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Abstract: Boolean structural measures were introduced to explain the high performance of conflict-
driven clause-learning (CDCL) SAT solvers on industrial SAT instances. Those considered in this
study include measures related to backbones and backdoors: backbone size, backbone frequency,
and backdoor size. A key area of research is to improve the performance of CDCL SAT solvers
by exploiting these measures. For the purpose of guiding the CDCL SAT solver for branching on
backbone and backdoor variables, this study proposes low-overhead heuristics for computing these
variables. Through these heuristics, a set of modifications to the Variable State Independent Decaying
Sum (VSIDS) decision heuristic is suggested to exploit backbones and backdoors and potentially
improve the performance of CDCL SAT solvers. In total, fifteen variants of two competitive base
solvers, MapleLCMDistChronoBT-DL-v3 and LSTech, were developed. Empirical evaluation was
conducted on 32 industrial families from 2002–2021 SAT competitions. According to the results,
modifying the VSIDS heuristic in the base solvers to exploit backbones and backdoors improves its
performance. In particular, our new CDCL SAT solver, LSTech_BBsfcr_v1, solved more industrial
SAT instances than the winning CDCL SAT solvers in 2020 and 2021 SAT competitions.

Keywords: SAT; CDCL; VSIDS; Boolean structural measures; backbone; backdoor

1. Introduction

The Boolean satisfiability problem (SAT) [1] is a fundamental NP-complete problem in
automated reasoning and mathematical logic. As NP-complete problems can be reduced to
SAT in polynomial time, SAT is applicable to a wide range of fields [2–4].

The annual SAT competitions have become an essential event for the distribution
of SAT benchmarks and the development of new SAT-solving methods [5]. Sequential
SAT solvers compete mainly in three categories: industrial, crafted, and random tracks.
The SAT competitions have demonstrated how difficult it is for SAT solvers to perform
well across all categories. Results show that conflict-driven clause-learning (CDCL) SAT
solvers were most performant for solving industrial and crafted SAT benchmarks, whereas
look-ahead and Stochastic Local Search (SLS)-based SAT solvers have dominated the
random category [5]. Modern implementations of CDCL SAT solvers employ a lot of
heuristics. Some of them can be considered baseline, such as the Variable State Independent
Decaying Sum (VSIDS) [6], restarts [7], and Literal Block Distance (LBD) [8]. Several
others were incorporated recently, including: Learnt Clause Minimization (LCM) [9],
Distance (Dist) heuristic [10], Chronological Backtracking (ChronoBT) [11], duplicate learnts
heuristic [12], Conflict History-Based (CHB) heuristic [13], Learning Rate-based Branching
(LRB) heuristic [14], and the SLS component [15]. The results of the SAT competitions have
led researchers to conclude that (1) industrial, crafted, and random SAT instances have
distinct structures, and (2) SAT-solving methods could exploit such structures.

Boolean structural measure proposed for SAT include the phase transition [16], back-
bone size [17], and backdoor size [18,19]. We propose three new related measures to the
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backbones and backdoors: the backbone frequency, backbone coverage, and backdoor
coverage (The reader is referred to Appendix A where the evidence of the backbone and
backdoor-related measures on industrial, crafted, and random benchmark instances drawn
from 2002–2020 SAT competitions are investigated. In particular, we evaluated the back-
bone size, LSR backdoor size, and backbone/backdoor variable overlap size, along with
the three proposed new related measures: backbone frequency, backbone coverage, and
backdoor coverage.). Empirical results indicate that most random benchmarks have no
backbones, whereas on average, industrial and crafted benchmark instances have small
backbone sizes [20,21]. The frequency of backbones is low for all benchmark categories.
As for the backbone coverage, industrial and crafted benchmarks have higher coverages,
on average, than random ones. In both crafted and random benchmark instances, the
backdoor size and coverage are greater than those in the industrial category [20,21]. Addi-
tionally, across all SAT benchmarks, there tends to be a little overlap between backbone
and backdoor variables [20,21].

A fundamental problem of interest and practical importance concerns the possibility
of enhancing the performance of SAT solvers by exploiting the inherent structure of the
instances. Several studies have shown, for example, that backbone/backdoor-guided
branching heuristics improve the solver performance [18,22–24]. Despite these efforts, this
problem remains an open issue [19,25]. One reason is that the computational estimation of
most Boolean structural measures (e.g., backbone and backdoor) is intractable [26]. Second,
as a consequence, the structural measures of SAT and their impact on the behavior of SAT
solvers have not been fully investigated [19,25].

The present study examines the relevance of Boolean structural measures on the
performance of CDCL SAT solvers. The aim is to improve the performance of CDCL
SAT solves by exploiting Boolean structural measures. In achieving this, low-overhead
heuristics for computing backbones and backdoors are proposed. Using these heuristics, the
VSIDS heuristic is extended to exploit backbones and backdoors. In particular, upon restart,
conflict, and/or backtrack, variables that are likely to be backbones and/or backdoors are
bumped. Accordingly, competitive CDCL SAT solver(s) are developed by improving two
state-of-the-art CDCL SAT solvers, MapleLCMDistChronoBT-DL-v3 and LSTech, to exploit
backbones and backdoors. The main contributions of this work are threefold:

1. To compute backbones and backdoors based on a low-overhead computational heuris-
tic, in order to guide the CDCL SAT solver to branch on backbone/backdoor variables
(Section 4.1).

2. To extend the VSIDS variable decision heuristic to exploit backbones and backdoors
(Section 4.2).

3. To develop a competitive CDCL based SAT solver by improving two state-of-the-
art solvers, MapleLCMDistChronoBT-DL-v3 and LSTech, to exploit backbones and
backdoors (Sections 4 and 5).

The rest of the paper is organized as follows: In Section 2, the definitions and notations
used throughout the paper are introduced. In Section 3, a review of state-of-the-art CDCL
SAT solvers is provided. In particular, the base solvers that are the focus of this study,
MapleLCMDistChronoBT-DL-v3 and LSTech, are described. In addition, algorithms for
computing backbone and backdoor variables are reviewed. In Section 4, a description of
the proposed CDCL SAT solvers that exploit backbones and backdoors is presented. In
Section 5, results of the experimental evaluation are reported. This is followed, in Section 6,
by a discussion of the main findings and issues. Finally, Section 7 contains concluding
remarks and suggests future directions.

2. Definitions and Notations

The Boolean satisfiability problem is defined in this section, which is followed by
formal definitions of backbones and backdoors.
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2.1. Boolean Satisfiability Problem

A Boolean variable x may take the value true or f alse. A literal is a Boolean variable x
or its negation x. A clause C is a disjunction of literals. Given a CNF formula φ defined
over X, where X = {x1, x2, . . . , xn} is a set of Boolean variables and L = {xi, xi|xi ∈ X,
1 ≤ i ≤ n} is a set of literals over X, the following definitions hold:

Definition 1 (Conjunctive Normal Form (CNF) formula). A CNF formula φ is a conjunction
of clauses, which is represented as a multiset of clauses {C1, C2, . . . , Cm}.

Definition 2 (k-CNF formula). A k-CNF formula is a CNF formula with exactly k literals
per clause.

Definition 3 (Assignment). An assignment is a mapping from each variable xi to {true, f alse}.
This is denoted by:

φ|{xi=valuei |∀xi∈X,valuei∈{true, f alse}}

Definition 4. An assignment satisfies a literal xi if xi = true, and satisfies a literal xi if xi = f alse.

Definition 5. An assignment satisfies a clause Ci if it satisfies at least one literal in Ci.

Definition 6. An assignment satisfies a CNF formula if it satisfies all clauses.

Definition 7. A CNF formula φ is satisfiable if there exists an assignment that satisfies φ, that is:

φ|{xi=valuei |∀xi∈X,valuei∈{true, f alse}} = true

Otherwise, the formula φ is unsatisfiable:

φ|{xi=valuei |∀xi∈X,valuei∈{true, f alse}} = f alse

Definition 8 (SAT problem [1]). Given a CNF formula φ over X, the SAT problem asks whether
there is an assignment that satisfies φ, or it decides that the formula is unsatisfiable.

Definition 9 (SAT solver). A SAT solver is a computer program which aims to solve the
SAT problem.

2.2. Boolean Structural Measures

Definition 10 (Backbone literal [17]). xb is a backbone literal of φ if for all satisfying assignments
of φ, the value of xb is fixed.

Definition 11 (Backbone of a CNF formula [17]). The backbone of φ is the set of all backbone
literals, which is denoted BBφ.

Definition 12 (Backbone size of a CNF formula [17]). The backbone size of φ is the cardinality
of BBφ, which is denoted |BBφ|. The normalized backbone size of φ is the ratio of the backbone size
to the number of variables |X|, which is denoted BBsizeφ:

BBsizeφ =
|BBφ|
|X| (1)

Definition 13 (Backbone frequency). The backbone frequency of a backbone literal xb ∈ BBφ

is the ratio of the total number of occurrences of xb in φ to the total number of clauses (after CNF
formula simplification, which involves reducing the number of variables and/or clauses in a CNF
formula to a logically equivalent formula. It is part of the preprocessing phase that takes place before
the solving phase.), which is denoted BB f rexb . This can be expressed as follows:
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BB f rexb =

|C|
∑

i=1
xb∈Ci ,Ci∈C

1

|C| (2)

The backbone frequency of φ is the percentage average of the backbone frequencies of all backbone
literals, which is denoted BB f reφ. This is expressed as follows:

BB f reφ =

|BBφ |
∑

b=1
xb∈BBφ

BB f rexb

|BBφ|
× 100 (3)

Definition 14 (SAT sub-solver [18]). A SAT sub-solver Γ is an algorithm that takes an input
CNF formula φ and satisfies the following:

1. (Trichotomy) Γ correctly determines φ. If satisfiable it returns a solution; otherwise, it is
unsatisfiable.

2. (Efficiency) Γ runs in polynomial time.
3. (Trivial-solvability) Γ can determine whether φ is trivially

• true, that is, φ has no clauses; or
• f alse, that is, φ has an empty clause.

4. (Self-reducibility) If Γ determines φ, then ∀xi ∈ X, Γ determines:

φ∗|{xi=valuei |valuei∈{true, f alse}}. (4)

where the latter denotes a simplified formula by fixing the value of any xi to true or f alse.

Definition 15 (Weak backdoor [18]). A non-empty subset of variables BDφ ⊆ X is a weak
backdoor with respect to sub-solver Γ if there exists a truth assignment of BDφ s.t. Γ returns a
satisfying assignment.

Definition 16 (Strong backdoor [18]). A subset of variables BDφ ⊆ X is a strong backdoor with
respect to sub-solver Γ if for all truth assignments of BDφ, Γ returns a satisfying assignment or
concludes unsatisfiability.

Definition 17 (Learning-Sensitive (LS) backdoor [27]). A subset of variables BLS is an LS
backdoor with respect to sub-solver Γ if there exists a search tree exploration order such that a CDCL
SAT solver branches only on variables in BLS, and with Γ and learnt clauses at the leaves of the
search tree, it either finds a satisfying assignment for φ, or it proves that φ is unsatisfiable.

Definition 18 (Learning Sensitive with Restarts (LSR) backdoor [19]). A subset of variables
BLSR is an LSR backdoor with respect to sub-solver Γ if there exists a search tree exploration order
with restarts such that a CDCL SAT solver branches only on variables in BLSR, and with a sub-
solver Γ and learnt clauses at the leaves of the search tree, it either finds a satisfying assignment for
φ or proves that φ is unsatisfiable.

Definition 19 (Backdoor size of a CNF formula [18]). The backdoor size of φ is the cardinality
of BDφ, denoted by |BDφ|. The normalized backdoor size of a CNF formula φ is the ratio of the
backdoor size to the number of variables of |X|, which is denoted BDsizeφ. This can be expressed as
follows:

BDsizeφ =
|BDφ|
|X| (5)

Definition 20 (Backbone/backdoor variable overlap [20]). (To ensure the correctness of com-
puting the backbone/backdoor variable overlap set, we relax the set BBφ to be the set of variables,
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not literals. As such, for all backbone literals in BBφ, their corresponding variables are consid-
ered.) Let BBφ and BDφ be the backbone and backdoor of a CNF formula φ, respectively. The
backbone/backdoor variable overlap is referred to as BBDφ, and it is given by:

BBDφ = BBφ ∩ BDφ (6)

The backbone/backdoor variable overlap size of a CNF formula φ is the cardinality of BBDφ,
which is denoted by |BBDφ|. The normalized backbone/backdoor size is the ratio of |BBDφ| to the
number of variables |X|, which is denoted by BBDoverlapφ:

BBDoverlapφ =
|BBDφ|
|X| (7)

3. Related Work

CDCL SAT solvers follow primarily the Davis–Putnam–Logemann–Loveland (DPLL)
algorithm [28], and they incorporate a number of effective techniques, including clause
learning [29], lazy data structures [6], deletion policies [30], and restarts [31]. Typically, a
CDCL SAT solver is organized into three main modules [6,29,32]: the decision module,
used for branching; the deduction module, used for unit propagation and the identification
of unsatisfied clauses (or conflicts); and the diagnosis module, which is used for conflict
analysis and clause learning (see Figure 1). Accordingly, the main runtime breakdown
of a CDCL SAT solver is: 10% decisions, 80% propagation, and 10% account for conflict
analysis [6].

BranchingVariable
DecisionHeuristic

BooleanConstraint
Propagation

ConflictAnalysis

satisfiable

unsatisfiable

no conflict

backtrack if
decision level > 0

conflict

Input: SAT instance

Output: satisfiable/unsatisfiable
decision

Figure 1. A general framework for CDCL-based SAT solvers.

3.1. CDCL Solvers in SAT Competitions.

The state of the art in CDCL SAT solvers can be thought of as the solvers that have
participated in recent SAT competitions [5]. Most participating CDCL SAT solvers typ-
ically include at least one version or hack (To hack a base solver means to improve the
solver by making only minor changes to its source code.) of MiniSat [32], Glucose [8],
CryptoMiniSat [33], CaDiCaL [34], CoMiniSatPS [35], or more often, the most recent SAT
competition(s) winners (e.g., [12,34]). For the latter to show an improvement of a CDCL
SAT solver with a new heuristic, the solver must be compared to the base solver without
any modifications. Table 1 shows the configuration of the winning CDCL SAT solvers
used in this study (MapleLCMDistChronoBT-DL-v3 and LSTech are selected as the base
solvers. In addition to the base solvers, the proposed solvers were evaluated against
Relaxed_LCMDCBDL_newTech, Kissat_GB, and Kissat_MAB).

MapleLCMDistChronoBT-DL-v3 [12] is based on the winner of the 2018 SAT compe-
tition, MapleLCMDistChronoBT [36], and augmented with duplicate learnt heuristic. In
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particular, Kochemazov et al. [12] improved the three-tier clause management by persisting
additional clauses through the hash-based detection of repeatedly learnt clauses. They
presented their solver MapleLCMDistChronoBT-DL-v3 in the 2019 SAT Race.

Relaxed_LCMDCBDL_newTech, a relaxed variant of MapleLCMDistCBT-DL, was first
introduced in the 2020 SAT competition [15]. Basically, the idea is to relax the backtracking
by protecting promising partial assignments from being pruned. Specifically, during
the search, whenever a node corresponding to a promising assignment is reached, the
algorithm enters a non-backtracking stage (under some conditions); this leads to a complete
assignment, which is fed to an SLS solver to search for a solution nearby. In the 2021 SAT
competition, its variant LSTech [37] showed a good performance especially on satisfiable
instances [37].

The CDCL solver Kissat [34] is another popular base SAT solver that placed first in
the 2020 SAT competition main track. Kissat is a low-level re-implementation of CaDiCaL
that features improved data structures, better scheduling of inprocessing, and optimized
algorithms and implementation. One configuration of Kissat is Kissat_SAT that targets
satisfiable instances. Kissat_SAT is the base solver of Kissat_GB [38] and Kissat is the
base of Kissat_MAB [39]. Kissat_GB bumps the variables based on glue centrality of
glue variables. Kissat_MAB was augmented with the CHB decision heuristic as specified
in [13]. The solver incorporates a reinforcement learning technique under the Multi Armed
Bandit (MAB) framework that combines the VSIDS and the CHB branching heuristics
by adaptively choosing the relevant heuristic at each restart using the Upper Confidence
Bound (UCB) strategy.

3.2. Algorithms for Computing Backbones and Backdoors

Throughout the literature, many algorithms for backbone computation have been pro-
posed. To begin with, Kaiser and Küchlin [40] proposed three backbone computation algo-
rithms based on model enumeration and SAT testing. To compute backbones, Climer and
Zhang [41] proposed a graph reduction technique called limit crossing. Janota et al. [26]
computed backbones based on enumerating implicants and iterative SAT testing and opti-
mizations with calls to a CDCL SAT solver. The work of Previti and Järvisalo [42] follows
the idea of enumerating implicants in [26], but it differs in terms of using a CDCL SAT
solver with preferences. Zhang et al. [43] suggested three sets of filtering optimization
heuristics to improve the performance of the iterative SAT testing method for backbone
computation. Dequen and Dubois [24] introduced a heuristic for backbone computation.
The heuristic was incorporated into the DPLL solver, kcnfs, to encourage branching on
backbone variables. Experimental results indicated that kcnfs performed well on random
k-CNF formulas [5]. Wu [44] applied machine learning to optimize the values of the branch-
ing variables in MiniSat [32]. Experimental results confirmed that the solver managed to
set on average 78% of the backbones correctly. The solver did reduce conflicts; however,
the long preprocessing time outweighed the decrease in runtime.

Many algorithms for backdoor computation have been proposed in the literature.
Williams et al. [18] computed strong backdoors in several industrial instances. Experimental
results indicated that the size of the backdoor is close to zero. The authors also investigated the
relatedness between backdoors, restarts, and the heavy-tailed distribution phenomena. They
suggested that backdoors with sizes near-zero lead to runtime distributions that are lower
bounded by heavy tails. This led Williams et al. [18] to hypothesize that SAT solvers that are
effective in solving industrial SAT instances exploit backdoors. Kilby et al. [20] concluded
that strong backdoors seem to be correlated with problem hardness on random 3-CNF
formulas, whereas this was not observed for weak backdoors. Gregory et al. [21] studied
weak backdoors for random and crafted instances. They observed that backdoor values
for crafted instances are close to zero. Moreover, the authors discovered that when clause
learning is enabled, the average backdoor size decreases. This is of interest because modern
CDCL solvers implicitly exploit the backdoor structure. Zulkoski et al. [19] computed weak
backdoors for all SAT categories on benchmark instances from 2009–2014 SAT competitions.
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Experiments concluded that weak backdoors are hard to compute and small for all instance
categories. Dilkina et al. [45] extended traditional backdoors to LS backdoors to take
advantage of clause learning [29] during the search performed by a CDCL SAT solver.
Experiments showed that LS backdoors are exponentially smaller than traditional strong
backdoors on mixed integer programming SAT instances [46]. Overall, experiments on
instances from all SAT categories have reported a near-zero backdoor size. Zulkoski et al.
[19] extended the notion of LS backdoors to allow restarts by introducing the concept of LSR
backdoors. The results confirmed that industrial instances indeed appear to have smaller
LSR backdoor sizes compared to random instances. Zulkoski et al. [19] observed that the
number of LSR backdoors that have been computed are of twice the instances of weak
backdoors. Zulkoski et al. [19] concluded that LSR backdoor sizes are larger compared to
weak backdoors. However, weak backdoors are harder to compute.

Table 1. The configuration of CDCL SAT solvers considered in this study. In the last column, under
SAT competition rank, the SAT, UNSAT, or ALL indicate the type of track, which is either satisfiable,
or unsatisfiable, or both, respectively.

CDCL Solver Base Solver Decision
Heuristic Restart Heuristic Backtracks Improvements SAT Competition

Rank

-DL-v3 [12]
DistChronoBT

MapleLCM
DistChronoBT

MapleLCM
VSIDS

LRB and

• Luby restarts for
LRB

• Glucose-style
restarts for
VSIDS

ChronoBT

• Duplicate learnts
heuristic

• Deterministic
LRB-VSIDS
switching

• Main track
ALL/UNSAT
1st (2019)

• Main track SAT
2nd (2019)

newTech [15]
LCMDCBDL-

Relaxed
ChronoBT-DL

MapleLCMDist-
VSIDS

LRB and

• Luby restarts for
LRB

• Glucose-style
restarts for
VSIDS

ChronoBT

• Relaxed CDCL
approach

• Probability Based
Phase Saving

• Main track ALL
2nd (2020)

• Main track SAT
1st (2020)

Kissat_MAB [39] Kissat VSIDS and
CHB

• Infrequent
restarts for SAT
mode

• Frequent restarts
for UNSAT mode

ChronoBT

Multi-Armed
Bandit framework
which combines
VSIDS and CHB

Main track
ALL/SAT 1st

(2021)

Kissat_gb [38] Kissat_SAT VSIDS and
CHB

• Infrequent
restarts for SAT
mode

• Frequent restarts
for UNSAT mode

ChronoBT

Glue Bumping (GB)
based on glue

centrality of glue
variables

Main track
ALL/SAT 3rd

(2021)

LSTech [37]

newTech
LCMDCBDL-

Relaxed
VSIDS

LRB and

• Luby restarts for
LRB

• Glucose-style
restarts for
VSIDS

ChronoBT
Relaxed CDCL

approach based on
number of restarts

Main track SAT
2nd (2021)

3.3. MapleLCMDistChronoBT-DL-v3 and LSTech

The base solvers considered in this study, MapleLCMDistChronoBT-DL-v3 and LSTech,
are described in the following section (The reader is referred to Appendix B.1 for a justifica-
tion of the selection of base solvers.). Both solvers follow the general CDCL framework (A
general framework for a CDCL solver is provided in Appendix C.1.). We specifically discuss
the branching decision heuristic augmented in both solvers, as the proposed improvements
are focused on it (A justification for choosing the branching decision heuristic to exploit
backbones in order to improve the base solvers is described in Appendix B.2. In addition,
Appendix C.2 provides the algorithm for the decision heuristic VSIDS implemented in
Maple-based series SAT solvers.).

Algorithm 1 describes a top-level implementation for MapleLCMDistChronoBT-DL-
v3. There are three decision heuristics augmented in it: Dist, VSIDS, and LRB. For the
first 50,000 conflicts, the solver branches using the Dist heuristic (lines 18–19). After the
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first 50,000 conflicts, the solver branches based on a deterministic LRB/VSIDS switching
strategy (lines 21–25). It starts from LRB and switches each time the number of prop-
agations since the last switch exceeds a threshold value. This value is initially set to
30,000,000 propagations; then, it increases by 10% with every switch (line 27).

A top-level implementation for LSTech SAT solver is presented in Algorithm 2. As
the Dist heuristic did not improve the performance of the solver, the developers removed
it. The solver switches based on a new deterministic restart-based strategy (lines 35–41).
Each time the solver loops a threshold value, it will switch between VSIDS and LRB once.
This threshold value is set to 500 (line 35). In addition, LSTech relaxes the backtracking
process for protecting promising partial assignments (lines 33–34). When the solver reaches
a promising partial assignment, it enters a non-backtracking stage until it obtains a full as-
signment (line 34). The SLS solver, CCAr, is then called every number of restarts (sthreshold)
in order to find a satisfying assignment close to the full assignment (lines 16–28). This
value of sthreshold is set at 300, but if the SLS solution does not improve, it increases;
otherwise, it decreases, keeping the value above 300 (lines 24–27). If the SLS solver fails to
find a satisfying assignment within certain limits, then the solver goes back to where it was
interrupted (line 28).

Algorithm 1: Pseudocode for top-level implementation of MapleLCMDistChronoBT-
DL-v3.

Input: φ is a CNF formula with variables x ∈ X
Output: satis f iable and solution, otherwise unsatis f iable

1 INITIALIZE()
2 while notALLVARIABLESASSIGNED() do
3 (φ, status, #propagations)←BOOLEANCONSTRAINTPROPAGATION(φ,solution) // returns the status true

if there is a conflict, f alse otherwise, and the number of propagations
4 if status is con f lict then
5 #con f licts← #con f licts + 1
6 (blevel, learntClauseVars, con f lictSideVars)←CONFLICTANALYSIS() // build the learnt clause φ

← φ ∨ learntClause and return the new decision level
7 AFTERCONFLICTANALYSIS(learntClauseVars, con f lictSideVars)
8 if blevel is equal to 0 then
9 return unsatis f iable

10 else
11 solution←BACKTRACK(blevel,solution) // backtrack to the new decision level
12 decisionLevel← blevel
13 ONUNASSIGN(x) // called when variable x is unassigned by backtracking or restart

14 else if restart condition is triggered then
15 solution←BACKTRACK(0,solution) // backtrack to the new decision level
16 ONUNASSIGN(x) // called when variable x is unassigned by backtracking or restart

17 else
18 if #con f lict < 50, 000 then
19 branchMode← Dist

20 else
21 if #propagations ≤ threshold // threshold value initialized to 30,000,000
22 then
23 branchMode← LRB

24 else
25 branchMode← VSIDS

26 if branchMode has switched to a new heuristic then
27 threshold← threshold + threshold× 0.1
28 #propagations← 0 // #propagations is reset to zero each time branchMode has

switched to a new heuristic

29 x←PICKBRANCHINGVARIABLE() // the decision heuristic is based on branchMode
30 ONASSIGN(x) // called when variable x is assigned by branching or propagations
31 decisionLevel← decisionLevel + 1 // increment decision level due to new decision
32 solution← solution ∪ (x,value)

33 return (satis f iable,solution)
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Algorithm 2: Pseudocode for top-level implementation of LSTech.
Input: φ is a CNF formula with variables x ∈ X
Output: satis f iable and solution, otherwise unsatis f iable

1 INITIALIZE()
2 while not ALLVARIABLESASSIGNED() do
3 (φ,status,#propagations)←BOOLEANCONSTRAINTPROPAGATION(φ,solution) // returns the status true

if there is a conflict, f alse otherwise, and the number of propagations
4 if status is con f lict then
5 #con f licts← #con f licts + 1
6 (blevel, learntClauseVars, con f lictSideVars)←CONFLICTANALYSIS() // build the learnt clauses φ

← φ ∨ learntClause and return the new decision level
7 AFTERCONFLICTANALYSIS(learntClauseVars, con f lictSideVars)
8 if blevel is equal to 0 then
9 return unsatis f iable

10 else
11 BACKTRACK(blevel,solution) // backtrack to the new decision level
12 decisionLevel← blevel
13 ONUNASSIGN(x) // called when variable x is unassigned by backtracking or restart

14 else if restart condition is triggered then
15 #restarts← #restarts + 1
16 if #restarts− sLastrestart is equal to sthreshold // sLastrestart is initialized 0 and sthreshold to 300
17 then
18 (result, slsBestSolution)←CCAr(φ,promissingFullAsgmt) // SLS solver is called to find the

best assignment near promissingFullAsgmt
19 if result equals true // SLS solver found a satisfying assignment, so solution is found,

otherwise resume normal solver mode
20 then
21 return (satis f iable,slsBestSolution)

22 else
23 sLastrestart← #restarts
24 if slsBestSolution is an improved assignment then
25 sthreshold← sthreshold− 300 // keep sthreshold > 300

26 else
27 sthreshold← sthreshold + 300

28 resume normal mode

29 BACKTRACK(0,solution) // backtrack to the new decision level
30 ONUNASSIGN(x) // called when variable x is unassigned by backtracking or restart

31 else
32 if nonBacktrack condition is triggered // enter a non-bactracking stage
33 then
34 promissingFullAsgmt← NONBACKTRACK() // build a promising full assignment within a

time limits, otherwise resume normal solver mode

35 if #restarts− bLastrestart > bthreshold // bLastrestart is initialized to zero and bthreshold to
500.

36 then
37 if branchMode equals VSIDS then
38 branchMode← LRB

39 else
40 branchMode← VSIDS

41 bLastrestart← #restarts // bLastrestart is reset to #restarts

42 x←PICKBRANCHINGVARIABLE() // the decision heuristic is based on branchMode
43 ONASSIGN(x) // called when variable x is assigned by branching or propagations
44 decisionLevel← decisionLevel + 1 // increment decision level due to new decision
45 solution← solution ∪ (x, value)

46 return (satis f iable,solution)

4. The Proposed CDCL SAT Solvers

A description of the proposed CDCL SAT solvers that exploit backbones and backdoors
is presented in this section. To begin with, for the purpose of guiding the CDCL SAT
solver to branch on backcbones/backdoors, two low-overhead heuristics are proposed for
computing backbones and backdoors. They are described in the following subsection.

4.1. Backbone and Backdoor Computational Heuristics

This section details the proposed heuristics for computing the backbone and backdoor
sets: backbone low-overhead (BBLO) heuristic and backdoor low-overhead (BDLO) heuris-
tic. Both heuristics are designed based on relevant features of the backbone and backdoor
while having low computational overhead. As described below, this trade-off between
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accuracy and computational time is motivated by the work of [47]. It should be noted that
these heuristics are not intended to be standalone heuristics for computing the backbones
and backdoors. Rather, they are incorporated within the CDCL SAT solver, in particular
the branching heuristic, to encourage the solver to branch on these variables.

4.1.1. The BBLO Heuristic

The BBLO heuristic was inspired by the low-overhead computation of backbones
in [47]. Menai and Batouche [47] proposed a backbone-based co-evolutionary algorithm
for the partial maximum satisfiability problem guided by the estimated backbone literals of
the problem. That is, literals that are set to the same value on each run will be considered
backbones; otherwise, they will not. BBLO adopts a similar concept except that local search
runs are the search tree trails and non-backbone literals are identified in each run (A trail
is the partial assignment that represents the current path in the search tree produced by a
CDCL SAT solver.). This process is repeated for each restart.

The BBLO heuristic is presented in Algorithm 3. It is called during every restart
procedure in Algorithms 1 and 2. At the first call of the Algorithm 3, all variables in list
are marked as undefined. Upon completing a trail, the initial value of the list is its final
value of the previous trail. For each assigned variable (line 3), the heuristic determines if it
is not a backbone literal whenever a variable has a different assignment than the previous
trail (lines 7 and 8). At the end, all assigned variables in List are moved as literals to the
backbone set.

Algorithm 3: A backbone-based low-overhead computational heuristic (BBLO).
Input: φ: CNF formula with a set of variables X
Output: BackBonesφ: a set of backbone literals for φ
Data: Listφ: a list of size |X| where each entry takes one of the values: true, f alse, unde f ined, or

notBackBone. Listφ is initialized to unde f ined in the first call of Algorithm 3 and its final value is
its initial value upon completing a trail.

1 if trail is completed; // a trail completion triggers the computation of the backbone set
2 then
3 for x ∈ Assignedφ; // Assignedφ is the set of assigned variables so far in φ.
4 do
5 if Listφ[x] is unde f ined then
6 Listφ[x]← xval ; // xval is the assignment value of variable x; either true or

f alse

7 else if Listφ[x] is not marked notBackBone and Listφ[x] is not equal to xval then
8 Listφ[x]← notBackBone

9 Copy literals in Listφ to BackBonesφ

10 return BackBonesφ

4.1.2. The BDLO Heuristic

The BDLO heuristic is inspired by the findings in [20,21] as well as our findings
in Appendix A that show experimentally the near-zero overlap between backbone and
LSR backdoor variables on all benchmark categories. Consequently, the BDLO heuristic
computes the backdoor variables from the backbones in Algorithm 3. As computed in
Algorithm 4, backdoor variables are those that are not backbones (line 9).
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Algorithm 4: A backdoor-based low-overhead computational heuristic (BDLO).
Input: φ: CNF formula with a set of variables X
Output: BackDoorsφ: a set of backdoor variables for φ
Data: ListBBφ: a list of size |X| that takes values true, f alse, unde f ined, and notBackBone, ListBDφ: a

list of size |X| that takes values true, f alse, and, notBackDoor. Listφ is initialized to unde f ined
and ListBDφ to notBackDoor in the first call of Algorithm 4 and their final value is their initial
values upon completing a trail.

1 if trail is completed; // a trail completion triggers the computation of the backbone set
2 then
3 for x ∈ Assignedφ; // Assignedφ is the set of assigned variables so far in φ
4 do
5 if ListBBφ[x] is unde f ined then
6 ListBBφ[x]← xval ; // xval is the assignment value of variable x; either true

or f alse

7 else if ListBBφ[x] is not marked notBackBone and ListBBφ[x] is not equal to xval then
8 ListBBφ[x]← notBackBone
9 ListBDφ[x]← xval

10 Copy assigned variables in ListBDφ to BackDoorsφ

11 return BackDoorsφ

4.2. VSIDS Variants

We chose to exploit backbone and backdoor variables by extending the VSIDS heuristic (A
detailed description of the VSIDS heuristic is provided in Appendix C.2, along with a justifica-
tion for choosing the branching heuristic to improve the solver is given in Appendix B.2). The
following is a summary of VSIDS’s policy implemented in MapleLCMDistChronoBT-DL-v3
and LSTech:

1. Initialization: Each variable has a floating point number, called activity, which is
initialized to 0.

2. Additive bump: Following a conflict analysis phase, the activities of all variables that
led to a conflict are additively bumped (increased), typically by 1, if their decision
levels are greater than the backtrack level; otherwise, they are bumped by 0.5.

3. Decision: The (unassigned) variable with the highest activity is chosen at each deci-
sion.

4. Multiplicative decay: All variables are periodically decremented by multiplying their
activities by a constant 0 < Decay < 1 called the multiplicative decay factor.

To exploit backbone and backdoor variables, the VSIDS heuristic was extended, specif-
ically, the additive bump policy. We considered the following cases: when to bump,
which variables to bump, and with what value to bump. Accordingly, six variants of
the VSIDS heuristic were derived: VSIDS_BBsize_restart, VSIDS_BBsize_BBfreq_restart,
VSIDS_BBsize_BBfreq_backtrack, VSIDS_BBsize_BBfreq_conflict, VSIDS_BBsize_BBfreq_
restart_conflict, and VSIDS_BDsize_restart. Algorithms 5–10 are variants of the VSIDS, and
throughout, we highlight only the added policies to the VSIDS implemented in Maple-
based series SAT solvers (see Appendix C.2). For all algorithms, all variables’ activities are
initialized to zero. In addition, the backbones and backdoors are computed on every restart
by calling BBLO or BDLO. The policy of each variant is detailed below:

1. VSIDS_BBsize_restart (Algorithm 5): Following a restart, the activities of the backbone
literals computed in Algorithm 3 are additively bumped, typically by 1 (lines 4–5).
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Algorithm 5: VSIDS_BBsize_restart a variant of the VSIDS decision heuristic.
// Called when the solver restarts.

1 Procedure RESTART()
2 . . .
3 BBφ ←BBLO(φ) // compute backbone literals, Algorithm 3.
4 for x ∈ BBφ do
5 bumpActivity(x, 1) // bump the activities of every backbone by 1 after every

restart.

6 . . .

2. VSIDS_BBsize_BBfreq_restart (Algorithm 6): Following a restart, the activities of the
backbone literals computed in Algorithm 3 are additively bumped typically by their
frequencies (lines 4–6).

Algorithm 6: VSIDS_BBsize_BBFreq_restart a variant of the VSIDS decision
heuristic.

// Called when the solver restarts.
1 Procedure RESTART()
2 . . .
3 BBφ ←BBLO(φ) // compute backbone literals, Algorithm 3.
4 for x ∈ BBφ do

5 BBFreqx ←

|C|
∑

i=1
x∈ci ,ci∈C

1

|C| // BBFreqx is the ratio of the total number of occurrences

of x in φ to the total number of clauses.
6 bumpActivity(x, BBFreqx) // bump the activities of all backbones by their

BBFreqx after every restart.

7 . . .

3. VSIDS_BBsize_BBfreq_backtrack (Algorithm 7): Following a backtrack, the activities
of the backbone literals computed in Algorithm 3 are additively bumped typically by
their frequencies (lines 3–4).

Algorithm 7: VSIDS_BBsize_BBFreq_backtrack a variant of the VSIDS decision
heuristic.

// Called when the solver backtracks.
1 Procedure BACKTRACK()
2 . . .
3 for x ∈ BBφ do
4 bumpActivity(x, BBFreqx) // bump the activities of all backbones by their

BBFreqx after every backtrack.

5 . . .

// Called when the solver restarts.
6 Procedure RESTART()
7 . . .
8 BBφ ←BBLO(φ) // compute backbone literals, Algorithm 3.
9 for x ∈ BBφ do

10 BBFreqx ←

|C|
∑

i=1
x∈ci ,ci∈C

1

|C| // BBFreqx is the ratio of the total number of occurrences

of x in φ to the total number of clauses.

11 . . .

4. VSIDS_BBsize_BBfreq_conflict (Algorithm 8): Following a conflict, the activities of the
backbone literals computed in Algorithm 3 that led to the learnt clause (including those
in the learnt clause) are additively bumped typically by their frequencies (lines 3–6).
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Algorithm 8: VSIDS_BBsize_BBfreq_conflict a variant of the VSIDS decision
heuristic.

// Called after a learnt clause is generated by the ConflictAnalysis() procedure.
1 Procedure AFTERCONFLICTANALYSIS(con f lictSideVars ⊆ X, learntClauseVars ⊆ X)
2 . . .
3 for x ∈ (con f lictSideVars ∪ learntClauseVars) do
4 if x ∈ BBφ then
5 bumpActivity(x, BBFreqx) // bump the activities of backbones by their

BBFreqx after every conflict.

6 else
7 . . . // Same as VSIDS in Appendix C.2

// Called when the solver restarts.
8 Procedure RESTART()
9 . . .

10 BBφ ←BBLO(φ) // compute backbone literals, Algorithm 3.
11 for x ∈ BBφ do

12 BBFreqx ←

|C|
∑

i=1
x∈ci ,ci∈C

1

|C| // BBFreqx is the ratio of the total number of occurrences

of x in φ to the total number of clauses.

13 . . .

5. VSIDS_BBsize_BBfreq_restart_conflict (Algorithm 9): In combination of variant 2
and 4.

Algorithm 9: VSIDS_BBsize_BBfreq_restart_conflict a variant of the VSIDS deci-
sion heuristic.

// Called after a learnt clause is generated by the ConflictAnalysis() procedure.
1 Procedure AFTERCONFLICTANALYSIS(con f lictSideVars ⊆ X, learntClauseVars ⊆ X)
2 . . .
3 for x ∈ (con f lictSideVars ∪ learntClauseVars)
4 do
5 if x ∈ BBφ then
6 bumpActivity(x, BBFreqx) // bump the activities of backbones by their

BBFreqx after every conflict.

7 else
8 . . . // Same as VSIDS in Appendix C.2

9 . . .

// Called when the solver restarts.
10 Procedure RESTART()
11 . . .
12 BBφ ←BBLO(φ) // compute backbone literals, Algorithm 3.
13 for x ∈ BBφ do

14 BBFreqx ←

|C|
∑

i=1
x∈ci ,ci∈C

1

|C| // BBFreqx is the ratio of the total number of occurrences

of x in φ to the total number of clauses.
15 bumpActivity(x, BBFreqx) // bump the activities of all backbones by their

BBFreqx after every restart.

16 . . .

6. VSIDS_BDsize_restart (Algorithm 10): Following a restart, the activities of the back-
door variables computed in Algorithm 4 are additively bumped typically by 1
(lines 4–5).
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Algorithm 10: VSIDS_BDsize_restart a variant of the VSIDS decision heuristic.
// Called when the solver restarts.

1 Procedure RESTART()
2 . . .
3 BDφ ←BDLO(φ) // compute backdoor variables, Algorithm 4.
4 for x ∈ BDφ do
5 bumpActivity(x, 1) // bump the activities of every backdoor variable by 1 after

every restart.

6 . . .

4.3. The CDCL SAT Solvers

To demonstrate that the six proposed VSIDS decision heuristics (Algorithms 5–10)
contribute to the state of the art, we implemented each of them on top of two base CDCL
SAT solvers, MapleLCMDistChronoBT-DL-v3 and LSTech. In doing so, three different
versions of the six extended CDCL SAT solvers were developed. In version 1, during
restarts/conflicts/backtracks, bumping occurs only in the VSIDS phase. In version 2, bump-
ing during conflicts is only for the VSIDS phase. But, for restarts/backtracks the bumping
occurs in both VSIDS and LRB phases (As the bump in VSIDS_BBsize_BBfreq_conflict
occurs only during conflicts, it is the same for versions 1 and 2.). Version 3 is the same as ver-
sion 1, except that in computing the bump with the backbone frequency, the polarity of vari-
ables is taken into account (Version 3 is not applicable to the variants VSIDS_BBsize_restart
and VSIDS_BDsize_restart.). For convenience, we name each solver by starting with the
base solver name, which is followed by the VSIDS variant, and then the version number,
e.g., MapleLCMDistChronoBT-DL-v3_VSIDS_BDsize_restart_version1.

5. Performance Evaluation
5.1. Benchmarks and Experimental Setup

Experimental evaluation was performed on industrial benchmark instances drawn
from 2002–2021 SAT benchmark instances. On the basis of Table 2, we can see that there
are 32 industrial families out of which 12 are satisfiable, 5 are not, and 15 are both. For
the purpose of reducing bias, each family contains the same number of satisfiable or/and
unsatisfiable instances, seven, and almost the same values of backbone-related measures:
backbone size, frequency, and coverage.

Table 2. A summary of industrial benchmarks used in the performance evaluation drawn from
2002–2021 SAT benchmark instances.

#families (satisfiable-unsatisfiable-both) 32 (12-5-15)
#instances 329
#satisfiable instances (with backbones-without backbones) 189 (185-4)
#unsatisfiable instances 140

The CDCL SAT solvers were evaluated on Shaheen II [48], which is a supercomputer
at King Abdullah University of Science and Technology (KAUST). Each node of the cluster
is equipped with 128 GB of DDR4 memory and a dual CPU based on 16-core Intel Haswell
processors running at 2.3 GHz. In accordance with the literature, the time limit for solving
each instance was set at 3600 s. A comparison is presented here between the extended
proposed CDCL SAT solvers and their counterpart bases as well as three state-of-the-art
winning solvers: RelaxedLCMDCBDL_newTech [15], Kissat_GB [38], and Kissat_MAB [39].
The primary metric is the number of solved instances along with the PAR-2 score. The
PAR-2 score is the sum of runtimes for all solved instances and twice the timeout for each
unsolved instance, so that a lower score is better.
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5.2. Results

The performance results of the six proposed VSIDS extensions implemented in 15 vari-
ants of MapleLCMDistChronoBT-DL-v3 and LSTech are presented in Table 3. Each entry
represents the number of solved instances. Bold values indicate that the variant performed
better than the base solver. MapleLCMDistChronoBT-DL-v3 and LSTech solved 302 and
308, respectively, out of 329 industrial instances. The best performing variant for each
base solver is MapleLCMDistChronoBT-DL-v3_VSIDS_BBsize_BBfreq_restart_version2
(Maple_VBBsfr_v2) and LSTech_VSIDS_BBsize_BBfreq_restart_conflicts_version1 (LSTech
_VBBsfrc_v1). Maple_VBBsfr_v2 solved 307 instances, which was five more than the base
solver. With LSTech_VBBsfrc_v1, four more instances were solved than with the base
solver. For the solvers based on VSIDS_BDsize_restart, the only variant that improved is
LSTech_VSIDS_ BDsize_restart_version1. Furthermore, note that the solver variants based
on backtracks (row number 3) did not perform well.

Table 3. Performance results of the CDCL SAT variants on industrial benchmark instances.
The versions 1, 2, and 3 are explained in Section 4.3. The base solver Maple is short for
MapleLCMDistChronoBT-DL-v3.

Number of Solved Industrial Instances
VBS 1 329

Version 1 Version 2 Version 3
Base Solver Maple LSTech Maple LSTech Maple LSTech

302 308 302 308 302 308

1 VSIDS_BBsize_restart 301 309 301 310 — 3

2 VSIDS_BBsize_BBfreq_restart 302 304 307 308 305 309
3 VSIDS_BBsize_BBfreq_backtrack 296 305 290 302 299 302
4 VSIDS_BBsize_BBfreq_conflict 303 308 — 2 299 308
5 VSIDS_BBsize_BBfreq_restart_conflict 300 312 301 310 302 311
6 VSIDS_BDsize_restart 299 310 302 308 — 3

1 Virtual Best Solver; 2 Implementation of version 1 and 2 for this variant is the same, since this variant does not
bump variables during restarts; 3 Version 3 is not applicable, since this variant does not bump variables based on
the backbone frequencies.

The scatter plots shown in Figure 2a,b detail performance comparisons of Maple_
VBBsfr_v2 and LSTech_VBBsfrc_v1 to their base solvers. Each improved variant solved
more instances and achieved a lower PAR-2 score than its base counterpart.

Table 4 and Figure 3 report runtime results of Maple_VBBsfr_v2 and LSTech_VBBsfrc_v1
compared to state-of-the-art CDCL SAT solvers on the whole benchmark instances in
Table 2. It is observed that LSTech_VBBsfrc_v1 scored 312, which is one instance more than
the number of instances solved by Kissat_MAB, the winner of the 2021 SAT competition.
According to Table 4 and Figure 4a,b, Maple_VBBsfr_v2 showed improvements on both
satisfiable and unsatisfiable benchmarks, while LSTech_VBBsfrc_v1 showed improvements
on satisfiable benchmarks.

Table 4. Performance evaluation of CDCL SAT solvers on industrial instances from the 2002–2021
SAT competitions. #SAT (#UNSAT) denotes the number of solved satisfiable (unsatisfiable) instances.
Appendix D reports the results in detail.

#SAT #UNSAT Total
VBS 189 140 329

MapleLCMDistChronoBT-DL-v3 175 127 302
Maple_VBBsfr_v1 177 130 307
LSTech 179 129 308
LSTech_VBBsfrc_v2 183 129 312
Relaxed_LCMDCBDL_newTech 178 128 306
Kissat_GB 166 131 297
Kissat_MAB 183 128 311
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Figure 2. (a,b) Performance comparison of Maple_VBBsfr_v2 and LSTech_VBBsfrc_v1 to their base
solvers. The results are on the whole 32 industrial benchmarks. For the x and y axes, the labels are of
the form a(b/c), where a is the solver name, b is the total number of instances solved, and c is the
PAR-2 score. In subfigure (b), for example, a point (1000, 1200) means that LSTech_VBBsfrc_v1 took
1000 s to solve the specified instance, whereas LSTech took 1200 s.
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Figure 3. Performance results of Maple_VBBsfr_v2 and LSTech_VBBsfrc_v1 with state-of-the-art
CDCL SAT solvers. Results are on the whole industrial benchmarks. A point (1500, 80) is interpreted
as follows: there are 80 instances that took less than 1500 s to solve with the respective SAT solver.
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Figure 4. Performance results of Maple_VBBsfr_v2 and LSTech_VBBsfrc_v1 with state-of-the-art
CDCL SAT solvers. Subfigures (a,b) illustrate results on satisfiable and unsatisfiable industrial
benchmarks, respectively.

6. Discussion

Backbones and backdoors have been introduced for over two decades, but the current
state of the art of CDCL SAT solvers [17,49] shows limited evidence of their use to improve
CDCL SAT solvers. Among the few is Dequen and Dubois’ work [24]. The backbone-
guided decision heuristic they proposed was heavily dependent on unit propagation, which
consequently added a significant overhead to the solver performance. It should be noted
that early in our work, we have implemented the backbone guided decision heuristic [24]
on top of MapleLCMDistChronoBT-DL-v3 to compute backbones; however, the solver
performed poorly and never beat the base solver. In addition, it was demonstrated in [19,50]
that it is difficult to build a solver that detects backdoors due to the difficulty of computing
them. In this regard, we have proposed the BBLO and BDLO heuristics for computing
backbones and backdoors. As far as backdoors, they are calculated under the assumption of
no overlap between backbones and backdoors, which is only an experimental observation.

According to the performance evaluation in Section 5, both variants Maple_VBBsfr_v2
and LSTech_VBBsfrc_v1 have outperformed the base solvers on solving satisfiable bench-
marks, that is, instances with backbones. Therefore, improvements in VSIDS have led to
improved performance for both variants in solving more satisfiable instances. It is therefore
evident that VSIDS is not only superior at solving unsatisfiable instances [51] but could
even be improved to solve satisfiable instances as well.

Further observations include the improved performance of Maple_VBBsfr_v2 with
both satisfiable and unsatisfiable benchmarks, while LSTech_VBBsfrc_v1 only improved
with satisfiable benchmarks. Evidence suggests that the BBLO heuristic could assist the
CCAr solver in finding an earlier solution by identifying promising partial assignments.

7. Conclusion and Future Work

In this study, we performed a set of modifications to the VSIDS decision heuristic
to exploit backbones and backdoors. To guide the CDCL SAT solver to branch on back-
bone/backdoor variables, we proposed low-overhead heuristics to compute them. We
implemented 15 variants on top of two popular state-of-the-art award-winning CDCL
solvers, MapleLCMDistChronoBT-DL-v3 and LSTech. The variants were evaluated on
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32 industrial families from 2002 to 2021 SAT competitions. Results showed that bumping
the backbone and backdoor variables during the branching heuristic improved both solvers’
performance. In particular, the variant of LSTech that augmented the VSIDS decision heuris-
tic to exploit the backbone size and frequency and bumped during restarts and conflicts
solved more industrial instances compared to the best state-of-the-art CDCL solvers. In the
future, we would like to assess the accuracy of the proposed backbone and backdoor heuris-
tics and to investigate the possibility of any improvements. A further research goal would
be to modify other decision heuristics, such as LRB and CHB. Moreover, we would like to
conduct a larger study to include broader bases of CDCL SAT solvers and benchmarks.
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Appendix A. The Evidence of Boolean Structural Measures for SAT

Boolean structure measures well known in the literature are: phase transition, back-
bone size, backdoor size, and backbone/backdoor variable overlap size [25]. In view of
the fact that the phase transition is only located for random and industrial-like instances,
we focus on characterizing SAT instances based on backbones and backdoors. Interest
in backbone and backdoor size was originally motivated to relate them to problem hard-
ness and the performance of the SAT solver [20]. Backbones have been used to guide the
variable decision heuristics for SAT solvers [24]. Insight into the heavy-tailed phenomena
observed in backtrack heuristics comes from considering backdoor variables. Intuitively,
backtrack heuristics appear to be lucky on certain runs due to small (near-zero) backdoor
sizes. Consequently, backdoor variables are identified early and set correctly [31,49,52].
Boolean structural measures examined are the backbone size, backdoor size, and back-
bone/backdoor variable overlap size. We also introduced three new related measures:
backbone frequency, backbone coverage, and backdoor coverage. All measures are defined
in Section 2 except for backbone coverage and backdoor coverage, which are defined below:

Definition A1 (Backbone coverage). Backbone coverage is the percentage proportion of clauses
that contains backbone literals in a CNF formula (after CNF formula simplification), denoted
BBcvgφ. Backbone coverage is expressed as follows:

BBcvgφ =

|C|
∑

i=1,
∃xb∈BBφ⇔xb∈Ci

s.t. Ci∈C

1

|C| × 100 (A1)

https://www.hpc.kaust.edu.sa
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Definition A2 (Backdoor coverage). Backdoor coverage is the percentage number of clauses that
contain backdoor variables in a CNF formula (after CNF formula simplification), denoted BDcvgφ.
This is formulated as follows:

BDcvgφ =

|C|
∑

i=1,
∃x∈BDφ⇔x∈Ci

s.t. Ci∈C

1

|C| × 100 (A2)

Appendix A.1. Backbone and Backdoor Computation

To demonstrate the presence of backbones and backdoors for SAT instances, we
calculated these measures across the entire benchmark sets. Backbones were computed
exactly by the tool in [42]. This tool is based on repeated calls to MiniSat. Based on the
backbone sets, the frequencies and coverages of the backbone sets were calculated as shown
in Equations (3) and (A1).

LSR-backdoors were computed using a tool developed by [19] called LaSeR. Due to
the difficulty of exactly computing the LSR-backdoors, the tool was configured to compute
an upper bound on the size of the minimal LSR-backdoor. The tool is built on top of the
MapleSAT solver [14]. After the backdoor sets were computed, the backdoor coverages
were calculated, as shown in Equation (A2). Finally, the backbone/backdoor overlap was
computed based on Equations (6) and (7).

Appendix A.2. Benchmarks and Experimental Setup

Experiments were conducted on Shaheen II [48]. A timeout period of 72 h was set to
compute all backbone-related measures (backbone size, backbone frequency, and backbone
coverage) and similarly for backdoor-related measures (backdoor size, backdoor coverage,
and backbone/backdoor variable overlap size) for each of the 7779 instances (see Table A1)
(We were unable to locate benchmarks for 2004, 2005, or 2017).

Table A1. Number of instances included in experiments drawn from 2002–2020 SAT benchmarks.
The symbol ×means that no instances were submitted under the corresponding category.

Year Industrial Crafted Random

2002 209 541 97
2003 69 259 138
2006 70 × ×
2007 161 16 406
2008 62 × ×
2009 165 159 570
2010 100 × ×
2011 150 150 613
2012 208 53 600
2013 150 201 430
2014 58 121 225
2015 176 × ×
2016 182 200 240
2018 400 × ×
2019 200 × ×
2020 400 × ×

Appendix A.3. Experimental Results

We computed the backbones for all satisfiable instances presented in Table A1. In
Figure A1, we report the number of satisfiable instances in each benchmark category with
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and without backbones. In contrast to random instances, most satisfiable industrial and
crafted instances preserve the backbone structure. It is due to the fact that the backbone
sizes for most random instances are controlled by being set to zero prior to generation.
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Figure A1. Number of instances with (w\o) backbones on 2002–2020 SAT benchmarks.

Structural measures related to backdoors are computed on all satisfiable and unsatisfi-
able SAT benchmark instances (see Table A1). Figure A2 displays the number of satisfiable
and unsatisfiable instances with backdoors. One point to note is that the reported instances
for backdoors are lower than those for backbones. This is due to the hardness of computing
LSR backdoors [53]. The number of satisfiable instances with backbone/backdoor variable
overlap is shown in Figure A3.

All Boolean measures are computed, along with their means and standard devia-
tions. A summary of the results is presented in Table A2. Empirical results indicate that
most random benchmarks have no backbones, whereas on average, industrial and crafted
benchmark instances have small backbone sizes. The frequency of backbones is low for all
benchmark categories. As for the backbone coverage, industrial and crafted benchmarks
have higher coverages, on average, than random ones. In both crafted and random bench-
mark instances, the backdoor size and coverage are greater than those in the industrial
category. Additionally, across all SAT benchmarks, there tends to be little overlap between
backbone and backdoor variables.

0 20 40 60 80 100 120 140

2002

2003

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2018

2019

2020

95

13

15

4

18

29

13

37

25

26

49

12

5

83

21

29

63

32

Number of industrial instances

0 50 100 150 200 250 300 350 400

2002

2003

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2018

2019

2020

209

118

14

16

25

35

37

58

186

22

63

48

22

13

Number of crafted instances

0 20 40 60 80 100 120 140 160 180

2002

2003

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2018

2019

2020

25

10

89

76

88

44

37

44

89

95

73

39

Number of random instances

SAT
UNSAT

Figure A2. Number of satisfiable/unsatisfiable instances with backdoors on 2002–2020 SAT bench-
mark instances.
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Figure A3. Number of instances with backbone/backdoor variable overlap on 2002–2020 SAT
benchmark instances.

Table A2. Mean (standard deviation) of the normalized values of Boolean structural measures on
2002–2020 SAT benchmark instances.

Industrial Crafted Random

Backbone size 0.13 (0.2) 0.26 (0.39) 0.06 (0.23)
Backbone frequency 0.05% (0.18) 0.34% (1.14) 1.09% (3.63)
Backbone coverage 15.22% (23.92) 28.49% (40.33) 6.71% (23.74)
Backdoor size 0.67 (0.31) 0.88 (0.2) 0.98 (0.08)
Backdoor coverage 83.41% (25.1) 95.18% (12.73) 99.61% (3.49)
Backbone/backdoor variable overlap 0.08 (0.1) 0.29 (0.36) 0.22 (0.4)

Appendix B. Correlation and Exploitation Analysis

Appendix B.1. Correlation Analysis

Correlation analysis was carried out to quantify the strength and direction of the rela-
tion between the Boolean structural measures and the CDCL metrics. In particular, we com-
puted the Spearman correlation coefficient to measure the nonlinear dependency between
two random variables: the Boolean structural measures and CDCL metrics. Four CDCL
solver metrics were evaluated: runtime, number of decisions, number of propagations, and
number of conflicts. These metrics are derived from the essential blocks that make up any
CDCL solver. The CDCL-based solvers that were examined are MapleLCMDistChronoBT-
DL-v3, CryptoMiniSat-ccnr, Kissat, and Riss6-default. In choosing these solvers, we primar-
ily considered their superior performance in SAT competitions and the unique differences
in techniques incorporated and implementation.

Experiments were conducted on Shaheen II [48] and carried out on SAT instances
presented in Table A1. A timeout period of 72 h was set to compute the four metrics
runtime, number of decisions, number of propagation, and number of conflicts required
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by the solvers: MapleLCMDistChronoBT-DL-v3, CryptoMiniSat-ccnr, Kissat, and Riss6-
default for each of the 7779 SAT instances. As for the backbone and backdoor measures,
they were computed as specified in Appendix A.

Results are depicted in Figures A4–A7. The results show that CDCL metrics are
inversely proportional to backbone-related measures and backbone/backdoor overlap
size, but they are proportional to backdoor-related measures across all industrial, crafted,
and random benchmark instances. In addition, correlation results are apparent for struc-
tured instances. Finally, correlation results are more evident for MapleLCMDistChronoBT-
DL-v3 on industrial benchmarks. Based on this, MapleLCMDistChronoBT-DL-v3 was
selected as the base solver in our research, along with LSTech, which is an improvement of
MapleLCMDistChronoBT-DL-v3 and a medal winner of the 2021 SAT competition.
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Figure A4. Spearman correlation results between Boolean structural measures and the CPU time on
2002–2020 SAT benchmark instances.
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Figure A5. Spearman correlation results between Boolean structural measures and the number of
decisions on 2002–2020 SAT benchmark instances.
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Figure A6. Spearman correlation results between Boolean structural measures and the number of
propagations on 2002–2020 SAT benchmark instances.
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Figure A7. Spearman correlation results between Boolean structural measures and the number of
conflicts on 2002–2020 SAT benchmark instances.

Appendix B.2. Exploitation Analysis

Following the correlation results described in Appendix B.1, MapleLCMDistChronoBT-
DL-v3 was used to carry out the rest of the analysis and experiments. As a way of ex-
amining whether MapleLCMDistChronoBT-DL-v3 exploits Boolean structural measures,
we determined the percentage number of backbone variables decided for the solver in
the first 1000 iterations. The experiments were limited to only backbone variables, not
backdoors, since backbones are unique in SAT instances while backdoors are not. Therefore,
determining whether backdoor variables are exploited is challenging.
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Experiments were conducted, as before, on Shaheen II [48] and carried out on satisfiable
SAT instances with backbones computed from 2002–2020 SAT benchmark instances (see
Figure A1). The decision variables for the first 1000 decisions ran by MapleLCMDistChronoBT-
DL-v3 were collected.

The percentage of exploited backbones performed by MapleLCMDistChronoBT-DL-v3
for the first 1000 decisions on all 2002–2020 benchmark instances is displayed in Figure A8.
Generally, it seems that the percentage of exploited backbones varies more on industrial
and crafted benchmark instances than on random ones. In addition, for structured in-
stances, there appears to be a percentage number of instances where all backbone variables
are exploited.

Furthermore, we analyzed the percentage of exploited backbones for SAT instances
that have been solved in less than 1000 decisions for all benchmark categories. Each row
in Tables A3–A5 (In the case of crafted instances, we grouped three instances per row
for convenience.) identifies an instance, highlighting the number of decisions required to
solve it (first column) and the percentage backbone variables exploited (second column).
For instances that can be solved in less than 1000 decisions, it is obvious that structured
instances exploit most of the backbone variables. On the other hand, less than 50% of
backbone variables are exploited for random benchmark instances.

0 10 20 30 40 50 60 70 80 90 100
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Crafted

Random

Percentage of SAT instances

0%

]0-30%]

]30%-60%]

]60%-100%[

100%

Percentage backbone
variables exploited out
of all decision variables

Figure A8. Percentage number of exploited backbones by MapleLCMDistChronoBT-DL-v3 for the
first 1000 decisions on all 2002–2020 benchmark instances.

Table A3. Reported industrial instances from experiment in Figure A8 that are solved in fewer than
1000 decisions.

Number of
Decisions

Percentage of Exploited Backbones
in All Decision Variables

370 54.05%
15 66.67%
180 70.00%
372 91.67%
335 95.52%
174 99.43%
3 100.00%
36 100.00%
49 100.00%
55 100.00%
57 100.00%
57 100.00%
60 100.00%
152 100.00%
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Table A4. Reported crafted instances from experiment in Figure A8 that are solved in fewer than
1000 decisions.

Number of
Decisions

Percentage of Exploited
Backbones in All

Decision Variables

Number of
Decisions

Percentage of Exploited
Backbones in All

Decision Variables

Number of
Decisions

Percentage of Exploited
Backbones in All

Decision Variables

18 55.56% 44 86.36% 116 100.00%
19 57.89% 369 92.68% 144 100.00%
940 58.62% 184 98.37% 188 100.00%
563 58.79% 258 98.84% 208 100.00%
352 61.08% 215 99.07% 229 100.00%
443 61.63% 217 99.08% 239 100.00%
716 62.15% 224 99.11% 276 100.00%
534 63.11% 173 99.42% 281 100.00%
789 63.88% 16 100.00% 298 100.00%
490 65.51% 26 100.00% 300 100.00%
160 67.50% 30 100.00% 323 100.00%
61 70.49% 88 100.00% 346 100.00%
22 72.73% 99 100.00% 351 100.00%
22 81.82% 106 100.00% 401 100.00%
33 81.82% 109 100.00% 435 100.00%

Table A5. Reported random instances from experiment in Figure A8 that are solved in fewer than
1000 decisions.

Number of
Decisions

Percentage of Exploited Backbones
in All Decision Variables

69 47.83%
169 47.93%
678 48.82%
352 49.72%
667 49.93%
191 50.79%
391 51.15%
156 51.28%
594 53.20%
656 53.20%
312 53.53%
404 54.21%

Appendix C. The CDCL Framework and Popular Variable Decision Heuristics

Appendix C.1. The CDCL Framework

The CDCL framework is depicted in Algorithm A1. After constraint propagation
detects a conflict (lines 3–4), CDCL learns at least one reason for that conflict in the form
of a new clause (lines 5 and 6), called learnt clause, which is added to the CNF formula.
In this case, the CDCL SAT solver directly backtracks to an earlier level (lines 9–12). The
instance is declared unsatisfiable if the backtracked level is zero. In the absence of a conflict,
a branching variable is picked and the level of that variable is updated accordingly (lines
18–21). Once all variables are assigned, the formula is satisfied (line 2). In the event that the
restart condition is triggered, the SAT solver will restart (lines 13–16).
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Algorithm A1: CDCL framework.
Input: φ: CNF formula with variables x ∈ X
Output: satis f iable and solution, otherwise unsatis f iable

1 INITIALIZE()
2 while notALLVARIABLESASSIGNED() do
3 (φ, status)←BOOLEANCONSTRAINTPROPAGATION(φ,solution)
4 if status is con f lict then
5 (blevel, learntClauseVars, con f lictSideVars)=CONFLICTANALYSIS() // Clause learning
6 AFTERCONFLICTANALYSIS(learntClauseVars, con f lictSideVars)
7 if blevel is equal to 0 then
8 return unsatis f iable

9 else
10 solution← BACKTRACK(blevel,solution) // Backtrack
11 decisionLevel ← blevel
12 ONUNASSIGN(x) // Called when variable x is unassigned by backtracking or

restart

13 else if restart condition is triggered then
14 solution← BACKTRACK(0,solution) // Restart
15 decisionLevel ← 0
16 ONUNASSIGN(x) // Called when variable x is unassigned by backtracking or

restart

17 else
18 x ←PICKBRANCHINGVARIABLE() // Branch
19 ONASSIGN(x)
20 decisionLevel ← decisionLevel + 1
21 solution← solution ∪ (x, value)

22 return (satis f iable,solution)

Appendix C.2. The VSIDS Heuristic

VSIDS refers to a class of branching heuristics commonly used in CDCL SAT solvers
that rank all the variables in an SAT instance during the run of the solver. VSIDS is
significantly more effective than other well-known heuristics, particularly when solving
unsatisfiable SAT instances [51,54,55]. The VSIDS heuristic was originally proposed as
part of the Chaff solver [6]. Since then, many variants have been proposed, including
VSIDS implemented in MiniSat and the variable move-to-front (VMTF) decision heuristic.
In general, VSIDS is characterized by additive bumping, multiplicative decay, and low
computation overhead. This work will focus on the VSIDS MiniSat variant implemented in
Maple-based series SAT solvers [56].

The policy of VSIDS implemented in Maple-based series SAT solvers [56] is presented
in Algorithm A2. All procedures are called as part of the CDCL framework in Algorithm A1.
In the initialization procedure (line 1), each variable has a floating point number, called
activity, which is initialized to 0 (lines 4–7). Following a conflict analysis phase (line 9),
the activities of all variables that led to the learnt clause (including those in the learnt
clause) are additively bumped (increased), typically by 1, if their decision levels of variables
are greater than the backtrack level, such variables receive more bumps to activity scores
(line 14); otherwise, they are bumped by 0.5 (line 16). In addition, all activities of variables
are decremented by multiplying them by a constant 0 < Decay < 1 called the multiplicative
decay factor (lines 18–20). To select a variable, the (unassigned) variable and polarity with
the highest activity are chosen at each decision (line 24).
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Algorithm A2: VSIDS decision heuristic. All procedures are part of the CDCL
framework in Algorithm A1.

// Called once at the start of the solver.
1 Procedure INITIALIZE()
2 . . .
44 for x ∈ X // X is the set of Boolean variables in φ.
5 do

// Initialize the activity of each variable to be 0.
77 activityx ← 0

8 . . .

// Called after a learnt clause is generated from conflict analysis.
9 Procedure AFTERCONFLICTANALYSIS(con f lictSideVars ⊆ X , learntClauseVars ⊆ X)

10 . . .
11 for x ∈ (con f lictSideVars ∪ learntClauseVars)
12 do
13 if xdecisionLevel > backtrackLevel then
14 bumpActivity(x, 1) // Bump: increase the activities of all variables that

led to the learnt clause including variables in the learnt clause by 1
if their decision levels are greater than the backtrack level.

15 else
16 bumpActivity(x, 0.5) // Bump: increase the activities of all variables that

led to the learnt clause including variables in the learnt clause by 0.5
if their decision levels are less than the backtrack level.

1818 for x ∈ X do
19 decayActivity(x, Decay) // Decay: Multiply the activities of every variable by

0 < Decay < 1.
20 . . .

// Called when the solver requests the next branching variable.
21 Procedure PICKBRANCHINGVARIABLE()
22 . . .
2424 return Unassigned x with highest activityx

Appendix D. Reported Results on Industrial Families

Table A6. The number of solved instances of industrial families from the 2002–2021 SAT competitions.
Each family consists of seven satisfiable instances.

Family
MapleLCM
DistChrono
BT-DL-v3

Maple_
VBBsfr_v1 LSTech LSTech_

VBBsfrc_v2

Relaxed_
LCMDCBDL_

newTech
Kissat_GB Kissat_MAB

aloul_bart 7 7 7 7 7 7 7
goldberg 7 7 7 7 7 7 7
grastien_anbulagan_diag 7 7 7 7 7 7 7
grastien_anbulagan_medium 7 7 7 7 7 7 7
rintanen 5 6 5 7 6 4 5
soos 5 6 5 7 6 5 5
Argumentation 7 7 7 7 7 6 7
StedmanTriples 7 7 7 7 6 6 7
MinimalSuperpermutation 6 7 7 7 6 6 7
biere_dinphil 7 7 7 7 7 7 7
eichberger 7 7 7 7 7 7 7
manthey_cvc4 6 5 7 6 6 7 7
corblin 7 7 7 7 7 7 7
cryptanalysis_zaikin 7 7 7 7 7 7 7
surynek 7 7 7 7 7 7 7
stojadinovic 7 7 7 7 7 7 7
zarpas_Ibm 7 7 7 7 7 7 7
manthey_stp 7 7 7 7 7 7 7
HamiltonianCycle 7 7 4 5 4 7 7
fuhs_aes 5 4 6 6 6 6 7
MaxsatOptimum 7 7 7 7 7 7 7
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Table A6. Cont.

Family
MapleLCM
DistChrono
BT-DL-v3

Maple_
VBBsfr_v1 LSTech LSTech_

VBBsfrc_v2

Relaxed_
LCMDCBDL_

newTech
Kissat_GB Kissat_MAB

CircuitMultiplie 6 5 7 7 6 6 6
GiraldezCr 7 7 7 7 7 7 7
scheduling 7 7 7 7 7 1 7
PetrinetConcurrency 5 7 7 7 7 3 7
velve 7 7 7 7 7 7 7
ehlers 4 4 5 5 6 4 6

Total 175 177 179 183 178 166 183

Table A7. The number of decided unsatisfiable instances of industrial families from the 2002–2021
SAT competitions. Each family consists of seven unsatisfiable instances.

Family
MapleLCM
DistChrono
BT-DL-v3

Maple_
VBBsfr_v1 LSTech LSTech_

VBBsfrc_v2

Relaxed_
LCMDCBDL_

newTech
Kissat_GB Kissat_MAB

rintanen 6 7 7 7 7 6 6
eichberger 7 7 7 7 7 7 7
stojadinovic 7 7 7 7 7 7 7
surynek 7 7 7 7 7 7 7
GiraldezCr 6 7 6 6 6 6 6
manthey_cvc4 4 5 5 4 5 5 4
manthey_stp 5 5 5 5 5 5 5
ehlers 6 6 6 6 6 6 6
zaikin 7 7 7 7 7 7 7
goldberg 5 6 6 7 6 7 6
biere_dinphil 7 7 7 7 7 7 7
velve 7 7 7 7 7 7 7
zarpas_Ibm 7 7 7 7 7 7 7
corblin 7 7 7 7 7 7 7
AtLeastTwoSolutions 7 7 7 7 7 7 7
CellularAutomata 7 7 7 7 7 7 7
strcmpVerification 7 7 7 7 7 7 7
lamProblem 6 6 6 6 6 6 6
populationSafety 7 7 7 7 7 7 6
fuhs_aes 5 4 4 4 3 6 6

Total 127 130 129 129 128 131 128
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