
lowest parallelism and, therefore, the highest average latency. The two-dimensional feature-
map-cutting method in DeepThings brings a larger overlapping region, and frequent
overlapping data synchronization leads to the poorer performance of DeepThings than
FSP. DeepSlicing has better memory and communication optimization, but the complex
collaborative approach brings an extra burden when facing multiple devices collecting data
simultaneously. Therefore, the additional cost increases as the number of workers increases.

5.2.4. Tensor Padding Time Cost

Figure 9 shows the cumulative time diagram on 10,000 input images at the edge server.
The straight-line slope in the figure represents the inference time delay of each image.

It can be seen that the slope of the layered padding is significantly higher than the input
padding, which is because the layered padding requires additional logic judgments between
each layer in the DNN computation graph. These CPU-frequency-intensive logic judgments
slow down the overall inference progress. Therefore, although the increase in feature map
from padding the input data affects the inference latency, it still outperforms the hierarchical
padding method.

Algorithms 2022, 15, 244 15 of 18

1 2 3 4
Number of worker

0

10

20

30

40

50

Av
g
la
te
nc

y
(m

)

MoDNN DeepThing DeepSlicing FSP

Figure 8. Latency of FSP vs. baseline algorithm on device clusters.

0 2000 4000 6000 8000 10,000
Number of frames

5

10

15

20

25

30

35

40

45

To
ta
l i
nf
er
 ti
m
e
(s
)

Padding Input
Padding Layer

Figure 9. Time difference between layer padding and input padding

5.2.5. ADDP on Video Streaming

We tested the execution results of the object detection task under the condition of an
unbalanced load of four intelligent cameras. The input video was captured by an onboard
camera using OpenCV, and the video frames were captured at 1280 × 720 pixels, filtered,
and converted to the size required by the DNN model: 224 × 224 × 3. We set up four
Raspberry Pis with different crowd densities for 10 minutes of traffic video and filtered
key frames by the interframe difference method to input into the target detection model.
Among them, the larger the difference between frames, the more it meant that the frames
could contain important objects or events. The video with a higher crowd density contained
more key frames and a higher device load. The video key frame sampling rate and FPS are
shown in the Table 2, in which all data come from the DNN inference statistics on the same
Raspberry Pi. The FPS of the low-load (i.e., low key frame sampling rate) device is up to
48.8, reaching about eight times that of the high-load device.

Algorithms 2022, 15, 244 16 of 18

Table 2. Execution statistics of 4 videos on Raspberry Pi.

- Sampling Rate FPS (ResNet18) FPS (ResNet50) FPS (Vgg16)

Video1 9.04% 48.81 32.86 10.77
Video2 23.18% 19.05 14.60 4.28
Video3 38.10% 11.58 8.27 2.79
Video4 69.87% 6.32 4.51 1.29

After applying ADDP, the frame processing rate of each camera was determined and
is shown in Figure 10; the FPS is the same for all devices, although the FPS of the low-load
devices decreases. This is because the FSP divides the computation required for each frame
after inputting it into the DNN model into four parts evenly, according to the device’s
arithmetic power, so the load on each Raspberry Pi is the same, and it can be seen that
the FSP module of ADDP ensures the consistency of inference time across IoT devices. In
addition to FPS, the DNN models on different load devices have wildly different response
times for key frames. We defined the key frame response time as the window size between
acquiring key frames and getting the target frame. When the device is under high load, the
pending frames are backed up into the input queue so that the key frame response time
increases significantly. When FSP is applied, the response latency of all devices remains
consistent and is lower than the result of a single device under minimum load. Each device
is evenly responsible for a portion of the key frame area. The key frame response latency is
further reduced to about 40% of the original one when FLP is combined with FSP because
the model-partitioning module FLP arranges only the first three layers of ResNet18 to be
executed on the four Raspberry Pi’s only, and the subsequent computations are executed in
the simulated edge server. The experimental results show that our proposed solution can
achieve consistency in inference time among the four devices with uneven load and reduce
the critical frame response latency from 24.89% to 62.41% of the original latency through
data division. Overall, ADDP reduces single-frame response latency to 10–25% compared
to the pure on-device processing. Although not tested on a larger scale with real devices,
the available experiments enable us to conclude that our proposed solution is applicable to
dynamically changing video streams.

(a) Comparison of FPS of video streams with different
loads on end devices.

(b) Comparison of response times of different loads
on end devices.

R
es

po
ns

e
la

te
nc

y
(m

s)

Figure 10. Video analysis acceleration comparison on ResNet18.

6. Conclusions

This paper proposed ADDP, an adaptive distributed DNN partition method that
supports video analysis on large-scale intelligent cameras. ADDP has the following main
characteristics and is suitable for large-scale equipment scenarios. The FLP module adopts
a distributed decision-making technology to support model partitioning between the large-
scale terminal equipment and edge servers. The FSP module supports multidevice data

Algorithms 2022, 15, 244 17 of 18

division, realizes the calculation division on the terminal device by balancing the calculation
amount of the unit data, and supports the scene where multiple smart sensors collect data
simultaneously. Experiments showed that ADDP was more efficient than the existing DNN
collaborative inference framework, reducing the inference delay to 10–25% of that of the
pure end-device processing on large-scale devices.

Author Contributions: Conceptualization, J.C.; Data curation, B.L.; Methodology, M.F.; Project
administration, J.C.; Supervision, B.L. and H.L.; Validation, M.F.; Writing—original draft, M.F.;
Writing—review & editing, H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maiano, L.; Amerini, I.; Ricciardi Celsi, L.; Anagnostopoulos, A. Identification of social-media platform of videos through the use

of shared features. J. Imaging 2021, 7, 140. [CrossRef] [PubMed]
2. Zhou, S.; Tan, B. Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Appl. Soft Comput. 2020, 86, 105778.

[CrossRef]
3. Cicceri, G.; De Vita, F.; Bruneo, D.; Merlino, G.; Puliafito, A. A deep learning approach for pressure ulcer prevention using

wearable computing. Hum.-Centric Comput. Inf. Sci. 2020, 10, 1–21. [CrossRef]
4. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge intelligence: Paving the last mile of artificial intelligence with edge

computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]
5. Ouyang, T.; Zhou, Z.; Chen, X. Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing.

IEEE J. Sel. Areas Commun. 2018, 36, 2333–2345. [CrossRef]
6. Cevallos Moreno, J.F.; Sattler, R.; Caulier Cisterna, R.P.; Ricciardi Celsi, L.; Sánchez Rodríguez, A.; Mecella, M. Online Service

Function Chain Deployment for Live-Streaming in Virtualized Content Delivery Networks: A Deep Reinforcement Learning
Approach. Future Internet 2021, 13, 278. [CrossRef]

7. Zhou, J.; Wang, Y.; Ota, K.; Dong, M. AAIoT: Accelerating artificial intelligence in IoT systems. IEEE Wirel. Commun. Lett. 2019,
8, 825–828. [CrossRef]

8. Hadidi, R.; Cao, J.; Woodward, M.; Ryoo, M.S.; Kim, H. Distributed perception by collaborative robots. IEEE Robot. Autom. Lett.
2018, 3, 3709–3716. [CrossRef]

9. Zhou, L.; Samavatian, M.H.; Bacha, A.; Majumdar, S.; Teodorescu, R. Adaptive parallel execution of deep neural networks on
heterogeneous edge devices. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, Arlington, Virginia, 7–9
November 2019; pp. 195–208.

10. He, W.; Guo, S.; Guo, S.; Qiu, X.; Qi, F. Joint DNN partition deployment and resource allocation for delay-sensitive deep learning
inference in IoT. IEEE Internet Things J. 2020, 7, 9241–9254. [CrossRef]

11. Zeng, L.; Chen, X.; Zhou, Z.; Yang, L.; Zhang, J. Coedge: Cooperative dnn inference with adaptive workload partitioning over
heterogeneous edge devices. IEEE/ACM Trans. Netw. 2020, 29, 595–608. [CrossRef]

12. Ren, P.; Qiao, X.; Huang, Y.; Liu, L.; Pu, C.; Dustdar, S. Fine-grained Elastic Partitioning for Distributed DNN towards Mobile
Web AR Services in the 5G Era. IEEE Trans. Serv. Comput. 2021. [CrossRef]

13. Gao, Z.; Sun, S.; Zhang, Y.; Mo, Z.; Zhao, C. EdgeSP: Scalable Multi-Device Parallel DNN Inference on Heterogeneous Edge
Clusters. In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing, Virtual, 3–5
December 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 317–333.

14. Jouhari, M.; Al-Ali, A.; Baccour, E.; Mohamed, A.; Erbad, A.; Guizani, M.; Hamdi, M. Distributed CNN Inference on Resource-
Constrained UAVs for Surveillance Systems: Design and Optimization. IEEE Internet Things J. 2021, 9, 1227–1242. [CrossRef]

15. Parthasarathy, A.; Krishnamachari, B. DEFER: Distributed Edge Inference for Deep Neural Networks. In Proceedings of the 2022
14th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 4–8 January 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 749–753.

16. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Comput. Archit. News 2017, 45, 615–629. [CrossRef]

17. Tu, C.H.; Sun, Q.; Cheng, M.H. On designing the adaptive computation framework of distributed deep learning models for
Internet-of-Things applications. J. Supercomput. 2021, 77, 13191–13223. [CrossRef]

http://doi.org/10.3390/jimaging7080140
http://www.ncbi.nlm.nih.gov/pubmed/34460776
http://dx.doi.org/10.1016/j.asoc.2019.105778
http://dx.doi.org/10.1186/s13673-020-0211-8
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/JSAC.2018.2869954
http://dx.doi.org/10.3390/fi13110278
http://dx.doi.org/10.1109/LWC.2019.2894703
http://dx.doi.org/10.1109/LRA.2018.2856261
http://dx.doi.org/10.1109/JIOT.2020.2981338
http://dx.doi.org/10.1109/TNET.2020.3042320
http://dx.doi.org/10.1109/TSC.2021.3098816
http://dx.doi.org/10.1109/JIOT.2021.3079164
http://dx.doi.org/10.1145/3093337.3037698
http://dx.doi.org/10.1007/s11227-021-03795-4

Algorithms 2022, 15, 244 18 of 18

18. Jeong, H.J.; Lee, H.J.; Shin, C.H.; Moon, S.M. IONN: Incremental offloading of neural network computations from mobile
devices to edge servers. In Proceedings of the ACM Symposium on Cloud Computing, Carlsbad, CA, USA, 11–13 October 2018;
pp. 401–411.

19. Eshratifar, A.E.; Abrishami, M.S.; Pedram, M. JointDNN: an efficient training and inference engine for intelligent mobile cloud
computing services. IEEE Trans. Mob. Comput. 2019, 20, 565–576. [CrossRef]

20. Li, E.; Zhou, Z.; Chen, X. Edge intelligence: On-demand deep learning model co-inference with device-edge synergy. In
Proceedings of the 2018 Workshop on Mobile Edge Communications, Budapest, Hungary, 20 August 2018; pp. 31–36.

21. Zhang, L.; Chen, L.; Xu, J. Autodidactic neurosurgeon: Collaborative deep inference for mobile edge intelligence via online
learning. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 3111–3123.

22. Almeida, M.; Laskaridis, S.; Venieris, S.I.; Leontiadis, I.; Lane, N.D. DynO: Dynamic Onloading of Deep Neural Networks from
Cloud to Device. ACM Trans. Embed. Comput. Syst. (TECS) 2021. [CrossRef]

23. Zhang, B.; Xiang, T.; Zhang, H.; Li, T.; Zhu, S.; Gu, J. Dynamic DNN Decomposition for Lossless Synergistic Inference.
In Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing Systems Workshops (ICDCSW),
Washington, DC, USA, 7–10 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 13–20.

24. Williams, S.; Waterman, A.; Patterson, D. Roofline: an insightful visual performance model for multicore architectures. Commun.
ACM 2009, 52, 65–76. [CrossRef]

25. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. Deepthings: Distributed adaptive deep learning inference on resource-constrained iot
edge clusters. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 2348–2359. [CrossRef]

26. Zhang, S.; Zhang, S.; Qian, Z.; Wu, J.; Jin, Y.; Lu, S. Deepslicing: Collaborative and adaptive cnn inference with low latency. IEEE
Trans. Parallel Distrib. Syst. 2021, 32, 2175–2187. [CrossRef]

27. Mao, J.; Chen, X.; Nixon, K.W.; Krieger, C.; Chen, Y. Modnn: Local distributed mobile computing system for deep neural network.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31
March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1396–1401.

http://dx.doi.org/10.1109/TMC.2019.2947893
http://dx.doi.org/10.1145/3510831
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.1109/TPDS.2021.3058532

	Introduction
	Related Works
	D2D Inference
	D2C Inference

	Preliminary
	Hierarchical Prediction Model
	Estimation on Inference Delay
	Estimation on Communication

	Optimization Model

	The Proposed ADDP Framework
	Framework Overview
	The Horizontal Partition between the Devices Cluster and the Edge
	DNN Model Cut-Point Setting
	Multidevice Single-Edge Cut-Point Solution

	Device Intracluster Feature Map Division
	Overlap Area Calculation
	Tensor Padding Optimization
	Data Segmentation

	Performance Evaluation
	Experiment Settings
	Results
	End-to-End Inference Delay
	Delayed Changes in the Gaming Process
	Comparison of Feature Map Segmentation Methods
	Tensor Padding Time Cost
	ADDP on Video Streaming

	Conclusions
	References

