
Citation: Lukyanenko, D.; Shinkarev,

V.; Yagola, A. Accounting for

Round-Off Errors When Using

Gradient Minimization Methods.

Algorithms 2022, 15, 324.

https://doi.org/10.3390/a15090324

Academic Editor: Zebang Shen

Received: 12 August 2022

Accepted: 7 September 2022

Published: 9 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Accounting for Round-Off Errors When Using Gradient
Minimization Methods
Dmitry Lukyanenko 1,2,* , Valentin Shinkarev 1 and Anatoly Yagola 1

1 Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University,
119991 Moscow, Russia

2 Moscow Center for Fundamental and Applied Mathematics, 119234 Moscow, Russia
* Correspondence: lukyanenko@physics.msu.ru

Abstract: This paper discusses a method for taking into account rounding errors when constructing a
stopping criterion for the iterative process in gradient minimization methods. The main aim of this
work was to develop methods for improving the quality of the solutions for real applied minimization
problems, which require significant amounts of calculations and, as a result, can be sensitive to the
accumulation of rounding errors. However, this paper demonstrates that the developed approach
can also be useful in solving computationally small problems. The main ideas of this work are
demonstrated using one of the possible implementations of the conjugate gradient method for
solving an overdetermined system of linear algebraic equations with a dense matrix.

Keywords: gradient method; conjugate gradient method; round-off error; rounding error; stopping
criteria

MSC: 65F10; 65F20; 65F30

1. Introduction

When solving applied inverse problems or optimization problems, it often becomes
necessary to minimize some target functionals. Iterative methods are usually used for
minimization. If the problem is linear, then one of the most common minimization methods
employed is the conjugate gradient method [1]. If the number of components in the
required element realizing the minimum of the functional is N, then the conjugate gradient
method converges to the exact solution of the problem in exactly N iterations. However,
this statement is only true on the condition that all calculations are performed accurately
and that there are no rounding errors. Nevertheless, when solving real applied problems,
rounding errors can greatly affect the resulting approximate solution. Two cases are
possible: In the first case, the value of the minimized functional becomes comparable to
the background of rounding errors at some iteration, the number of which is less than
N. Starting from this iteration, the value of the functional stops decreasing. This means
that starting from this iteration, all subsequent calculations will not improve the solution
and are meaningless. Therefore, a reasonable question arises—is it possible to track this
moment in order to save computing resources? A positive answer to this question is
useful, but not critical in solving real applied problems. On the other hand, the second
case is essential for practice. In the second case, due to rounding errors in determining
the minimization directions and the steps along them, it turns out that after performing
N iterations, the value of the minimized functional is still quite large. This means that the
found approximate solution can still be refined if the iterative process is continued. It turns
out that the continuation of the iterative process will allow us to find a better approximation
for the true solution. We emphasize that here, in contrast to the first case, the classical
criterion for stopping the iterative process (by a fixed number of iterations equal to N)
gives a bad result. When solving many real applied inverse problems (both 2D and 3D),

Algorithms 2022, 15, 324. https://doi.org/10.3390/a15090324 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15090324
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5140-3617
https://orcid.org/0000-0001-8365-7224
https://orcid.org/0000-0001-6942-2138
https://doi.org/10.3390/a15090324
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15090324?type=check_update&version=2


Algorithms 2022, 15, 324 2 of 11

the authors of this paper regularly encountered a similar problem. To solve this problem,
it was necessary to use purely empirical approaches and determine the optimal number
of iterations experimentally. However, when solving “large” real problems, this approach
required large computational resources. As a result, there was a need to develop a method
for automatically determining the number of iterations, in which the value of the minimized
functional becomes comparable to the background of rounding errors. Therefore, taking
into account rounding errors when choosing a criterion to stop the iterative process is a
relevant issue and in demand in practice.

A thorough study of this issue showed that there are practically no research works
on this topic. Most of the works that contain recommendations concerning the choice
of the stopping criterion of the iterative process in gradient methods do not take into
account rounding errors (for example, see [2–21]). The authors are only aware of one study
dedicated to this subject: the work by Kalitkin et al. in [22]. However, the derivation of the
corresponding formulas in this work contains many unfounded assumptions. This was
the authors’ motivation for constructing their own version of these formulas. In this work,
we would like to demonstrate the methodology for deriving the corresponding formulas;
we intend to show this through the application of the conjugate gradient method to solve
an overdetermined system of linear algebraic equations with a dense matrix. If desired,
similar formulas for solving nonlinear systems can be constructed. In this case, one cannot
be limited to the conjugate gradient method but must be able to use any gradient method,
for which its own criterion to stop the iterative process upon entering the background
of rounding errors will be obtained. The choice of the conjugate gradient method as an
example is justified by the fact that for this method, there is a classical criterion for stopping
the iterative process with which we can compare our approach.

Separately, we would like to draw attention to how accounting for rounding errors
is, in our opinion, especially relevant now, when supercomputer systems are available to
many researchers for the calculation of real “large” problems. This is due to the fact that the
use of high-performance computing systems makes it possible to carry out huge amounts
of calculations. However, the more calculations we perform, the more rounding errors can
accumulate over the course of a computation. The more errors are accumulated, the more
unreliable the results can be if we apply the criteria to stop the iterative process, which do
not take this error into account. However, despite this, we will demonstrate in this paper
that these formulas can give good results even in the case of solving “small” problems.

The structure of this work is as follows. Section 2 contains the statement of the problem
and the formula of one of the possible implementations of the conjugate gradient method
to obtain its solution. Section 3 demonstrates the derivation of formulas for the stopping
criterion of the iterative process, which takes into account the rounding errors. Section 4
discusses the computational complexity of the proposed algorithm. Section 5 formulates
a version of the conjugate gradient method that we are considering, with an improved
stopping criterion of the iterative process. Section 6 contains examples of calculations
demonstrating the effectiveness of the proposed approach.

2. Problem Statement

Consider one of the possible implementations of the conjugate gradient method for
solving an overdetermined system of linear algebraic equations with a dense matrix:

A x = b. (1)

Here, A is a rectangular matrix of dimension M× N (M > N), and b is a column vector
with M components. It is necessary to find x, which is a column vector with N components.

When solving real applied problems, the components of the vector b are usually
measured experimentally. Therefore, due to the presence of experimental errors, this
system may not have a classical solution. However, with a sufficient number of input data
(M > N and the data do not duplicate each other), it is possible to find a pseudo-solution
to this problem using the least squares method:



Algorithms 2022, 15, 324 3 of 11

x = argmin
x∈RN

‖Ax− b‖2.

Here, and below ‖ · ‖, is the Euclidean norm.

Remark 1. It is well-known that many real applied problems are ill-posed [23]. When solving them,
it is necessary to construct regularizing algorithms. Most often, these algorithms are based on the
minimization of some modified functionals. An example of such a functional is the functional of
A. N. Tikhonov [23]: f [x] = ‖Ax− b‖2 + α‖Rx‖2 (here, α is the regularization parameter, and
the matrix R defines a priori constraints). In this paper, to simplify the presentation, we will assume
that the problem under consideration is well-posed. However, the formulas obtained below can be
easily generalized to the mentioned case.

There are many ways to find the vector x. We have chosen the one that is the most
indicative within the framework of this work.

Hence, the vector x with N components, which is a solution (pseudo-solution) of
system (1), can be found using the following iterative algorithm, which constructs the
sequence x(s). This sequence converges in N steps to the desired solution (pseudo-solution)
of system (1), based on the assumption that all calculations are performed exactly.

We set p(0) = 0, s = 1, and an arbitrary initial approximation x(1). Then, we repeatedly
perform the following sequence of actions:

r(s) =


AT(A x(s) − b

)
, if s = 1,

r(s−1) − q(s−1)(
p(s−1), q(s−1)

) , if s > 2,

p(s) = p(s−1) +
r(s)(

r(s), r(s)
) ,

q(s) = AT(A p(s)
)
,

x(s+1) = x(s) − p(s)(
p(s), q(s)

) ,

s = s + 1.

We emphasize that in this case, the classical criterion for stopping the iterative process
is formulated as follows: calculations are carried out while s 6 N.

As a result, after N steps, the vector xres = x(N+1) will be regarded as a solution
(pseudo-solution) of system (1).

Remark 2. If we do not use the recurrent notation and calculate the residual r(s) in each iteration in
the same way as in the first iteration, then the number of arithmetic operations required to complete
the iterative process will double. This is the motivation for using the recurrent form of the conjugate
gradient method when solving “large” problems.

Formally, this algorithm with the classical stopping criterion of the iterative process is
formulated as follows:

1. Set p(0) := 0, s := 1, and an arbitrary initial approximation x(1).
2. Compute r(s) := AT(A x(s) − b

)
and go to step 4.

3. Compute r(s) := r(s−1) − q(s−1)(
p(s−1), q(s−1)

) .

4. Compute p(s) := p(s−1) +
r(s)(

r(s), r(s)
) .

5. Compute q(s) := AT(A p(s)
)
.



Algorithms 2022, 15, 324 4 of 11

6. Compute x(s+1) := x(s) − p(s)(
p(s), q(s)

) .

7. If s = N, then stop the iterative process and set x(s+1) as a solution of system (1).
8. Redefine s := s + 1 and go to step 3.

3. Improved Criterion for Stopping the Iterative Process

We will stop the iterative process at the iteration when the norm of the residual r(s)

ceases to exceed the rounding errors that occur during its calculation. In other words,
it makes sense to continue the iterative process as long as the following inequality re-
mains true:

‖r(s)‖2 > σ2
s ∆2.

Here, σ2
s is the variance of the error of the residual norm at the s-th iteration in units of ∆2,

with ∆ being the relative rounding error. In calculations with double precision, (float64)
∆ = 10−16; in calculations with quad precision, (float128) ∆ = 10−32. Next, we describe a
method for estimating the value of σ2

s .
Let us start by estimating the error of each of the elements of the vector r(s) in the first

iteration s = 1:

r(s)n =
M

∑
k=1

Akn

(
N

∑
l=1

Akl x
(s)
l − bk

)
.

We will estimate errors from addition according to the rules of statistics, i.e., σ2
a+b = σ2

a + σ2
b .

Errors from multiplication are quite small compared to errors from addition, so we will not
take them into account.

Then,

σ2
∑
l

Akl xl−bk
=

N

∑
l=1

(
Akl x

(s)
l

)2
+ b2

k .

With the subsequent multiplication, the resulting error variances also increase by the
corresponding factor squared:

σ2

Akn

(
∑
l

Akl xl−bk

) = A2
kn

(
N

∑
l=1

(
Akl x

(s)
l

)2
+ b2

k

)
.

Finally, summing over k, we get the formula below:

σ2
r(s)n

=
M

∑
k=1

σ2

Akn

(
∑
l

Akl xl−bk

) =
M

∑
k=1

A2
kn

(
N

∑
l=1

(
Akl x

(s)
l

)2
+ b2

k

)
.

Next, we will consider the calculation of the error for the components of the vector r(s)

in iterations s > 2. In these iterations, we rewrite the recurrent formula for calculating the
residual r(s) in the following form:

r(s)n = r(s−1)
n − q(s−1)

n
N
∑

l=1
p(s−1)

l q(s−1)
l

.

The error variance can be calculated using partial derivatives with respect to the
independent components. However, taking into account all possible values in previous
iterations will lead to an overestimation of the error. To avoid this, we take into account
the peculiarity of gradient methods, which consists of the fact that gradient methods are
resistant to some parts of rounding errors because in each iteration, some of the errors
are compensated. This is due to the fact that each iteration of the gradient method can be



Algorithms 2022, 15, 324 5 of 11

interpreted as a way to find the next better approximation of the desired solution based on
a previous iteration.

The first way to calculate σ2
r(s)n

. We will assume that when calculating the vector p(s),

it does not make sense to take into account all previous errors (because p(s) is the direction
of minimization). Thus, only rounding errors which arise when using the value of p(s) in
further calculations remain. Taking this into account, we get the following equations:

σ2
r(s)n

= σ2
r(s−1)

n
+

N

∑
n′=1

 ∂r(s)n

∂q(s−1)
n′

2

σ2
q(s−1)

n′

= σ2
r(s−1)

n
+

 1
N
∑

l=1
p(s−1)

l q(s−1)
l

− p(s−1)
n q(s−1)

n(
N
∑

l=1
p(s−1)

l q(s−1)
l

)2


2

σ2
q(s−1)

n

+ ∑
n′ 6=n

 p(s−1)
n′ q(s−1)

n′(
N
∑

l=1
p(s−1)

l q(s−1)
l

)2


2

σ2
q(s−1)

n′
.

Here, the expressions for the error variances of the calculation of the vector q(s−1) compo-
nents are calculated using already known formulas, such as:

σ2
q(s−1)

n
=

M

∑
k=1

A2
kn

N

∑
l=1

(
Akl p(s−1)

l
)2.

The second way to calculate σ2
r(s)n

. To significantly simplify (in terms of the number

of operations) the calculation of error variances in each iteration of the gradient method,
we can assume that it is not necessary to take into account all previous errors, not only
when calculating the vector p(s), but also when calculating the vector q(s). Taking this into
account, we get the following equation:

σ2
r(s)n

= σ2
r(s−1)

n
+

 q(s−1)
n

N
∑

k=1
p(s−1)

k q(s−1)
k


2

.

After calculating σ2
r(s)n

with any of the methods, the error variance of the residual norm

σ2
s is calculated as the sum of the variances of the components since they are independent

of each other, which is expressed as follows:

σ2
s =

N

∑
n=1

σ2
r(s)n

.

When the condition
σ2

s ∆2

‖r(s)‖2
> 1

is met, the iterative process is interrupted, and the vector xres = x(s) is chosen as a solution
of the system (1).

This is the improved criterion for stopping the iterative process.



Algorithms 2022, 15, 324 6 of 11

4. On Increasing Computational Complexity

Note that in the gradient method under consideration, starting from s = 2, the most
computationally intensive operation in each iteration is the operation that calculates q(s).
It requires M(2N − 1) arithmetic operations to compute the vector A p(s) and N(2M− 1)
arithmetic operations to compute the final value q(s). That is, the total number of arithmetic
operations for computing q(s) is 4MN −M− N = O(MN). The remaining operations in
each iteration of the gradient method make a much smaller contribution to the total number
of arithmetic operations, so we estimate the computational complexity of each iteration of
the gradient method as O(MN).

Once again, we also emphasize the advantage of the recurrent calculation of the r(s)

residual in all iterations, starting from r(s). If we do not use the recurrent notation and then
calculate the residual r(s) in each iteration in the same way as in the first iteration, then the
number of arithmetic operations required to complete the iterative process will increase by
about two times.

An important question arises: does the computational complexity of the algorithm
increase when using the new stopping criterion?

The first way to calculate σ2
r(s)n

requires about O(MN) additional arithmetic operations

in each iteration of the considered gradient method. One can accurately calculate all arith-
metic operations; in order to achieve this, one needs to consider the most computationally
intense part—the calculation components of σ2

q(s−1)
n

. This operation requires M(3N − 1)

arithmetic operations to compute the elements of the inner sum, and then N(3M − 1)
more arithmetic operations to compute the outer sum. In total, 6MN −M− N = O(MN)
operations are obtained, which increases the computational complexity of the considered
gradient method by about 2.5 times.

The second way to calculate σ2
r(s)n

requires only about O(N) additional arithmetic

operations. This means that the computational complexity of the considered gradient
method will not change in order.

The use of both approaches in solving a large number of applied problems has shown
that both methods give approximately the same results. In this regard, in the test calcu-
lations in Section 6, we will use only the second method as it is the most economical in
the computational sense. However, we will first formulate this version of the conjugate
gradient method with an improved stopping criterion of the iterative process.

5. Improved Iterative Algorithm

Thus, the iterative algorithm for solving system (1) with an improved stopping crite-
rion of the iterative process will take the following form:

1. Set p(0) := 0, s := 1 and an arbitrary initial approximation x(1).
2. Compute r(s) := AT(A x(s) − b

)
.

3. Compute σ2
r(s)n

:=
M
∑

k=1
A2

kn

(
N
∑

l=1

(
Akl x

(s)
l

)2
+ b2

k

)
for each n ∈ 1, N and go to step 6.

4. Compute r(s) := r(s−1) − q(s−1)(
p(s−1), q(s−1)

) .

5. Compute σ2
r(s)n

:= σ2
r(s−1)

n
+

(
q(s−1)

n(
p(s−1), q(s−1)

))2

for each n ∈ 1, N.

6. Compute σ2
s =

N
∑

n=1
σ2

r(s)n
.

7. If
σ2

s ∆2

‖r(s)‖2
> 1, then stop the iterative process and set x(s) as a solution of system (1).

8. Compute p(s) := p(s−1) +
r(s)(

r(s), r(s)
) .

9. Compute q(s) := AT(A p(s)
)
.



Algorithms 2022, 15, 324 7 of 11

10. Compute x(s+1) := x(s) − p(s)(
p(s), q(s)

) .

11. Redefine s := s + 1 and go to step 4.

6. Examples of Numerical Experiments

To demonstrate the capabilities of the proposed algorithm, we denote the following:
(1) a matrix A of dimension M× N, with elements generated as random variables with a
uniform distribution in the range [0, 1]; (2) a model solution xmodel—a column vector of
dimension N whose elements correspond to the values of the sine on the interval [0, 2π].

xmodel
n = sin

2π(n− 1)
N − 1

, n ∈ 1, N

For the matrix A and the model solution xmodel , the right side b was calculated as follows:
b = Axmodel . To solve system (1) with this matrix and the right side, the considered
variation of the conjugate gradient method with an improved criterion for stopping the
iterative process was used. All calculations were performed in double precision (float64),
i.e., ∆ = 10−16.

Remark 3. Note that all subsequent results may slightly differ in details when reproduced since
the matrix A is given randomly.

Example 1. Calculations were made for M = 32 and N = 30. These parameters were especially
selected to better demonstrate the capabilities of the algorithm under consideration. Figure 1a shows

a graph of
σ2

s ∆2

‖r(s)‖2
depending on the iteration number s. The classical stopping criterion for the

iterative process would have stopped at the iteration with the number s = N ≡ 30 (marked in the
figure with the red dotted vertical line), but the improved criterion stopped the iterative process
only at the iteration with the number s = 48, i.e., much later. Figure 1b shows the dependence
of ‖x(s) − xmodel‖ on the iteration number s. It is clearly seen from the graph that the classical
criterion for stopping the iterative process gives a solution that is quite different from that of the
model. Now, let us see what the approximate solutions look like in the case of using different criteria
to stop the iterative process. Figure 2 shows an approximate solution—vector xres. It is perfectly
clear that the approximate solution found by the classical method (marked in red on the graph)
is quite different from the exact one (sine), even visually. In this case, the solution found using
the improved criterion for stopping the iterative process no longer visually differs from the exact
solution. That is, we managed to demonstrate the efficiency of the proposed algorithm with the use
of such a simple example, although it was initially assumed that the method would work only when
solving “large” problems.

Figure 1. Example 1: (a) Graph of
σ2

s ∆2

‖r(s)‖2
depending on the iteration number s. (b) Graph of

‖x(s) − xmodel‖ depending on the iteration number s.



Algorithms 2022, 15, 324 8 of 11

Figure 2. Example 1: Graph of xres
n depending on the component index n. Figures correspond to two

different arbitrary matrices A.

Example 2. Let us now carry out a numerical experiment for M = 900 and N = 30. It can be seen
from Figure 3a that the classical stopping criterion for the iterative process would have worked at
iteration number s = N ≡ 30 , but the improved criterion stopped the iterative process much earlier,
namely at iteration s = 23. Figure 3b confirms that the classical criterion for stopping the iterative
process was triggered too late, and many iterations were wasted. Moreover, the approximate solution
found by the classical method is indistinguishable from the solution found using the improved
criterion for stopping the iterative process—the graphs overlap and are visually indistinguishable
from each other (see Figure 4), which is the rationale for the early termination of the iterative process.

Figure 3. Example 2: (a) Graph of
σ2

s ∆2

‖r(s)‖2
depending on the iteration number s. (b) Graph of

‖x(s) − xmodel‖ depending on the iteration number s.

Figure 4. Example 2: Graph of xres
n depending on the component index n. Figures correspond to

two different arbitrary matrices A. Solutions for different criteria for stopping iterative processes are
visually indistinguishable from each other (graphs overlap).

7. Discussion

• Algorithms equivalent to those proposed in this paper can be derived in a sufficiently
large number of ways. It is quite possible that some versions of the proposed algorithm
will work better for some specific applied problems, but worse for others. However,



Algorithms 2022, 15, 324 9 of 11

at the same time, it is important that the proposed variants of the formulas do not
greatly increase the computational complexity of the algorithm.

• Many systems of algebraic equations (both linear and non-linear) arise when solving
ill-posed problems [23]. In this case, regularizing algorithms are constructed; in the
application of these algorithms, one of the key points is the question of a reasonable
choice for the regularization parameter. In this regard, the question remains as to how
the rounding error could be correctly taken into account when automatically choosing
the regularization parameter in accordance with the input data specification errors
(for example, see the generalized residual principle in [23]).

• The method considered in this paper assumes that the measure of inconsistency of
the solved system of equations is sufficiently small. When solving problems with
a sufficiently large measure of inconsistency, one should additionally monitor the
iteration of the algorithm when the value of the discrepancy ceases to decrease. In this
case, the iterative process must be interrupted without waiting for the value of the
functional to enter the background of the rounding errors.

• The formulas presented in this paper were derived from statistical considerations.
Therefore, the reliability of the proposed algorithm is quite high when solving “large”
problems with high-precision computation. However, there are practical problems
in which calculations with low-precision computation are actively used. For exam-
ple, in current machine learning implementations, low-precision computation, e.g.,
half-precision (float16, ∆ = 10−3), is used to alleviate the burden on the limited
CUDA memory. The results of applying the algorithm proposed by the authors for
calculations with such low precision may have the following features: On the one
hand, situations are still possible in which the algorithm proposed by the authors
will give a good result. For example, in Figure 5, the results of such calculations for
M = 12 and N = 10 () are presented. On the other hand, the low-precision computa-
tion leads to the rounding error becoming comparable to the residual r(s) quite early.
As a result, this may lead to the iterative process stopping earlier than necessary. For
example, in Figure 6, the results of such calculations for M = 120 and N = 100 () are
presented. The non-fulfillment of statistical considerations is perfectly confirmed by

the non-monotonicity of the curve of
σ2

s ∆2

‖r(s)‖2
depending on the iteration number s (see

Figure 6b). However, taking into account the fact that calculations with low precision
are used in applications where higher precision is not essential, the result shown
in Figure 6a can be quite adequate and meet practical needs. At the same time, we
note that no solution was found by the classical algorithm (there is no corresponding
curve in Figure 6b), which is due to the fact that the effect of numerical overflow had
emerged. The use of the improved criterion made it possible to avoid this effect due
to the early termination of the iterative process.

Figure 5. (a) Graph of xres
n depending on the component index n. (b) Graph of

σ2
s ∆2

‖r(s)‖2
depending on

the iteration number s.



Algorithms 2022, 15, 324 10 of 11

Figure 6. (a) Graph of xres
n depending on the component index n. (b) Graph of

σ2
s ∆2

‖r(s)‖2
depending on

the iteration number s.

8. Conclusions

This paper considered a method for taking into account rounding errors when con-
structing the criteria to stop the iterative process in gradient minimization methods. This
method was originally developed by the authors to solve computationally intensive applied
problems. However, numerous numerical experiments have shown (much to the surprise
of the authors) that the considered method also works when solving computationally small
problems, during which the occurrence of the corresponding problems is not at all obvious.

Author Contributions: Conceptualization, D.L.; methodology, D.L., V.S. and A.Y.; software, D.L. and
V.S.; validation, D.L. and V.S.; formal analysis, D.L. and V.S.; investigation, D.L. and V.S.; resources,
D.L. and V.S.; data curation, D.L. and V.S.; writing—original draft preparation, D.L.; writing—
review and editing, D.L.; visualization, D.L. and V.S.; supervision, D.L.; project administration, A.Y.;
funding acquisition, D.L. and A.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This paper was published with financial support from the Ministry of Education and
Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and
Applied Mathematics under the agreement N 075-15-2019-1621.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hestenes, M.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409.

[CrossRef]
2. Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization methods for large-scale machine learning. SIAM Rev. 2018, 60, 223–311.

[CrossRef]
3. Patel, V. Stopping criteria for, and strong convergence of, stochastic gradient descent on Bottou-Curtis-Nocedal functions. Math.

Program. 2021, 1–42. [CrossRef]
4. Callaghan, M.; Müller-Hansen, F. Statistical stopping criteria for automated screening in systematic reviews. Syst. Rev. 2020, 9,

273. [CrossRef] [PubMed]
5. Nikolajsen, J. New stopping criteria for iterative root finding. R. Soc. Open Sci. 2014, 1, 140206. [CrossRef] [PubMed]
6. Polyak, B.; Kuruzov, I.; Stonyakin, F. Stopping rules for gradient methods for non-convex problems with additive noise in

gradient. arXiv 2022, arXiv:2205.07544.
7. Kabanikhin, S. Inverse and Ill-Posed Problems: Theory and Applications; Walter de Gruyter: Berlin, Germany, 2011.
8. Vasin, A.; Gasnikov, A.; Dvurechensky, P.; Spokoiny, V. Accelerated gradient methods with absolute and relative noise in the

gradient. arXiv 2022, arXiv:2102.02921.
9. Cohen, M.; Diakonikolas, J.; Orecchia, L. On acceleration with noise-corrupted gradients. In Proceedings of the 35th International

Conference on Machine Learning, 2018, Stockholmsmässan, Sweden, 9 February 2018.
10. Dvurechensky, P.; Gasnikov, A. Stochastic intermediate gradient method for convex problems with stochastic inexact oracle. J.

Optim. Theory Appl. 2016, 171, 121–145. [CrossRef]
11. Gasnikov, A.; Kabanikhin, S.; Mohammed, A.; Shishlenin, M. Convex optimization in Hilbert space with applications to inverse

problems. arXiv 2017, arXiv:1703.00267.

http://doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.1007/s10107-021-01710-6
http://dx.doi.org/10.1186/s13643-020-01521-4
http://www.ncbi.nlm.nih.gov/pubmed/33248464
http://dx.doi.org/10.1098/rsos.140206
http://www.ncbi.nlm.nih.gov/pubmed/26064544
http://dx.doi.org/10.1007/s10957-016-0999-6


Algorithms 2022, 15, 324 11 of 11

12. Rao, K.; Malan, P.; Perot, J.B. A stopping criterion for the iterative solution of partial differential equations. J. Comput. Phys. 2018,
352, 265–284. [CrossRef]

13. Arioli, M.; Duff, I.; Ruiz, D. Stopping Criteria for Iterative Solvers. SIAM J. Matrix Anal. Appl. 1992, 13, 138–144. [CrossRef]
14. Arioli, M.; Noulard, E.; Russo, A. Stopping criteria for iterative methods: Applications to PDE’s. Calcolo 2001, 38, 97–112.

[CrossRef]
15. Arioli, M. A stopping criterion for the conjugate gradient algorithm in a finite element method framework. Numer. Math. 2004,

97, 1–24. [CrossRef]
16. Arioli, M.; Loghin, D.; Wathen, A. Stopping criteria for iterations in finite element methods. Numer. Math. 2005, 99, 381–410.

[CrossRef]
17. Chang, X.W.; Paige, C.C.; Titley-Peloquin, D. Stopping Criteria for the Iterative Solution of Linear Least Squares Problems. SIAM

J. Matrix Anal. Appl. 2009, 31, 831–852. [CrossRef]
18. Axelsson, O.; Kaporin, I. Error norm estimation and stopping criteria in preconditioned conjugate gradient iterations. Numer.

Linear Algebra Appl. 2001, 8, 265–286. [CrossRef]
19. Kaasschieter, E.F. A practical termination criterion for the conjugate gradient method. BIT Numer. Math. 1988, 28, 308–322.

[CrossRef]
20. Jiránek, P.; Strakoš, Z.; Vohralík, M. A posteriori error estimates including algebraic error and stopping criteria for iterative

solvers. SIAM J. Sci. Comput. 2010, 32, 1567–1590. [CrossRef]
21. Landi, G.; Loli Piccolomini, E.; Tomba, I. A stopping criterion for iterative regularization methods. Appl. Numer. Math. 2016,

106, 53–68. [CrossRef]
22. Kalitkin, N.; Kuz’mina, L. Improved forms of iterative methods for systems of linear algebraic equations. Dokl. Math. 2013,

88, 489–494. [CrossRef]
23. Tikhonov, A.; Goncharsky, A.; Stepanov, V.; Yagola, A. Numerical Methods for the Solution of Ill-Posed Problems; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 1995.

http://dx.doi.org/10.1016/j.jcp.2017.09.033
http://dx.doi.org/10.1137/0613012
http://dx.doi.org/10.1007/s100920170006
http://dx.doi.org/10.1007/s00211-003-0500-y
http://dx.doi.org/10.1007/s00211-004-0568-z
http://dx.doi.org/10.1137/080724071
http://dx.doi.org/10.1002/nla.244
http://dx.doi.org/10.1007/BF01934094
http://dx.doi.org/10.1137/08073706X
http://dx.doi.org/10.1016/j.apnum.2016.03.006
http://dx.doi.org/10.1134/S1064562413040133

	Introduction
	Problem Statement
	Improved Criterion for Stopping the Iterative Process
	On Increasing Computational Complexity
	Improved Iterative Algorithm
	Examples of Numerical Experiments
	Discussion
	Conclusions
	References

