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Abstract: Over the last few decades, detecting surface defects has attracted significant attention as a
challenging task. There are specific classes of problems that can be solved using traditional image
processing techniques. However, these techniques struggle with complex textures in backgrounds,
noise, and differences in lighting conditions. As a solution to this problem, deep learning has recently
emerged, motivated by two main factors: accessibility to computing power and the rapid digitization
of society, which enables the creation of large databases of labeled samples. This review paper aims
to briefly summarize and analyze the current state of research on detecting defects using machine
learning methods. First, deep learning-based detection of surface defects on industrial products
is discussed from three perspectives: supervised, semi-supervised, and unsupervised. Secondly,
the current research status of deep learning defect detection methods for X-ray images is discussed.
Finally, we summarize the most common challenges and their potential solutions in surface defect
detection, such as unbalanced sample identification, limited sample size, and real-time processing.

Keywords: defect detection; surface defect detection; defect detection for X-ray images; defect
recognition; deep learning

1. Terminology

• Support Vector Machine (SVM): an algorithm used in supervised learning for classify-
ing and performing regression tasks.

• Region of Interest (ROI): an area within an image or video that is deemed particularly
significant or relevant.

• Local Binary Patterns (LBP): a technique used in computer vision for extracting features
and analyzing images.

• Reduced Coordinate Cluster Representation (RCCR): a method for representing and
processing image data for object recognition that is efficient.

• Convolutional Neural Network (CNN): a neural network architecture commonly used
for image and video processing tasks.

• Zero Defect Manufacturing (ZDM): a strategy to eliminate defects in the manufacturing
process and improve quality.

• Deep Neural Network (DNN): a neural network architecture with multiple layers,
commonly used for image recognition and natural language processing tasks.

• MobileNet Single Shot MultiBox Detector (MobileNet-SSD): a lightweight convolu-
tional neural network that is designed for real-time object detection on mobile and
embedded devices.

• Fully Convolutional Network (FCN): a neural network architecture used for semantic
segmentation tasks.

• Region-based Convolutional Neural Network (RCNN): a neural network architecture
used for object detection tasks.
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• Autoencoders (AEs): a neural network architecture used for unsupervised learning
tasks such as dimensionality reduction and anomaly detection.

• Generative Adversarial Networks (GANs): a neural network architecture used for
generative tasks such as image synthesis and image-to-image translation.

• Self-Organizing Map based (SOM-based): an unsupervised learning algorithm that
organizes data into a 2D grid of clusters.

• General-purpose Annotation of Photos and Replica (GAPR) datasets: created by the
German Pattern Recognition Association, is a collection of images specifically designed
for the detection of texture defects.

• German Association for Pattern Recognition (DAGM) datasets: a collection of images
specifically designed for the detection of textured surfaces.

• Northeastern University (NEU) datasets: created by Northeastern University, a collec-
tion of images of surface defects that includes six different types of defects.

• Convolutional Denoising AutoEncoder (CDAE): a type of autoencoder designed to
remove noise from images.

• Non-Destructive Testing (NDT): a method of evaluating the properties of a material,
component, or system without causing damage.

• VGG: VGG is a pioneering object-recognition model that can have up to 19 layers.
Created as a deep CNN, it surpasses other models on many tasks and datasets apart
from ImageNet. VGG is still a widely used architecture for image recognition today.

• Mean Average Precision (mAP): a metric used to evaluate the performance of object
detection models, that calculates the average precision across different classes and
object instances.

2. Introduction

Several factors affect the quality of manufactured products during the manufacturing
process, including poor working conditions, inadequate technology, and various other
factors. Among product defects, poor product quality is most visible in surface defects.
Therefore, detecting product surface defects [1] ensures a high qualification ratio and
reliable quality.

A defect is generally defined as an absence or area that differs from a normal sample.
Figure 1 compares normal samples with defective samples of industrial products.
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iments, especially with defects involving junctions. In Figure 2, the method results are 
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In the past, identifying defects was carried out by experts, but this process was
not efficient. One major reason for this was that human subjectivity greatly affected the
detection results. Additionally, human inspection alone cannot meet the need for real-time
detection, and thus, it is not able to fulfill all the necessary requirements.

A significant amount of time has been dedicated to using traditional methods to detect
surface defects. When differentiation exists between the defect color and the background,
traditional image processing methods can perform well. Traditional methods in terms of the
product’s features can be categorized into three types: texture-based features, color-based
features, and shape-based features.

Several studies have used specialized techniques for detecting surface defects. In
color-based feature, for instance, literature [2] proposed a technique involving the use
of a percentage of the feature of color histogram and a vector texture feature to classify
image blocks to detect surface defects on wood; this method has been proven effective by
experiments, especially with defects involving junctions. In Figure 2, the method results
are shown.

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 32 
 

 

 
Figure 2. An example of the result of wood defect detection using the presented technique in [2]. 

Research conducted in literature [3] employed cosine similarity to verify the validity 
of the periodic law in magneto-optical images by utilizing the color moment feature. This 
method was successful in identifying the appropriate magneto-optical image for detecting 
and locating welding defects. Literature [4] describes a two-step technological process for 
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for the purpose of resolving the tile surface defect problem not being adequately described 
by a single feature. 

In terms of shape-based feature methods, literature [6] proposed a method of detect-
ing cutting defects on magnetic surfaces. In this method, the image of the magnetic surface 
is reconstructed using the Fourier transform and Hough transform, and, in order to obtain 
defect information, the gray difference between the original image and the reconstructed 
image is compared. A method for identifying defects on bottle surfaces was presented in 
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boundary line of the light source is determined using a fast Hough transform algorithm. 
In [8], global Fourier image reconstruction and template matching were proposed as a 
method for detecting and locating small defects in aperiodic images. Literature [9] de-
scribed how to detect surface defects on small camera lenses using Hough transforms, 
polar coordinate transforms, weighted Sobel filters, and SVM algorithms. Different types 
of defects were detected in several test images. In Figure 3, red highlights are used to 
indicate defects such as stains, scratches, and dots. 

  

Figure 2. An example of the result of wood defect detection using the presented technique in [2].

Research conducted in literature [3] employed cosine similarity to verify the validity
of the periodic law in magneto-optical images by utilizing the color moment feature. This
method was successful in identifying the appropriate magneto-optical image for detecting
and locating welding defects. Literature [4] describes a two-step technological process for
SVM-based and color histogram-based defect detection in particle boards, followed by
localization of defects using smoothing and thresholding. According to literature [5], color
moment features and FSIFT features were merged based on their magnitude of influence
for the purpose of resolving the tile surface defect problem not being adequately described
by a single feature.

In terms of shape-based feature methods, literature [6] proposed a method of detecting
cutting defects on magnetic surfaces. In this method, the image of the magnetic surface is
reconstructed using the Fourier transform and Hough transform, and, in order to obtain
defect information, the gray difference between the original image and the reconstructed
image is compared. A method for identifying defects on bottle surfaces was presented
in reference [7]. This method includes a step for extracting regions of interest, where the
boundary line of the light source is determined using a fast Hough transform algorithm.
In [8], global Fourier image reconstruction and template matching were proposed as
a method for detecting and locating small defects in aperiodic images. Literature [9]
described how to detect surface defects on small camera lenses using Hough transforms,
polar coordinate transforms, weighted Sobel filters, and SVM algorithms. Different types of
defects were detected in several test images. In Figure 3, red highlights are used to indicate
defects such as stains, scratches, and dots.
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Figure 3. A camera lens with several defects: (a) original image and (b) converted result based on
inspection result and polar coordinate transformation [9].

In the texture-based feature method, for example in [10], a multi-block local binary
pattern (LBP) algorithm has been improved. In addition to having the simplicity and
efficiency of LBP, this algorithm ensures high recognition accuracy by varying the block
size to describe defect features. According to the experiment, the method has the speed
to meet online real-time detection requirements (63 milliseconds/image), outperform the
widely used scale-invariant feature transform (SIFT), speed up robust features (SURF),
and gray-level co-occurrence matrix (GLCM) algorithms for recognition accuracy (94.30%),
demonstrating that MB-LBP can be used to detect images in real time online. Literature [11]
used a fuzzy model that was based on extracting GLCM features and processed it using
MATLAB. The model took in three variables as inputs: autocorrelation, square root of
variance, and the number of objects. Using fuzzy logic on ceramic defects, the accuracy of
the ceramic inspection process with a light intensity of 300 lx, camera distance of 50 cm, and
a 1.3 MP or 640 × 480 pixel image size was determined using the training data of 96.87%,
and the accuracy of the real-time system was 92.31%. According to literature [12], features
such as Reduced Coordinated Cluster Representation (RCCR) are used to form a one-class
classifier. An algorithm based on texture periodicity estimates the primitive unit size of
defect-free fabrics during the training phase. After splitting the fabrics into samples of one
unit, RCCR features are used in a one-class classifier to learn their local structure. In [13],
morphological filters are used to detect defects on billet surfaces in order to distinguish
them from scales. With the help of morphological erosion and dilation techniques with
repetition, the image is converted into a binary image by using morphological top-hat
filtering and thresholding. The detection efficiency of the proposed algorithm is evaluated
using real billet images to evaluate its performance. The proposed algorithm is found to be
effective and suitable for analyzing billet images with scales in experiments. According
to literature [14], the GLCM is defined as the fabric image’s characteristic matrix. To
distinguish defect-free from defective images, Euclidean distance is used and, in order
to determine the pattern period, the autocorrelation function is used. In this paper, the
authors discussed two GLCM parameters in relation to Euclidean distances. Furthermore,
in addition to being concise and objective, Euclidean distances have the advantage of being
reliable and objective for defect detection. According to the algorithm’s tests, it is not
only accurate, but also more adaptable to yarn-dyed fabrics with short organization cycles.
Table 1 summarizes recent applications of machine learning algorithms for surface defect
detection in industrial products, categorized by texture, color, and shape features. Table 2
compares the strengths and weaknesses of feature-based methods for detecting surface
defects, including accuracy, computational efficiency, and robustness. These tables provide
an overview of the diversity of approaches and key factors affecting performance in the
field of surface defect detection.
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Table 1. Recent applications using machine-learning-based vision algorithms for detecting sur-
face defects in industrial products, categorized into three categories based on texture, color, and
shape features.

Approach Reference Feature Target Performance

Te
xt

u
re

-
ba

se
d

[11] Gray level co-occurrence matrix Ceramic Recognition rate: 92.31%
[13] Mathematical morphological Billet Accuracy: 87.5%
[15] Fractal model Steel Accuracy: 88.33%
[16] Gabor filter Steel billet Thin crack: 91.9% and corner crack: 93.5%

C
ol

or
-b

as
ed

[3] Bivariate color histogram Particleboards Can effectively detect and localize defect

[17]
Color coherence vectors
combined with texture features
as a basis

NWPU-RESISC45
data sets Accuracy: 96.66%

[18] Color histogram Cementitious
materials

ERT can be efficient for situ monitoring
and defect detection of cement mortar

Sh
ap

e-
ba

se
d

[6] Fourier image Magnet Can automatically detect surface-cutting
defects in magnets

[8]

Comparison of the whole
Fourier spectra between the
template and the inspection
image

Non-periodical
pattern images

Can detect various types of non-repeating
patterns in the electronic industry, even
those as small as one pixel wide, making
it useful for identifying defects

[9]
A circle Hough transformation,
weighted Sobel filter, and polar
transformation

Compact camera
lens

Able to identify defects in complicated
circular inspection areas and has been
proven to be highly effective

Table 2. An overview of the strengths and weaknesses of various feature-based methods for detecting
surface defects in industrial products.

Approach Reference Method Strengths Weaknesses

Te
xt

ur
e-

ba
se

d

[10]
Multi-block local
binary pattern
(LBP) algorithm

High recognition accuracy and meets
online real-time detection
requirements; robust to rotation and
scaling; fast processing time

Does not perform well with defects
that do not involve texture changes;
may not be able to detect defects with
low contrast;

[11]
Fuzzy model based
on GLCM
extraction

Can be useful for detecting defects in
images with low contrast or noise,
where other methods may fail

Not as good at detecting defects that
have a very different texture than the
one used to train the model; may not
be as accurate as deep learning-based
methods, which can learn from data
and adapt to new types of defects

[12]

Reduced
Coordinated
Cluster
Representation
(RCCR)

Good at detecting defects with high
precision, as it is able to extract
features of the defects and identify
them; good at detecting defects in
images with low contrast or noise, as
it is able to extract features that are
robust to these challenges

It is limited to detecting specific types
of defects (based on the specific
clustering method and feature
extraction technique used), which can
make it less suitable for more complex
or varied defects
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Table 2. Cont.

Approach Reference Method Strengths Weaknesses

C
ol

or
-b

as
ed

[2]
Color histogram
and vector texture
feature

Proven to be effective with defects
involving junctions; able to handle
multiple input features

Not be suitable for detecting defects in
textures with complex patterns; may
not work well for defects that do not
involve changes in color

[3]
Cosine similarity
and color moment
feature

A robust method for comparing
similarity between images, which can
be useful for detecting small defects
that are difficult to see with the naked
eye; are able to identify different types
of defects with high precision, as they
are able to extract features of the
defects and identify them

May require additional preprocessing
steps, such as image enhancement
techniques, to improve their
performance; do not have the ability
to learn from data as compared to
deep learning based methods, which
can make them less adaptable to new
types of defects or variations in the
data

[4]
SVM-based and
color
histogram-based

High accuracy rate; able to extract
useful information from the color of
an image, which can be useful for
detecting defects that are based on
color variations, such as stains or
discolorations

May not perform well with other
types of materials; may not be able to
detect defects with low contrast

[5]
Color moment
features and FSIFT
features

Successful in resolving tile surface
defect problem not being adequately
described by a single feature

May not perform well with defects
that do not involve color changes; not
be able to detect defects with low
contrast

Sh
ap

e-
ba

se
d

[6]
Fourier transform
and Hough
transform

Good at detecting periodic patterns,
which can be useful for detecting
defects in materials with repeating
patterns, such as in fabrics or metals

Do not have the ability to learn from
data as compared to deep learning
based methods, which can make them
less adaptable to new types of defects
or variations in the data

[7] Fast Hough
transform

Good at detecting linear features, such
as cracks or scratches, in an image;
good at detecting defects with high
precision, as it is able to extract
features of the defects and identify
them.

Is not as good at detecting defects in
images with low contrast or noise,
which can make it less effective in
some industrial applications; does not
have the ability to learn from data as
compared to deep learning based
methods, which can make it less
adaptable to new types of defects or
variations in the data

[8]

Global Fourier
image
reconstruction and
template matching

Good at detecting small defects, such
as scratches or cracks, in an image by
reconstructing the original image from
the Fourier domain

Limited to detecting specific types of
defects (based on the specific
templates or reconstruction of the
Fourier domain), which can make
them less suitable for more complex or
varied defects

Using only one feature or one class of features on industrial products is rarely sufficient
because their surfaces typically contain a variety of information. Consequently, many
features are used in combination in practical applications, making it difficult to detect
defects. Additionally, feature-based approaches are highly effective when they detect
defects in images with little or no variation, and when defects appear on surfaces in a
consistent pattern. Considering the wide range of uncertainties in industrial settings, it
is important to develop methods that are adaptable to such wide ranges of variations in
defect intensity, shape, and size.

Deep learning models based on convolutional neural networks (CNN) have had a
lot of success in various computer vision fields, such as recognizing faces, identifying
pedestrians, detecting text in images, and tracking targets. Additionally, these models
are used in a wide range of industrial settings for defect detection. This includes both
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commercial and industrial applications, such as in the automotive industry for detecting
defects in cars. The deep-learning-based surface defect detection software is employed in
these settings to improve the efficiency and accuracy of the defect detection process.

Recently, several papers covering the latest techniques, applications, and other aspects
have been published on deep learning in defect detection [19]. Literature [12] describes the
different types of defects and compares mainstream and deep learning methods for defect
detection. Various defect detection techniques are discussed in literature [20], including
ultrasonic inspection, machine vision, and deep learning. Literature [21] focuses on the
use of AI-enhanced metrology, computer vision, and quality assessment in the Zero Defect
Manufacturing (ZDM) process. The study also highlights the use of IoT/IIoT technology
as a means of supporting these tools and implementing AI algorithms for data processing
and sharing. Literature [22] discusses deep learning methods for detecting surface defects,
then discusses three critical issues related to small samples and real-time defects detection.
In [23,24], the authors analyze and compare the benefits and drawbacks of the above meth-
ods. There are also defect detection surveys in several application domains, including fabric
defects [25], corrosion detection [26], pavement defects [27], metal defect detection [28],
and industrial applications [29]. The investigation shows that, in the field of surface defect
detection of industrial products, there is currently a limited literature review on machine
learning methods, and while some papers summarize the challenges and problems, the
mentioned solutions are not systematic. The first section of this paper addresses the above
issues by summarizing the research status on the detection of surface defects on industrial
products using deep learning algorithms and then discusses the issues in the process of
industrial surface defect detection, such as unbalanced sample identification problems,
small sample problems, and real-time problems.

This paper is organized as follows. Section 3 provides an overview of deep learning
methods for surface defect detection in industrial products from three perspectives, along
with a common dataset for surface defect detection. In Section 4, we summarize the recent
research status of deep learning methods for X-ray image defect detection. A discussion
of the main problems and their solutions is provided in Section 5. In Section 6, a brief
description of future research directions is provided and Section 7 concludes the paper
with a conclusion.

3. Deep Learning Surface Defect Detection Methods for Industrial Products

Deep learning has become increasingly popular in the field of defect detection due
to its rapid development. This section summarizes the state of research on inspection of
industrial products for detecting surface defects. Learning-based approaches are classified
as supervised, semi-supervised, and unsupervised. The performance of learning-based
methods is best optimized when large datasets are provided. In particular, supervised
techniques perform well when there are sufficient examples of each class in the dataset.

3.1. Supervised

Supervised detection requires large datasets of defect-free and defective samples
labeled in a training set. Since all the training data is labeled, detection rates can be very
high. It must be noted, however, that supervised detection may not always the most
effective approach due to the imbalance of classes in the datasets. There are a number of
datasets that supervised learning methods use, including the fabric dataset [30], rail defect
dataset [31], and railroad dataset [32].

Deep neural networks and feature extraction and classification methods used in
supervised methods differ in their structures. For example, detecting cross-category defects
without retraining was proposed using a two-layer neural network in the literature [33].
Based on structural similarities between image pairs, the method learns differential features,
which may result in some structural similarities among different classification objects. This
method has been shown to be able to detect defects in different types of factories based on
experiments in real factory datasets. Literature [34] suggests that the composition of kernels
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is more important than the number of layers when it comes to detection results. To detect
small defects and textures in surface images, it is necessary to use a sample image that is
large enough for computational accuracy and reducing the cost of the network. ShuffleNet
uses convolution of pointwise groups and channel shuffle as two new techniques to achieve
this goal. Literature [35] proposes a novel in-line inspection system for plastic containers
based on ShuffleNet V2. The system can be used to inspect images on complex backgrounds
as well. In [36], they proposed ShuffleDefectNet, a deep-learning-based defect detection
system that achieved 99.75% accuracy on the NEU dataset.

Reference [37] suggested that shallow CNN networks can be used to identify anoma-
lies. To train the model, only negative images are used and the research employs full-size
images. The argument is that it is not necessary to have full-size examples of both defective
and defect-free samples, as the negative samples already have pixels that correspond to the
defect-free regions. Based on the Fast R-CNN model, Faster R-CNN introduces a region
proposal network (RPN), which enables an end-to-end learning algorithm. This leads to
a near-costless regional recommendation algorithm that significantly improves the speed
of target detection. Faster R-CNN was used in [38] to detect PCB surface defects, a new
network was proposed combining ResNet50, GRAPN residual units, and ShuffleNetV2.
Using a cascaded RCNN structure, as described in literature [39], the defect detection
problem of power line insulators can be changed into a two-level target detection problem;
the results are shown in Figure 4.
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In limited hardware configurations, MobileNet-SSD [9] improves real-time object
detection performance. There is no need to sacrifice accuracy for the reduction of parameters
in this network. An SSD network classifies regression and boundary box regression using
various convolution layers. Translation invariance and variability are resolved in this
model, resulting in good detection precision and speed. Object detection is effective when
defects have regular or predictable shapes [40]. Additional preprocessing steps can be
applied to more complex defect types. Fully Convolutional Networks (FCNs) use all
convolutional layers as network layers; label maps can be directly derived using pixel-level
prediction. To achieve accurate results, a deconvolution layer with larger data sizes is
used. In literature [41], FCN and Faster R-CNN were combined to develop a deep learning
model that could detect stains, leaks, and pipeline blockages in tunnels. A method for
segmenting defects in solar cell electroluminescence pictures was presented in [42]. A
defect segmentation map was obtained in one step by combining FCN with a specific
U-net architecture.
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3.2. Unsupervised

Research has begun to explore unsupervised methods to overcome the disadvantages
of supervised methods. By learning the inherent characteristics of the input training data,
the machine can learn some of its own characteristics and connections when there is no
label information and automatically classifies the input training data based on the pattern
of these unlabeled data [43]. It automatically classifies these unlabeled data based on
inherent characteristics and connections between the data. Methods based on reconstruction
and embedding similarity are the most commonly used to detect surface defects among
unsupervised learning methods. Reconstruction-based methods such as autoencoders
(AEs) and Generative Adversarial Networks (GANs) are most commonly used. Popular
algorithms include PaDIM [44], SPADE [45] PatchCore [46], etc. In [47], an algorithm based
on DBN was proposed for detecting defects in solar cells. Both training and reconstructed
images were used as supervision data by the fine-tuning network of the BP algorithm.
Literature [48] proposed a multi-scale convolutional denoising autoencoder with high
accuracy and robustness that synthesizes the results of multiple pyramid levels.

A SOM-based detection method was proposed in [49] for determining the difference
between normal and defective wood. The first stage involves detecting suspected defect
areas, and the second stage involves separately inspecting each defect area. A detection
method that uses GANs was proposed in reference [50]. The method is divided into
two stages: first, a generative network and a learning mechanism based on statistical
representation are used to detect new areas. In the second stage, defects and normal
samples are directly distinguished using the Frechet distance. The solar panel dataset was
used to test the method, and it achieved 93.75% accuracy.

A multiscale AE with fully convolutional neural networks has been proposed [51], in
which each FCAE sub-network directly obtains the original feature image from the input
image and performs feature clustering. Utilizing a fully convolutional neural network,
the residual images were combined to create the defect image. PatchCore, introduced in
literature [46], is a technique for identifying and isolating abnormal data in scenarios where
only normal examples are available. It balances the need to retain normal context through
memory banks of patch-level features extracted from pre-trained ImageNet networks and
minimize computational time via coreset subsampling to create a leading system for cold-
start image anomaly detection and localization that is efficient on industrial benchmarks.
On MVTec, the algorithm demonstrated an AUROC of over 99%, while also being highly
efficient in small training set scenarios. Literature [52] presented a GAN-based surface
vision detection framework that uses OTSU to segment fusion feature response maps and
fuses the responses of the three layers of the GAN discriminator. The framework has
been proven effective on datasets of wood cracks and road cracks. As shown in Figure 5,
ref. [53] proposed a GAN-based method for detecting strip steel surface defects, in which
the generator G uses encoding and the hidden space features in the penultimate layer are
fed into a SVM to detect defects. The test results on images provided by the Handan Iron
and Steel Plant indicated good accuracy. It is more effective at detecting texture images;
however, its accuracy still needs to be improved.
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Figure 5. Presenting the results of experiments on six defect samples using four methods. The defect
types are listed in the first column and include drops tar, shadow, floating, crush, pitted surface and
scratch. The results from traditional manual feature extraction methods (CPICS-LBP, AEC-LBP, HWV
and the proposed method in [53]) are shown in columns 2–5. The experiment compares the proposed
method with current state-of-the-art methods in detecting strip steel surface defects.

3.3. Semi-Supervised

As a result of combining the properties of supervised and unsupervised methods, semi-
supervised methods are developed. Only normal samples are used as training data for semi-
supervised defect detection and a defect-free boundary is learned and set, and any samples
outside the boundary are considered anomalous. Since there are few defective samples
to be obtained, the method is extremely useful. Nevertheless, this method has lower
accuracy in defect detection compared to supervised methods. Unlabeled sample data can
be automatically generated by semi-supervised methods without manual intervention.

A framework for identifying defects in PCB solder joints was proposed in litera-
ture [54], which utilizes a combination of active learning and self-training through a sample
query suggestion algorithm for classification. The framework has been demonstrated to
improve classification accuracy while reducing the need for manual annotations. A semi-
supervised model of convolutional autoencoder (CAE) and generative adversarial network
is proposed in [55]. After training with unlabeled data, the stacked CAE’s encoder network
is retained and input into the SoftMax layer as a GAN discriminator. Using GAN, false
images of steel surface defects were generated to train the discriminator. For the detection
of steel surface defects, literature [56] developed a WSL framework combining localization
networks (LNets) and decision networks (DNets), with LNets trained by image level labels
and outputs a heat map of potential defects as input to DNets. Through the use of the
RSAM algorithm to weight the regions identified by LNet, the proposed framework has
been demonstrated to be effective on real industrial datasets. The application prospects
for weakly supervised methods are also wide because the methods simultaneously com-
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bine advantages of both supervised and unsupervised methods. There are few weakly
supervised methods for detecting surface defects in industrial products. The literature [57]
proposed a deep learning algorithm to learn defects from a variety of defect types with an
unbalanced training sample pool for PCBA manufacturing products. In this method, an
overall defect recognition accuracy of 98% is achieved in PBCA images using a novel batch
sampling method and the sample weighted cost function.

A semi-supervised learning system that generates samples to detect surface defects
was proposed according to the literature [58]. As part of the semi-supervised learning
part, two CDCGAN and ResNet18 classifiers were used, and the NEU-CLS dataset was
used to compare the two classifiers. In this way, supervised learning and transfer learning
are both shown to be inferior to the method. A convolutional neural network structure
based on residual network structures was proposed in [59] by stacking two layers of
residual building modules together, resulting in a 43-layer convolutional neural network,
while at the same time by appropriately increasing the network width; a more balanced
network depth and network width can be obtained and accuracy can be improved. The
network structure shows good performance on the DAGM, NEU steel, and copper clad
plate datasets. Table 3 provides an overview of recent research in surface defect detection,
including classifications of targets and Table 4 evaluates the strengths and weaknesses of
deep learning techniques for detecting surface defects in industrial products, including
accuracy, computational efficiency, and robustness. These tables give a comprehensive
understanding of current research and the considerations for using deep learning in surface
defect detection. Table 5 lists a selection of commonly used datasets for training and testing
algorithms for detecting surface defects in industrial products. The datasets are classified
based on the type of industrial products they are intended for. This information is useful
for researchers and practitioners looking for suitable datasets for their work in the field of
surface defect detection.

Table 3. An overview of recent research publications as well as classifications based on targets.

Reference Year Method Target Performance

[46] 2022 PatchCore

MVTec benchmark
datasets, the

ShanghaiTech Campus
dataset (STC), and the
Magnetic Tile Defects

dataset (MTD)

Demonstrated a high level of performance
on the MVTec dataset with an AUROC of
over 99% and a particularly strong ability
to perform well with small training sets

[60] 2019 CNN Steel
This method achieves significantly higher
recognition accuracy for steel surface
defects than state-of-the-art classifiers

[55] 2019 GAN Steel
CAESGAN achieves the best classification
rate compared to traditional methods,
especially for hot rolled plates

[61] 2019 SDD and ResNet Steel Steel surface defect detection can be
performed with high speed and accuracy

[62] 2019 Faster-RCNN Steel
Achieved higher detection accuracy and
more accurate location of defects,
especially for tiny and slender defects

[63] 2018 CNN DAGM dataset Can achieve a 99.8% accuracy rate in
detecting defects

[64] 2016 CNN DAGM dataset
This method demonstrates a low false
alarm rate and excellent defect detection
results
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Table 3. Cont.

Reference Year Method Target Performance

[65] 2019 FCN DAGM dataset
A defect image (512 × 512) can be
processed each second, with more than
99% of pixel accuracy

[66] 2017 2-stage FCN
framework DAGM dataset Able to achieve meaningful results in

terms of performance and speed

[34] 2016 CNN Texture

In comparison to traditional manual
inspection systems, this method offers
several advantages in time and cost
savings

[67] 2018 AutoEncoder Various materials
Compared to traditional hand-engineered
feature extraction methods, this approach
is more generic

[68] 2020 CNN On the datasets, it is possible to achieve
100% recall and high precision

[69] 2021 YOLOv5 PCB Can achieve a 0.7% mAP promotion on
HRIPCB dataset

[70] 2021 YOLOv3 PCB

The detection rate increases to 63 frames
per second due to an increase in mAP of
92.13%. As a result, PCB surface defect
detection has increased application
prospects

[71] 2021 CNN Flexible printed circuit
boards (FPCBs)

Achieves 94.15% mean average precision
(mAP) in comparison with existing
surface defect detection networks

[72] 2022 CNN Rails
Detected 98.2% of defects at the image
level and 97.42% at the pixel level,
respectively

[73] 2021 YOLOv3 RailwayHub

High-speed rail wheels can be detected
more accurately and many defects can be
located with greater accuracy with this
system

[74] 2019 Faster R-CNN Railway insulator Algorithms superior to others

[75] 2017 CNN and SVM Metal surface

In classification, this method outperforms
both state-of-the-art traditional
handcrafted features and other deep
ConvNet features extracted from a
preselected best layer based on several
anomaly and texture datasets

[76] 2021 CNN Metal Workpiece
It has strong adaptability and is capable of
automatically extracting and detecting
defects

[77] 2021 YOLOv5 Insulator

It reduces unsafe manual detection and
increases detection efficiency by
effectively identifying and locating
insulator defects across transmission lines

[78] 2021 Mask R-CNN Insulator Detection accuracy: 87.5%

[79] 2021 SE-YOLOv5 Fabric

As compared to the original YOLOv5, the
improved SE-YOLOv5 has a higher
accuracy, generalization ability, and
robustness for detecting fabric defects
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Table 3. Cont.

Reference Year Method Target Performance

[80] 2021 YOLOv4 Fabric
Can quickly and accurately locate defects,
and can also be used in other defect
detection industries

[81] 2022 UNet Fabric Detection accuracy rate: 99%

[82] 2022 SVM Non-woven fabric It is highly accurate and performs well in
real time

[83] 2021 Faster R-CNN Aluminum

In comparison with the original algorithm,
this algorithm achieved 78.8% mean
average accuracy (mAP), which is 2.2%
higher

[84] 2018 CNN Copper clad lamination
surface Accuracy rate: 98.2%

[85] 2019 Faster-RCNN and
feature fusion

(GAPR) texture defect
dataset

Performs well under various conditions
and has good adaptability

[86] 2022
Autoencoder and

morphological
operation

Textile Superior performance to other prevailing
models

[87] 2019 Faster R-CNN Weel hub
It is simpler, faster, and more accurate
than both R-CNN and YOLOv3 methods
for wheel hub defects

[88] 2022 YOLOv3 Polarizer
There is a slight increase in its mAP over
YOLOv3, and it has a detect speed
increase of 44% to 121 frames per second

[89] 2021 Faster R-CNN Belt Layer of Radial
Tire

False negatives and false positives
decrease by 7.79%, 3.4%, and 5%,
respectively, compared with the vanilla
Faster R-CNN

[90] 2017 CNN Pavement crack
analysis

Accurately detects pavement cracks and
evaluates their types

[91] 2022 YOLO v5 Solar Cell Solar cell EL images were used to train the
model, which achieved 89.64% mAP

[92] 2017 CNN Mangosteen Recognition accuracy: 97%

[93] 2017 CrackNet Crack detection on 3D
asphalt surfaces

With 200 3D images, CrackNet achieved
high precision

[94] 2021 R-CNN Textile fabric Defect detection accuracy improved by
4.09% to 95.43%

[95] 2020 CNN AigleRN and
DAGM2007

Can achieve high detection accuracy and
efficiency

[96] 2019 Faster R-CNN Aluminum profile
With regard to the multiscale
defect-detection network, it achieved a
75.8% mAP over Faster R-CNN

[97] 2022 MobileNetV3 Sanitary ceramics

With the Faster R-CNN method, detection
speed is improved by 22.9%, precision is
improved by 35.0%, and memory
consumption is reduced by 8.4%
compared to the SSD, YOLO V3, and
one-stage SSD methods

[98] 2017 CNN Welding Recognition accuracy rate: 95.83%
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Table 3. Cont.

Reference Year Method Target Performance

[99] 2017 CNN Concrete cracks

The CNN is trained on 40,000 images with
a resolution of 256 × 256 pixels and
achieves an accuracy rate of
approximately 98%

[100] 2022 YOLOv5 Plastic Superior performance to other prevailing
models

[101] 2019 SDD-CNN Roller subtle Accuracy rate: 99.56%

[102] 2018 GAN MPCG (Mobile Phone
Cover Glass)

MPCG defects can be detected with high
accuracy of 98%

[103] 2022 YOLOv5 Ceramic ring Accuracy rate: 89.9%

[104] 2018 CNN Solar cell Recognition rate: 94.30%

[105] 2022
Wavelet

Decomposition and
CNN

Automobile Pipe Joints

Reduces the impact of uneven
illumination, random noises, and texture
processing on defect classification
accuracy, and the SVM classification
method demonstrates an accuracy of
approximately 83% for identifying the
presence of no defects, pits, and scratches
in a given set of data

[106] 2021
Multi-Feature

Fusion and
PSO-SVM

Lithium Battery Pole
Piece Average recognition rate: 98.3%

[107] 2018 CNN Shinny surfaces Classification rate: around 89%

[108] 2017 DL-based ASI NEU, Weld, and wood
defect database

Can improve the accuracy by 0.66% to
25.50% for datasets

[109] 2022 SCED-Net Steel Coil

As compared to recent networks used in
steel coil end face detection and some
classical object detection networks, this
method offers better performance

[110] 2021

FFCNN consists of
(feature extraction

module, feature
fusion module, and

decision-making
module)

Magnetic Tile

The performance of a combination of
mean fusion and Resnet-50 with CBAM is
97.0%, while the combination of max
fusion and Resnet-50 with CBAM has an
accuracy rate of 95.0%

[111] 2018 AlexNet and SVM Custom dataset Detection Accuracy: 99.201%

[112] 2021 YOLOv3 Chip mAP REACHES 86.36%

[113] 2017 CNN and a voting
mechanism

Metallic gasket, DAGM
defects, and screw

image

Performs well in arbitrary textured
images as well as in images with special
structures, proving that it is superior to
traditional detection algorithms

[114] 2022 CNN High Voltage Circuit
Breaker

The network model has been shown to be
able to accurately detect four different
levels of rust through experimental
results, with a success rate of 94.25%
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Table 4. Strengths and weaknesses of different techniques for detecting surface defects on industrial
products using deep learning.

Approach Reference Method Strengths Weaknesses

Supervised

[33] Two-layer neural
network

Able to detect cross-category defects
without retraining; simplicity of the
structure of the model allows for
faster training and inference

Limited to only two layers; may
not be able to extract complex
features; the simplicity of the
model may make it less robust to
noise and other variations in the
input data

[34] Composition of
kernels

Efficient network architecture for
detecting small defects and textures in
surface images

Lack of emphasis on the number
of layers may lead to suboptimal
results

[35,36] ShuffleNet Can only be trained with negative
images

May not perform well on larger;
more complex datasets

[37] Shallow CNN
Significantly improves detection
speed and can be used for end-to-end
learning

Limited to identifying anomalies
and may not perform well on
more complex defects

[38] Faster RCNN

Requires a separate region proposal
network; significantly improves the
speed of target detection; can detect
objects of different scales.

Might not perform well on highly
cluttered scenes with many
overlapping objects.

[39] Cascaded RCNN

Can effectively solve the defect
detection problem for specific
applications such as power line
insulators

May not perform well on defects
with irregular or unpredictable
shapes

[9] MobileNet-SSD
Highly efficient and capable of
real-time object detection in limited
hardware configurations

May not perform as well as other
models on larger, more complex
datasets

[42] FCN
Can achieve high accuracy and
directly output label maps at the
pixel-level

Can be computationally expensive,
especially when used with large
datasets

Unsupervised

[46] PatchCore
Identifies and isolates abnormal data
in scenarios where only normal
examples are available

May not perform as well as other
models on larger and more
complex datasets

[47] DBN

Utilizes both training and
reconstructed images as supervision
data for fine-tuning; can learn useful
features from the data without the
need for manual feature extraction,
which can save time and resources

May not have the capacity to
identify more complex features in
the images

[48]

Multi-scale
convolutional
denoising
autoencoder

High precision and robustness by
combining results from multiple
pyramid levels; can effectively remove
noise from the input data, which can
improve the performance of defect
detection in noisy images

May not be able to generalize well
to new unseen data, especially if
the data is vastly different from
the training data; computationally
expensive to train, especially when
the input data is high-dimensional,
which can be a limitation in
real-time applications

[49] SOM-based
detection

Can effectively cluster and classify
high-dimensional data, which can be
useful for detecting defects in images
and other types of data

Can be sensitive to the initial
conditions of the map and the
choice of parameters, which can
make it challenging to obtain
accurate and consistent results

[50] GANs
Two-stage process for detecting new
areas and directly distinguishing
defects and normal samples

GANs can be difficult to train and
may require a large amount of data
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Table 4. Cont.

Approach Reference Method Strengths Weaknesses

[51]
Multiscale AE with
fully convolutional
neural networks

Obtains the original feature image and
performs feature clustering through
each FCAE sub-network; can
effectively learn spatial relationships
between pixels, which can be useful
for detecting defects in images

May struggle with detecting small
or subtle defects, which may not
be easily distinguished from
normal patterns in the input data

[52]
GAN-based surface
vision detection
framework

Proven effective on datasets of wood
cracks and road cracks; can be used to
generate images that can be used to
improve the interpretability of the
model and help identify the specific
features that are used to detect defects

May struggle to generate
high-quality images if the training
dataset is small or of poor quality;
may face mode collapse problem,
where the generator produces only
a small subset of all possible
outputs

[53]

GAN-based
method for
detecting strip steel
surface defects

Tailored for detecting strip steel
surface defects, it could be more
effective and accurate than
general-purpose models

Performance may be limited to the
specific application of detecting
strip steel surface defects and may
not generalize well to other types
of defects or materials

Semi-
Supervised

[54] Active learning and
self-training

Improves classification accuracy while
reducing the need for manual
annotations

Can be limited by the quality of
the unlabeled data, which may
contain a large number of
examples that are not relevant to
the task at hand

[55]

Convolutional
Autoencoder and
Generative
Adversarial
Network

Allows the model to effectively extract
high-level features from the input
data, which can be useful for detecting
defects

May struggle to generate
high-quality images if the training
dataset is small or of poor quality

[56] WSL framework
Combines localization networks and
decision networks for effective
detection of real industrial datasets

May not perform well on images
with intricate backgrounds

[58] Semi-supervised
learning system

Generates samples to detect surface
defects with improved accuracy
compared to supervised and transfer
learning methods

May not perform well on images
with intricate backgrounds

[59] Residual network
structures

Shows good performance on DAGM,
NEU steel, and copper clad plate
datasets with a balanced network
depth and width

May require more computational
resources to train

Table 5. A list of common surface defect datasets with classifications for industrial products.

Name and Reference Target Link

MVTec AD [115] Various materials http://mvtec.com/company/research/datasets (accessed on 2 February 2023)

Steel Defect Detection Steel https://kaggle.com/c/severstal-steel-defect-detection/data (accessed on 2
February 2023)

GC10–Det [116] Metal https://kaggle.com/alex000kim/gc10det (accessed on 2 February 2023)
Industrial Metallic
Surface Dataset Metal https://kaggle.com/datasets/ujik132016/industrial-metallic-surface-dataset

(accessed on 2 February 2023)

Bridge Cracks [117] Bridge https://github.com/Iskysir/Bridge_Crack_Image_Data (accessed on 2 February
2023)

Fabric defect dataset Fabric https://kaggle.com/datasets/rmshashi/fabric-defect-dataset (accessed on 2
February 2023)

http://mvtec.com/company/research/datasets
https://kaggle.com/c/severstal-steel-defect-detection/data
https://kaggle.com/alex000kim/gc10det
https://kaggle.com/datasets/ujik132016/industrial-metallic-surface-dataset
https://github.com/Iskysir/Bridge_Crack_Image_Data
https://kaggle.com/datasets/rmshashi/fabric-defect-dataset
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Table 5. Cont.

Name and Reference Target Link

DeepPCB dataset [118] PCB https://github.com/tangsanli5201/DeepPCB (accessed on 2 February 2023)

PCB Defects PCB https://kaggle.com/datasets/akhatova/pcb-defects (accessed on 2 February
2023)

PCB DSLR DATASET PCB https://zenodo.org/record/3886553#.Y1dNl3bMKUk (accessed on 2 February
2023)

Structural Defects
Network (SDNET)
2018 [119]

Concrete https://kaggle.com/datasets/aniruddhsharma/structural-defects-network-
concrete-crack-images (accessed on 2 February 2023)

COncrete DEfect
BRidge IMage Dataset Concrete https://zenodo.org/record/2620293#.Y1dPO3bMKUk (accessed on 2 February

2023)
Surface Crack
Detection Dataset [120] Concrete https://kaggle.com/arunrk7/surface-crack-detection (accessed on 2 February

2023)
Pavement crack
dataset Pavement https://github.com/fyangneil/pavement-crack-detection (accessed on 2

February 2023)
Cracks and Potholes in
Road Images Dataset Road https://biankatpas.github.io/Cracks-and-Potholes-in-Road-Images-Dataset

(accessed on 2 February 2023)
Crack Forest Datasets
[121] Road https://github.com/cuilimeng/CrackForest-dataset (accessed on 2 February

2023)
T ianchi aluminum
profile surface defect
dataset

Aluminum https://tianchi.aliyun.com/competition/entrance/231682/information
(accessed on 2 February 2023)

Solar cell EL image
defect detection Solar panel https://ieee-dataport.org/documents/photovoltaic-cell-anomaly-detection-dataset

(accessed on 2 February 2023)
Elpv-dataset [122] Solar panel https://github.com/zae-bayern/elpv-dataset (accessed on 2 February 2023)
Magnetic tile surface
defects [123] Tile https://github.com/abin24/Magnetic-tile-defect-datasets (accessed on 2

February 2023)
Dataset for Rail
Surface Defects
Detection

Rail https://arxiv.org/abs/2106.14366 (accessed on 2 February 2023)

Railway Track Fault
Detection Rail https://kaggle.com/datasets/salmaneunus/railway-track-fault-detection

(accessed on 2 February 2023)

4. Deep Learning Defect Detection Methods for X-ray Images for Industrial Products

Non-destructive testing (NDT) is a method that uses radiography or ultrasound
technologies to discover faults without causing damage to the detected objects. It is widely
used in engineering industries to detect and evaluate defects in materials of all types.

An important technique in non-destructive testing is radiographic testing, which uses
X-rays to identify and evaluate flaws or defects, such as cracks or porosities. Defects can
appear in X-ray images in many shapes and sizes, making detection difficult. The images
are often low contrast and noisy, making identification of defects difficult.

The traditional approach for identifying defects in industrial products is for human
operators or experts to visually inspect radiographs. However, this method can be subjec-
tive and prone to errors. Additionally, the process of examining a large number of images
can be time-consuming and may lead to misinterpretations. However, there have been
significant advancements in the field of defect detection in recent years, thanks to the
emergence of deep learning techniques. As a result, a number of methods for detecting
defects have been proposed, which are more efficient and reliable than the conventional
approach. This section aims to provide a summary of current research on industrial product
defect detection methods using X-ray images. Specifically, it covers the use of deep learning
techniques such as convolutional neural networks and generative adversarial networks to
analyze radiographic images and identify defects with a high degree of accuracy. These
methods have the potential to reduce the subjectivity and human errors associated with
the traditional approach, as well as the time required for inspection. Additionally, they can
be trained to improve over time with more data, making them more robust and reliable.

https://github.com/tangsanli5201/DeepPCB
https://kaggle.com/datasets/akhatova/pcb-defects
https://zenodo.org/record/3886553#.Y1dNl3bMKUk
https://kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
https://kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
https://zenodo.org/record/2620293#.Y1dPO3bMKUk
https://kaggle.com/arunrk7/surface-crack-detection
https://github.com/fyangneil/pavement-crack-detection
https://biankatpas.github.io/Cracks-and-Potholes-in-Road-Images-Dataset
https://github.com/cuilimeng/CrackForest-dataset
https://tianchi.aliyun.com/competition/entrance/231682/information
https://ieee-dataport.org/documents/photovoltaic-cell-anomaly-detection-dataset
https://github.com/zae-bayern/elpv-dataset
https://github.com/abin24/Magnetic-tile-defect-datasets
https://arxiv.org/abs/2106.14366
https://kaggle.com/datasets/salmaneunus/railway-track-fault-detection
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A proposed system in literature [124] aimed to automate the process of inspecting
and monitoring the condition of machines in the hard metal industry by analyzing defects
in real production samples. Three models were created to analyze different types of
data, a method called stacked generalization ensemble was applied and a random forest
classifier was utilized to combine and analyze the results of the microprofilometer and
ultrasound models. The fusion model was found to have improved performance and
higher classification accuracy (88.24%) as compared to the individual models. Additionally,
the shop floor model was able to effectively identify breakdowns during the manufacturing
process and the ultrasound model was found to have better classification scores compared to
the VGG-19 model. According to literature [125], a three-stage deep learning algorithm was
proposed for detecting bubble patterns in engines. The algorithm consisted of training an
autoencoder using normal images, fixing the coefficients of the encoder, and training a fully-
connected network using both normal and defective images. To improve the performance
of the network, the entire system was fine-tuned. According to [126], a CNN model was
designed with ten layers that belong to six grades for detecting defects in X-ray welding
images. It was possible to achieve 98.8% classification accuracy using CNN if the ReLU
activation function was used for X-ray welding image recognition. A real-time X-ray image
analysis method using Support Vector Machines (SVMs) was presented in [127]. Using a
background subtraction algorithm, all potential defects were segmented, and three features
were extracted, including the defect area, the grayscale average difference, and the grayscale
standard deviation. In order to distinguish non-defects from defects, the extracted features
were input into an SVM classifier. A real-time X-ray image defect detection method based
on the proposed method reduced undetected defects and false alarms. Another SVM-based
method for detecting weld defects was described in [128]. The training SVM is trained
by extracting three feature vectors from potential weld defects using grey-level profile
analysis. In the last step, the SVM is trained to differentiate between defects that are real and
those that are potential. A high percentage of correct detections could be achieved using
the proposed method. For detecting insert molding in automotive electronics, ref. [129]
proposed a Yolov5-based DR image defect detection algorithm. Width and a window level
are adjusted in the preprocessing stage of the acquired data, and fast guided filtering is used
for edge retention. Using the overlap, tiny anomalies are detected, and a multi-task dataset
is constructed. Using Ghost, which replaces the standard convolutional network with
the backbone network with enhanced features, the number of parameters can be further
reduced. Moreover, CSP-modules are embedded in the neck and backbone of the network
to enhance feature extraction. As a result of adding the transformer attention module after
spatial pyramid pooling, over-fitting can be avoided while computational effort can be
reduced. DR data-based Yolo series target detection algorithms are used as a final step
to conduct consistent experiments. For detecting bead toe errors, ref. [130] proposed a
lightweight semantic segmentation network. An encoder extracts the texture features of
different regions of the tire in the network first. Then, to fuse the encoder’s output feature,
a decoder is introduced. A reduction in the dimension of the feature maps has allowed
the positions of the bead toe to be recorded in the X-ray image. An index of local mIoU
(L-mIoU) is proposed to evaluate the final segmentation effect. YOLOv3_EfficientNet is
used as the backbone of the methodology instead of YOLOv3_darknet53. It results in
a substantial improvement in YOLOv3 mean average precision, as well as a substantial
reduction in inference time and storage space. DR image features are then used to enhance
the data, thereby increasing the diversity of the clarity and shape of defects. With depth
separable convolution, models can be deployed on embedded devices with acceptable
accuracy loss ranges. A method was presented in [131] that utilizes deep learning with
X-ray images to detect defects in aluminum casting parts used in automobiles, with the
goal of improving the accuracy of both the algorithm and data augmentation. The study
found that using Feature Pyramid Networks (FPNs) resulted in a 40.9% increase in Mean
of Average Precision (mAP) value, making it the most effective modification. Additionally,
using RoIAlign instead of RoI pooling in Faster R-CNN improved the accuracy of bounding
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box location. The study also proposed various data augmentation methods to compensate
for the limited availability of X-ray image datasets for defect detection. The results showed
that the mAP values for each data augmentation method reached an optimal value and
did not continue to increase as the number of datasets increased. Overall, the proposed
improvements to the Faster R-CNN algorithm resulted in better performance for X-ray
image defect detection of automobile aluminum casting parts. Using the Faster R-CNN
detection model with X-ray preprocessing was applied to the detection of tire defects
in [132] to improve curve fitting performance. Faster R-CNN precision and recall of defects
were improved by adjusting its feature extractor, proposal generator, and box classifier.
According to literature [133], triplet deep neural networks can be used to detect weld
defects. X-ray images are first preprocessed into relief images to make defects easier to
identify. Following that, a deep network is constructed based on triplets, and a feature
vector is obtained by mapping the triplets. The distance between similar defect feature
vectors and the distance between different types of defect feature vectors must be closer. The
SVM is also used for automatic detection and classification of weld defects. Based on the
results of two experiments, the proposed method is capable of effectively detecting multiple
defects. Tables 6 and 7 together provide a comprehensive overview of the current state of
research and practices in the field of deep learning for defect detection in X-ray images.
Table 6 summarizes recent research publications, and Table 7 compares the strengths and
weaknesses of different techniques. This information can be valuable for anyone interested
in the advancement of this field.

Table 6. Recent publications on deep learning defects detection in X-ray images.

Reference Method Target Performance

[125] Three-Stage Deep Learning
Algorithm Engines Accuracy rate: above 90%

[126] Convolutional Neural
Network (CNN) Welding Recognition accuracy can be more than 90%

[127] Support Vector Machine
(SVM) Welding Accuracy rate: 99.4%

[128] Support Vector Machine
(SVM) Welding Rate of detection is approximately 99.1%

[129] Yolov5 Insert Molding Recognition accuracy: 93.6%

[130] Lightweight semantic
segmentation network Tire Achieved 97.1% mIoU and 92.4% L-mIoU for 512 ×

512 input images

[131] Faster R-CNN
Automobile
casting aluminum
parts

RoIAlign showed a significant improvement in the
accuracy of bounding box location compared to RoI
pooling, resulting in an increase of 23.6% accuracy
under Faster R-CNN

[132] Faster R-CNN Tire
Compared with other methods, this method is
capable of achieving a higher level of detection
accuracy

[133] Triplet Deep Neural Network Welding Can be more effective than traditional methods.

[134] Deep Convolution Neutral
Networks

Aluminum
Conductor
Composite Core
(ACCC)

Can be effective in recognizing small and
inconspicuous defects, with a 3.5% improvement in
mean Average Precision compared to RetinaNet

[135]
Unsupervised Learning with
Generative Adversarial
Network

Tire A tire X-ray dataset achieves 0.873 Area Under
Curve (AUC)
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Table 6. Cont.

Reference Method Target Performance

[136] R-CNN Metal
Can eliminate time-consuming and inconsistent
criteria while making judgments more efficient and
accurate

[124] Deep Neural Networks
(DNNs)

Actual samples
from the hard
metal production
industry

Indicates that the fusion model outperforms the
separate models in terms of recall (100%), precision
(60%), F-score (75%), and accuracy (88.24%)

Table 7. Strengths and weaknesses of different deep-learning techniques for identifying defects in
X-ray images.

Reference Method Strengths Weaknesses

[125]
Three-stage Deep
Learning
Algorithm

Ability to adapt to different types of
patterns; the three-stage approach
allows for more accurate and efficient
detection of defects

The accuracy of the model can depend on the
specific models used in each stage, if the
models are not well-suited for the task, the
performance may suffer

[126] CNN model with
10 layers

Ability to achieve high classification
accuracy May not work well with other types of images

[127] SVM-based
method

Achieved real-time X-ray image
analysis and reduced undetected
defects and false alarms; can work well
with small datasets

SVM’s can be sensitive to the choice of kernel
and parameters

[129]

Yolov5-based DR
image defect
detection
algorithm

Ability to detect tiny anomalies and
improve edge retention by using fast
guided filtering

May not work well with other types of images
or industries

[130]

Lightweight
semantic
segmentation
network

The dimension reduction allows for
accurate recording of bead toe positions
in X-ray images; can be trained to work
with different types of x-ray images,
such as mammograms or chest x-rays

The model may not generalize well to different
types of images

[131]

Deep learning with
X-ray images and
Feature Pyramid
Networks (FPNs)

40.9% increase in Mean of Average
Precision (mAP) value, can effectively
detect objects at different scales, which
is important for defect detection in
X-ray images as defects can be small
and difficult to spot

May have a high false positive rate as X-ray
images can have many benign structures that
could be mislabeled as defects

[132]

Faster R-CNN
detection model
with X-ray
preprocessing

Improved curve fitting performance;
able to handle multiple defect classes;
can handle images of different scales,
which is important for defect detection
in X-ray images, as defects can be small
and difficult to spot

Limited to specific type of image and specific
type of defect; may have a high false positive
rate as X-ray images can have many benign
structures that could be mislabeled as defects

[133] Triplet deep neural
network

Effective at detecting multiple defects,
it works well with X-ray images, by
preprocessing them into relief images
to make defects easier to identify

It may not generalize well to different types of
images

[124]
Stacked
Generalization
Ensemble

Improved performance and higher
classification accuracy compared to
individual models; ability to effectively
identify breakdowns during
manufacturing process; the ensemble
approach can improve the robustness
of the model by combining the
strengths of multiple models

May not work well with other industries or
types of defects
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5. Problems and Solutions
5.1. Unbalanced Sample Identification Problem

In industrial products, surface defects can also be detected with deep learning using
unbalanced sample sets [137,138]. To train the deep learning model, it is usually necessary
to have a balanced sample set of samples of different categories. This ideal situation,
however, almost never occurs in the real world. More often than not, the majority of data
in the dataset comes from “normal” samples, while “defective” or “abnormal” samples
only make up a small portion. Supervised learning is one of the main tasks that suffers
from unbalanced sample identification. The algorithm will therefore pay more attention
to categories with larger data volumes and underestimate categories with smaller data
volumes, affecting the model’s generalization and prediction abilities. The data-level
process methods aim to maintain a consistent number of samples for all types within the
training set. Resolving the unbalanced sample identification issue at the data level can be
broken down into five categories: data resampling, data augmentation, class equalization
sampling, data source, and synthetic sampling. It is necessary to collect more samples
in fewer categories from the data source. By horizontally or vertically flipping, rotating,
zooming, cropping, and other operations, we can purposefully increase the number of
sample data in each category.

Regarding data resampling [139,140], it is good to resample a sample set to change the
proportion of samples in each category, including oversampling and undersampling. Class
equalization sampling groups samples by categories and generates sample lists for each
category. To ensure that each category has an equal chance of participating in training, a
random category is selected during training, and samples are randomly selected from the
corresponding sample list. Synthetic samples [141] are generated by combining various
characteristics of an existing sample to create a new sample. Using this method, you can
create a new sample by randomly selecting a value from the feature.

5.2. Small Sample Problem

As a result of continuous optimization of industrial processes, the number of defective
samples has decreased. This makes it difficult to use deep learning methods to detect
surface defects in industrial products, since there are fewer and fewer defect images
available for deep learning. Overfitting problems in training can easily occur with small
samples [142]. Transfer learning applies knowledge gained from one task to a different
but related task when there is insufficient data to complete the target task. Consequently,
transfer learning is also a critical method for solving the small sample problem. For surface
defect detection, literature [143,144] used VGG networks and transfer learning to detect
emulsion pump bodies, printed circuit boards, transmission line components, steel plates,
and wood surfaces. Fabric surface defect detection using DenseNet and transfer learning
was described in [145]. The combination of transfer learning and AlexNet was used to
detect surface defects on solar panels and fabrics in [146,147]. Solving the small sample
problem can also be achieved by optimizing the network structure. For the first time,
GAN was used for image anomaly detection with the AnoGAN model [148] in 2017. A
continuous iterative optimization process is used to find an image that matches the test
image closest in the latent space, and then DCGAN is used to detect anomalies in that
image. The f-AnoGAN model was introduced in [149]. This model proposes a method of
encoding an image so that latent points can be quickly mapped, and then using WGAN to
detect anomalies. As a result of the introduction of an encoder, the AnoGAN’s iterative
optimization process is much faster and less time-consuming. Additionally, the GANomaly
model was proposed in [150] in 2018. It detects abnormal samples by comparing latent
variables obtained by coding with latent variables obtained by reconstructing. There is
no requirement for training with negative samples in any of the above models. It is also
possible to obtain many sample images by enlarging the data. Using synthetic defects [151],
the decorated plastic part dataset is expanded by adding synthetic defects to the defect-free
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image. Literature [152] described a technique for generating defect representations that
combine hand-made and unsupervised learning features.

5.3. Real-Time Problem

It is essential to consider real-time problems when performing surface defect detection
in real industrial environments. Real-time detection problems involve reducing detection
time and improving detection efficiency to maintain roughly the same accuracy. Research
has been conducted on real-time problems by some scholars. To detect surface defects on
printed circuit boards, literature [153] suggested combining SSIM and MobileNet. Com-
paring the proposed algorithm with Faster R-CNN, it maintained high accuracy while
being at least 12 times quicker than the existing algorithm. Literature [154] developed a
novel 11-layer CNN model for detecting welding defects in robotic welding manufacturing.
The proposed method was capable of detecting metal additive manufacturing in real time,
which meets specific requirements for online detection.

6. Discussion

Deep learning technology has revolutionized the field of defect detection in industrial
products. However, finding a suitable deep learning model for solving the defect detection
problem is very difficult due to the particularities of industrial scenarios. In the coming
years, deep learning will encounter challenges and trends as it becomes more widely used
in industrial fields. A brief description of recent trends and future research directions is
provided in this section.

• Integrating deep learning with other methods:

By incorporating other techniques such as traditional image processing, the robustness
and performance of the defect detection system in challenging conditions can be enhanced.
For instance, using traditional image processing techniques to preprocess the images before
inputting them into a deep learning model can improve the quality of the data and make it
easier for the model to effectively detect defects. Additionally, integrating deep learning
with other techniques, such as physics-based simulations, can provide better understanding
of the underlying physical causes of defects and lead to the development of more efficient
and effective defect detection methods.

• Adjustment to various lighting scenarios:

Examining industrial products frequently occurs under diverse lighting conditions,
which can make it hard to identify defects. Research in this field could concentrate on devel-
oping techniques for adapting to various lighting conditions and using them to enhance the
precision of defect detection. This could include methods such as image enhancement tech-
niques, color constancy techniques, and multiple exposure fusion techniques, to improve
the visibility of defects in different lighting conditions. Additionally, research could also
focus on developing deep learning models that are robust to changes in lighting conditions,
such as using adversarial training methodologies, to improve the robustness of the model.
This may lead to a more accurate and reliable defect detection system that can function in a
wide range of lighting scenarios.

• Transparent AI:

To be implemented in industrial environments, defect detection systems need to be
transparent and explainable. Research in this field could focus on developing techniques to
make deep-learning-based defect detection systems more understandable, so that users
can comprehend why a defect was missed or incorrectly identified.

• All aspects need to be taken into account:

In order for a defect detection system to perform well, it must take into account various
factors. There are many factors that can influence the accurate detection of defects, such as
defect size, shape, the technique for image acquisition, alignment and distortion of images,
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resolution of images, and algorithmic speed, among others. It is important to consider all
of these factors when creating a mature and successful method.

• Limited number of defect samples:

In many industrial applications, deep learning methods require a large training dataset
and have high computational costs, and the number of defect samples is often insufficient
to detect defects. Additionally, as the product line is frequently updated, new defect types
are introduced and the detection process becomes more challenging. When training on
normal samples, a simple defect detection method does not have any issues dealing with a
small defect dataset, but, when it comes to defect localization and classification, the size of
the dataset containing defects can be a challenge.

• Utilizing transfer learning:

Defect patterns may be shared between two different application domains. There may
be similarities in the morphology of cracks in two different materials, but they may be
different in their sizes and colors. It is currently necessary to train two different networks in
order to use current approaches. A well-trained, tested network can transfer its knowledge
to a new network to speed up the training process. Currently, transfer learning is not
effectively utilized in most approaches.

• Multi-modal sensor integration:

Defect detection in industrial products often relies on visual inspections using cameras
or other imaging devices. However, incorporating other types of sensors, such as thermal,
acoustic, or vibration sensors, can provide additional information that can aid in the
detection of defects. Research in this area could focus on developing methods for integrating
data from multiple sensors and using it to improve the accuracy of defect detection. This
could include techniques such as sensor fusion, where data from multiple sensors is
combined to provide a more comprehensive view of the product, or methods for combining
deep learning with other types of sensor data, such as sensor data from IoT devices.

• Continuous learning:

In industrial environments, the product line is frequently updated, and new defect
types are introduced. Research in this area could focus on developing methods for continu-
ous online learning, which can be used to adapt the defect detection system as new data is
acquired and new defects are introduced. This could include online learning techniques,
where the system can continuously update its knowledge as new data is acquired, or active
learning methods, where the system can actively select the most informative images for
annotation. This would allow the system to adapt to changes in the product line and
improve its performance over time.

• Real-time detection:

There are only a few existing defect detection methods that are implemented in real
time. In order to apply these methods to real-time inspection scenarios in the future,
computationally efficient methods must be developed among these methods in order to
achieve detection success rates in real time.

• Reducing the complexity:

Users of defect detection methods are interested in understanding why a defect has
been missed or incorrectly identified in an acceptable part when such a method fails to
find the defect. The majority of deep learning methods follow a complex architecture,
so humans have difficulty understanding the decision-making process and providing a
rationale for failure. When it comes to deploying and improving the performance of a
system, this can be a challenge. Moreover, in industrial applications, lightweight deep
learning networks will be easier to deploy. Often, the processing resources used to support
artificial intelligence computations are valuable in quality inspections on production lines
and industrial maintenance monitoring. By using lightweight networks, the prediction
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system’s workload can be effectively reduced, which is extremely beneficial for simple
terminal deployments and can also reduce costs and performance.

• A common reference database:

Testing can be conducted on different databases, though several studies have failed
to provide satisfactory results due to inconsistency in such databases and a lack of test-
ing samples. Additionally, most of the studies presented in this review have their own
databases with varying sizes and quality. To evaluate and compare performance in the
future, a common reference database would be helpful.

7. Conclusions

Deep learning is rapidly gaining momentum as a powerful tool in the field of defect
detection on industrial products. In this paper, we conducted a comprehensive review of
the current state-of-the-art in the use of machine learning methods for detecting defects in
industrial products. We specifically focused on deep learning methods for detecting surface
defects and defects from X-ray images, and provided a detailed overview of the different
techniques and algorithms that have been proposed in these areas. We also discussed
some of the key challenges and limitations of these methods, and highlighted potential
solutions to these problems. The goal of this review was to provide researchers with a
clear understanding of the current state-of-the-art in the field of surface defect detection for
industrial products, and to serve as a reference for future research in this area.
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