
Citation: Mehta, H.; Passi, K. Social

Media Hate Speech Detection Using

Explainable Artificial Intelligence

(XAI). Algorithms 2022, 15, 291.

https://doi.org/10.3390/a15080291

Academic Editor: Ulrich Kerzel

Received: 29 June 2022

Accepted: 11 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Social Media Hate Speech Detection Using Explainable
Artificial Intelligence (XAI)
Harshkumar Mehta and Kalpdrum Passi *

School of Engineering and Computer Science, Laurentian University, Sudbury, ON P3E 2C6, Canada
* Correspondence: kpassi@laurentian.ca

Abstract: Explainable artificial intelligence (XAI) characteristics have flexible and multifaceted
potential in hate speech detection by deep learning models. Interpreting and explaining decisions
made by complex artificial intelligence (AI) models to understand the decision-making process of
these model were the aims of this research. As a part of this research study, two datasets were taken
to demonstrate hate speech detection using XAI. Data preprocessing was performed to clean data of
any inconsistencies, clean the text of the tweets, tokenize and lemmatize the text, etc. Categorical
variables were also simplified in order to generate a clean dataset for training purposes. Exploratory
data analysis was performed on the datasets to uncover various patterns and insights. Various
pre-existing models were applied to the Google Jigsaw dataset such as decision trees, k-nearest
neighbors, multinomial naïve Bayes, random forest, logistic regression, and long short-term memory
(LSTM), among which LSTM achieved an accuracy of 97.6%. Explainable methods such as LIME
(local interpretable model—agnostic explanations) were applied to the HateXplain dataset. Variants
of BERT (bidirectional encoder representations from transformers) model such as BERT + ANN
(artificial neural network) with an accuracy of 93.55% and BERT + MLP (multilayer perceptron) with
an accuracy of 93.67% were created to achieve a good performance in terms of explainability using
the ERASER (evaluating rationales and simple English reasoning) benchmark.

Keywords: explainable artificial intelligence; hate speech detection; offensive languages; LIME; BERT;
neural networks

1. Introduction

Artificial intelligence has invaded various fields in the present times. Be it science,
education, finance, or business, artificial intelligence has found its applications everywhere.
However, currently, AI is limited to only its subset “machine learning” and has not even
realized its full potential. Machine learning is the ability of computers to learn the relation-
ship between input and output without being explicitly programmed. Thus, in machine
learning, in contrast to traditional programming which requires writing algorithms, it
is required to find the algorithm that learns patterns from a given dataset and builds a
predictive model, on the basis of which the computer learns the patterns between input and
output. The machine learning model is now able to give predictions on new and unseen
data. However, these models do not provide an explanation as to how different features
contribute to the output. Thus, the functioning of artificial intelligence is traditionally like
a black box. This characteristic may not provide justifications in critical scenarios such as
diagnosis of life-threatening diseases and defense. If there is an explanation given along
with the output, combined with human reasoning, it may prove significantly useful. This
forms the basis of explainable artificial intelligence (XAI). XAI gives answers to many ques-
tions along with the output. It is an emerging area of research and has found applications
in varied fields.

Artificial intelligence is implemented as a “black box” that just gives the output after a
certain input but how it is achieved is not revealed. While it may not be necessary to get the

Algorithms 2022, 15, 291. https://doi.org/10.3390/a15080291 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15080291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7155-7901
https://doi.org/10.3390/a15080291
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15080291?type=check_update&version=1

Algorithms 2022, 15, 291 2 of 23

reason behind the output in several cases, in fields such as medical research, the knowledge
of answers to questions such as “how” and “why” becomes essential. If we do not know
answers to when the model fails or succeeds, how to detect errors and correct them, etc., it
may have serious implications. It may even raise questions on the efficacy of the model.

1.1. Need for Explainability

XAI is necessary if the users are to understand the AI results, trust the decisions of the
algorithms, and manage the results in an organized manner. Regulatory considerations
and ethical concerns are important to incorporate AI in day-to-day human transactions.
Explainable AI plays an important part in instilling trust in the AI regulators and business
partners for commercially beneficial and ethically viable decision making. Primarily, in
critical scenarios such as medical research, explainability may lead to better trust in the
model. If there is an explanation of the result and how the model generates insights,
this reasoning coupled with human knowledge and reasoning may significantly improve
results and provide effective applications. This can also help prevent errors in situations
in which there is no scope for them. Thus, explainable AI (or XAI) is a new dimension of
artificial intelligence where we can seek answers to “why” questions which is not possible
traditionally. XAI has varied applications in healthcare, law and order, defense, etc. As
mentioned, XAI is an emerging field of research.

1.2. Motivation

Artificial intelligence is implemented as a “black box” that just gives the output after a
certain input but how it is achieved is not revealed. Machine learning has seen applications
in various fields such as medical, research, business, education, industry, chatbots, recom-
mendation systems, and even self-driving cars. However, some machine learning models
may not be intuitive or transparent, which may be complex for people to understand. In
such cases, these models may lose their effectiveness. In the past few years, deep learning
models have also presented state-of-the-art results in many situations. However, deep
learning models are still not able to justify whether they are making the right decision
or not. XAI methods provide explanations that can be translated by humans without
having a depth of knowledge in deep learning models. XAI characteristics have flexible
and multifaceted potential in hate speech detection by the deep learning models. XAI,
thus, provides a strong interconnection between an individual moderator and hate speech
detection framework, which is a pivot for the research study in interactive machine learning.
As the model becomes complex with an increased number of parameters, iterations, and
optimization, it becomes even more difficult to validate the results by the model. The main
goal and the intended contribution in this paper are interpreting and explaining decisions
made by complex artificial intelligence (AI) models to understand their decision-making
process in hate speech detection. For this purpose, pre-existing models were applied on the
Google Jigsaw dataset to get the best prediction accuracy, and explainable methods such as
LIME (local interpretable model—agnostic explanations) were applied to the HateXplain
dataset. Variants of BERT (bidirectional encoder representations from transformers) model
such as BERT + ANN (artificial neural network) and BERT + MLP (multilayer perceptron)
were created to achieve a good performance in terms of explainability using the ERASER
(evaluating rationales and simple English reasoning) benchmark (DeYoung et al. (2019)).

1.3. Literature Review

There has been recent research on hate speech detection using traditional natural
language processing (NLP) techniques and using machine learning methods [1–3]. The
extraction of text-, user-, and network-based features and characteristics identifying bullies
has been successful [4]. Furthermore, abusive language detection including hate speech
keyword identification, sexism, bullying, trolling, and racism were studied in [1,5–7] using
deep learning techniques.

Algorithms 2022, 15, 291 3 of 23

In recent times, there has been an increased interest in the explanability of artificial
intelligence techniques including machine learning and deep learning methods to under-
stand the reasons for labeling text with hate speech or other social media and medical
applications. A novel explanation method based on LIME [3,8] for the explanation of pre-
dictions made by a classifier was proposed [9], and the best practices for the usage of these
interpretable machine learning models and their applications were also discussed [10–14].
Deep learning and active learning approaches were used for explanability in [8,15–17].

Explainable AI (XAI) has become very popular in recent times to unravel the secrets
of decision making by AI techniques. There have been novel definitions of explainable
machine learning and deep learning [18], with a categorization of XAI techniques and
methods based on factors such as their scope, methodology, algorithmic intuition, and
explanation capability [19]. XAI models available out there, such as LIME, layer-wise
relevance propagation, and DeepLIFT and how they are deployed were discussed in [20–23].
XAI has been applied in various applications such as the predictive maintenance (PdM)
scenario in manufacturing [24] and social science research [25].

Table 1 gives a comprehensive explanation with contributions, findings, and limita-
tions of these works.

Table 1. Summary of literature.

Ref. Contribution Key Findings Limitation(s)

[1]
Automated hate speech

detection and the problem of
offensive language

Logistic regression, naïve bayes,
decision trees, random forests, and

SVM are tested using 5-fold
cross-validation

The definition of hate speech in this
research is limited to language that
threatens or incites violence which

excludes a large proportion of hate speech.
Lexical methods used are inaccurate at

identifying hate speech, and only a small
percentage of tweets flagged by hate base

lexicon are considered hate speech.

[2]
Detection of offensive content
and identification of potential

offensive users

Lexical syntactical feature (LSF)
framework

Comparison of existing text-mining
methods in detecting offensive contents
with LSF framework in not detailed and

lacks scientific validation.

[3] A feature attribution method
for explainability

Necessity and sufficiency explained
in detailed in the context of

hate speech

The analysis is limited by limitation of the
existing dataset used which lacks variety of

demographic groups.

[4]
Detecting bullying and

aggressive behavior
on Twitter

Random forest classifier using WEKA
tool, 10-fold cross-validation

Results obtained with random forest
classifier are only presented with respect to

training time and performance due to
limited space.

[5]
A unified deep learning

architecture for
abuse detection

Deep learning architecture for
detection of abuse online

Network-related metadata are not
considered in the dataset due to time

limitations as it takes a significant amount
of computation to crawl Twitter data due to

Twitter API rate limits.

[6]
A unified approach to

explaining complex
ML models

SHAP (Shapley additive
explanations) framework for the

explanation of complex, ensemble
and deep learning models

SHAP model is not consistent with human
intuition in some cases, which can lead to

false positives or false negatives; a different
approach is not considered in such cases.

[7]
Explanation of RNN

predictions in
sentiment analysis

Propagation rule for growing
connections in recurrent neural
networks (RNN) architectures

Gradient-based sensitivity analysis used
with approach is not able to get accurate

relevance score when a sentiment is
decomposed into words.

[8]
Intuitive explainability along

with using various deep
learning techniques

LIME explanation with
individual examples

Some misclassification is observed in the
case of nontoxic comments.

Algorithms 2022, 15, 291 4 of 23

Table 1. Cont.

Ref. Contribution Key Findings Limitation(s)

[9] Explaining the predictions of
any classifier

LIME model to explain the
predictions of any classifier, SP-LIME

model for selecting representative
and nonredundant explanations

The method to perform the pick-up step for
images is not addressed in this research.

[10] Interpretable machine
learning models

Technical foundations of explainable
artificial intelligence, presentation of

practical XAI algorithms such as
occlusion, integrated gradients, and

LRP, importance, applications,
challenges and directions for

future work

The explanation revealed by model in this
research are difficult to interpret by human
observer due to limited accessibility of the
data representation. Deeper understanding

of relevance maps is not obtained by
the model.

[11]
Evaluation of interpretability

and explainability in
machine learning

Application-grounded,
human-grounded, and functionally

grounded approaches for evaluation
of interpretability, discussion of open

questions related to these
evaluation approaches

The research is focused only on the
taxonomy to define and evaluate

interpretability and not on methods to
extract explanations.

[12]

Framework for the
explanation of the results of

an artificial
intelligence system

Proposed framework named
“teaching explanations for decisions
(TED)” to provide explanations of an

AI system

The proposed TED framework assumes a
training dataset to be having explanation
and applies cartesian product using any

machine learning algorithm to train
classifier instead of using multitask setting.

[13] Explainability of deep neural
network models

Key directions for moving towards
transparency of machine learning

models, novel technological
development for explainability

This research does not focus on exact choice
of deep neural network for any particular

domain and instead is only focused on
generalized conceptual developments.

[14] Overview of interpretability
of machine learning models

Need for diverse metrics for targeted
explanations, suggestions for

explainability of deep
learning models

The study only focuses on abstract
overview of explainability without diving

deep into explanation metrics.

[15]
Enhancing interpretability of

tree-based machine
learning models

Method for computation of the game
theoretic Shapley values, local
explanation method, tools for

explainability using a combination of
local explanation methods

Only local explanations are presented that
focuses on single samples without
considering global explanations.

[16]
A unified framework for

machine learning
interpretability

An open-source package InterpretML
for glass-box and blackbox

explainability

Computational performance for models
across datasets is not consistent for

explainable boosting machine (EBM)
model discussed in this research.

[17] An active learning approach
for labeling text

Attention network visualization for
indirect and informal communication

The semantic embeddings and lexicon
expansion techniques discussed in the

paper lack detailed explanations.

[18]

Explainable artificial
intelligence (XAI):

categorization, contributions,
suggestions, and issues in

responsible AI

Overview of explainable artificial
intelligence, literature review and

taxonomy, implications, vision, and
future of XAI

Some functions are proprietary and are not
exposed to the public in this research.

Explainable AI methods give explanations
that are not aligned with what the original

method calculates.

[19]
Opportunities and challenges

in explainable
artificial intelligence (XAI)

Survey on seminal algorithms for
explainable deep neural network

algorithms, evaluation of XAI
methods and techniques

Human attention is not able to arrive at
XAI explanation maps for decision making.
Quantitative measures of completeness and

correctness of the explanation map are
not available

Algorithms 2022, 15, 291 5 of 23

Table 1. Cont.

Ref. Contribution Key Findings Limitation(s)

[20]

Evaluation of explainable
artificial intelligence models

for convolutional neural
networks (CNN) with

proxy tasks

Proposed two 2 proxy tasks, namely,
pattern task and Gaussian blot task,

which are then used to evaluate
LIME, layer-wise relevance

propagation, and Deep LIFT, and
results are discussed

The evaluation scheme discussed in the
research has issues with cross-model
evaluation and is less comprehensive.

[21] Discussion of various
explainable AI techniques

Need for XAI, key issues in XAI,
objectives and scope of XAI, survey

on various XAI techniques and
methodologies

The study focuses on XAI and its
importance but fails to discuss the

limitations of conventional AI and its
combination with XAI.

[22] Fuzzy systems for explainable
artificial intelligence

Need, timeline, applications, and
future work of fuzzy systems for XAI

The research fails to address how to arrive
at a solution to the problems that are not

measurable in the evolutionary fuzzy
systems (EFS) patterns.

[23]
A literature survey on
explainable artificial

intelligence (XAI) terminology

Background, terminology, objectives
of explainable artificial intelligence

(XAI), natural language
generation approach

The survey does not explain how to
evaluate natural language

generation (NLG).

[24]
Predictive maintenance case
study based on explainable
artificial intelligence (XAI)

A machine learning model based on a
highly efficient gradient boosting
decision tree is proposed for the

prediction of machine errors or any
tool failure.

Results of this research are presented using
a generic dataset and not a real data;

however, the presented concept shows
high maturity with promising results.

[25]
Insights from social sciences

related to explainable artificial
intelligence (XAI)

Why questions are diversified in
explainable AI, explanations are

biased and social

Adopting the work of this research into
explainable AI is not a straightforward

step, and the models discussed need to be
refined and extended to provide good

exploratory agent.

2. Materials and Methods

We used two datasets for hate speech detection using explainable artificial intelligence,
and these datasets are discussed in this section. Both datasets include text written in
English language. The Jigsaw dataset is used with some linear (e.g., decision trees) and
some complex models (e.g., LSTM) to visualize how they compare with each other on
a hate speech dataset. The Google Jigsaw dataset comprises user discussions from talk
pages of English Wikipedia, and various existing semi-interpretable linear models were
trained on it. The Jigsaw dataset does not have human annotations unlike the HateXplain
dataset; hence, it is not possible to evaluate the ERASER benchmark on it. The HateXplain
dataset contains posts from Twitter and Gab and is annotated, which makes it suitable for
evaluating the ERASER benchmark for explainability.

2.1. Google Jigsaw Dataset

The first dataset that we used is a dataset released by Google Jigsaw as part of a Kaggle
challenge. The dataset contains the following columns: comment, toxic, severe_toxic, ob-
scene, threat, insult, and identity_hate. The dataset comprises discussions from Wikipedia.
The labels in the dataset can be multinomial, i.e., a particular text can belong to two or
more classes. Table 2 shows the Google Jigsaw dataset details.

2.2. HateXplain Dataset

The second dataset used is the HateXplain dataset which contains posts from Twit-
ter and Gab. Combining these two sources, we obtained a dataset that contains over
20,000 data containing hateful, offensive, and normal text as labels.

Algorithms 2022, 15, 291 6 of 23

From Twitter, we randomly took 1% of tweets from the period between January 2019
to June 2020. From Gab, we took the dataset provided in [26]. Reposts of the tweets were
not considered, and the duplicates were removed. This ensured that the tweets contained
only textual data. However, emojis were kept as they contribute significantly to emotion
detection. Moreover, all usernames were removed, and a token <user> was inserted in
their place. Table 3 shows the HateXplain dataset details.

Table 2. Google Jigsaw dataset details.

Classification Frequency

Clean 201,081
Toxic 21,384

Obscene 12,140
Insult 11,304

Identity hate 2117
Severe toxic 1962

Threat 689

Table 3. HateXplain dataset details.

Twitter Gab Total

Hateful 708 5227 5935
Offensive 2328 3152 5480
Normal 5770 2044 7814

Undecided 249 670 919
Total 9055 11,093 20,148

2.3. Extracting the Dataset

The datasets taken were in the CSV (comma-separated values) format. A CSV file
stores tabular data in plain text separated by commas. Each line of a CSV file corresponds
to one row of the dataset, the first row of the file being the header row or the row that
contains the column or attribute names. The CSV format files were loaded into a data frame
using the Pandas library of Python. Pandas are used for data analysis and manipulation
and are extensively used for data science and machine learning use cases.

2.4. Data Preprocessing and Cleaning

Preprocessing of data is a crucial step that impacts a model’s performance. The data
obtained from Twitter or online sources are noisy and can have null or missing values,
images, audio, video, etc. Preprocessing ensures that the data are cleaned, free from noise,
and meaningful. However, we did not perform preprocessing on BERT-based models
as these are pretrained language representation models. Moreover, BERT uses every
information in a sentence including punctuation and stop words. For models not based
on BERT, we used Python’s various libraries and functions for data preprocessing and
cleaning for this research project.

A summary of the steps performed for preprocessing and cleaning of the dataset is
given below.

1. Rows with missing labels were dropped as they do not contribute to the learning process.
2. Using the natural language toolkit (NLTK) library, tokenization was performed, i.e.,

tokens of the sentences were created.
3. Stop words (if, then, the, and, etc.) were removed to keep only the text that would

contribute to the learning process.

Data cleaning is an essential step before training the model as it provides various
benefits. Data cleaning removes any incorrect or inconsistent information that improves
data quality. Figure 1 shows the common steps performed in data cleaning. It includes
the removal of unwanted observations followed by correcting any structural errors that

Algorithms 2022, 15, 291 7 of 23

the observations in the dataset might have. The notion of “structural error” indicates any
irregularities with the structure of the sentence such as typos in the name of features, the
same attribute with a different name, mislabeled classes, additional spaces, and newline
characters. The next steps are performed with an aim to manage unwanted outliers such
as additional spaces, which is followed by handling any missing data in the dataset. The
detailed steps performed for data cleaning are mentioned below [27].

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 25

data quality. Figure 1 shows the common steps performed in data cleaning. It includes the
removal of unwanted observations followed by correcting any structural errors that the
observations in the dataset might have. The notion of “structural error” indicates any ir-
regularities with the structure of the sentence such as typos in the name of features, the
same attribute with a different name, mislabeled classes, additional spaces, and newline
characters. The next steps are performed with an aim to manage unwanted outliers such
as additional spaces, which is followed by handling any missing data in the dataset. The
detailed steps performed for data cleaning are mentioned below [27].

Figure 1. Data cleaning

1. Firstly, a regular expressions module was imported to help with data cleaning tasks.
Regular expressions are sequences of characters that are used for matching with other
strings in search. Patterns and strings of characters can be searched using regular
expressions. Python has a “re” module that can help to find patterns and strings us-
ing regular expressions. Regular expressions can be used to remove or replace certain
characters as part of data cleaning and preprocessing.

2. Any newline characters or additional spaces were removed.
3. Any URLs were also removed as they do not contribute to the learning process.
4. Similarly, any other alphanumeric characters that included punctuation were re-

moved for the same reason, including the following strings: !"#$%&\'()*+,-
./:;<=>?@[\\]^_`{|}~.
Only uppercase and lowercase letters along with digits 0–9 were kept.

5. Stopwords such as “the”, “and”, “then”, and “if” were also removed as they are not
a part of the learning process. Python’s NLTK library has stopwords in about 16 dif-
ferent languages. We imported English stopwords to remove them from our dataset.
These words were removed as they do not add any additional information to the
learning process.

6. The outputs of these tasks were stored in a separate column, resulting in a column of
tokenized words.

2.5. Tokenization, Sentence Padding, and Lemmatization
Tokenization is the process in which sentences are divided into smaller parts that are

called tokens. These tokens serve as the basis for stemming and lemmatization and can
aid in finding various patterns in the text. The natural language toolkit (NLTK) library of
Python provides functions to perform word tokenization. Specifically, word tokenization
can be conducted to yield either characters or subwords. For example, the word “clearer”
can be either tokenized into “clear” and “er” or “c-l-e-a-r-e-r”. In this study, we performed
character tokenization that converts words into tokens as an array of integers, improving
the efficiency of the learning process. We created a tokenizer object from a pretrained

Figure 1. Data cleaning.

1. Firstly, a regular expressions module was imported to help with data cleaning tasks.
Regular expressions are sequences of characters that are used for matching with other
strings in search. Patterns and strings of characters can be searched using regular
expressions. Python has a “re” module that can help to find patterns and strings using
regular expressions. Regular expressions can be used to remove or replace certain
characters as part of data cleaning and preprocessing.

2. Any newline characters or additional spaces were removed.
3. Any URLs were also removed as they do not contribute to the learning process.
4. Similarly, any other alphanumeric characters that included punctuation were removed

for the same reason, including the following strings: !"#$%&\’()*+,-./:;<=>?@[\\]ˆ_‘{|}~.
Only uppercase and lowercase letters along with digits 0–9 were kept.

5. Stopwords such as “the”, “and”, “then”, and “if” were also removed as they are
not a part of the learning process. Python’s NLTK library has stopwords in about
16 different languages. We imported English stopwords to remove them from our
dataset. These words were removed as they do not add any additional information to
the learning process.

6. The outputs of these tasks were stored in a separate column, resulting in a column of
tokenized words.

2.5. Tokenization, Sentence Padding, and Lemmatization

Tokenization is the process in which sentences are divided into smaller parts that are
called tokens. These tokens serve as the basis for stemming and lemmatization and can
aid in finding various patterns in the text. The natural language toolkit (NLTK) library of
Python provides functions to perform word tokenization. Specifically, word tokenization
can be conducted to yield either characters or subwords. For example, the word “clearer”
can be either tokenized into “clear” and “er” or “c-l-e-a-r-e-r”. In this study, we performed
character tokenization that converts words into tokens as an array of integers, improving
the efficiency of the learning process. We created a tokenizer object from a pretrained model
that was imported and then fitted to the HateXplain dataset. This was achieved using the
keras and TensorFlow libraries.

Padding was performed so that all the inputs were of equal length. Neural networks
require all inputs to be of same length. Originally, the raw text had words and sentences of
different lengths. In exploratory data analysis, we observed that the maximum sentence

Algorithms 2022, 15, 291 8 of 23

length was mostly 200. Thus, we trimmed sentences with lengths greater than 200 and
padded the remaining sentences.

Using natural language processing (NLP), word normalization was performed through
lemmatization. In lemmatization, all words are reduced to their base/root forms. For
instance, (1) go, going, gone, and goes are reduced to go, (2) read, reading, and reads are
reduced to read, and (3) hated, hating, and hates are reduced to hate.

2.6. Simplification of Categorical Values

The original dataset had seven columns: “unnamed”, “count”, “hate_speech”, “of-
fensive language”, “neither”, and “tweet”. To simplify the dataset for an efficient training
and learning process, only three columns were kept: text, category, and label. The “tweet”
column was converted to a “text” column. The label was derived from the class column
in the original dataset, and the category label had values of 0, 1, and 2 encoded from the
columns (hate_speech, offensive language, and neither) in the existing dataset. In this
column, 0 represents hate_speech, 1 represents offensive_language, and 2 represents neither.
Thus, the new and final dataset for the training and learning process had three columns:
text, category, and label.

2.7. Exploratory Data Analysis (EDA)

EDA is the process of investigating data and drawing out patterns and insights [28].
EDA helps one understand the data better. It helps in understanding the various attributes
in the dataset and how the various attributes contribute to the target variable, identifying
anomalies. EDA also reveals any inconsistent or incomplete data. EDA serves as the
basis of the data cleaning and preprocessing step. EDA helps with matching assumptions
and intuitions with reality. Thus, EDA is a crucial step to intelligently proceed with the
subsequent steps in the entire process of machine learning. Figure 2 captures the essence of
exploratory data analysis.

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 25

model that was imported and then fitted to the HateXplain dataset. This was achieved
using the keras and TensorFlow libraries.

Padding was performed so that all the inputs were of equal length. Neural networks
require all inputs to be of same length. Originally, the raw text had words and sentences
of different lengths. In exploratory data analysis, we observed that the maximum sentence
length was mostly 200. Thus, we trimmed sentences with lengths greater than 200 and
padded the remaining sentences.

Using natural language processing (NLP), word normalization was performed
through lemmatization. In lemmatization, all words are reduced to their base/root forms.
For instance, (1) go, going, gone, and goes are reduced to go, (2) read, reading, and reads
are reduced to read, and (3) hated, hating, and hates are reduced to hate.

2.6. Simplification of Categorical Values
The original dataset had seven columns: “unnamed”, “count”, “hate_speech”, “of-

fensive language”, “neither”, and “tweet”. To simplify the dataset for an efficient training
and learning process, only three columns were kept: text, category, and label. The “tweet”
column was converted to a “text” column. The label was derived from the class column
in the original dataset, and the category label had values of 0, 1, and 2 encoded from the
columns (hate_speech, offensive language, and neither) in the existing dataset. In this col-
umn, 0 represents hate_speech, 1 represents offensive_language, and 2 represents neither.
Thus, the new and final dataset for the training and learning process had three columns:
text, category, and label.

2.7. Exploratory Data Analysis (EDA)
EDA is the process of investigating data and drawing out patterns and insights [28].

EDA helps one understand the data better. It helps in understanding the various attributes
in the dataset and how the various attributes contribute to the target variable, identifying
anomalies. EDA also reveals any inconsistent or incomplete data. EDA serves as the basis
of the data cleaning and preprocessing step. EDA helps with matching assumptions and
intuitions with reality. Thus, EDA is a crucial step to intelligently proceed with the subse-
quent steps in the entire process of machine learning. Figure 2 captures the essence of
exploratory data analysis.

Figure 2. Exploratory data analysis.

2.8. Feature Extraction Methods
After the data are cleaned and preprocessed, they should be converted into a form

that the model can understand. For this, all variables must be converted into numerical

Figure 2. Exploratory data analysis.

2.8. Feature Extraction Methods

After the data are cleaned and preprocessed, they should be converted into a form
that the model can understand. For this, all variables must be converted into numerical
form. This process is called feature extraction or vectorization. This process also contributes
to dimensionality reduction and, hence, helps with feature extraction, to keep only the
features that improve the accuracy of the model. Feature extraction can be performed
using methods. The importance of the words occurring in the dataset can be gauged, and
redundant data can be removed. New features can also be formed from existing ones.
Through such methods, features that matter and new features can be generated to form a

Algorithms 2022, 15, 291 9 of 23

better version of the original dataset. We used Count Vectorizer in this research, which is
used for converting text into a vector [29]. The TF-IDF (term frequency-inverse document
frequency) statistic examines the relevance of a word to a document in a collection of
documents. This is accomplished by multiplying two metrics: the number of times a word
appears in a document and the word’s inverse document frequency over a collection of
documents. It has a variety of applications, including automatic text analysis and scoring
words in machine learning techniques for natural language processing (NLP).

2.9. Classification Methods and Explainable Techniques

Different classifiers were used to predict hate speech on the Google Jigsaw data set,
namely, artificial neural network (ANN) [29], multilayer perceptron (MLP) [30], decision
trees, KNN, random forest, multinomial naïve Bayes, logistic regression, and long short-
term memory (LSTM). Explainability was described on the HateXplain Dataset using BERT
and LIME. We briefly discuss LSTM, BERT, and LIME in this section.

2.9.1. Deep Learning Model—Long Short-Term Memory (LSTM)

LSTM is an artificial recurrent neural network (RNN) architecture used in the field
of deep learning. Unlike standard feedforward neural networks, LSTM has feedback
connections. It can process not only single data points, but also entire sequences of data.

The input layer of LSTM was designed with 30,000× 128 size (or 3,840,000 parameters)
in order to incorporate the whole dataset comments as shown in Table 4. After lemmatizing,
tokenizing, and removing stop words and punctuation marks, the top 30,000 words were
taken for processing. Alphabets and numbers can be represented uniquely using 7 bit ASCII
code, with 27 = 128. This layer inputs the tokenized words and fetches 3,840,000 entities
from it.

Table 4. LSTM model on the Google Jigsaw dataset.

Layer Type Output Shape # of Parameters

Embedding (None, none, 128) 3,840,000

LSTM 1 (None, none, 128) 131,584

LSTM 2 (None, 128) 131,584

Dense (None, 6) 774

The function of dropout layers is to reduce the number of entities read, as well as
to increase the number of features to be extracted from the input. The standard rate of
dropout in LSTM is 0.2 (learning rate). The number of parameters (131,584) shows that,
after the recurrence layers, the number of entities was reduced from 3,840,000 to 131,584.
The dense layer outputs 774 units (roughly equal to 128 × 6) in order to tell which input
word belongs to which class.

The data were divided into a 70–30 split. where 70% of the data were utilized for
training and 30% were utilized for testing purposes. After that the model defined above
was compiled with the loss function as binary cross-entropy and the Adam optimizer. Then,
the model was fit on the training data with a batch size of 128.

The accuracy obtained by the LSTM model was 97.6%, the precision was 0.85, the
recall was 0.83, the macro F1-score was 0.84, and the specificity was 0.82.

2.9.2. BERT (Bidirectional Encoder Representation from Transformers)

The BERT model is a relatively new language model that was presented in a paper by
Google in 2018 [31]. This model has presented state-of-the-art results in natural language
processing. The key feature of BERT is the bidirectionality of the model. The BERT model
makes use of the encoder component of the transformer to furnish the representation of
words. BERT is used for the creation of language representation models that can serve
various purposes.

Algorithms 2022, 15, 291 10 of 23

BERT has a base layer of “knowledge” that is derived from its pretraining. From this
base layer of “knowledge”, BERT can further be trained to adapt to specifications provided.
BERT’s transformer processes any given word with respect to the word’s relation to all
other words in that particular sentence. This enables BERT to understand the context of
the word after looking at all surrounding words, unlike other models that understand the
meaning of a word in one dimension only. There is another BERT variant that was trained
on specifically hate speech detection task called AngryBERT [32]. AngryBERT jointly learns
hate speech detection with emotion classification. It can outperform standard BERT in some
hate speech tasks. However, the objective of this research was to detect hate speech along
with explainable AI to evaluate how explainable the current high-performing black-box
algorithms can be. Therefore, standard BERT was applied rather than AngryBERT so as to
not only learn the hate speech pattern using the standard BERT variant but also consider
the cases where correctly identifying hate speech is difficult for machines (e.g., sarcasm),
enabling the recipient of the explanations to make better decisions.

BERT uses the following two semi-supervised models for pretraining [33]:

1. Masked language model (MLM): In this task, BERT learns a featured representation
for each of the words present in the vocabulary. About 85% of the words are used
for training, and the remainder are used for evaluation. The selection of the training
and evaluation sets is random and in iterations. Through this process, the model
learns featured representation in a bidirectional way i.e., learns both the left and the
right contexts of the words. In this task, some of the tokens from each sequence are
replaced with the token [Mask]. The model is trained to predict these tokens using
other tokens from sequence.

2. Next sentence prediction (NSP): In this task, BERT learns the relationship between
two different sentences. This task contributes to aspects such as question answering.
The model is trained to predict the next sentence. It is similar to the textual entailment
task where there are two sentences; it is a binary classification task to predict whether
the second sentence succeeds the first sentence.

2.9.3. Local Interpretable Model—Agnostic Explanations (LIME)

LIME is an acronym for local interpretable model—agnostic explanations. Each portion
of the name represents something we want to be able to explain. Local fidelity refers to the
need for the explanation to accurately reflect the classifier’s behavior “around” the instance
being predicted. This explanation is pointless unless it is interpretable, i.e., if it can be
understood by a person. LIME is an agnostic model as it is capable of giving explanations
for the predictions of a supervised learning model. LIME can be used with all types of
data, be it text, images, or videos. LIME provides local interpretable explanations by
computing important features and attributes for a given data point. It works by providing
weights to the data rows and, using feature selection techniques, it obtains the important
features. LIME is especially successful in explainable artificial intelligence (XAI). It can
also be applied to all types of data and in all domains. LIME is a concrete implementation
of local surrogate models. Surrogate models are trained to approximate the prediction
of underlying black box model. Methods such as SHAP (Shapley additive explanations),
counterfactual explanations, and other language interpretability tools can be used to explain
black-box models. However, the reason for using LIME is that it uses Lasso or short trees,
which results in explanations being selective and concise, thus representing more human-
friendly explanations. In social media arbitration, the recipient of explanations is often a
layman or someone with very little time. Figure 3 shows an example of explanation by
LIME [34].

First and foremost, we provide a discussion on interpretability. Some classifiers employ
representations that are completely unfamiliar to consumers (e.g., word embeddings). LIME
describes those classifiers in terms of interpretable representations (words), even if that is
not the representation actually used by the classifier. Furthermore, LIME considers human
constraints, such as the length of explanations.

Algorithms 2022, 15, 291 11 of 23

Algorithms 2022, 15, x FOR PEER REVIEW 12 of 25

more human-friendly explanations. In social media arbitration, the recipient of explana-
tions is often a layman or someone with very little time. Figure 3 shows an example of
explanation by LIME [34].

Figure 3. LIME.

First and foremost, we provide a discussion on interpretability. Some classifiers em-
ploy representations that are completely unfamiliar to consumers (e.g., word embed-
dings). LIME describes those classifiers in terms of interpretable representations (words),
even if that is not the representation actually used by the classifier. Furthermore, LIME
considers human constraints, such as the length of explanations.

Model agnosticism refers to LIME’s ability to provide justification for any form of
supervised learning model prediction. This method can be used with any type of data,
including images, text, and video. LIME can handle any supervised learning model and
provide reasoning in this way. LIME generates local optimal explanations by computing
essential features in the immediate neighborhood of the instance to be explained. LIME
cannot peek inside the model in order to be model agnostic. We disrupt the interpretable
input around its neighborhood to check how the model’s predictions respond in order to
figure out the sections contributing to the prediction. The perturbed data points are then
weighted according on their proximity to the original example, and an interpretable
model is learned on the basis of those and the related predictions. It generates 5000 sam-
ples of the feature vector by default, all of which follow normal distributions. It discovers
the target variables for samples whose decisions are explained by LIME after producing
normally distributed samples. It allocates weights to each of the rows according to how
close they are to the original samples after getting the locally created dataset and their
predictions. Then, it extracts relevant features using a feature selection technique such as
Lasso or PCA (principal component analysis). In the field of XAI, LIME has found great
success and support, and it has been used for text, image, and tabular data. By tweaking
the inputs, LIME observes the changes that happen in predictions. LIME generates a new
dataset using inputs with variations and their corresponding predictions generated
through a black-box model. On this dataset, LIME trains an explainable model with
weights generated through the proximity of the instances generated. The model that is
trained achieves a good local approximation, giving rise to the name local interpretable
explanations. The explainable model trained for an instance minimizes loss and measures
the proximity of the explanation to the prediction while keeping the model complexity
low. LIME optimizes the loss part, and the user specifies the complexity of the model.
LIME is applicable and expandable to all key machine learning fields, which is a notewor-
thy feature. Embeddings and vectorization of a given word or sentence can be considered
a basic unit for sampling in the domain of text processing. In the case of an image, seg-
mented chunks of the image are used as input samples.

3. Results
3.1. Model Training and Evaluation for Google Jigsaw Dataset

The results of all the models on the Google Jigsaw dataset, evaluated in terms of their
accuracy, precision, and macro F1-score, are shown in Figure 4. Table 5 gives the scores of

Figure 3. LIME.

Model agnosticism refers to LIME’s ability to provide justification for any form of
supervised learning model prediction. This method can be used with any type of data,
including images, text, and video. LIME can handle any supervised learning model and
provide reasoning in this way. LIME generates local optimal explanations by computing
essential features in the immediate neighborhood of the instance to be explained. LIME
cannot peek inside the model in order to be model agnostic. We disrupt the interpretable
input around its neighborhood to check how the model’s predictions respond in order to
figure out the sections contributing to the prediction. The perturbed data points are then
weighted according on their proximity to the original example, and an interpretable model
is learned on the basis of those and the related predictions. It generates 5000 samples of the
feature vector by default, all of which follow normal distributions. It discovers the target
variables for samples whose decisions are explained by LIME after producing normally
distributed samples. It allocates weights to each of the rows according to how close they
are to the original samples after getting the locally created dataset and their predictions.
Then, it extracts relevant features using a feature selection technique such as Lasso or PCA
(principal component analysis). In the field of XAI, LIME has found great success and
support, and it has been used for text, image, and tabular data. By tweaking the inputs,
LIME observes the changes that happen in predictions. LIME generates a new dataset using
inputs with variations and their corresponding predictions generated through a black-box
model. On this dataset, LIME trains an explainable model with weights generated through
the proximity of the instances generated. The model that is trained achieves a good local
approximation, giving rise to the name local interpretable explanations. The explainable
model trained for an instance minimizes loss and measures the proximity of the explanation
to the prediction while keeping the model complexity low. LIME optimizes the loss part,
and the user specifies the complexity of the model. LIME is applicable and expandable to all
key machine learning fields, which is a noteworthy feature. Embeddings and vectorization
of a given word or sentence can be considered a basic unit for sampling in the domain
of text processing. In the case of an image, segmented chunks of the image are used as
input samples.

3. Results
3.1. Model Training and Evaluation for Google Jigsaw Dataset

The results of all the models on the Google Jigsaw dataset, evaluated in terms of their
accuracy, precision, and macro F1-score, are shown in Figure 4. Table 5 gives the scores of
the evaluation metrics. It can be observed that LSTM was the best-performing model with
an accuracy of 97.6%, closely followed by multinomial naïve Bayes with an accuracy of
96% and logistic regression with an accuracy of 97%. Random forest showed the highest
precision of 90%, followed by the KNN classifier with a precision of 88%.

Algorithms 2022, 15, 291 12 of 23

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 25

the evaluation metrics. It can be observed that LSTM was the best-performing model with
an accuracy of 97.6%, closely followed by multinomial naïve Bayes with an accuracy of
96% and logistic regression with an accuracy of 97%. Random forest showed the highest
precision of 90%, followed by the KNN classifier with a precision of 88%.

Figure 4. Result summary of all classification models on the Google Jigsaw dataset.

Table 5. LSTM model on the Google Jigsaw dataset.

Classifier Name Accuracy Precision F1-Score Sensitivity/Recall Specificity
Decision Tree 0.89 0.83 0.81 0.78 0.86

K-nearest neighbors 0.90 0.88 0.83 0.78 0.83
Random forest 0.91 0.90 0.85 0.80 0.87

Multinomial naïve
Bayes

0.96 0.79 0.75 0.72 0.70

Logistic regression 0.97 0.74 0.72 0.70 0.72
Long short-term
memory (LSTM) 0.97 0.85 0.84 0.83 0.82

3.2. Model Training and Evaluation for HateXplain Dataset
3.2.1. BERT + MLP

This section provides a discussion on the training of the dataset using the BERT
model along with other techniques to provide explainability. BERT is a machine learning
framework for NLP tasks specially designed to help computational systems for under-
standing the complex structure of language in the given text by using the surrounding
text to establish some meaning. From the TensorFlow hub, a BERT model (TensorFlow
Hub, 2021) and a preprocessor model were selected. There are various methods to deal
with unbalanced data such as sampling techniques (upsampling and downsampling)
where data are resampled, weighted loss where losses are weighted differently for data
having class imbalance, and data augmentation which is used to artificially create varia-
tions in existing dataset. In this research, unbalanced data were dealt with using weight
optimization, and bias was set. For weight optimization, appropriate weights were calcu-
lated for each class, depending upon their proportion. These weight factors were then
multiplied to individual class so that the bias between classes could be removed.

Next, BERT was trained with the MLP model. Table 6 depicts the model summary
for the BERT + MLP model, where the first column indicates the type of the layer, the
second and third columns indicate the output shape and number of parameters generated

Figure 4. Result summary of all classification models on the Google Jigsaw dataset.

Table 5. LSTM model on the Google Jigsaw dataset.

Classifier Name Accuracy Precision F1-Score Sensitivity/Recall Specificity

Decision Tree 0.89 0.83 0.81 0.78 0.86

K-nearest neighbors 0.90 0.88 0.83 0.78 0.83

Random forest 0.91 0.90 0.85 0.80 0.87

Multinomial naïve Bayes 0.96 0.79 0.75 0.72 0.70

Logistic regression 0.97 0.74 0.72 0.70 0.72

Long short-term memory (LSTM) 0.97 0.85 0.84 0.83 0.82

3.2. Model Training and Evaluation for HateXplain Dataset
3.2.1. BERT + MLP

This section provides a discussion on the training of the dataset using the BERT model
along with other techniques to provide explainability. BERT is a machine learning frame-
work for NLP tasks specially designed to help computational systems for understanding the
complex structure of language in the given text by using the surrounding text to establish
some meaning. From the TensorFlow hub, a BERT model (TensorFlow Hub, 2021) and a
preprocessor model were selected. There are various methods to deal with unbalanced data
such as sampling techniques (upsampling and downsampling) where data are resampled,
weighted loss where losses are weighted differently for data having class imbalance, and
data augmentation which is used to artificially create variations in existing dataset. In this
research, unbalanced data were dealt with using weight optimization, and bias was set. For
weight optimization, appropriate weights were calculated for each class, depending upon
their proportion. These weight factors were then multiplied to individual class so that the
bias between classes could be removed.

Next, BERT was trained with the MLP model. Table 6 depicts the model summary
for the BERT + MLP model, where the first column indicates the type of the layer, the
second and third columns indicate the output shape and number of parameters generated
by processing of the layer, respectively, and the last column represents the previous layer it
is connected to. There were a total 29,027,843 trainable parameters.

There were a total 29,027,844 parameters. Among them, 29,027,843 were trainable
parameters and only one was a nontrainable parameter.

Algorithms 2022, 15, 291 13 of 23

Table 6. BERT + MLP model summary.

Layer (Type) Output Shape # of Parameters Connected to

text (InputLayer) [(None,)] 0 []

preprocessing (KerasLayer) {‘input_word_ids’: (None,128), ‘input_mask’:
(None, 128), ‘input_type_ids’: (None, 128)} 0 [‘text [0][0]’]

BERT_encoder (KerasLayer)

{‘pooled_output’: (28,763,649, None, 512),
‘encoder_outputs’: [(None, 128, 512), (None,
128, 512), (None, 128, 512), (None, 128, 512)],

‘default’: (None, 512), ‘sequence_output’:
(None, 128, 512)}

28,763,649
[‘preprocessing [0][0]’,
‘preprocessing [0][1]’,
‘preprocessing [0][2]’,]

dense (Dense) (None, 512) 262,656 [‘BERT_encoder [0][5]’]

dropout (Dropout) (None, 512) 0 [‘dense [0][0]’]

classifier (Dense) (None, 3) 1539 [‘dropout [0][0]’]

Total params: 29,027,844

Trainable params: 29,027,843

Non-trainable params: 1

As shown in Figure 5, the architecture of the BERT + MLP model was fine-tuned
in order to achieve the most efficient performance. The model contained one input and
preprocessing layer, along with the BERT encoder, which was a keras layer. A dense layer
was used after the keras layer to reduce the parameters and increase the number of features
being propagated to the next layer. A dropout later was added to avoid overfitting of the
model, followed by one dense layer used to represent the results as a classification problem.
The model defined above was then compiled with the loss function as sparse categorical
cross-entropy and the Adam optimizer.

Algorithms 2022, 15, x FOR PEER REVIEW 15 of 25

Figure 5. BERT + MLP model architecture.

3.2.2. BERT + ANN
Next, BERT was used with ANN to train the model and evaluate the performance.

Table 7 depicts the model summary for the BERT + ANN model, where the first column
indicates the type of the layer, the second and third columns indicate the output shape
and the number of parameters generated by processing of the layer, respectively, and the
last column represents the previous layer it is connected to.

Table 7. BERT + ANN model summary.

Layer (Type) Output Shape # of Parameters Connected to
text (InputLayer) [(None,)] 0 []

preprocessing (KerasLayer)
{‘input_word_ids’:(None,128), ‘input_mask’:
(None, 128), ‘input_type_ids’: (None, 128)} 0 [‘text [0][0]’]

BERT_encoder (KerasLayer)

{‘pooled_output’: (28763649, None, 512), se-
quence_outputs’: (None, 128, 512), ‘en-

coder_outputs’: [(None, 128, 512), (None, 128,
512), (None, 128, 512), (None, 128, 512)], ‘de-
fault’: (None, 512), ‘sequence_output’: (None,

128, 512)}

28,763,649

[‘preprocessing
[0][0]’, ‘prepro-

cessing [0][1]’, ‘pre-
processing [0][2]’,]

Conv1d (Conv1D) (None, 127, 32) 32,800 [‘BERT_encoder
[0][6]’]

Conv1d_1 (Conv1D) (None, 126, 64) 4160 [‘conv1d [0][0]’]
Global_max_pooling1d (Global-

Maxpooling1D)
(None, 64) 0 [‘conv1d_1 [0][0]’]

dense_1 (Dense) (None, 512) 33,280 [‘BERT_encoder
[0][5]’]

dropout_1 (Dropout) (None, 512) 0 [‘dense_1 [0][0]’]
classifier (Dense) (None, 3) 1539 [‘dropout_1 [0][0]’]

Total params: 28,835,428

Figure 5. BERT + MLP model architecture.

Algorithms 2022, 15, 291 14 of 23

3.2.2. BERT + ANN

Next, BERT was used with ANN to train the model and evaluate the performance.
Table 7 depicts the model summary for the BERT + ANN model, where the first column
indicates the type of the layer, the second and third columns indicate the output shape and
the number of parameters generated by processing of the layer, respectively, and the last
column represents the previous layer it is connected to.

Table 7. BERT + ANN model summary.

Layer (Type) Output Shape # of Parameters Connected to

text (InputLayer) [(None,)] 0 []

preprocessing (KerasLayer) {‘input_word_ids’:(None,128), ‘input_mask’:
(None, 128), ‘input_type_ids’: (None, 128)} 0 [‘text [0][0]’]

BERT_encoder (KerasLayer)

{‘pooled_output’: (28,763,649, None, 512),
sequence_outputs’: (None, 128, 512),

‘encoder_outputs’: [(None, 128, 512), (None,
128, 512), (None, 128, 512), (None, 128, 512)],

‘default’: (None, 512), ‘sequence_output’:
(None, 128, 512)}

28,763,649
[‘preprocessing [0][0]’,
‘preprocessing [0][1]’,
‘preprocessing [0][2]’,]

Conv1d (Conv1D) (None, 127, 32) 32,800 [‘BERT_encoder [0][6]’]

Conv1d_1 (Conv1D) (None, 126, 64) 4160 [‘conv1d [0][0]’]

Global_max_pooling1d
(GlobalMaxpooling1D) (None, 64) 0 [‘conv1d_1 [0][0]’]

dense_1 (Dense) (None, 512) 33,280 [‘BERT_encoder [0][5]’]

dropout_1 (Dropout) (None, 512) 0 [‘dense_1 [0][0]’]

classifier (Dense) (None, 3) 1539 [‘dropout_1 [0][0]’]

Total params: 28,835,428

Trainable params: 28,835,427

Non-trainable params: 1

As shown in Figure 6, the architecture of the BERT + ANN model was fine-tuned
in order to achieve the most efficient performance. The model contained one input and
preprocessing layer, along with the BERT encoder, which was a keras layer. BERT was
combined with convolution layers, followed by a 1D global max-pooling layer, which
computed the maximum of all the input sizes for each of the input channels. A dense
layer was introduced after the 1D global max-pooling layer to reduce the parameters
and increase the number of features being propagated to the next layer. In the end, a
dropout later was added to avoid overfitting, followed by a dense layer. The model defined
above was then compiled with the loss function as sparse categorical cross-entropy and the
Adam optimizer.

The BERT + ANN and BERT + MLP models were trained for 50 epochs. As the number
of epochs increased, the accuracy improved. The parameters used to find the number
of training steps and number of warmup steps were as follows: number of epochs = 50,
number of training steps = steps per epoch × number of epochs, and number of warmup
steps = 0.1 × number of training steps.

The accuracy obtained by the BERT + MLP model and BERT + ANN model was 93.67%
and 93.55%, respectively, indicating that the gap in conventional evaluation metrics was
minimal; however, in terms of the explainability metrics, BERT + ANN performed slightly
better than the BERT + MLP model, as discussed later in this section.

Algorithms 2022, 15, 291 15 of 23

Algorithms 2022, 15, x FOR PEER REVIEW 16 of 25

Trainable params: 28,835,427
Non-trainable params: 1

As shown in Figure 6, the architecture of the BERT + ANN model was fine-tuned in
order to achieve the most efficient performance. The model contained one input and pre-
processing layer, along with the BERT encoder, which was a keras layer. BERT was com-
bined with convolution layers, followed by a 1D global max-pooling layer, which com-
puted the maximum of all the input sizes for each of the input channels. A dense layer
was introduced after the 1D global max-pooling layer to reduce the parameters and in-
crease the number of features being propagated to the next layer. In the end, a dropout
later was added to avoid overfitting, followed by a dense layer. The model defined above
was then compiled with the loss function as sparse categorical cross-entropy and the
Adam optimizer.

Figure 6. BERT + ANN model architecture.

The BERT + ANN and BERT + MLP models were trained for 50 epochs. As the num-
ber of epochs increased, the accuracy improved. The parameters used to find the number
of training steps and number of warmup steps were as follows: number of epochs = 50,
number of training steps = steps per epoch × number of epochs, and number of warmup
steps = 0.1 × number of training steps.

The accuracy obtained by the BERT + MLP model and BERT + ANN model was
93.67% and 93.55%, respectively, indicating that the gap in conventional evaluation met-
rics was minimal; however, in terms of the explainability metrics, BERT + ANN performed
slightly better than the BERT + MLP model, as discussed later in this section.

Figure 6. BERT + ANN model architecture.

3.2.3. LIME with Machine Learning Models

This section discusses the implementation of the LIME model with other linear ma-
chine learning models in order to provide explainability and interpretability.

The same labeled dataset used for BERT with ANN and MLP was used for training the
LIME model. LIME was trained using linear noncomplex machine learning models such as
random forest, naïve Bayes, decision tree, and logistic regression to extract the explanations.
Table 5 summarizes the accuracy achieved by each of the models on the HateXplain dataset.
It can be seen that logistic regression performed the best with an accuracy of 88.57%.

In this section, LIME classification is demonstrated using an example. The comment
text was as follows: “@ComedyPosts: Harlem shake is just an excus to go full retard for
30 s”. After the preprocessing was performed on the text, the comment text was reduced to
“comedypost harlem shake excus go full retard second”. This comment text was obtained
from the corpus of the preprocessed pandas data frame and applied to the LIME text
explainer for each of the machine learning models. The same comment text was used for
all the models so as to compare each model.

Explainability with Random Forest

Figure 7 shows the explainability with LIME and random forest for a particular tweet.
It can be observed that the LIME explainer gave weights to each useful word in the comment
to indicate its importance in the overall decision making. From Figure 7, we can see that
words such as “excus” and “retard” had the highest weights in contributing to the overall
prediction probability at 0.10 and 0.07 respectively. The prediction probability of the tweet
to be considered as hate speech was reduced by the word “full”. Text that contributed
in either direction is highlighted on the right side of the figure. The overall prediction
probability for hate speech was 90% using the random forest classifier.

Algorithms 2022, 15, 291 16 of 23

Algorithms 2022, 15, x FOR PEER REVIEW 17 of 25

3.2.3. LIME with Machine Learning Models
This section discusses the implementation of the LIME model with other linear ma-

chine learning models in order to provide explainability and interpretability.
The same labeled dataset used for BERT with ANN and MLP was used for training

the LIME model. LIME was trained using linear noncomplex machine learning models
such as random forest, naïve Bayes, decision tree, and logistic regression to extract the
explanations. Table 5 summarizes the accuracy achieved by each of the models on the
HateXplain dataset. It can be seen that logistic regression performed the best with an ac-
curacy of 88.57%.

In this section, LIME classification is demonstrated using an example. The comment
text was as follows: “@ComedyPosts: Harlem shake is just an excus to go full retard for 30
s”. After the preprocessing was performed on the text, the comment text was reduced to
“comedypost harlem shake excus go full retard second”. This comment text was obtained
from the corpus of the preprocessed pandas data frame and applied to the LIME text ex-
plainer for each of the machine learning models. The same comment text was used for all
the models so as to compare each model.

Explainability with Random Forest
Figure 7 shows the explainability with LIME and random forest for a particular tweet.

It can be observed that the LIME explainer gave weights to each useful word in the com-
ment to indicate its importance in the overall decision making. From Figure 7, we can see
that words such as “excus” and “retard” had the highest weights in contributing to the
overall prediction probability at 0.10 and 0.07 respectively. The prediction probability of
the tweet to be considered as hate speech was reduced by the word “full”. Text that con-
tributed in either direction is highlighted on the right side of the figure. The overall pre-
diction probability for hate speech was 90% using the random forest classifier.

Figure 7. Explainability with random forest.

Explainability with Gaussian Naïve Bayes
Figure 8 shows the explainability with LIME and Gaussian naïve Bayes for the exam-

ple tweet. It can be observed that the LIME explainer gave weights to each useful word in
the comment to indicate its importance in the overall decision making. From Figure 8, we
can see that words such as “full” and “excus” had the highest weights in contributing to
the overall prediction probability at 0.08 and 0.07, respectively. Interestingly, the predic-
tion probability of the tweet to be considered hate speech was reduced by the word “re-
tard” in the case of the gaussian naïve Bayes classifier. The word retard had the prediction
probability of 0.14, which eventually increased the overall prediction probability of the

Figure 7. Explainability with random forest.

Explainability with Gaussian Naïve Bayes

Figure 8 shows the explainability with LIME and Gaussian naïve Bayes for the example
tweet. It can be observed that the LIME explainer gave weights to each useful word in the
comment to indicate its importance in the overall decision making. From Figure 8, we can
see that words such as “full” and “excus” had the highest weights in contributing to the
overall prediction probability at 0.08 and 0.07, respectively. Interestingly, the prediction
probability of the tweet to be considered hate speech was reduced by the word “retard”
in the case of the gaussian naïve Bayes classifier. The word retard had the prediction
probability of 0.14, which eventually increased the overall prediction probability of the text
not being hate speech by 20%. Text that contributed in either direction to the prediction
is highlighted on the right side of the figure. The overall prediction probability for hate
speech was 80% using the Gaussian naïve Bayes classifier.

Algorithms 2022, 15, x FOR PEER REVIEW 18 of 25

text not being hate speech by 20%. Text that contributed in either direction to the predic-
tion is highlighted on the right side of the figure. The overall prediction probability for
hate speech was 80% using the Gaussian naïve Bayes classifier.

Figure 8. Explainability with Gaussian naïve Bayes.

Explainability with Decision Tree
Figure 9 shows the explainability with LIME and decision tree for the example tweet.

It can be observed that the LIME explainer gave weights to each useful word in the com-
ment to indicate its importance in the overall decision making. From Figure 9, we can see
that words such as “full”, “excus”, and “retard” had the highest weights in contributing
to the overall prediction probability at 0.07, 0.06, and 0.06, respectively. The decision tree
classifier did not give weight to predict the comment as non-hate speech for any of the
words. We can see the trend in the text with highlighted words. The overall prediction
probability for hate speech was 100% using the decision tree classifier.

Figure 9. Explainability with decision tree.

Figure 8. Explainability with Gaussian naïve Bayes.

Explainability with Decision Tree

Figure 9 shows the explainability with LIME and decision tree for the example tweet. It
can be observed that the LIME explainer gave weights to each useful word in the comment
to indicate its importance in the overall decision making. From Figure 9, we can see that

Algorithms 2022, 15, 291 17 of 23

words such as “full”, “excus”, and “retard” had the highest weights in contributing to the
overall prediction probability at 0.07, 0.06, and 0.06, respectively. The decision tree classifier
did not give weight to predict the comment as non-hate speech for any of the words. We
can see the trend in the text with highlighted words. The overall prediction probability for
hate speech was 100% using the decision tree classifier.

Algorithms 2022, 15, x FOR PEER REVIEW 18 of 25

text not being hate speech by 20%. Text that contributed in either direction to the predic-
tion is highlighted on the right side of the figure. The overall prediction probability for
hate speech was 80% using the Gaussian naïve Bayes classifier.

Figure 8. Explainability with Gaussian naïve Bayes.

Explainability with Decision Tree
Figure 9 shows the explainability with LIME and decision tree for the example tweet.

It can be observed that the LIME explainer gave weights to each useful word in the com-
ment to indicate its importance in the overall decision making. From Figure 9, we can see
that words such as “full”, “excus”, and “retard” had the highest weights in contributing
to the overall prediction probability at 0.07, 0.06, and 0.06, respectively. The decision tree
classifier did not give weight to predict the comment as non-hate speech for any of the
words. We can see the trend in the text with highlighted words. The overall prediction
probability for hate speech was 100% using the decision tree classifier.

Figure 9. Explainability with decision tree. Figure 9. Explainability with decision tree.

Explainability with Logistic Regression

Figure 10 shows the explainability with LIME and logistic regression for the example
tweet. It can be observed that the LIME explainer gave weights to each useful word in the
comment to indicate its importance in the overall decision making. From Figure 10, we can
see that words such as “excus” and “second” had the highest weights in contributing to the
overall prediction probability at 0.03 and 0.04, respectively. On the other hand, words such
as “retard” and “full” contributed to the text not being hate speech with the weights of 0.04
and 0.03, respectively. Text that contributed in either direction of prediction is highlighted
on the right side of the figure. The overall prediction probability for hate speech was 95%
using the logistic regression classifier.

Algorithms 2022, 15, x FOR PEER REVIEW 19 of 25

Explainability with Logistic Regression
Figure 10 shows the explainability with LIME and logistic regression for the example

tweet. It can be observed that the LIME explainer gave weights to each useful word in the
comment to indicate its importance in the overall decision making. From Figure 10, we
can see that words such as “excus” and “second” had the highest weights in contributing
to the overall prediction probability at 0.03 and 0.04, respectively. On the other hand,
words such as “retard” and “full” contributed to the text not being hate speech with the
weights of 0.04 and 0.03, respectively. Text that contributed in either direction of predic-
tion is highlighted on the right side of the figure. The overall prediction probability for
hate speech was 95% using the logistic regression classifier.

Figure 10. Explainability with logistic regression.

3.2.4. Summary of Results for the HateXplain Dataset
The results of all the models on the HateXplain dataset, evaluated in terms of their

accuracy, precision, and macro F1-score are visualized in Figure 11. Table 8 gives the eval-
uation scores for all the models. It can be observed that BERT variants performed signifi-
cantly better than the other linear explainable models, with BERT + MLP having the high-
est accuracy of 93.67%, closely followed by BERT + ANN with an accuracy of 93.55%. It
can be observed that the measures such as precision, recall, and macro F1-score also indi-
cated that the BERT variants outperformed the other linear models. Logistic regression
with LIME performed best among the linear models with an accuracy of 88.57% and
macro F1-score of 93.75%. The results are visualized in Figure 11 as a bar chart.

Explainability Metrics
We used the ERASER benchmark [35] in order to measure the explainability of the

trained models. ERASER (evaluating rationales and simple English reasoning) is a bench-
mark to evaluate rationalized NLP models, which was proposed by DeYoung et al. (2020).
This is achieved by measuring the agreement with human rationales. Measuring exact
matches between predicted and reference rationales is likely too harsh; thus, explainabil-
ity is assessed by measuring plausibility and faithfulness. The prediction is counted as a
match if any of the word predictions overlap with the rationales annotated by humans.
Token level calculations are compared with human annotations to derive the explainabil-
ity. Various measures were used from the ERASER benchmark to calculate these compar-
isons.

Plausibility is the measure of how cogent the interpretation is to a human. To meas-
ure plausibility, the metrics IOU (intersection over union) F1-score, token F1-score, and

Figure 10. Explainability with logistic regression.

Algorithms 2022, 15, 291 18 of 23

3.2.4. Summary of Results for the HateXplain Dataset

The results of all the models on the HateXplain dataset, evaluated in terms of their
accuracy, precision, and macro F1-score are visualized in Figure 11. Table 8 gives the
evaluation scores for all the models. It can be observed that BERT variants performed
significantly better than the other linear explainable models, with BERT + MLP having the
highest accuracy of 93.67%, closely followed by BERT + ANN with an accuracy of 93.55%.
It can be observed that the measures such as precision, recall, and macro F1-score also
indicated that the BERT variants outperformed the other linear models. Logistic regression
with LIME performed best among the linear models with an accuracy of 88.57% and macro
F1-score of 93.75%. The results are visualized in Figure 11 as a bar chart.

Algorithms 2022, 15, x FOR PEER REVIEW 20 of 25

area under the precision–recall curve (AUPRC) score were calculated. The IOU (intersec-
tion over union) F1-score was calculated for token level. Partial matches were considered
where prediction overlapped more than 0.5 with either of the ground truth rationales.
Token-level F1-scores were measured from the token-level precision and recall. AUPRC
was used to measure soft token scoring. Higher values of all these metrics indicated
greater plausibility.

Faithfulness is the measure of the accuracy of the true reasoning process of the model.
To measure the faithfulness of the models, comprehensiveness and sufficiency were cal-
culated. The comprehensiveness score is a measure of change in the probability of the
output of the originally predicted class after eliminating significant tokens. A higher com-
prehensiveness score indicates a more faithful interpretation. Sufficiency measures the
sufficiency of the important tokens to sustain the predictions. It captures the degree to
which the snippets within the exact rationales are adequate for a model to make a predic-
tion. A lower sufficiency indicates a more faithful model.

Table 9 provides a summarized view of the explainability metrics calculated on all
the models implemented. It can be observed that BERT + MLP was the best-performing
model in terms of plausibility. The BERT + MLP model showed the best values of IOU F1,
token F1, and AUPRC as compared to the other models. In terms of faithfulness, the BERT
+ ANN model showed the best results with the highest comprehensiveness score of 0.4199.
The achieved results are an improvement compared to the base paper by Mathew et al.
(2020). BERT variants had the most convincing interpretation to the humans. BERT + ANN
achieved a slightly higher comprehensiveness than BERT + MLP, due to the simpler struc-
ture of ANN than MLP. The same trend in the parameters of sufficiency was observed in
the base paper by Mathew et al. (2020).

Figure 11. Result summary of all models on the HateXplain dataset.

Table 8. Results of models on the HateXplain dataset.

S.
No Full Form Features

Accu-
racy Precision

Re-
call/Sen-
sitivity

Negative
Predictive

Value

Speci-
ficity F1-Score

1
Bidirectional encoder
representations from

Explainable,
layer-wise propa-

gation
93.55 95.2 93.1 85.7 83 94.14

Figure 11. Result summary of all models on the HateXplain dataset.

Table 8. Results of models on the HateXplain dataset.

S. No Full Form Features Accuracy Precision Recall/
Sensitivity

Negative
Predictive Value Specificity F1-Score

1

Bidirectional encoder
representations from

transformers + artificial
neural network layers

(BERT + ANN)

Explainable,
layer-wise

propagation
93.55 95.2 93.1 85.7 83 94.14

2

Bidirectional encoder
representations from

transformers + multilayer
perceptron (BERT + MLP)

Explainable,
layer-wise

propagation
93.67 95 93 88.3 87.5 93.99

3 Exp-decision trees Explainable (LIME) 82.86 90.63 90.63 79.03 76.67 90.63

4 Exp-random forest Explainable (LIME) 82.86 90.63 90.63 76.65 78.37 90.63

5 Exp-logistic regression Explainable (LIME) 88.57 93.75 93.75 53.33 69.33 93.75

6 Exp-naïve Bayes Explainable (LIME) 69 64.63 52.86 46.6 65.6 58.16

Explainability Metrics

We used the ERASER benchmark [35] in order to measure the explainability of the
trained models. ERASER (evaluating rationales and simple English reasoning) is a bench-
mark to evaluate rationalized NLP models, which was proposed by DeYoung et al. (2020).
This is achieved by measuring the agreement with human rationales. Measuring exact
matches between predicted and reference rationales is likely too harsh; thus, explainability

Algorithms 2022, 15, 291 19 of 23

is assessed by measuring plausibility and faithfulness. The prediction is counted as a
match if any of the word predictions overlap with the rationales annotated by humans.
Token level calculations are compared with human annotations to derive the explainability.
Various measures were used from the ERASER benchmark to calculate these comparisons.

Plausibility is the measure of how cogent the interpretation is to a human. To measure
plausibility, the metrics IOU (intersection over union) F1-score, token F1-score, and area
under the precision–recall curve (AUPRC) score were calculated. The IOU (intersection
over union) F1-score was calculated for token level. Partial matches were considered where
prediction overlapped more than 0.5 with either of the ground truth rationales. Token-level
F1-scores were measured from the token-level precision and recall. AUPRC was used to
measure soft token scoring. Higher values of all these metrics indicated greater plausibility.

Faithfulness is the measure of the accuracy of the true reasoning process of the model.
To measure the faithfulness of the models, comprehensiveness and sufficiency were calcu-
lated. The comprehensiveness score is a measure of change in the probability of the output
of the originally predicted class after eliminating significant tokens. A higher comprehen-
siveness score indicates a more faithful interpretation. Sufficiency measures the sufficiency
of the important tokens to sustain the predictions. It captures the degree to which the
snippets within the exact rationales are adequate for a model to make a prediction. A lower
sufficiency indicates a more faithful model.

Table 9 provides a summarized view of the explainability metrics calculated on all
the models implemented. It can be observed that BERT + MLP was the best-performing
model in terms of plausibility. The BERT + MLP model showed the best values of IOU
F1, token F1, and AUPRC as compared to the other models. In terms of faithfulness,
the BERT + ANN model showed the best results with the highest comprehensiveness
score of 0.4199. The achieved results are an improvement compared to the base paper by
Mathew et al. (2020). BERT variants had the most convincing interpretation to the humans.
BERT + ANN achieved a slightly higher comprehensiveness than BERT + MLP, due to the
simpler structure of ANN than MLP. The same trend in the parameters of sufficiency was
observed in the base paper by Mathew et al. (2020).

Table 9. Explainability metrics.

Technique Plausibility Faithfulness

IOU F1 Token F1 AUPRC Comprehensiveness Sufficiency

BERT + ANN 0.1888 0.5074 0.8384 0.4199 0.0055
BERT + MLP 0.298 0.5298 0.8589 0.3574 0.003

DT-LIME 0.1676 0.3887 0.7487 0.2993 0.0442
RF-LIME 0.2387 0.5118 0.8469 0.4132 0.0014
LR-LIME 0.1008 0.2271 0.5284 0.2132 0.0482
NB-LIME 0.1287 0.1818 0.5938 0.1999 0.0514

Bias-Based Metrics

The hate speech detection models could make biased predictions for particular groups
who are already the target of such abuse (Sap et al. 2019; Davidson, Bhattacharya, and
Weber 2019). To measure these unintended model biases, the AUC-based metrics by
Borkan et al. (2019) were used. We computed the subgroup AUC (area under the ROC
curve), BPSN (background positive, subgroup negative) AUC, and BSNP (background
negative, subgroup positive) AUC. Subgroup AUC metrics for this use case are a measure
of the ability of the model to segregate the toxic and normal comments. A higher value of
subgroup AUC suggests that the model is better at differentiating between toxic and normal
posts. The BPSN (background positive, subgroup negative) AUC metric is a measure of
false-positive rates of the model, while the BNSP (background negative, subgroup positive)
AUC is a measure of false-negative rates of the model. A higher value of BPSN indicates a
lower likelihood of the model giving false positives, while a higher value of BSNP indicates

Algorithms 2022, 15, 291 20 of 23

a lower likelihood of the model giving false negatives. For this dataset, these metrics were
calculated with respect to a community.

Table 10 provides a summarized view of the bias-based metrics calculated on all the
models implemented. We can see that the bias-based metrics of BERT variants were signifi-
cantly more accurate than the other linear models. BERT + MLP had the highest values of
subgroup AUC, BPSN AUC, and BSNP AUC with 0.8229, 0.7752, and 0.8077, respectively,
followed by BERT + ANN with values of 0.7977, 0.7188, and 0.7391, respectively.

Table 10. Explainability Metrics.

Technique Subgroup AUC BPSN AUC BSNP AUC

BERT + ANN 0.7977 0.7188 0.7391
BERT + MLP 0.8229 0.7752 0.8077

DT-LIME 0.6926 0.6578 0.6617
RF-LIME 0.7627 0.6977 0.5978
LR-LIME 0.5266 0.4522 0.4991
NB-LIME 0.6136 0.4812 0.5049

4. Conclusions

In this research study, two datasets were taken to demonstrate hate speech detection
using explainable artificial intelligence (XAI). Exploratory data analysis was performed
on the datasets to uncover various patterns and insights, and various explainable models
were trained on both datasets to extract useful interpretable results. The conclusions of the
study are discussed in this section.

4.1. Conclusions of the Study on the Google Jigsaw Dataset

The Google Jigsaw dataset comprises user discussions from talk pages of English
Wikipedia, and it was released by Google Jigsaw. We trained various existing interpretable
models (decision tree, KNN, random forest, multinomial naïve Bayes, logistic regression,
and LSTM) on this dataset. We found that LSTM outperformed the other models in
terms of accuracy (97.6%) and recall (83%) scores. The random forest model had the best
performance in terms of precision (90%) and specificity (87%). KNN, logistic regression,
and multinomial naïve Bayes had low evaluation scores as compared to the other models,
but they performed very well in terms of accuracy with 90%, 97%, and 96%, respectively.
Decision trees and random forest also had significantly good performance with an accuracy
of 89% and 91%, respectively. It was observed that the LSTM model gave better overall
performance in terms of accuracy, precision, recall, and macro F1-score as compared to the
study of Risch et al. (2020).

4.2. Conclusion of the Study on the HateXplain Dataset

The HateXplain dataset comprises posts from Twitter and Gab and is annotated by
human annotators. Several state-of-the-art models were tested on this dataset to perform
evaluation on several aspects of the hate speech detection. These models contained ex-
plainability imbibed in various ways. LIME was used with interpretable models such as
decision trees, random forest, logistic regression, and naïve Bayes to extract weights of
words that contributed significantly to the model’s decision making. Furthermore, vari-
ants of BERT were created to achieve the best performance. The best performance was
observed for the BERT variants, BERT + ANN and BERT + MLP, as compared to the other
models. BERT + ANN had a slightly better overall performance than BERT + MLP. For
appropriate comparisons, the evaluation metrics were divided into three subsets, namely,
performance metrics (accuracy, precision, recall, negative predicted value, specificity, and
macro F1-score), bias-based metrics, and explainability metrics (plausibility and faithful-
ness) as in mathew et al. (2020). LIME was used to demonstrate the textual explanations on
some data of the black-box models. We used explanation metrics based on the ERASER
benchmark by DeYoung et al. for the human-annotated dataset HateXplain. These metrics

Algorithms 2022, 15, 291 21 of 23

suggested how faithful the results of these models were in identifying hateful comments as
compared to other existing models. LIME is a surrogate model which is used to highlight
contributing words or tokens that can play major part in a comment being hateful or not
hateful. The accuracy scores of BERT + MLP and BERT + ANN were 93.67% and 93.55%,
respectively, outperforming the simple BERT implementations by Mathew et al. (2020)
with an accuracy score 69.8%. The prime reason behind this difference was the combination
of BERT with neural network models such as MLP and ANN. Furthermore, our models
are trained on 50 epochs, which took around 11.5 and 8.3 h, on Google Colab Pro. The
precision scores of BERT + ANN and BERT + MLP were 95.2% and 95%, while recall scores
were 93.1% and 93%, respectively. The results of the macro F1-score were calculated to be
94.14% and 93.99%, respectively.

In terms of bias-based metrics, the BERT variant models performed better in reduc-
ing the unintended model bias for all the bias metrics. We observed that the presence of
community terms within the rationales was effective in reducing the unintended bias. The
BERT + MLP model handled this bias much better than other models in terms of subgroup,
BPSN (background positive, subgroup negative), and BNSP (background negative, sub-
group positive) AUC with values of 0.8229, 0.7752, and 0.8077, respectively, representing
an improvement over simple BERT implementation (0.807, 0.745, and 0.763, respectively)
by Mathew et al. (2020). Future research on hate speech should consider the impact of the
model performance on individual communities to have a clear understanding.

Considering the explainability metrics using the ERASER benchmark by DeYoung et al.
(2019), two main factors were evaluated: plausibility (defined by IOU F1, token F1, and
AUPRC) and faithfulness (defined by comprehensiveness and sufficiency). The best-
performing models, BERT + ANN and BERT + MLP, had plausibility (IOU F1, token F1,
and AUPRC) values of 0.188, 0.507, and 0.8384, and 0.29, 0.529, and 0.8589, respectively,
compared to the base BERT model (0.222, 0.506, and 0.841, respectively) in the paper by
Mathew et al. (2020). BERT + MLP performed better than the simple BERT implementation.
Similarly, the faithfulness (comprehensiveness and sufficiency) values were found to be
0.419 and 0.0055 for BERT + ANN and 0.3574 and 0.003 for BERT+ MLP. BERT + ANN per-
formed better compared to the BERT implementation in the paper by Mathew et al. (2020)
(0.436 and 0.008, respectively).

Hence, it can be derived that the variants of BERT used in the research work had supe-
rior performance to the base model; BERT + ANN performed best in terms of explainability,
and BERT + MLP performed best overall compared to traditional models such as logistic
regression, KNN, naïve Bayes, decision trees, and random forests.

Author Contributions: Conceptualization, H.M. and K.P.; methodology, H.M. and K.P.; software,
H.M.; validation, H.M. and K.P.; formal analysis, H.M.; investigation, H.M.; resources, H.M.; data
curation, H.M.; writing—original draft preparation, H.M.; writing—review and editing, K.P.; visual-
ization, H.M.; supervision, K.P.; project administration, K.P.; funding acquisition, K.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets are publicly available as follows: Google Jigsaw dataset:
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
(accessed 5 January 2022); HateXplain dataset: https://github.com/hate-alert/HateXplain/tree/
master/Data (accessed 7 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Davidson, T.; Warmsley, D.; Macy, M.; Weber, I. Automated Hate Speech Detection and the Problem of Offensive Language.

Available online: http://arxiv.org/abs/1703.04009 (accessed on 11 August 2022).
2. Chen, Y.; Zhou, Y.; Zhu, S.; Xu, H. Detecting offensive language in social media to protect adolescent online safety. In Proceedings

of the 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference
on Social Computing, SocialCom/PASSAT, Amsterdam, The Netherlands, 3–5 September 2012; pp. 71–80. [CrossRef]

https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data
https://github.com/hate-alert/HateXplain/tree/master/Data
https://github.com/hate-alert/HateXplain/tree/master/Data
http://arxiv.org/abs/1703.04009
http://doi.org/10.1109/SocialCom-PASSAT.2012.55

Algorithms 2022, 15, 291 22 of 23

3. Balkir, E.; Nejadgholi, I.; Fraser, K.C.; Kiritchenko, S. Necessity and sufficiency for explaining text classifiers: A case study in hate
speech detection. arXiv 2022, arXiv:2205.03302.

4. Chatzakou, D.; Kourtellis, N.; Blackburn, J.; de Cristofaro, E.; Stringhini, G.; Vakali, A. Mean birds: Detecting aggression and
bullying on Twitter. In WebSci 2017—Proceedings of the 2017 ACM Web Science Conference; Association for Computing Machinery:
New York, NY, USA, 2017; pp. 13–22. [CrossRef]

5. Founta, A.M.; Chatzakou, D.; Kourtellis, N.; Blackburn, J.; Vakali, A.; Leontiadis, I. A Unified Deep Learning Architecture for
Abuse Detection. In WebSci 2019—Proceedings of the 11th ACM Conference on Web Science; Association for Computing Machinery:
New York, NY, USA, 2018; pp. 105–114. [CrossRef]

6. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30.
7. Arras, L.; Montavon, G.; Müller, K.R.; Samek, W. Explaining recurrent neural network predictions in sentiment analysis. In EMNLP

2017—8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA 2017—Proceedings of
the Workshop; Association for Computational Linguistics: Copenhagen, Denmark, 2017. [CrossRef]

8. Mahajan, A.; Shah, D.; Jafar, G. Explainable AI approach towards toxic comment classification. In Emerging Technologies in Data
Mining and Information Security; Springer: Singapore, 2021; pp. 849–858.

9. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings
of the NAACL-HLT 2016—2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Proceedings of the Demonstrations Session, San Francisco, CA, USA, 13–17 August 2016;
pp. 1135–1144. [CrossRef]

10. Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Müller, K.-R. Toward Interpretable Machine Learning: Transparent
Deep Neural Networks and Beyond. Available online: https://doi.org/10.48550/arXiv.2003.07631 (accessed on 11 August 2022).
[CrossRef]

11. Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. 2017. Available online: https://doi.org/
10.48550/arXiv.1702.08608 (accessed on 11 January 2022). [CrossRef]

12. Hind, M.; Wei, D.; Campbell, M.; Codella, N.C.F.; Dhurandhar, A.; Mojsilović, A.; Natesan Ramamurthy, K.; Varshney, K.R.
TED: Teaching AI to explain its decisions. AIES 2019. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 123–129. [CrossRef]

13. Montavon, G.; Samek, W.; Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process.
2018, 73, 1–15. [CrossRef]

14. Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability of
machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA,
Turin, Italy, 1–3 October 2018. [CrossRef]

15. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S. Explainable
AI for Trees: From Local Explanations to Global Understanding. arXiv 2019, arXiv:1905.04610. Available online: http://arxiv.org/
abs/1905.04610 (accessed on 11 May 2022). [CrossRef] [PubMed]

16. Nori, H.; Jenkins, S.; Koch, P.; Caruana, R. InterpretML: A Unified Framework for Machine Learning Interpretability. arXiv 2019,
arXiv:1909.09223. [CrossRef]

17. Ahmed, U.; Lin, J.C.-W. Deep Explainable Hate Speech Active Learning on Social-Media Data. IEEE Trans. Comput. Soc. Syst.
2022, 1–11. [CrossRef]

18. Barredo Arrieta, A.; Díaz-Rodríguez, N.; del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.;
Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]

19. Das, A.; Rad, P. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. arXiv 2020, arXiv:2006.11371.
[CrossRef]

20. Kanerva, O. Evaluating Explainable AI Models for Convolutional Neural Networks with Proxy Tasks. Available online:
https://www.semanticscholar.org/paper/Evaluating-explainable-AI-models-for-convolutional_Kanerva/d91062a3e13ee034
af6807e1819a9ca3051daf13 (accessed on 25 January 2022).

21. Gohel, P.; Singh, P.; Mohanty, M. Explainable AI: Current STATUs and Future Directions. Available online: https://doi.org/10.1
109/ACCESS.2017 (accessed on 30 January 2022). [CrossRef]

22. Fernandez, A.; Herrera, F.; Cordon, O.; Jose Del Jesus, M.; Marcelloni, F. Evolutionary fuzzy systems for explainable artificial
intelligence: Why, when, what for, and where to? IEEE Comput. Intell. Mag. 2019, 14, 69–81. [CrossRef]

23. Clinciu, M.-A.; Hastie, H. A Survey of Explainable AI Terminology. In Proceedings of the 1st Workshop on Interactive Natural
Language Technology for Explainable Artificial Intelligence (NL4XAI 2019); Association for Computational Linguistics: Copenhagen,
Denmark, 2019; pp. 8–13. [CrossRef]

24. Hrnjica, B.; Softic, S. Explainable AI in Manufacturing: A Predictive Maintenance Case Study. In IFIP Advances in Information and
Communication Technology, 592 IFIP; Springer: New York, NY, USA, 2020; pp. 66–73. [CrossRef]

25. Miller, T. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 2019, 267, 1–38. [CrossRef]
26. Mathew, B.; Saha, P.; Yimam, S.M.; Biemann, C.; Goyal, P.; Mukherjee, A. HateXplain: A Benchmark Dataset for Explainable Hate

Speech Detection. arXiv 2020, arXiv:2012.10289. Available online: http://arxiv.org/abs/2012.10289 (accessed on 14 June 2021).

http://doi.org/10.1145/3091478.3091487
http://doi.org/10.48550/arxiv.1802.00385
http://doi.org/10.18653/v1/w17-5221
http://doi.org/10.48550/arxiv.1602.04938
https://doi.org/10.48550/arXiv.2003.07631
http://doi.org/10.48550/arXiv.2003.07631
https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.48550/arXiv.1702.08608
http://doi.org/10.48550/arXiv.1702.08608
http://doi.org/10.1145/3306618.3314273
http://doi.org/10.1016/j.dsp.2017.10.011
http://doi.org/10.1109/DSAA.2018.00018
http://arxiv.org/abs/1905.04610
http://arxiv.org/abs/1905.04610
http://doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/pubmed/32607472
http://doi.org/10.48550/arXiv.1909.09223
http://doi.org/10.1109/TCSS.2022.3165136
http://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.48550/arXiv.2006.11371
https://www.semanticscholar.org/paper/Evaluating-explainable-AI-models-for-convolutional_Kanerva/d91062a3e13ee034af6807e1819a9ca3051daf13
https://www.semanticscholar.org/paper/Evaluating-explainable-AI-models-for-convolutional_Kanerva/d91062a3e13ee034af6807e1819a9ca3051daf13
https://doi.org/10.1109/ACCESS.2017
https://doi.org/10.1109/ACCESS.2017
http://doi.org/10.1109/ACCESS.2017
http://doi.org/10.1109/MCI.2018.2881645
http://doi.org/10.18653/v1/W19-8403
http://doi.org/10.1007/978-3-030-57997-5_8
http://doi.org/10.1016/j.artint.2018.07.007
http://arxiv.org/abs/2012.10289

Algorithms 2022, 15, 291 23 of 23

27. ML|Overview of Data Cleaning. GeeksforGeeks. 15 May 2018. Available online: https://www.geeksforgeeks.org/data-
cleansing-introduction/ (accessed on 3 April 2022).

28. Pearson, R.K. Exploratory Data Analysis: A First Look. In Exploratory Data Analysis Using R; Chapman and Hall/CRC: New York,
NY, USA, 2018.

29. Using CountVectorizer to Extracting Features from Text. GeeksforGeeks. 15 July 2020. Available online: https://www.
geeksforgeeks.org/using-countvectorizer-to-extracting-features-from-text/ (accessed on 3 April 2022).

30. Bisong, E. The Multilayer Perceptron (MLP). In Building Machine Learning and Deep Learning Models on Google Cloud Platform;
Apress: Berkeley, CA, USA, 2019; pp. 401–405. [CrossRef]

31. Kamath, U.; Graham, K.L.; Emara, W. Bidirectional encoder representations from transformers (BERT). In Transformers for Machine
Learning; Chapman and Hall/CRC: New York, NY, USA, 2022; pp. 43–70. [CrossRef]

32. Awal, M.R.; Cao, R.; Lee, R.K.-W.; Mitrovic, S. AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection. arXiv
2021, arXiv:2103.11800. Available online: http://arxiv.org/abs/2103.11800 (accessed on 16 July 2022).

33. Nair, R.; Prasad, V.N.V.; Sreenadh, A.; Nair, J.J. Coreference Resolution for Ambiguous Pronoun with BERT and MLP. In
Proceedings of the 2021 International Conference on Advances in Computing and Communications (ICACC), Kochi, India,
21–23 October 2021; pp. 1–5. [CrossRef]

34. Biecek, P.; Burzykowski, T. Local interpretable model-agnostic explanations (LIME). In Explanatory Model Analysis; Chapman and
Hall/CRC: New York, NY, USA, 2021; pp. 107–123. [CrossRef]

35. DeYoung, J.; Jain, S.; Rajani, N.F.; Lehman, E.; Xiong, C.; Socher, R.; Wallace, B.C. ERASER: A Benchmark to Evaluate Rationalized
NLP Models. arXiv 2020, arXiv:1911.03429. [CrossRef]

https://www.geeksforgeeks.org/data-cleansing-introduction/
https://www.geeksforgeeks.org/data-cleansing-introduction/
https://www.geeksforgeeks.org/using-countvectorizer-to-extracting-features-from-text/
https://www.geeksforgeeks.org/using-countvectorizer-to-extracting-features-from-text/
http://doi.org/10.1007/978-1-4842-4470-8_31
http://doi.org/10.1201/9781003170082-3
http://arxiv.org/abs/2103.11800
http://doi.org/10.1109/ICACC-202152719.2021.9708203
http://doi.org/10.1201/9780429027192-11
http://doi.org/10.18653/v1/2020.acl-main.408

	Introduction
	Need for Explainability
	Motivation
	Literature Review

	Materials and Methods
	Google Jigsaw Dataset
	HateXplain Dataset
	Extracting the Dataset
	Data Preprocessing and Cleaning
	Tokenization, Sentence Padding, and Lemmatization
	Simplification of Categorical Values
	Exploratory Data Analysis (EDA)
	Feature Extraction Methods
	Classification Methods and Explainable Techniques
	Deep Learning Model—Long Short-Term Memory (LSTM)
	BERT (Bidirectional Encoder Representation from Transformers)
	Local Interpretable Model—Agnostic Explanations (LIME)

	Results
	Model Training and Evaluation for Google Jigsaw Dataset
	Model Training and Evaluation for HateXplain Dataset
	BERT + MLP
	BERT + ANN
	LIME with Machine Learning Models
	Summary of Results for the HateXplain Dataset

	Conclusions
	Conclusions of the Study on the Google Jigsaw Dataset
	Conclusion of the Study on the HateXplain Dataset

	References

