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Abstract: Synthetic data, artificially generated by computer programs, has become more widely
used in the financial domain to mitigate privacy concerns. Variational Autoencoder (VAE) is one
of the most popular deep-learning models for generating synthetic data. However, VAE is often
considered a “black box” due to its opaqueness. Although some studies have been conducted to
provide explanatory insights into VAE, research focusing on explaining how the input data could
influence VAE to create synthetic data, especially for tabular data, is still lacking. However, in the
financial industry, most data are stored in a tabular format. This paper proposes a sensitivity-based
method to assess the impact of inputted tabular data on how VAE synthesizes data. This sensitivity-
based method can provide both global and local interpretations efficiently and intuitively. To test this
method, a simulated dataset and three Kaggle banking tabular datasets were employed. The results
confirmed the applicability of this proposed method.

Keywords: interpretability; variational autoencoder; financial synthetic tabular data; sensitivity-
based method; feature importance; feature interaction

1. Introduction

The past decades have witnessed the production of new data faster than ever in
history [1]. In the banking industry, a large amount of complex data, including continuous
and categorical data, is generated daily, and stored in a tabular format [2]. Banks could use
their stored tabular data to extract actionable business insights to improve their products
and services. However, real data usage is sometimes limited because of customer privacy
concerns. Due to the high sensitivity of financial data and the restrictions of regulatory
norms, the banking industry is a representative field where, in many scenarios, real data is
not accessible for analysis [2].

One possible solution to resolve the concerns of violating customers’ privacy is to
replace real data with synthetic data, which is artificially generated by computer programs
rather than being created by real-world events. Creating synthetic data that captures
as many of the complexities of the original data as possible, such as dependencies and
distributions in real data, could also bring many other benefits [3]. The advantages of
synthetic data in the banking industry include, but are not limited to, the ability to overcome
real data usage limitations, to provide more training data for machine learning (ML) models
to improve performance and reduce bias, and to simulate future scenarios through data
augmentation [4].

There exist many approaches for synthetic tabular data generation. A straightforward
approach is to use statistical techniques, such as masking, which replaces parts of a dataset
with random information; coarsening, which reduces the precision of some data in a dataset;
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and mimicking, which adds randomness to a dataset [4]. However, one significant disad-
vantage of these statistical techniques is that the relationship between different columns
cannot be well preserved. Hence, the method of sampling new data from joint distribu-
tions learned from an original dataset was proposed [5]. Although joint distributions can
capture some potential connections between columns in a tabular dataset, the difficulty
of learning all the joint distributions and relationships of a tabular dataset would increase
as the complexity of the dataset increases. Even though statistical approaches, playing
dominant roles in synthetic data generation for a long time in the past, are fast and easy to
implement, a more robust model to tackle the complexity of data is especially needed for the
banking industry, where the datasets are usually complex. Recent advancements in deep
learning have made generative algorithms more popular for data synthesis [5]. Variational
Autoencoders (VAEs) and Generative Adversarial Networks (GANs) are two deep-learning
models that are commonly used for synthetic data generation [6]. Although GANs have
been proven to generate more realistic images compared with VAEs in synthetic image data
generation, the same cannot be assumed for synthetic tabular data generation in financial
applications [7]. A study compares the performance of VAEs and GANs in generating
synthetic tabular data, showing that while GANs outperform VAEs in synthesizing mostly
categorical data types, VAEs perform better in synthesizing continuous data types and
datasets with a mix of continuous and categorical data [8]. As financial datasets are often
mixed datasets containing continuous data and categorical variables, this paper focuses on
studying VAEs for synthetic tabular data generation.

Despite their superior performance, deep-learning models such as the VAE are usually
labelled as “black boxes” due to their opaqueness [9]. Data scientists cannot explain the rea-
sons behind the decisions made by the deep-learning models to the fullest extent. However,
in reality, the interpretability of deep-learning models is crucial for the scientists who invent
the model, the software developers who implement the model, and the clients influenced
by the model. This calls for building trust toward the deep-learning models [10]. In VAEs,
understanding the decision-making process or the synthetic data generation process is
inextricably linked to the latent representation/space of a VAE since synthetic data is
produced by using the latent representation that captures the critical information of input
data [11]. Being able to understand the relationship between input features in an original
dataset and the resulting latent representation in a VAE can enhance the reliability and
trustworthiness of synthetic data. More importantly, by identifying which parts of the real
dataset are most influential in the latent space, one can improve computational efficiency by
removing unnecessary features when generating synthetic tabular data, particularly in the
case of banking data that contains many features. Thus, this paper aims to study the impact
of each input feature in an original financial tabular dataset on the latent representation of
a VAE used to generate synthetic data.

Although little research has been conducted to investigate how each input feature in
a tabular dataset could affect the latent space of a VAE, a similar research topic discussing
approaches to explain how input variables influence outputs in a Multilayer Perceptron
(MLP) can be found in papers related to sensitivity analysis [12]. As the encoder of a VAE
can be treated as an MLP, we could leverage the idea of sensitivity to interpret the latent
space in VAE. The contributions of this paper can be summarized as follows:

• We extend the idea of first-order sensitivity to a generative model, VAE, to assess the
input feature importance when a VAE is used to generate financial synthetic tabular
data. As experimental results in this paper show, measuring feature importance by
sensitivity can provide both global and local explanations for how a VAE synthesizes
tabular data intuitively and efficiently.

• We leverage the idea of a second-order partial derivative test to investigate feature
interactions in an original tabular dataset that goes into a VAE to synthesize data.
Measuring the feature interactions of a feature with the rest of the features can help
us determine if we can safely remove the feature from a tabular dataset to reduce the
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dimensionality of the dataset to speed up the process of generating synthetic data
without affecting the quality of the synthetic data being generated.

The remaining part of this paper is organized as follows: Section 2 reviews state-
of-the-art methods that could provide explanatory insights into VAE data synthesis and
the literature, which inspired the authors to design the methodology. Section 3 describes
a detailed methodology and four experiments to test the method. Section 4 demonstrates
the results obtained using the method described in Section 3. Section 5 discusses the results
and future improvements which can be made to this research topic. Section 6 concludes
and summarizes this paper.

2. Literature Review

This section reviews existing methodologies, including TabNet, PCA, VEGA, and
SOM-VAE, that can interpret the impact of individual input features in a dataset on how
VAE generates synthetic data and sensitivity analysis of MLP, which can be utilized to
investigate how each input feature in a tabular dataset influences the latent space.

Recently, various TabNet-based deep learning architectures have been developed to
effectively identify salient features of a dataset for a given task, enabling interpretabil-
ity [13]. TabNet, an interpretable ML model created by Google AI, is designed to efficiently
handle large amounts of tabular data by using an attention mechanism to select impor-
tant features for a specific task [14]. While the attention mechanism in TabNet allows for
automatic feature selection, interpreting the mechanism and understanding why certain
features are considered more important can be challenging. Additionally, fine-tuning the
hyperparameters of TabNet to accurately capture the most salient features can be time
consuming. It is expected that a novel method will be proposed that not only assists in
selecting important features in a dataset for removing potentially unnecessary features but
also provides explanatory insights into how a well-trained VAE synthesizes data based on
the significance of different input features, thereby increasing confidence and trust in the
results generated by the VAE among stakeholders.

To interpret the latent space of a VAE, some researchers have proposed the visualiza-
tion of latent vectors. If the dimensionality of the latent space is set to be 2D, latent vectors
can be directly plotted [15]. However, if latent vectors are high-dimensional, visualization
of these vectors with more than two or three dimensions can be difficult. To aid visualiza-
tion, the dimensions must be reduced in some way. Principal component analysis (PCA), as
one of the dimensionality reduction techniques, can be applied to transform latent vectors
into a 2D space so that latent vectors can be visualized in scatter plots [16]. If the number
of input features put into a VAE model is controlled, interpretations can be achieved by
observing changes in visualizations of the latent space. Differences between two plots, one
with all features and one with one feature removed, may suggest the importance of the
removed feature. A substantial change in the plot after removing a feature could indicate
its significant impact on the overall result. However, visualizing latent vectors does not
provide any quantitative results or measurements. In addition, visualizations of latent
space may vary considerably if PCA is used to further reduce the dimensions of latent
vectors since the key information extracted by PCA could be different every time. Different
visualizations will introduce uncertainties to our understanding and interpretation of the
latent space of a VAE.

Another method to explain how input data could influence the latent space is to enable
the intrinsic interpretability of a VAE by modifying the architecture of the VAE. However,
modified VAE models usually have their constraints, preventing us from using these models
for financial tabular data synthesis and interpretability. For example, VEGA, a novel VAE
model enhanced by gene annotations, has a modified decoder part of providing direct
interpretability to latent vectors [17]. However, VEGA was only designed for applications
in biological contexts [17]. SOM-VAE, which integrates a Markov model in the latent space,
was developed to provide explanatory insights into time series and static data [18].
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To investigate the impact of each input feature in a tabular dataset on the latent space
of a VAE, sensitivity analysis, which has been used to explain relationships between input
features and outputs in an MLP, can be a good approach. Sensitivity analysis measures
the importance of each input feature put into an MLP by calculating the first-order partial
derivative of every MLP output with respect to every input [12]. Unlike visualization
methods mentioned above, sensitivity analysis analytically calculates the sensitivities
of every output due to changes in each input feature, which intuitively reflects feature
importance [19]. Besides, sensitivity analysis has been proven to be computationally
inexpensive, meaning it is fast to compute [20]. Both global and local interpretations
are possible by using this method [20]. As long as the outputs have enough precision,
interpretations will remain consistent [19]. Therefore, this paper focuses on extending
the idea of sensitivity analysis to VAEs. By measuring the significance of different input
features, we could better understand how a VAE produces synthetic data based on input
features in an original tabular dataset.

3. Materials and Methods

This section starts by introducing the benefits of choosing feature importance as
an interpretability method to explain a VAE model in Section 3.1. Section 3.2 reviews
the architecture of a VAE model to enhance readers’ understanding of why a sensitivity-
based technique can be applied. Section 3.3 presents the details of the sensitivity-based
approach, which assesses the contributions of each input feature in a tabular dataset
toward the latent space of a VAE by calculating feature importance and feature interactions.
Section 3.4 discusses how this sensitivity-based technique should be applied to VAEs to
make interpretation possible. To test the sensitivity-based method, Section 3.5 introduces
a numerical example and three banking dataset examples.

3.1. Feature Importance

To enable interpretability, there are a variety of different interpretation methods. This
paper concentrates on feature importance since it is one of the most popular interpretation
techniques for humans to understand decisions made by ML models [21].

Feature importance calculates a score for each feature in a dataset [22]. A feature is
considered to be more important if its score is higher [21]. In this paper, the feature with
a higher score represents that this feature has a larger impact on the latent representation
of a VAE, which means that the VAE may rely more heavily on this feature to generate
synthetic data. In financial institutions, having a high-dimensional tabular dataset is
common. With unimportant features being removed based on feature importance scores,
the computing time of generating synthetic data could be reduced without sacrificing the
quality of synthetic data. In the next subsection, the structure of a VAE model will be
discussed before introducing a sensitivity-based method to calculate the feature importance
for a tabular dataset.

3.2. Structure of the VAE

As Figure 1 illustrates, a VAE consists of two main components: an encoder network
and a decoder network. The encoder transforms the input data into a lower-dimensional
latent space represented by multi-normal distributions. The Gaussian distribution is
the most commonly used distribution type in VAE [23]. Every Gaussian distribution in
the latent space is defined by two parameters: the mean and standard deviation, which
determine the center and spread of the distribution, respectively [15]. The latent vectors,
which are sampled from the multi-normal distributions in the latent space, are then passed
through the decoder network to produce the final output [15]. As the multi-normal latent
distributions are defined by two parameters, the mean and standard deviation, analyzing
the sensitivity of these two parameters to changes in input features can provide insight into
how the latent distributions will be affected by different input features. The methodology
for this analysis is further explained in the following steps in Section 3.3.
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3.3. Sensitivity Analysis

The essence of a sensitivity analysis is taking first-order partial derivatives of outputs
with respect to inputs in a neural network. First-order partial derivative, measuring changes
in an output due to changes in an input, is also known as sensitivity:

suv(xn) =
∂yu

∂xv
, (1)

where xn represents the nth data sample in the dataset; and suv represents the sensitivity of
the uth neuron in the output layer (yu) with respect to the vth neuron in the input layer
(xv) [19]. The notation used throughout the rest of the paper is outlined in Table 1.

Step 1 (Sensitivity):
To adapt a sensitivity analysis to fit into an encoder of a VAE, the sensitivity can be

modified as:
shm,µ(xn) =

∂µh
∂xm

, (2)

shm, σ(xn) =
∂σh
∂xm

, (3)

where h is the index of means and standard deviations in the latent space of a VAE; m is the
index of input features; shm,µ(xn) refers to the sensitivity of hth mean in the latent space of
a VAE (µh) with respect to mth input feature (xm) for the data sample xn; and shm,σ(xn)
refers to the sensitivity of hth standard deviation in the latent space of a VAE (σh) with
respect to mth input feature (xm) for the data sample xn.

Step 2 (Local Feature Importance):
A local interpretation of each input feature refers to the case that only a single data

sample in the dataset is studied. In this paper, we determine the effects of each input
feature on the latent representation for a specific data sample by considering both the
overall sensitivity of mean and the overall sensitivity of standard deviation with respect to
each input feature:

sm(xn) = sm,µ(xn) + sm,σ(xn)

=
H
∑

h=1

∣∣∣shm, µ(xn)
∣∣∣+ H

∑
h=1

∣∣shm, σ(xn)
∣∣ ,

(4)

where sm(xn) represents the sensitivity of the latent space to input feature xm for data
sample xn and H is the total number of means or standard deviations in the latent space
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of a VAE. Taking the absolute values of shm, µ(xn) and shm, σ(xn) is designed to prevent
cancellation of positive sensitivity values with negative ones.

Table 1. Notations used in Section 3.3.

Symbol Meaning

N total number of data points in a dataset

M total number of input features

H total number of means or standard deviations in the latent space of
a VAE where 2H will be the layer size

xn a random data sample

xm mth input feature

xo Other input features except mth feature

sm(xn)
sensitivity of the latent space with respect to mth input feature for the
data sample xn

sm,µ(xn)
sensitivity of means in the latent space of a VAE with respect to mth input
feature for the data sample xn

sm,σ(xn)
sensitivity of standard deviations in the latent space of a VAE with
respect to mth input feature for the data sample xn

shm,µ(xn)
sensitivity of hth mean in the latent space of a VAE (µh) with respect to
mth input feature for the data sample xn

shm,σ(xn)
sensitivity of hth standard deviation in the latent space of a VAE (σh) with
respect to mth input feature for the data sample xn

Ssq
m,µ

mean squared sensitivity of means in the latent space with respect to mth
input feature for the entire dataset

Ssq
m,σ

mean squared sensitivity of standard deviations in the latent space with
respect to mth input feature for the entire dataset

Ssq
hm,µ

mean squared sensitivity of hth mean in the latent space of a VAE (µh)
with respect to mth input feature for the entire dataset

Ssq
hm, σ

mean squared sensitivity of hth standard deviation in the latent space of
a VAE (σh) with respect to mth input feature for the entire dataset

Ssq
m

mean squared sensitivity of the latent space with respect to mth input
feature for the entire dataset

Fm relative feature importance

c normalization factor

Sm sm(xn) at a local level or Ssq
m at a global level

im(xn)
interactions between the feature xm and other features xo for the data
sample, xn, in a tabular dataset

Im global interactions between mth feature and other features

Step 3 (Global Feature Importance):
In order to obtain a global interpretation, the mean squared sensitivity introduced by

Zurada et al. in 1994 is modified to fit a VAE model [24]:

Ssq
hm,µ =

√
∑N

n=1(shm, µ(xn))
2

N
, (5)

Ssq
hm, σ =

√
∑N

n=1(shm, σ(xn))
2

N
, (6)
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where N is the total number of data points in the dataset. Equations (5) and (6) are designed
to assess the sensitivity of hth mean or hth standard deviation in the latent space of a VAE
with respect to mth input feature across the entire dataset.

Then, Ssq
hm,µ for different mean neurons, and Ssq

hm,σ for different standard deviation
neurons in the latent space are designed to be summed up, respectively:

Ssq
m,µ =

H

∑
h=1

Ssq
hm,µ, (7)

Ssq
m,σ =

H

∑
h=1

Ssq
hm,σ. (8)

This counts the overall effects of the feature xm on means or standard deviations
in the latent space of a VAE. Here, Ssq

m is defined as representing the sensitivity of the
latent space with respect to a specific input feature in this paper and can be obtained by
adding the sensitivity of means in the latent space with respect to that specific feature
and the sensitivity of standard deviations in the latent space with respect to that specific
feature together:

Ssq
m = Ssq

m,µ + Ssq
m,σ . (9)

If the sensitivity Ssq
m is close to 0, it indicates that changes in the input feature xm have

a negligible impact on the outputs, meaning this input feature may be irrelevant. However,
if the sensitivity Ssq

m is significantly greater or smaller than 0, the input feature xm can
be considered an important one since a minor change in this input feature might cause
significant changes in outputs.

Step 4 (Relative Feature Importance):
Ranking features at a local or global level can be achieved by calculating the relative

feature importance Fm for each feature [20]:

Fm = c·Sm , (10)

where Sm can be sm(xn) at a local level and Ssq
m at a global level and c is a normalization

factor. The product of the normalization factor and the sum of the sensitivities for all
features in a dataset should be equal to 100 [20]:

c·
M

∑
m=1

Sm = 100 , (11)

where M is the total number of features in a dataset so that the relative feature importance
for each feature can be represented as a percentage.

Step 5 (Feature Interaction):
Most studies analyze the first-order relationship between the input and output in

an MLP without further exploring the second-order effects [12]. However, a feature with
a first-order partial derivative being close to zero does not necessarily mean the feature is
not important. In practice, when a dataset is complex, there might exist some correlations
between features, which could be measured by calculating the second-order mixed partial
derivatives [12].

In VAE synthetic data generation, the interactions between the feature xm,n and other
features for a data sample xn in a tabular dataset, can be measured by the following
designed equation:

im(xn) =
M

∑
o=1,o 6=m

H

∑
h=1

∣∣∣∣ ∂

∂xm

(
∂µh
∂xo

)∣∣∣∣+ M

∑
o=1,o 6=m

H

∑
h=1

∣∣∣∣ ∂

∂xm

(
∂σh
∂xo

)∣∣∣∣, (12)
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where xm represents the mth feature of a data sample; xo represents the oth feature of
a data sample. ∂

∂xm

(
∂µh
∂xo

)
measures the changes of the sensitivity of the mean µh in the

latent space with respect to the feature xo with respect to the changes of the feature xm.
Similarly, ∂

∂xm

(
∂σh
∂xo

)
measures the changes of the sensitivity of the standard deviation σh

in the latent space with respect to the feature xo with respect to the changes of the feature
xm. Recall that H is the total number of means or standard deviations in the latent space
of a VAE and M is the total number of input features in a tabular dataset. Taking absolute
values of the second-order partial derivative is to avoid the cancellation of positive values
with negative ones. In this paper, to capture global feature interaction for each feature, the
second-order derivatives are averaged across all data samples:

Im =
∑N

n=1 im(xn)

N
. (13)

If the second-order partial derivative Im is close to 0, it indicates that interactions
between the feature xm and other features are weak. Changing xm will not cause the
impacts of other features on the latent space to change significantly. In this case, xm can be
considered an unimportant feature that can be safely removed to reduce the complexity of
a dataset if the first-order partial derivative with respect to xm is close to 0 as well. The next
equation will discuss how a sensitivity analysis can be applied to analyze the contributions
of each input feature to the latent representation of a VAE model in practice.

3.4. Framework Design

In the area of ML, the assumption of random variables being independently and
identically distributed (IID) is essential to the majority of ML models [25]. This paper
assumes IID input data, as in the first VAE paper by Kingma and Welling [15]. Considering
the data type being investigated in this paper is tabular data, the IID assumption allows us
to only consider the relationship between column features rather than relations between
data samples presented in rows.

Before applying a sensitivity analysis, input data will be normalized to avoid mislead-
ing results of extremely large or small values of partial derivatives calculated during the
sensitivity analysis. As Figure 2 illustrates, the input data and the parameters that deter-
mine the latent distributions after training (means and standard deviations) will be utilized
to evaluate the significance of each input feature by calculating their feature importance
values using the methods outlined in Section 3.3. A feature will be considered important
if its feature importance value is far away from 0. However, if a feature has a feature im-
portance value close to 0, a feature interaction analysis, as described in Section 3.3, will be
conducted to assess the interactions between this feature and other features in the dataset.
If the feature interaction value is notably away from 0, then this feature is considered to
be relevant due to its strong interactions with other features. Otherwise, the feature is
considered to be insignificant and can be removed to reduce the complexity of the dataset
as it has a minimal impact on both outputs and other features.

3.5. Experiment Preparation

To verify the robustness of the sensitivity-based method described in Sections 3.3 and 3.4,
a numerical example and three Kaggle banking datasets were utilized to show how this
method can be applied to explain the importance of different inputs toward outputs.

3.5.1. Numerical Example

A numerical example where we can design the relative importance of each input
feature was used to prove whether sensitivity analysis can be used to calculate feature
importance. Assuming the following function:

Y = X1 + 3X2 + X1·X2 + 5X3 − 6X4 + 7X5 + 0.05X6 + 0.01X6·X7 , (14)
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where Y represents the output generated from 7 input features from X1 to X7. Each input
feature contains 3000 values which are randomly generated from a standard normal distri-
bution. Hence, there are 3000 outcomes generated by 3000 data samples with each data
sample made of 7 features. This example will concentrate on providing global interpreta-
tions to see if they can match the feature importance set in Equation (14).
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3.5.2. Application Examples

To test the methodology outlined in Sections 3.3 and 3.4, three real-world datasets
were downloaded from an open source Kaggle, which are publicly available. This study
concentrates on tabular banking data, making the tabular data as the chosen data type
for examining the effect of each input feature on the latent space when VAE is used to
synthesize data.

Dataset 1 comprises 10,000 rows representing various data samples (clients) and
13 columns representing different client information. This dataset is divided into
two classes based on whether clients will retain their bank accounts. Dataset 2, from a mar-
keting campaign of a Portuguese banking institution, includes approximately
41,000 data samples and 20 columns. This dataset is categorized into two classes based
on whether clients will subscribe to a term deposit. Dataset 3 comprises approximately
164,000 rows and 14 columns. This dataset is grouped into 3 categories based on the
customer’s interest rates for loans, 1%, 2%, and 3%. The number of data samples in each
category for the three datasets is illustrated in Figures 3–5.
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During data preprocessing, columns, including “row number”, “customer ID number”,
and “name”, are removed from the three datasets as they do not provide useful customer
information. Columns with a significant amount of missing data are also dropped, which
results in the total number of input features for the three datasets being 10, 19, and 11,
respectively. To make the categorical features recognizable by a VAE, target encoding is
used to transform them into numerical values. Lastly, to ensure that the VAE does not give
more weight to larger values regardless of their unit measurements, three banking datasets
are rescaled through normalization using the scikit-learn object MinMaxScaler.

Since this research focuses on using interpretability techniques to explain decisions
made by an ML model rather than solely achieving optimal performance, model hyperpa-
rameters are adjusted to ensure the interpretations generated are both accurate and stable.
To prevent overfitting while maintaining good learning capacity, the dimensions of input
features for all three datasets were compressed to 75% of their original sizes and stored
in the latent space of VAEs. Through experimentation, it was found that learning rates of
0.01 for dataset 1 and dataset 3 and 0.05 for dataset 2 work well for optimizing the VAE.
The same VAE structure, consisting of a 4-layer encoder and 4-layer decoder, was used to
synthesize data for three datasets. For each dataset, VAE was trained for 300 epochs. After
fine-tuning the hyperparameters, the final loss values, calculated as the sum of similarity
loss and KL Divergence, decreased from 71.43 to 13.48 for dataset 1, from 34.97 to 12.65 for
dataset 2, and from 53.12 to 9.46 for dataset 3.
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4. Results

This section provides experimental results for both the numerical and
application examples.

4.1. Numerical Example Results

The sensitivities of output to each input feature (a first-order partial derivative of
output Y with respect to each input feature) for each data sample were calculated. The
mean squared sensitivity for each feature can be formulated by using Equation (5) or
Equation (6) in Section 3:

Ssq
m =

√
∑3000

n=1 (sm(xm,n))
2

3000
, (15)

where m ∈ {1,2,3 . . . ,7} and n ∈ {1,2,3 . . . ,3000}. Recall that Ssq
m represents the sensitivity

for each feature, and xm,n represents a feature of a data sample in the simulated dataset.
Then the mean squared sensitivity for each feature, which can be seen in Figure 6, was
multiplied by a normalization factor so that relative feature importance values sum up to
100. As Figure 7 demonstrates, the relative importance of feature X4 is 1.2 times that of
feature X3 as anticipated. The relative importance of feature X5 is 1.4 times that of feature
X3. The relationships between features X3 and X5 and the output Y is linear. For features
from X3 to X5, as the magnitude of an input feature coefficient increases, the first-order
partial derivative of the input feature also increases, leading to a higher relative feature
importance. Both Figures 6 and 7 indicate that features X6 and X7 have insignificant effects
on output Y, since values of sensitivity and relative feature importance for features X6 and
X7 are so small they can barely be seen in the figures.
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Based on the methodology described in Section 3, a second-order partial derivative
test was applied to measure interactions between features. After calculating the feature
interactions for all the possible pairs of features, feature interaction values for each feature
with other features are illustrated in Figure 8. For example, interactions of feature X4 with
any other features can be calculated by using Equation (12) in Section 3:

M4 =
8

∑
o=1,o 6=4

∂

∂X4
(

∂Y
∂Xo

) , (16)

where M4 is feature interactions between X4 and any other features Xo. As Figure 8 shows,
X1 and X2 have the strongest interactions with others while the remaining features in
Equation (14) have very weak interactions with other features. We can see the feature
interaction values for X1 and X2 is around 1.0 while the interaction values for the rest
of features are either 0 or close to 0. Since X6 and X7 have an insignificant impact on
the output and weak interactions with other features, X6 and X7 can be considered as
two unimportant features in this numerical example. The output, Y, would not be largely
affected with X6 and X7 being removed.

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 20 
 

 

Figure 7. Relative feature importance for simulated data. 

Based on the methodology described in Section 3, a second-order partial derivative 

test was applied to measure interactions between features. After calculating the feature 

interactions for all the possible pairs of features, feature interaction values for each feature 

with other features are illustrated in Figure 8. For example, interactions of feature 𝑋4 with 

any other features can be calculated by using Equation (12) in Section 3: 

𝑀4 = ∑
𝜕

𝜕𝑋4
(

𝜕𝑌

𝜕𝑋𝑜
)

8

𝑜=1,𝑜≠4

 , (16) 

where 𝑀4  is feature interactions between  𝑋4  and any other features 𝑋𝑜 . As Figure 8 

shows, 𝑋1 and 𝑋2 have the strongest interactions with others while the remaining fea-

tures in Equation (14) have very weak interactions with other features. We can see the 

feature interaction values for 𝑋1 and 𝑋2 is around 1.0 while the interaction values for the 

rest of features are either 0 or close to 0. Since 𝑋6 and 𝑋7 have an insignificant impact on 

the output and weak interactions with other features, 𝑋6 and 𝑋7 can be considered as 

two unimportant features in this numerical example. The output, 𝑌, would not be largely 

affected with 𝑋6 and 𝑋7 being removed. 

 

Figure 8. Feature interaction for simulated data. 

4.2. Application Example Results 

By applying the methodology described in Section 3, the following results were ob-

tained. The variables on the x-axis in all figures in Section 4.2 represent different features 

in banking datasets 1, 2, or 3 as outlined in Tables 2–4. 

Table 2. Variables on x-axis and their corresponding feature names for dataset 1. 

Variable Feature Name Variable Feature Name 

X1 credit score X6 balance 

X2 geography X7 number of products 

Figure 8. Feature interaction for simulated data.

4.2. Application Example Results

By applying the methodology described in Section 3, the following results were
obtained. The variables on the x-axis in all figures in Section 4.2 represent different features
in banking datasets 1, 2, or 3 as outlined in Tables 2–4.

Table 2. Variables on x-axis and their corresponding feature names for dataset 1.

Variable Feature Name Variable Feature Name

X1 credit score X6 balance

X2 geography X7 number of products

X3 gender X8 if the client has a credit card

X4 age X9 if the client is an active member

X5 tenure X10 estimated salary

The Figures 9–14 provide local and global interpretations of feature importance in the
banking datasets 1, 2, and 3. Figures 9, 11 and 13 display the sensitivity of the latent space
with respect to each feature for a single data sample, while Figures 10, 12 and 14 show the
sensitivity of the latent space with respect to each feature considering all the data samples.
The y-axis of these figures represents local and global sensitivity values for each feature,
respectively. The y-axis can also be used to represent the relative feature importance
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by multiplying feature importance values with a normalization factor, as described in
Section 3.

Table 3. Variables on x-axis and their corresponding feature names for dataset 2.

Variable Feature Name Variable Feature Name

X1 age X11 number of contacts performed
during this campaign

X2 job X12
number of days since the client

was contacted from
a previous campaign

X3 marital status X13 number of contacts performed
before this campaign

X4 education X14 outcome of previous campaign

X5 if has credit in default X15 employment variation rate

X6 if has housing loan X16 consumer price index

X7 if has personal loan X17 consumer confidence index

X8 communication type X18 Euribor 3-month rate

X9 last contact month X19 number of employees

X10 last contact day

Table 4. Variables on x-axis and their corresponding feature names for dataset 3.

Variable Feature Name Variable Feature Name

X1 requested loan amount X7 debt to income ratio

X2 length of employment X8 number of inquiries in last
6 months

X3 ownership of a house X9 number of open accounts

X4 annual income X10 number of total accounts

X5 if income is verified X11 gender

X6 purpose of loan
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For dataset 1, the feature “if the client is an active member” (X9) with the highest
global importance value is found to be the most important feature for VAE to synthesize
the data, which is classified based on whether the client will keep their bank accounts.
However, “age” (X4) may be considered insignificant as it has the lowest global importance
value close to 0. In dataset 2, “if the client has personal loan” (X7) is the most significant
feature for the VAE to generate synthetic data, which is grouped based on whether the
client will subscribe to a term deposit as it has a much higher global importance value than
other features, while the feature “number of contacts performed during this campaign”
(X11) may be considered unimportant as it has the lowest global importance value close to
0. For dataset 3, both local and global feature importance shows that “annual income” (X4)
is the most important feature that has the largest impact on the latent space of the VAE to
synthesize the data, which is divided based on clients’ interest rates for loans. “Requested
loan amount” (X1), “length of employment” (X2), “if income is verified” (X5), and “gender”
(X11) can also be considered to be significant features. However, “number of inquiries in
last six months” (X8), “number of open accounts” (X9), and “number of total accounts”
(X10) with feature importance values or first-order partial derivative values close to 0 may
be considered as three irrelevant features in this banking dataset. In order to confirm that
“age” (X4) in dataset 1, “number of contacts performed during this campaign” (X11) in
dataset 2, and “number of inquiries in last 6 months” (X8), “number of open accounts”
(X9), and “number of total accounts” (X10) in dataset 3 are not contributing significantly
to the VAE data synthesis, a second-order partial mixed derivative test was performed to
investigate interactions of each feature with the other features in the banking dataset 1, 2
or 3.
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The Figures 15–20 present feature interaction values of every feature in the banking
dataset 1, 2 and 3 at the local and global level. For dataset 1, it is determined that the feature
“age” (X4) is insignificant as it has a low feature importance value and minimal interaction
with other features on a global scale. For dataset 2, “number of contacts performed during
this campaign” (X11) is also found to have little to no interaction with other features at
a global level, indicating that its removal from the dataset would not greatly affect the
synthetic data generated by the VAE. For dataset 3, it is noticeable that the “number of open
accounts” (X9) has strong interactions with other features in the banking dataset, as well as
“number of total accounts” (X10). However, “number of inquiries in last 6 months” (X8)
illustrates weak interactions with other features. Therefore, we would expect that removing
“number of inquiries in last 6 months” (X8) will have a minor impact on the latent space of
the VAE and the final quality of synthetic data.
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5. Discussion

Through four experiments, the sensitivity-based method shows three major advan-
tages compared with the visualization method mentioned in Section 2. First, the method
can intuitively demonstrate feature importance and interaction numerically and graphi-
cally. Second, the experimental results prove that the proposed approach can provide both
local and global interpretations. Third, the method is computationally inexpensive. The
computational time to calculate either feature importance (first-order partial derivatives) or
feature interaction (second-order partial mixed derivatives) in the application examples
is on the order of seconds on a Google cloud platform. Although computational time
will increase as the dataset size increases, this sensitivity-based method is still expected to
explain the impacts of features on the latent space of a VAE in a very efficient way.

However, this sensitivity-based method also has some restrictions. One limitation
is that after calculating the sensitivity, relative importance, and feature interaction, data
scientists still need to use their domain knowledge and experience to determine threshold
values for the first and second derivatives to eliminate features. Another limitation is this
sensitivity-based method heavily relies on the training of a VAE, unlike TabNet which
can be used as a preprocessing step to identify important features. The proposed method
requires fine-tuning of VAE hyperparameters for accurate interpretations. If the latent space
of a VAE fails to generalize well and extract the key information from an input dataset,
interpretations may not be able to provide any useful information. In addition, the proposed
method may generate different results due to factors such as random initialization, data
variability and VAE hyperparameter tuning. However, these differences can be minimized
by using a fixed seed for initializing the weights, stabilizing the random selection of data
samples in mini-batch updates, and maintaining consistent VAE hyperparameters..

As emphasized in Section 1, the main objective of this paper was to study the impact
of input features in an original tabular dataset on learning the latent representation of
the tabular dataset in a VAE model, which is used to generate synthetic data. This pa-
per concentrates on extending sensitivity analysis to assess the contributions of different
features in an input dataset to the latent representation of a VAE. Below are some future
work proposals.

Interpretations will have practical meanings only when a VAE model has a rela-
tively good performance. A well-learned latent space makes interpretation results more
meaningful. In the application example, the loss value may be further reduced by tuning
hyperparameters to train a better latent representation. To ensure a good VAE model per-
formance before implementing interpretability techniques, one potential research direction
could be to investigate if there are any possibilities for designing a better loss function to
describe the performance of a VAE model.
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Since financial data usually contain sensitive information, using synthetic data to
replace real data is becoming more favorable within banks. VAE is one of the most pop-
ular deep-learning models for synthesizing data [2]. Understanding how VAE generates
synthetic data is important. In this context, apart from feature importance calculated by
sensitivity analysis introduced in this paper, more tools or methodologies can be designed
to provide additional explanations of synthetic data generation using a VAE model in
the future.

The proposed method in this paper can be expanded to other industries beyond
finance, such as education and healthcare, where VAE can be utilized to generate synthetic
data for protecting the privacy of students and patients and obtaining more training data.
In education, various Explainable AI (XAI) techniques has been applied to extract more
comprehensive information from student agency data to enhance teachers’ pedagogical
awareness and reflection [26]. Combining VAE with the proposed method can serve as
an alternative approach to help teachers recognize and comprehend the diverse perspectives
of student agency in their courses and provide suggestions for pedagogical planning while
producing synthetic data. In healthcare, XAI is employed to enhance decision-making by
providing physicians and patients with more accurate and interpretable predictions and
recommendations [27]. The proposed method can also be used to explain the significance of
different input features when VAE is used to synthesize data to mitigate privacy concerns
of patients and produce more training data for ML models for a given task.

The presented work is specifically designed for the situation that latent distributions
are commonly used Gaussian distributions, but the same concept behind the proposed
methodology can be extended to different distributions, such as Bernoulli distributions. By
determining the sensitivities of parameters that define the latent distributions to each input
feature, the impact of each input feature on VAE data synthesis can be understood.

6. Conclusions

This paper proposes to use a sensitivity-based interpretation technique to assess
how each input feature in a tabular dataset could impact the latent space of VAEs used to
generate synthetic data. Since synthetic data is generated based on the latent space of a VAE
model, knowing the contributions of each feature towards the latent representation helps us
better understand what features are more heavily relied on to generate synthetic data. The
contributions and relative importance of a feature can be measured by taking first-order
partial derivatives of the outputs of an encoder with respect to the input feature. If a feature
has a first-order partial derivative far away from zero, then this feature is an important
one. Suppose a feature has a first-order partial derivative close to zero. This indicates the
feature may not be significant since this feature has a negligible impact on the outputs
of the encoder, which are means and standard deviations in the latent space. To filter
irrelevant features from a dataset, second-order partial derivatives need to be performed
to check the interactions between the features considered unimportant in the first-order
partial derivative test and other features. Only features with low feature importance and
weak feature interactions with other features can be removed from a dataset. The four
experiments in Sections 3 and 4 demonstrate this sensitivity-based method can provide
explanatory insights into the contributions of each input feature in a tabular dataset on
the latent space by identifying essential features and discovering relationships between
input features.
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