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Abstract: Although current computer vision systems are closer to the human intelligence when it
comes to comprehending the visible world than previously, their performance is hindered when
objects are partially occluded. Since we live in a dynamic and complex environment, we encounter
more occluded objects than fully visible ones. Therefore, instilling the capability of amodal perception
into those vision systems is crucial. However, overcoming occlusion is difficult and comes with its
own challenges. The generative adversarial network (GAN), on the other hand, is renowned for its
generative power in producing data from a random noise distribution that approaches the samples
that come from real data distributions. In this survey, we outline the existing works wherein GAN is
utilized in addressing the challenges of overcoming occlusion, namely amodal segmentation, amodal
content completion, order recovery, and acquiring training data. We provide a summary of the type
of GAN, loss function, the dataset, and the results of each work. We present an overview of the
implemented GAN architectures in various applications of amodal completion. We also discuss the
common objective functions that are applied in training GAN for occlusion-handling tasks. Lastly,
we discuss several open issues and potential future directions.

Keywords: amodal completion; amodal content completion; amodal segmentation; amodal
perception; order recovery; occlusion relationship; GAN; adversarial models

1. Introduction

Artificial intelligence has revolutionized the world. With the advent of deep learning
and machine learning-based models, many applications and processes in our daily life have
been automated. Computer vision is prominently essential in these applications, and while
humans can effortlessly make sense of their surrounding, machines are far from achieving
that level of comprehension. Our environment is dynamic, complex, and cluttered. Objects
are usually partially occluded by other objects. However, our brain completes the partially
visible objects without us being aware of it. The capability of humans to perceive incomplete
objects is called amodal completion [1]. Unfortunately, this task is not as straightforward
and easy for computers to achieve, because occlusion can happen in various ratios, angles,
and viewpoints [2]. An object may be occluded by one or more objects, and an object may
hide several other objects.

GAN is a structured probabilistic model that consists of two networks, a generator
that captures the data distributions and a discriminator that decides whether the produced
data come from the actual data distribution or from the generator. The two networks train
in a two-player minimax game fashion until the generator can generate samples that are
similar to the true samples, and the discriminator can no longer distinguish between the
real and the fake samples.
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Since its first introduction by Goodfellow et al. in 2014, numerous variants of GAN
are proposed, mainly architecture variants and loss variants [3]. The modifications in the
first category can either be in the overall network architecture such as progressive GAN
(PROGAN) [4], in representation of the latent space such as conditional GAN (CGAN) [5],
or in modifying the architecture toward a particular application as in CycleGAN [6]. The
second category of variants encompasses modifications that are introduced to the loss
functions and regularization techniques such as the Wasserstein GAN (WGAN) [7] and
PatchGAN [8].

Despite the various modifications, GAN is challenging to train and evaluate. However,
due to its generative power and outstanding performance, it has a significantly large
number of applications in computer vision, bio-metric systems, medical field, etc. Therefore,
there are a considerable number of reviews carried out on GAN and its application in
different domains (shown in Section 3). There are a limited number of existing reviews that
briefly mention overcoming occlusion in images with GAN. Therefore, in this survey we
concentrate on the applications of GAN in amodal completion in detail. In summary, the
contributions of this survey paper are:

1. We survey the literature for the available frameworks where they utilize GAN in one
or more aspects of amodal completion.

2. We discuss in detail the architecture of existing works and how they have incorporated
GAN in tackling the problems that occur from occlusion.

3. We summarize the loss function, the dataset, and the reported results of the
available works.

4. We also provide an overview of prevalent objective functions in training the GAN
model for amodal completion tasks.

5. Finally, we discuss several directions for the future research in tasks of occlusion
handling wherein GAN can be utilized.

The term “occlusion handling” is polysemous in the computer vision literature. In
object tracking, it mostly refers to the ability of the model to address occlusions and resume
tracking the object once it re-appears in the scene [9]. In classification and detection tasks,
the term indicates determining the depth order of the objects and the occlusion relationship
between them [10]. Other works such as [11,12] define occlusion handling as the techniques
that interpolate the blank patches in an object, i.e., content completion. However, we believe
that, in order to enable a model to address occlusions, it needs the same tasks defined in
amodal completion. Therefore, in this survey we use “amodal completion” and “occlusion
handling” interchangeably.

As a limitation, we only focus on occlusion handling in a single 2D image. Therefore,
occlusion in 3D images, stereo images, and video data are out of the scope of this work.
Additionally, we emphasize on the GAN component of each architecture we reviewed.
As GAN is applied for various tasks in different problems, it is difficult to carry out a
systematic comparison of the existing models. Each model is evaluated on a different
dataset using a different evaluation metric for a different task. In some cases, the papers do
not assess the performance of GAN. In those cases, we present the result of the entire model.

The rest of this document is organized as follows: the methodology for conducting
this survey is presented in Section 2. Next, Section 3 mentions the related available articles
in the literature. Section 4 introduces the fundamental concepts about GAN and its training
challenges, and the aspects of amodal completion. Afterward, Section 5 presents the
problems in amodal completion and how GAN has been applied to address them. The
common loss functions in GAN for amodal completion are discussed in Section 6. In
Sections 7 and 8, future directions and key findings of this survey article are presented.
Finally, conclusions are enunciated in Section 9.

2. Methodology

To perform a descriptive systematic literature review, we begin by forming the re-
search questions which this survey attempts to answer. The questions are (1) what are
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the challenges in amodal completion? (2) how are GAN models applied to address the
problems of amodal completion? Based on the formulated questions, the search terms are
identified to find and collect relevant publications. The search keywords are “GAN AND
occlusion”, “GAN AND amodal completion”, “GAN AND occlusion handling”, “GAN for
occlusion handling”, and “GAN for amodal completion”.

We inspect several research databases, such as IEEE Xplore, Google Scholar, Web of
Science, and Scopus. The list of the returned articles from the search process is sorted
and refined by excluding the publications that do not satisfy the research questions. The
elimination criteria are as follows: the research article addresses aspects of occlusion han-
dling but do not employ GAN; GAN is used in applications other than amodal completion;
the authors have worked on occlusion in 3D data, or video frames. Subsequently, each
of the remaining publications in the list is investigated and summarized. The articles are
examined for the GAN architecture, the objective function, the dataset, the results, and the
purpose of using GAN.

3. Related Works

Occlusion: Handling occlusion has been studied in various domains and applications.
Table 1 shows the list of published surveys and reviews of occlusion in several applications.
A survey of occlusion handling in generic object detection of still images is provided
in [2], focusing on challenges that arise when objects are occluded. Similarly, the most
recent survey article by the authors of [13] provides the taxonomy of problems in amodal
completion from single 2D images. However, none of those review articles concentrate on
the applications of GAN for overcoming occlusion particularly. Other works have focused
on occlusion in specific scopes, such as object tracking [14,15], pedestrians [16,17], human
faces [18–22], automotive environment [23,24], and augmented reality [25]. In contrary, we
review the articles that address occlusion in single 2D images.

Table 1. Existing survey articles about occlusion that were published between 2017 and 2022.

# Title Pub. Year

1 Multiple camera based multiple object tracking under occlusion: A survey [14] IEEE 2017
2 Facial expression analysis under partial occlusion: A survey [18] ACM 2018
3 Occlusion detection and restoration techniques for 3D face recognition: a literature review [19] Springer 2018
4 Overcoming occlusion in the automotive environment—A review [23] IEEE 2019
5 A comprehensive survey on multi object tracking under occlusion in aerial image sequences [15] IEEE 2019
6 A Survey on Occluded Face recognition [26] ACM 2020
7 Occlusion Handling in Generic Object Detection: A Review [2] IEEE 2021
8 Occlusion Handling in Augmented Reality: Past, Present and Future [25] IEEE 2021
9 A survey of face recognition techniques under occlusion [20] Wiley 2021
10 Survey of pedestrian detection with occlusion [16] Springer 2021
11 Occlusion Handling and Multi-scale Pedestrian Detection Based on Deep Learning: A Review [17] IEEE 2022
12 Image Amodal Completion: A Survey [13] arXiv 2022
13 A Literature Survey of Face Recognition Under Different Occlusion Conditions [21] IEEE 2022

Generative Adversarial Network: Due to their power, GANs are ubiquitous in com-
puter vision research. Due to the growing body of published works in GAN, there are
several recent surveys and review papers in the literature investigating its challenges,
variants, and applications. Table 2 contains a list of survey articles that have been published
in the last five years. The list does not include papers that specifically focus on GAN
applications outside the computer vision field.

The authors in [27–32] discuss the instability problem of GAN with the various tech-
niques and improvisations that have been designed to stabilize its training. Adversarial
attack can be carried out against machine learning models by generating an input sample
that leads to unexpected and undesired results by the model. Sajeeda et al. [27] investi-
gate the various defense mechanisms to protect GAN against such attacks. Li et al. [33]
summarize the different models into two groups of GAN architectures: the two-network
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models and the hybrid models, which are GANs combined with an encoder, autoencoder,
or variational autoencoder (VAE) to enhance the training stability. The authors of [34,35]
explore the available evaluation metrics of GAN models. Other works have discussed the
application of different GAN architectures for computer vision [36,37], image-to-image
translation [38,39], face generation [40,41], medical field [29,42–44], person re-identification
(ReID) [45], audio and video domains [29], generating and augmenting training data [46,47],
image super-resolution [39,48], and other real-world applications [39,45,49,50]. Some of the
mentioned review articles discuss the occlusion handling as an application of GAN very
briefly, without detailing the architecture, loss functions, and the results.

Table 2. Available survey articles about GAN that were published between 2017 and 2022.

# Title Pub. Year

1 Generative adversarial networks: introduction and outlook [37] IEEE 2017
2 Comparative study on generative adversarial networks [51] arXiv 2018
3 Generative adversarial networks: An overview [52] IEEE 2018
4 Recent progress on generative adversarial networks (GANs): A survey [34] IEEE 2019
5 How generative adversarial networks and their variants work: An overview [32] ACM 2019

6 Generative adversarial networks (GANs): An overview of theoretical model, evaluation metrics, and recent
developments [35] arXiv 2020

7 Generative adversarial network technologies and applications in computer vision [36] Hindawi 2020
8 Generative adversarial networks in digital pathology: a survey on trends and future potential [42] Elsevier 2020
9 Deep generative adversarial networks for image-to-image translation: A review [38] MDPI 2020
10 A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications [50] IEEE 2021
11 Generative adversarial network: An overview of theory and applications [49] Elsevier 2021
12 The theoretical research of generative adversarial networks: an overview [33] Elsevier 2021
13 Generative adversarial networks (GANs) challenges, solutions, and future directions [28] ACM 2021
14 Generative adversarial networks: a survey on applications and challenges [31] Springer 2021
15 A survey on generative adversarial networks for imbalance problems in computer vision tasks [46] Springer 2021
16 Generative Adversarial Networks and their Application to 3D Face Generation: A Survey [41] Elsevier 2021
17 Applications of generative adversarial networks (GANs): An updated review [45] Springer 2021
18 Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy [3] ACM 2022
19 Exploring Generative Adversarial Networks and Adversarial Training [27] Elsevier 2022
20 Generative Adversarial Networks for face generation: A survey [40] ACM 2022
21 Generative Adversarial Networks: A Survey on Training, Variants, and Applications [30] Springer 2022
22 Augmenting data with generative adversarial networks: An overview [47] IOS 2022
23 A Survey on Training Challenges in Generative Adversarial Networks for Biomedical Image Analysis [43] arXiv 2022
24 Attention-based generative adversarial network in medical imaging: A narrative review [44] Elsevier 2022
25 Generative adversarial networks for image super-resolution: A survey [48] arXiv 2022
26 Generic image application using GANs (Generative Adversarial Networks): A Review [39] Springer 2022
27 A Survey on Generative Adversarial Networks: Variants, Applications, and Training [29] ACM 2022

In this paper, we focus on the works that combine the two above-mentioned topics.
Specifically, we want to present the works that have been carried out to tackle the problems
that arise from occlusion using GAN. However, depending on the nature of the problems,
the applicability of GAN varies. For example, in amodal appearance generation, GAN is
the optimal choice of architecture. Comparably, in amodal segmentation and order recovery
tasks, it is less used.

4. Background
4.1. Generative Adversarial Network

GAN is an unsupervised generative model that contains two networks, namely a
generator and a discriminator. The two networks learn in an adversary manner similar to
the min–max game between two players. The generator tries to generate a fake sample
that the discriminator cannot distinguish from the real sample. On the other hand, the
discriminator learns to determine whether the sample is real data or generated. The
generator G takes a random noise z as input. It learns a probability distribution pg over
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data x to generate fake samples that imitate the real data distribution (pdata). Then, the
generated sample is forwarded to the discriminator D which outputs a single scalar that
labels the data as real or fake (Figure 1). The classification result is used in training G as
gradients of the loss. The loss guides G to generate samples that are less likely and more
challenging to be labeled as fake by the D. Overtime, G becomes better in generating more
realistic samples that would confuse D, and D becomes better at detecting fake samples.
They both try to optimize their objective functions, in other words, G tries to minimize its
cost value and D tries to maximize its cost value.

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1− D(G(z)))] (1)

Equation (1) was designed by Goodfellow et al. [53] to compute the cost value of GAN
where x is the real sample from the training dataset, G(z) is the generated sample, and D(x)
and D(G(z)) are the discriminator’s verdict that x is real and the fake sample G(z) is real.

R
an

do
m

 N
oi

se
  

(z
 ) Generator (G)

Discriminator (D)

Discriminator
loss

Generator loss

Training dataset

Generated sample

Real sample (x)

Figure 1. Architecture of the original GAN [53].

There are numerous variations of the original GAN. Among the most prominent ones
are CGAN, WGAN, and Self-Attention GAN (SAGAN) [54]. CGAN extends the original
GAN by taking an additional input which is usually a class label. The label conditions
the generated data to be of a specific class. Therefore, the loss function in (1) becomes
as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x | c)] +Ez∼pz(z)[log(1− D(G(z | c)))] (2)

where c is the conditional class label.
In order to prevent the vanishing gradient and mode collapse problems (discussed

below), WGAN applies an objective function that implements the Earth-Mover (EM) [55]
distance for comparing the generated and real data distributions. EM helps in stabilizing
GAN’s training and the equilibrium between the generator and the discriminator. If the
gradient of the loss function becomes too large, WGAN will employ weight clipping.
WGAN Gradient Penalty (WGAN-GP) [56] extends WGAN by introducing a penalty term
instead of the weight clipping to enhance the training stability, convergence power, and
output quality of the network. Moreover, SAGAN applies an attention mechanism to
extract features from a broader feature space and capture global dependencies instead of
the local neighborhoods. Thus, SAGAN can produce high-resolution details in data as it
borrows cues from all feature locations in contrast to the original GAN that depends on
only spatially local points.

In theory, both G and D are expected to converge at the Nash equilibrium point.
However, in practice this is not as simple as it sounds. Training GANs is challenging,
because they are unstable and difficult to evaluate. GANs are notorious for several issues,
which are already covered intensively in the literature; therefore, we will only discuss them
briefly below.
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4.1.1. Achieving Nash Equilibrium

In game theory, Nash equilibrium is when none of the players will change their strategy
no matter what the opponents do. In GAN, the game objective changes as the networks take
turn during the training process. Therefore, it is particularly difficult to obtain the desired
equilibrium point due to the adversarial behavior of its networks. Typically, gradient
descent is used to find the minimum value of the cost function during training. However,
in GAN, decreasing the cost of one network leads to the increase in the cost of the other
network. For instance, if one player minimizes xy with regard to x and another player
minimizes −xy with regard to y, gradient descent reaches a stable sphere, but it does not
converge to the equilibrium point which is x = y = 0 [57].

4.1.2. Mode Collapse

One of the major problems with GANs is that they are unable to generalize well.
This poor generalization leads to mode collapse. The generator collapses when it cannot
generate large diverse samples known as complete collapse, or it will only produce a
specific type (or subset) of target data that will not be rejected by the discriminator as being
fake, known as partial collapse [53,57].

4.1.3. Vanishing Gradient

GAN is challenging to train due to the vanishing gradient issue. The generator stops
learning when the gradients of the weights of the initial layers become extremely small.
Thus, the discriminator confidently rejects the samples produced by the generator [58].

4.1.4. Lack of Evaluation Metrics

Despite the growing progress in the GAN architecture and training, evaluating it
remains a challenging task. Although several metrics and methods have been proposed,
there is no standard measure for evaluating the models. Most of the available works
propose a new technique to assess the strength and the limitation of their model. Therefore,
finding a consensus evaluation metric remains an open research question [59].

4.2. Amodal Completion

Amodal completion is the natural ability of humans to discern the physical objects in
the environment even if they are occluded. Our environment contains more partially visible
or temporarily occluded objects than fully visible ones. Hence, the input to our visual
system is mostly incomplete and segmented. Yet, we innately and effortlessly imagine
the invisible parts of the object in our mind and perceive the object as complete [1]. For
instance, if we only see a half of stripped legs in the zoo, we can tell that there is a zebra in
that territory.

As natural and seamless this task is for humans, for computers it is challenging yet
essential. This is because the performance of most computer vision-related real-world
applications drop when objects are occluded. For example, in autonomous driving, the
vehicle must be able to recognize and identify the complete contour of the objects in the
scene to avoid accidents and drive safely.

Our environment is complex, cluttered, and dynamic. An object may be behind one
or more other objects, or an object may hide one or more other objects. Thus, possible
occlusion patterns between objects are endless. Therefore, the shape and appearance of
occluded objects are unbounded.

Whenever a visual system requires de-occlusion, there are three sub-tasks involved in
the process (Figure 2). Firstly, inferring the complete segmentation mask of the partially
visible objects, including the hidden region. Secondly, predicting and reconstructing the
RGB content of the occluded area based on the visible parts of the object and/or the
image. Often, these two sub-tasks require the result of the third sub-task, which determines
the depth order of the objects and the relationship between them, i.e., which object is
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the occluder and which one is the occludee. Several of the existing works address these
sub-tasks simultaneously.

b) Amodal segmentation

Image

a) Instance segmentation

b) Occlusion order

c) Amodal mask

a) Modal mask

Amodal segmentation

a) Incomplete object

b) Completed object

Amodal appearance reconstruction

Mango

Banana 1

Banana 2

Peach

Lemon

Order recovery

b) Invisible mask

Figure 2. The three sub-tasks in amodal completion.

Designing and training a model that could perform any/all of the above-mentioned
sub-processes presents several challenges. In the following section, we explore the existing
works in the literature wherein a GAN architecture is implemented to address those obstacles.

5. GAN in Amodal Completion

The taxonomy of the challenges in amodal completion is presented by Ao et al. [13]. In
the following sections, we present how GAN has been used to address each challenge. In
exploring the existing research papers, we emphasized the aspects of amodal completion
wherein GAN was utilized, not the original aim of the paper.

5.1. Amodal Segmentation

Image segmentation tasks such as semantic segmentation, instance segmentation, or
panoptic segmentation solely predict the visible shape of the objects in a scene. Therefore,
these tasks mainly operate with modal perception. Amodal segmentation, on the other
hand, works with amodal perception. It estimates the shape of an object beyond the visible
region, i.e., the visible mask (also called the modal mask) and the mask for the occluded
region, from the local and the global visible visual cues (see Figure 3).

Amodal segmentation is rather challenging, especially if the occluder is of a different
category (e.g., the occlusion between vehicles and pedestrians). The visible region may
not hold sufficient information to help in determining the whole extent of the object.
Contrariwise, if the occluder is an instance of the same category (e.g., occlusion between
pedestrians), since the features of both objects are similar, it becomes difficult for the
model to estimate where the boundary of one object ends and the second one begins.
In either case, the visible region plays a significant role in guiding the amodal mask
generation process. Therefore, most existing methods require the modal mask as input. To
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alleviate the need for a manually annotated modal mask, many works apply a pre-trained
instance segmentation network to obtain the visible mask and utilize it as input.

(a) Image. (b) Semantic segmentation. (c) Instance segmentation.

(d) Panoptic segmentation. (e) Amodal segmentation.

Figure 3. Different types of image segmentation.

In the following, we describe the architecture of the GAN-based models that are used
in generating the amodal mask of the occluded objects.

A two hourglass generator: Zhou et al. [60] apply a pre-trained instance segmentation
network on the input image to obtain an initial mask and feeds it to a two-stage pipeline
for human deocclusion. Given the initial mask, the generator implements two hourglass
modules to refine and complete the modal mask to produce the amodal mask at the end.
A discriminator enhances the quality of the output amodal mask. An additional parsing
result accompanies the result of the generator, which is employed by a Parsing Guided
Attention (PGA) module to reinforce the semantic features of body parts at multiple scales
as a part of a parsing guided content recovery network. The latter uses a combination
of UNet [61] and partial convolutions [62] in generating the content of the invisible area.
The additional parsing branches add extra semantic guidance, which improves the final
invisible mask.

A coarse-to-fine architecture with contextual attention: Xiong et al. [63] firstly em-
ploy a contour detection module to extract the visible contour of an object and then complete
it through a contour completion network. The contour detection module uses DeepCut [64]
to segment prominence objects, and performs noise removal and edge detection to ex-
tract the incomplete contour of the object from the segmentation map. Then, the contour
completion network learns to conjecture the foreground contour. The contour completion
network is composed of a generator and a discriminator. The generator has a coarse-to-fine
architecture, each with a similar encoder–decoder structure, except that the refinement
network employs a contextual attention layer [65]. Finally, the completed contour along
with the ground-truth image are fed to the discriminator which produces a score map to in-
dicate the originality of each region in the generated contour mask and can decide whether
the mask aligns with the contour of the image. The discriminator is a fully convolutional
PatchGAN [8] trained with a hinge loss. The results show that the contour completion step
assists in the explicit modeling of the background and the foreground layer borders, which
leads to less evident artifacts in the completed foreground objects.

A generator with priori knowledge: The authors of [66] also utilize a pre-trained
instance segmentation model to obtain the visible human mask, which is fed with the input
image into a GAN-based model to produce the amodal mask of occluded humans. The
model predicts the mask of the invisible region through an hourglass network structure.
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The local fine features and the higher-level semantic details are aggregated in the encoding
stage, and they are added to each layer’s feature maps in the decoding stage. The pre-
dicted amodal mask is evaluated by a Patch-GAN discriminator. To improve the amodal
segmentation outcome, some typical human poses are concatenated with the feature maps
as a priori information to be used in the decoding stage. Although the a priori knowledge
enhances the predicted amodal masks, it restricts the application of the model to humans
with specific poses.

A coarse-to-fine architecture with multiple discriminators: In the applications such
as visual surveillance and autonomous driving, path prediction, and intelligent traffic
control, detecting vehicles and pedestrians is essential. However, these are often obstructed
by other objects which makes the task of learning the visual representation of intended
objects more challenging. The model in [67] aims to recover the amodal mask of a vehicle
and the appearance of its hidden regions iteratively. To tackle both tasks, the model is
composed of two parts: a segmentation completion module and an appearance recovery
module. The first network, follows an initial-to-refined framework. Firstly, an initial
segmentation mask is generated by taking an input image with occluded vehicles through
a pre-trained segmentation network. Then, the input image is fed again into the next
stage after it is concatenated with the output from the initial stage. The second part,
in contrary to a standard GAN, has a generator with an encoder–decoder structure, an
object discriminator, and an instance discriminator. To assist the model in producing more
realistic masks, an additional 3D model pool is employed. This provides silhouette masks
as adversarial samples which motivates the model to learn the defining characteristics of
actual vehicle masks. The object discriminator, which uses a Stack-GAN structure [68],
enforces the output mask to be similar to a real vehicle, whereas the instance discriminator
with a standard GAN structure aims at producing an output mask similar to the ground-
truth mask. The recovered mask is fed to the appearance recovery module to regenerate
the whole foreground vehicle. Both modules are trained with reconstruction loss (i.e., L1
loss) and perceptual loss. Although using the 3D model pool and multiple discriminators
produces better amodal masks, when the model is tested on synthetic images with different
types of synthetic occlusions, it requires multiple iterations to progressively eliminate the
occlusions. However, on real images with less severe occlusions, the model is unable to
refine the results beyond three iterations and its performance declines.

5.2. Order Recovery

In order to apply any de-occlusion or completion process, it is essential to determine
the occlusion relationship and identify the depth order between the overlapping compo-
nents of a scene. Other processes such as amodal segmentation and content completion
depend on the predicted occlusion order to accomplish their tasks. Therefore, vision sys-
tems need to distinguish the occluders from the occludees, and to determine whether an
occlusion exists between the objects. Order recovery is vital in many applications, such as
semantic scene understanding, autonomous driving, and surveillance systems.

The following works attempt to retrieve the depth order/layer order between the
objects in a scene through utilizing a GAN-based architecture.

A generator with multiple discriminators: Dhamo et al. [69] present a method to
achieve layered depth prediction and view synthesis. Given a single RGB image as input,
the model learns to synthesize a RGB-D view from it and hallucinates the missing regions
that were initially occluded. Firstly, the framework uses a fully-convolutional network to
obtain a depth map and a segmentation mask for foreground and background elements
from the input image. Depending on the predicted masks, the foreground objects are erased
from the input image and the obtained depth map (RGB-D). Then, a Patch-GAN [8]-based
network is used to refill the holes in the RGB-D background image that were created from
removing the foreground objects. The network has a pair of discriminators to enforce
inter-domain consistency. This method has data limitations, as it is difficult to obtain
ground-truth layered depth images in real-world data.
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Inferring the scene layout beyond the visible view and hallucinating the invisible parts
of the scene is called amodal scene layout. MonoLayout, proposed in [70], provides the
amodal scene layout in the form of bird’s eye view (BEV) in real time. With a single input
image of a road scene, the framework delivers a BEV of static (such as sidewalks and street
areas) and dynamic (vehicles) objects in the scene, including the partially visible compo-
nents. The model contains a context encoder, two decoders, and two discriminators. Given
the input image, the encoder captures the multi-scale context representations of both static
and dynamic elements. Then, the context features are shared with two decoders, an amodal
static scene decoder and a dynamic scene decoder, to predict the static and dynamic objects
in BEV. The decoders are regularized by two corresponding discriminators to encourage the
predictions to be similar to the ground-truth representations. The context sharing within
the decoders achieves better performance of amodal scene layout. MonoLayout can infer
19.6 M parameters in 32 fps. However, it needs generalization for unseen scenarios.

A single generator and discriminator: Zheng et al. [71] tackle the amodal scene
understanding by creating a layer-by-layer pipeline (Completed Scene Decomposition
Network (CSDNet)) to extract and complete RGB appearance of objects from a scene, and
make sense of their occlusion relation. In each layer, CSDNet only separates the foreground
elements that are without occlusion. This way, the system identifies and fills the invisible
portion of each object. Then, the completed image is fed again to the model to segment
the fully visible objects. In this iterative manner, the depth order of the scene is obtained,
which can be used to recompose a new scene. The model is composed of a decomposition
network and a completion network. The decomposition network follows Mask-RCNN [72]
with an additional layer classification branch to estimate the instance masks, and determine
whether an object is fully or partially visible. The predicted masks are forwarded to the
completion network, which uses an encoder–decoder to complete the resultant holes in
the masked image. By masking the fully visible objects in each step and the iterative
completion of the objects in the scene, the earlier completion information is propagated
to the later steps. Nonetheless, the model is trained on a rendered dataset; therefore, it
cannot generalize well to real scenes that are unlike the rendered ones. In addition, the
completion errors over the layers are accumulated, which leads to a drop in accuracy when
the occlusion layers are too numerous.

On the other hand, Dhamo et al. [73] present an object-oriented model with three parts:
object completion, layout prediction, and image re-composition, while the object completion
unit attempts to fill the occluded area in the input RGBA image through an auto-encoder, the
layout prediction uses a GAN architecture to estimate the RGBA-D (the RGBA and depth
images) background, i.e., the object-free representation of the scene. The model infers the
layered representation of a scene from a single image and produces a flexible number of
output layers based on the complexity of the scene. However, the global and the local contexts,
and the spatial relationship between the objects in the scene, are not considered.

5.3. Amodal Appearance Reconstruction

Recently, there has been a significant progress in image inpainting methods, such as
the works in [65,74]. However, these models recover the plausible content of a missing area
with no knowledge about which object is involved in that part. On the contrary, amodal
appearance reconstruction (also known as amodal content completion) models require
identifying individual elements in the scene, and recognizing the partially visible objects
along with their occluded areas, to predict the content for the invisible regions.

Therefore, the majority of the existing frameworks follow a multi-stage process to
address the problem of amodal segmentation and amodal content completion as one
problem. Therefore, they depend on the segmentator to infer the binary segmentation mask
for the occluded and non-occluded parts of the object. The mask is then forwarded as input
to the amodal completion module, which tries to fill in the RGB content for the missing
region indicated by the mask.
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Among the three sub-tasks of amodal completion, GAN is most widely used in
amodal content completion. In this section, we present the usage of GAN in amodal content
completion for a variety of computer vision applications.

5.3.1. Generic Object Completion

GANs are unable to estimate and learn the structure in the image implicitly with
no additional information about the structures or annotations regarding the foreground
and background objects during training. Therefore, Xiong et al. [63] propose a model that
is made up of a contour detection module, a contour completion module, and an image
completion module. The first two modules learn to detect and complete the foreground
contour. Then, the image completion module is guided by the completed contour to
determine the position of the foreground and the background pixels. The incomplete input
image, the completed contour, and the hole mask are fed to the image completion network
to fill the missing part of the object. The network has a similar coarse-to-fine architecture as
the contour completion module. However, the depth of the network weakens the effect
of the completed contour. Therefore, the complete contour is passed to both the coarse
network and the refinement network. The discriminator of the image completion network
is a PatchGAN that is trained with hinge loss and requires the generated fake image or the
ground-truth image with the hole mask. The experiments show that, under the guide of
the contour completion, the model can generate completed images with less artifacts and
complete objects with more natural boundaries. However, the model will fail to produce
results without artifacts and color discrepancy around the holes due to implementing
vanilla convolutions in extracting the features.

Therefore, Zhan et al. [75] use CGAN and partial convolution [62] to regenerate the
content of the missing region. The authors apply the concept of partial completion to
de-occlude the objects in an image. In the case of an object hidden by multiple other
objects, the partial completion is performed by considering one object at a time. The model
partially completes both the mask and the appearance of the object in question through two
networks, namely Partial Completion Network-mask (PCNet-M) and Partial Completion
Network-content (PCNet-C), respectively. A self-supervised approach is implemented
to produce labeled occluded data to train the networks, i.e., a masked region is obtained
by positioning a randomly selected occluder from the dataset on top of the concerned
object. Then, the masked occludee is passed to the PCNet-M to reproduce the mask of the
invisible area, which in turn is given to the PCNet-C. Although the self-supervised and
partial completion techniques alleviate the need for annotated training data, the generated
content contains the remaining of the occluder and its quality is not good if it has texture.

Ehsani et al. [76] trained a GAN-based model dubbed SeGAN. The model consists of
a segmentator which is a modified ResNet-18 [77], and a painter which is a CGAN. The
segmentator produces the full segmentation mask (amodal mask) of the objects including
the occluded parts. On the other hand, the painter, which consists of a generator and a
discriminator, takes in the output from the segmentator and reproduces the appearance
of the hidden parts of the object based on the amodal mask. The final output from the
generator is a de-occluded RGB image which is then fed into the discriminator. As a
drawback, the model is trained on a synthetic dataset, which presents an inevitable domain
gap between the training images and the real-world testing images.

Furthermore, Kahatapitiya et al. [78] aim to detect and remove the unrelated occluders,
and inpaint the missing pixels to produce an occlusion-free image. The unrelated objects are
identified based on the context of the image and a language model. Through a background
segmentator and the foreground segmentator, the background and foreground objects
are extracted, respectively. The foreground extractor produces pixel-wise annotations for
the objects (i.e., thing class) and the background segmentator outputs the background
objects (i.e., stuff class). Then, the relation predictor uses the annotations to estimate the
relation of each foreground object to the image context based on a vector embedding of class
labels trained with a language model. The result of the relation prediction can detect any
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unrelated objects which are considered as unwanted occlusion. Consequently, the relations
and pixel annotations of the thing class are fed into the image inpainter to mask and recreate
the pixels of the hidden object. The image inpainter is based on the contextual attention
model by Yu et al. [65], which employs a coarse-to-fine model. In the first stage, the mask is
coarsely filled in. Then, the second stage utilizes a local and a global WGAN-GP [56] to
enhance the quality of the generated output from the coarse stage. A contextual attention
layer is implemented to attend to similar feature patches from distant pixels. The local and
global WGAN-GP enforce global and local consistency of the inpainted pixels [65]. The
contextual information helps in generating a de-occluded image; however, the required
class labels of the foreground and background objects limit the applicability of the method.

5.3.2. Face Completion

Occlusion is usually present in faces. The occluding objects can be glasses, scarf, food,
cup, microphone, etc. The performance of biometric and surveillance systems can degrade
when faces are obstructed or covered by other objects, which raises a security concern.
However, compared to background completion, facial images are more challenging to
complete since they contain more appearance variations, especially around the eyes and
the mouth. In the following, we categorize the available works for face completion based
on their architecture.

A single generator and discriminator: Cai et al. [79] present an Occlusion-Aware
GAN (OA-GAN), with a single generator and discriminator, that alleviates the need for
an occlusion mask as an input. Through using paired images with known mask of ar-
tificial occlusions and natural images without occlusion masks, the model learns in a
semi-supervised way. The generator has an occlusion-aware network and a face completion
network. The first network estimates the mask for the area where the occlusion is present,
which is fed into the second network. The latter then completes the missing region based
on the mask. The discriminator employs an adversarial loss, and an attribute preserving
loss to ensure that the generated facial image has similar attributes to the input image.

Likewise, Chen et al. [80] depend on their proposed OA-GAN to automatically identify
the occluded region and inpaint it. They train a DCGAN on occlusion-free facial images,
and use it to detect the corrupted regions. During the inpainting process, a binary matrix is
maintained, which indicates the presence of occlusion in each pixel. The detection of occluded
region alleviates the need for any prior knowledge of the location and type of the occlusion
masks. However, incorrect occlusion detection leads to partially inpainted images.

Facial Structure Guided GAN (FSG-GAN) [81] is a two-stage model with a single
generator and discriminator. In the first part, a variational auto-encoder estimates the facial
structure which is combined with the occluded image and fed into the generator of the
second stage. The generator (UNet), guided by the facial structure knowledge, synthesizes
the deoccluded image. A multi-receptive fields discriminator encourages a more natural
and less ambiguous appearance of the output image. Nevertheless, the model cannot
remove occlusion in a face image with large posture well, and it cannot correctly predict
the facial structure under severe occlusions, which leads to unpleasant results.

Multiple discriminators: Several of the existing works employ multiple discrimina-
tors to ensure that the completed facial image is semantically valid and consistent with
the context of the image. Li et al. [82] train a model with a generator, a local discriminator,
a global discriminator, and a parsing network to generate an occlusion-free facial image.
The original image is masked with a randomly positioned noisy square and fed into the
generator which is designed as an auto-encoder to fill the missing pixels. The discrim-
inators, which are binary classifiers, enhance the semantic quality of the reconstructed
pixels. Meanwhile, the parsing network enforces the harmony of the generated part and
the present content. The model can handle various masks of different positions, sizes,
and shapes. However, the limitations of the model include the facts that (1) it cannot
recognize the position/orientation of the face and its corresponding elements which leads
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to unpleasant generative content; (2) it fails to correctly recover the color of the lips; (3) it
does not capture the full spatial correlations within neighboring pixels.

Similarly, Mathai et al. [83] use an encoder–decoder for the generator, a Patch-GAN-
based local discriminator, and a WGAN-GP [56]-based global discriminator to address
occlusions on distinctive areas of a face and inpaint them. Consequently, the model’s ability
in recognizing faces improves. To minimize the effect of the masked area on the extracted
features, two convolutional gating mechanisms are experimented: hard gating mechanism
known as partial convolutions [62] and a soft gating method based on sigmoid function.

Liu et al. [84] also follow the same approach by implementing a generator (autoen-
coder), a local discriminator, and a global discriminator. A self-attention mechanism is
applied in the global discriminator to enforce complex geometric constrains on the global
image structure, and model long-range dependencies. The authors report the results for
the facial landmark detection only, without providing the experimental data.

Moreover, Cai et al. [85] present FCSR-GAN to create a high-resolution deoccluded
image from a low-resolution facial image with partial occlusions. At first, the model
is pre-trained for face completion to recover the missing region. Afterward, the entire
framework is trained end-to-end. The generator comprises a face completion unit and a
face super-resolution unit. The low-resolution occluded input image is fed into the face
completion module to fill the missing region. The face completion unit follows an encoder–
decoder layout and the overall architecture is similar to the generative face completion by
Li et al. [82]. Then, the occlusion-free image is fed into the face super-resolution module
which adopts a SRGAN [86]. The network is trained with a local loss, a global loss, and
a perceptual loss to ensure that the generated content is consistent with the local details
and holistic contextual information. An additional face parsing loss and perceptual loss are
computed to produce more realistic face images.

Furthermore, face completion can improve the resistance of face identification and
recognition models to occlusion. The authors in [87] propose a two-unit de-occlusion
distillation pipeline. In the de-occlusion unit, a GAN is implemented to recover the
appearance of pixels covered by the mask. Similar to the previously mentioned works, the
output of the generator is evaluated by local and global discriminators. In the distillation
unit, a pre-trained face recognition model is employed as a teacher, and its knowledge
is used to train the student model to identify masked faces by learning representations
for recovered faces with similar clustering behaviors as the original ones. This teaches
the student model how to fill in the information gap in appearance space and in identity
space. The model is trained with a single occlusion mask at a time; however, in real-world
instances, multiple masks cover large discriminative regions of the face.

Multiple generators: In contrast to the OA-GAN presented by Cai et al. [79], the
authors of [88] propose a two-stage OA-GAN framework with two generators and two
discriminators. While the generators (G1, and G2) are made up of a UNet encoder–decoder
architecture, PatchGAN is adopted in the discriminators. G1 takes an occluded input image
and disentangles the mask of the image to produce a synthesized occlusion. G2 then takes
the output from G1 in order to remove the occlusions and generate a deoccluded image.
Therefore, the occlusion generator (i.e., G1) plays a fundamental role in the deocclusion
process. The failure in the occlusion generator produces incorrect images.

Multiple generators and discriminators: While using multiple discriminators ensures
the consistency and the validity of the produced image, some available works employ
multiple generators, especially when tackling multiple problems. For example, Jabbar
et al. [89] present a framework known as Automatic Mask Generation Network for Face
Deocclusion using Stacked GAN (AFD-StackGAN) that is composed of two stages to
automatically extract the mask of the occluded area and recover its content. The first stage
employs an encoder–decoder in its generator to generate the binary segmentation mask
for the invisible region. The produced mask is further refined with erosion and dilation
morphological techniques. The second stage eliminates the mask object and regenerates
the corrupted pixels through two pair of generators and discriminators. The occluded
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input image and the extracted occlusion mask are fed into the first generator to produce a
completed image. The initial output from the first generator is enhanced by rectifying any
missing or incorrect content in it. Two PatchGAN discriminators are implemented against
the result of the generators to ensure that the restored face’s appearance and structural
consistency are retained. AFD-StackGAN can remove various types of occlusion masks in
the facial images that cover a large area of the face. However, it is trained with synthetic
data, and the incompatibility of the training images and the real-world testing images
is likely.

In the same way, Li et al. [90] employ two generators and three domain-specific
discriminators in their proposed framework called disentangling and fusing GAN (DF-
GAN). They treat face completion as disentangling and fusing of clean faces and occlusions.
This way, they remove the need for paired samples of occluded images and their congruent
clean images. The framework works with three domains that correspond to the distribution
of occluded faces, clean faces, and structured occlusions. In the disentangling module,
an occluded facial image is fed into an encoder which encodes it to the disentangled
representations. Thereafter, two decoders produce the corresponding deoccluded image
and occlusion, respectively. In other words, the disentangling network learns how to
separate the structured occlusions and the occlusion-free images. The fusing network,
on the other hand, combines the latent representations of clean faces and occlusions, and
creates the corresponding occluded facial image, i.e., it learns how to generate images with
structured occlusions. However, real-world occlusions are of arbitrary shape and size, not
necessarily structured.

Coarse-to-fine architecture: Conversely to the previously mentioned works where
one output is generated, Jabbar et al. [91] propose a two-stage Face De-occlusion using
Stacked Generative Adversarial Network (FD-StackGAN) model that follows the coarse-to-
fine approach. The model attempts to remove the occlusion mask and fill in the affected
area. In the first stage, the network produces an initial deoccluded facial image. The
second stage refines the initial generated image to create a more visually plausible image
that is similar to the real image. Similar to AF-StackGAN, FD-StackGAN can handle
various regions in the facial images with different structures and surrounding backgrounds.
However, the model is trained on a synthetic dataset but it is not tested on images with
natural occlusions.

Likewise, Duan and Zhang [92] address the problem of deoccluding and recognizing
face profiles with large-pose variations and occlusions through BoostGAN, which has a
coarse-to-fine structure. In the coarse part, i.e., multi-occlusion frontal view generator,
an encoder–decoder network is used for eliminating occlusion and producing multiple
intermediate deoccluded faces. Subsequently, the coarse outputs are refined through a
boosting network for photo-realistic and identity-preserved face generation. Consequently,
the discriminator has a multi-input structure.

Since BoostGAN is a one-stage framework, it cannot handle de-occlusion and frontal-
ization concurrently, which means that it loses the discriminative identity information.
Furthermore, BoostGAN fails to employ the mask guided noise prior information. To
address these, Duan et al. [93] perform face frontalization and face completion simultane-
ously. They propose an end-to-end mask guided two-stage GAN (TSGAN) framework.
Each stage has its own generator and discriminator, while the first stage contains the face
deocclusion module, the second one contains face frontalization module. Another module
named mask-attention module (MAM) is deployed in both stages. The MAM encourages
the face deocclusion module to concentrate more on missing regions and fills them based
on the masked image input. The recovered image is fed into the second stage to obtain the
final frontal image. TSGAN is trained with defined occlusion types and specified sizes, and
multiple natural occlusions are not considered.

Table 3 provides an outline of the above-mentioned works, summarizing the type of
GAN, the objective function, the dataset, and the results of each work.
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Table 3. Summary of the face completion works, highlighting the types of GAN, loss functions, and the datasets that were used. The results are the reported results
of the quality of the generated images (except for the ones marked with †). Results with * are the mean value of the published results. AL: Adversarial loss. PL:
Perceptual loss. RL: Reconsturction loss. PSNR: Peak Signal-to-Noise Ratio ↑. SSIM: Structural Similarity ↑. ID: Identity Distance ↓. DIR@FAIR: Detection and
Identification Rate at False Positive Rates ↑. MSE: Mean Square Error ↓. IS: Inception Score ↑. FID: Frechet Inception Distance ↓. NRMSE: Normalized Root MSE ↓.

# Paper Type of GAN Loss Function Dataset Results

1. Cai et al. [79] OA-GAN
1. Training with synthetic occlusion: PL, style loss, pixel
loss, smoothness loss, L2 loss, and AL. 2. Training with
natural images: smoothness loss, L2 loss, and AL.

CelebA [94] PSNR = 22.61, SSIM = 0.787

2. Chen et al. [80] DCGAN AL. LFW [95] Equal Error Rate (EER) *† = 0.88

3. Cheung et al. [81] FSG-GAN L1 loss, identity-preserve loss, and AL. CelebA, and LFW. CelebA: PSNR * = 20.7513, SSIM = 0.8318; LFW:
PSNR * = 20.8905, SSIM = 0.8527

4. Li et al. [82] GAN with two discriminators Local and global AL, RL (L2), and pixel-wise softmax loss. CelebA, and Helen [96]. PSNR * = 19.60, SSIM * = 0.803, ID = 0.470

5. Mathai et al. [83] GAN (modified generator)
with two discriminators RL (L1), global WGAN loss, and local PatchGAN loss.

1. Training the inpainter: CASIA Web-
Faces [97], VGG Faces [98], and MS-
Celeb-1M [99]. 2. Testing the model:
LFW, and LFW-BLUFR [100].

DIR@FAR † = 89.68

6. Liu et al. [84] GAN (modified generator)
with two discriminators RL (L2), and AL. CelebAMask-HQ [101] NRMSE † = 6.96 (result of facial landmark detec-

tion)

7. Cai et al. [85] FCSR-GAN MSE loss, PL, local and global AL, and face parsing loss. CelebA, and Helen. CelebA: PSNR = 20.22, SSIM = 0.780; Helen:
PSNR = 20.01, SSIM = 0.761

8. Li et al. [87] GAN (modified generator)
with two discriminators Local and global AL, RL, and contextual attention loss. CelebA, AR [102], and LFW. Recognition accuracy † = 95.44%

9. Dong et al. [88] OA-GAN AL and L1 loss CelebA, and CK+ [103], with additional
occlusion images from the Internet. PSNR * = 22.402, SSIM * = 0.753

10. Jabbar et al. [89] AFD-StackGAN (PatchGAN
discriminators) L1 loss, RL (L1, and SSIM), PL, and AL. Custom dataset. PSNR = 33.201, SSIM = 0.978, MSE = 32.435,

NIQE (↓) = 4.902, BRISQUE (↓) = 39.872

11. Li et al. [90] DF-GAN AL and cycle loss. AR, Multi-PIE [104], Color FERET [105],
and LFW.

AR: PSNR = 23.85, SSIM = 0.9168; MultiPIE:
PSNR = 28.21, SSIM = 0.9176; FERET: PSNR = 28.15,
SSIM = 0.931; LFW: PSNR = 23.18, SSIM = 0.869

12. Jabbar et al. [91] FD-StackGAN RL (L1, and SSIM loss), PL, and AL. Custom dataset. PSNR = 32.803, SSIM = 0.981, MSE = 34.145,
NIQE (↓) = 4.499, BRISQUE (↓) = 42.504

13. Duan and Zhang. [92] BoostGAN AL, identity preserving loss, L1 loss, symmetry loss, and
total variation (TV) loss. Multi-PIE and LFW. Recognition rate † = 96.02

14. Duan et al. [93] TSGAN AL, dual triplet loss, L1 loss, symmetry loss, and TV loss. Multi-PIE and LFW. Recognition rate † = 96.87

15. Cong and Zhou. [106] DCGAN Cycle consistency loss from CycleGAN, AL, and Wasser-
stain distance loss. Wider Face [107]. IS = 10.36; FID = 8.85
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5.3.3. Attribute Classification

With the availability of surveillance cameras, the task of object detection and tracking
through its visual appearance in a surveillance footage has gained prominence. Further-
more, there are other characteristics of people that are essential to fully understand an
observed scene. The task of recognizing the people attributes (age, sex, race, etc.) and the
items they hold (backpacks, bags, phone, etc.) is called attribute classification.

However, occluding the person in question by another person may lead to incorrectly
classifying the attributes of the occluder instead of the occludee. Furthermore, the quality of
the images from the surveillance cameras is usually low. Therefore, Fabbri et al. [108] focus
on the poor resolution and occlusion challenges in recognizing the attribute of people such
as gender, race, clothing, etc., in surveillance systems. The authors propose a model based
on DCGAN [109] to improve the quality of images in order to overcome the mentioned
problems. The model has three networks, one for attribute classification from the full body
images, and the other two networks attempt to enhance the resolution and recover from
occlusion. Eliminating the occlusion produces an image without noise and the residual of
other subjects that could result in misclassification. However, under severe occlusions, the
reconstructed image still contains the remaining of the occluder and the model fails to keep
the parts of the image that should stay unmodified.

Similarly, Fulgeri et al. [110] tackle the occlusion issue by implementing a combination
of UNet and GAN architecture. The model requires as input the occluded person image
and its corresponding attributes. The generator takes the input and restores the image.
The output is then forwarded to three networks: ResNet-101 [77], VGG-16 [111], and the
discriminator to calculate the loss. The loss is backpropagated to update the weights of
the generator. The goal of the model is to obtain a result image of a person that (a) is not
occluded, (b) is similar at the pixel level to a person shape, and (c) contains the similar
visual features as the original image. The results show that the model can detect and
remove occlusion without any additional information. However, the model fails to fully
recover the pixels around the boundary of the body parts. The authors constraint the input
images by not having occlusion of more than six-sevenths of the image height.

5.3.4. Miscellaneous Applications

In this section, we present the applications of GAN for amodal content completion in
various categories of data.

Food: Papadopoulos et al. [112] present a compositional layer-based generative net-
work called PizzaGAN that follows the steps of a recipe to make a pizza. The framework
contains a pair of modules to add and remove all instances of each recipe component. A
Cycle-GAN [6] is used to design each module. In the case of adding an element to the
existing image, the module produces the appearance and the mask of the visible pixels in
the new layer. Moreover, the removal module learns how to fill the holes that are left from
the erased layer and generate the mask of the removed pixels. However, the authors do not
provide any quantitative assessment of PizzaGAN.

Vehicles: Yan et al. [67] propose a two-part model to recover the amodal mask of a
vehicle and the appearance of its hidden regions iteratively. To tackle both tasks, the model
is composed of two parts: a segmentation completion module and an appearance recovery
module. The first network is to complement the segmentation mask of the vehicle’s invisible
region. In order to complete the content of the occluded region, the appearance recovery
module has a generator with a two-path network structure. The first path accepts the input
image, the recovered mask from the segmentation completion module, and the modal
mask, while learning how to fill in the colors of the hidden pixels. The other path requires
the recovered mask and the ground-truth complete mask and learns how to use the image
context to inpaint the whole foreground vehicle. The two paths share parameters, which
increases the ability of the generator. To enhance the quality of the recovered image, it is
taken through the whole model several times. However, the performance of the model
degrades beyond three iterations for real images if occlusions are not severe.
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Humans: The process of matching the same person in images taken by multiple
cameras is referred to as Person re-identification (ReID). In surveillance systems where
the purpose is to track and identify the individuals, ReID is essential. However, the
stored images usually have low resolution and are blurry because they are from ordinary
surveillance cameras [113]. Additionally, occlusion by other individuals and/or objects is
most likely to occur since each camera has a different angle of view. Hence, some important
features become difficult to recognize.

To tackle the challenge of person re-identification under occlusion, Tagore et al. [114]
design a bi-network architecture with an Occlusion Handling GAN (OHGAN) module. An
image with synthetic added occlusion is fed into the generator which is based on UNet
architecture and produces an occlusion-free image by learning a non-linear project mapping
function between the input image and the output image. Afterward, the discriminator
computes the metric difference between the generated image and the original one. The
ablation studies for the reconstruction task illustrate that the quality of completion is
good for 10–20% occlusion and average for 30–40% occlusion. However, the quality of
reconstruction degrades for occlusions higher than 50%.

On the other hand, Zhang et al. [66] attempt to complete the mask and the appearance
of an occluded human through a two-stage network. First, the amodal completion stage
predicts the amodal mask of the occluded person. Afterward, the content recovery network
completes the RGB appearance of the invisible area. The latter uses a UNet architecture
in the generator, with local and global discriminators to ensure that the output image
is consistent with the global semantics while enhancing the clarity and contrast of the
local regions. The generator adds a Visible Guided Attention (VGA) module to the skip
connections. The VGA module computes a relational feature map to guide the low-level
features to complete by concatenating the high-level features with the next-level features.
The relational feature map represents the relation between the pixels inside and outside
the occluded area. The process of extracting feature maps is similar to the self-attention
mechanism in SAGAN by Zhang et al. [54]. Although incorporating VGA leads to a more
accurate recovery of the content and texture, the model does not perform well on real
images as it does on synthetic images.

5.4. Training Data

Supervised learning frameworks require annotated ground-truth data to train a model.
These data can be either from a manually annotated dataset, a synthetic occluded data
from 3D computer-generated images, or by superimposing a part of an object/image on
another object. For example, Ehsani et al. [76] train their model (SeGAN) on a photo-
realistic synthetic dataset, and Zhan et al. [75] apply a self-supervised approach to generate
annotated training data. However, a model trained with synthetic data may fail when
it is tested on real-world data, and human-labeled data are costly, time-consuming, and
susceptible to subjective judgments.

In this section, we discuss how GAN is implemented to generate training data for
several categories.

Generic objects: It is nearly impossible to cover all the probable occlusions, and
the likelihood of appearance of some occlusion cases is rather small. Therefore, Wang
et al. [115] aim to utilize the data to improve the performance of the object detection in
the case of occlusions. They utilize an adversarial network to generate hard examples
with occlusions, and use them to train a Fast-RCNN [116]. Consequently, the detector
becomes invariant to occlusions and deformations. Their model contains an Adversarial
Spatial Dropout Network (ASDN), which takes as input features from an image patch and
predicts a dropout mask that is used to create occlusion such that it would be difficult for
Fast-RCNN to classify.
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Likewise, Han et al. [117] apply an adversarial network to produce occluded adver-
sary samples to train an object detector. The model, named Feature Fusion and Adversary
Networks (FFAN), is based on Faster RCNN [118] and consists of a feature fusion network
and an adversary occlusion network, and while the feature fusion module produces a
feature map of high resolution and high semantic information to detect small objects more
effectively, the adversary occlusion module produces occlusion on the feature map of
the object thus outputs an adversary training sample that would be hard for the detec-
tor to discriminate. Meanwhile, the detector becomes better in classifying the generated
occluded adversary samples through self-learning. Over time, the detector and the adver-
sary occlusion network learn and compete with each other to enhance the performance of
the model.

The occlusions produced by adversary networks in [115,117] may lead to over-
generalization, because they are similar to other class instances. For example, the occluded
wheels of a bicycle results in misclassifying a wheel chair as a bike.

Humans: Zhao et al. [119] augment the input data to produce easy-to-hard occluded
samples with different sizes and positions of the occlusion mask to increase the variation of
occlusion patterns. They address the issue of ReID under occlusion through an Incremental
Generative Occlusion Adversarial Suppression (IGOAS) framework. The network contains
two modules, an incremental generative occlusion (IGO) block, and a global adversarial
suppression (G&A) module. IGO takes the input data through augmentation and generates
easy occluded samples. Then, it progressively enlarges the size of the occlusion mask with
the number of training iterations. Thus, the model becomes more robust against occlusion
as it learns harder occlusion incrementally rather than hardest ones directly. On the other
hand, G&A consists of a global branch which extracts global features of the input data, and
an adversarial suppression branch that weakens the response of the occluded region to
zero and strengthens the response to non-occluded areas.

Furthermore, to increase the number of samples per identity for person ReID, Wu
et al. [120] use a GAN network to synthesize labeled occluded data. Specifically, the authors
impose block rectangles on the images to create random occlusion on the original person
images which the model then tries to complete. The completed images that are similar but
not identical to the original input are labeled with the same annotation as the corresponding
raw image. Similarly, Zhang et al. [113] follow the same strategy to expand the original
training set, expect that an additional noise channel is applied on the generated data to
adjust the label further. Both approaches in [113,120] work with rectangular masks, but in
real-world examples occlusions appear in free-form shapes.

Face images: Cong and Zhou [106] propose an improved GAN to generate occluded
face images. The model is based on DCGAN with an added S-coder. The purpose of the S-
coder is to force the generator to produce multi-class target images. The network is further
optimized through Wasserstein distance and the cycle consistency loss from CycleGAN.
However, only sunglasses and facial masks are considered as occlusive elements.

Figure 4 outlines of the discussed approaches for tackling the issues in overcoming
occlusion through using GAN. Table 4 summarizes the GAN model, the loss function,
and the datasets that were used in the discussed works in this section (except for the
face completion works), it also shows the reported result for the tasks where GAN
was applied.
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Overcoming
Occlusion

A single discriminator (Dhamo et
al., 2019; Zheng et al., 2021)

Amodal Content
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Other categories (food
(Papadopoulos et al.,

2019), vehicles (Yan et al.,
2019), and humans (Tagore

et al., 2022; Zhang et al.,
2022))

Face completion

Generic Object Completion

Amodal Segmentation

Coarse-to-fine architecture with
contextual attention (Xiong et al.,

2019)

Generator with priori knowledge
(Zhang et al., 2022)

Coarse-to-fine architecture with
multiple discriminators and 3D

model pool (Yan et al., 2019)

Training Data

Facial images (Cong and Zhou,
2022)

Humans (Zhang et al., 2020; Zhao
et al., 2021; Wu et al., 2019)

Discriminator with a two
hourglass generator (Zhou et al.,

2021)

Attribute Classification
(Fabbri et al., 2017; Fulgeri

et al., 2019)

Multiple discriminators (Li et al,
2017; Mathai et al., 2019; Liu et al.,
2020; Cai et al., 2019; Ledig et al.,

2017; Li et al., 2020)

Multiple generators (Dong et al.,
2020)

Single generator and discriminator
(Cai et al., 2020; Chen et al., 2017;

Cheung et al., 2021)

Coarse-to-fine architecture (Xiong
et al., 2019)

Partial convolution (Zhan et al.,
2020), and CGAN (Zhan et al.,

2020; Ehsani et al., 2018)

Contextual attention and multiple
discriminators (Kahatapitiya et al.,

2019)

Multiple discriminators (Dhamo et
al., 2019; Mani et al., 2020)

Coarse-to-fine architecture
(Jabbar et al., 2021; Duan et al.,

2020; Duan et al., 2021)

Multiple generators and
discriminators (Jabbar et al., 2022;

Li et al., 2020)

Order Recovery

Generic objects (Wang et al., 2017;
Han et al., 2019)

Figure 4. Outline of the approaches for addressing the challenges in overcoming occlusion
through GAN. For amodal segmentation the implemented architecture are, a discriminator with a
two hourglass generator [60], a coarse-to-fine architecture with contextual attention [63] or multiple
discriminators [67], and a generator with priori knowledge [66]. For order recovery, GAN is designed
as a generator with a single discriminator [71,73], or multiple discriminators [69,70]. To perform
amodal content completion for facial images, the architectures include: a single generator and dis-
criminator [79–81], multiple discriminators [82–87], multiple generators [88], multiple generators
and discriminators [89,90], or a coarse-to-fine architecture [91–93]. Generic object completion is
carried out through coarse-to-fine architecture [63], multiple discriminators with contextual atten-
tion [78], or partial convolution and CGAN [75,76]. Human completion for attribute classification
is utilized in [108,110]. Other works use GAN to complete the images of food [112], vehicles [67],
and humans [66,114]. GAN is also used to generate training data of generic objects [115,117], hu-
mans [113,119,120], and face images [106].
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Table 4. Summary of the discussed works, highlighting the type of GAN, loss function, and the datasets that were used. The last two columns show the task that
GAN was utilized for and its corresponding reported results. IoU: Intersection over Union ↑, R: Recall ↑, P: Precision ↑, ICP: Inception Conditional Probability ↑,
SS: Segmentation Score ↑, Rel: Relative error ↓, RMSE: Root MSE ↓, MPE: Mean Pixel Error ↓, mIoU: mean IoU ↑, mAP: mean Average Precision ↑, mA: mean
Accuracy ↑, AP: Average Precision ↑.

# Paper Model Loss Function Dataset Task Results

1. Zhou et al. [60] GAN with PGA

1. For mask generation: binary cross-
entropy (BCE), adversarial loss, and L1
loss. 2. For content completion: adver-
sarial loss, L1 loss, perceptual loss, and
style loss.

AHP (custom dataset) Amodal segmentation and
content completion

For mask generation: IoU = 86.1/40.3, L1 = 0.1635;
For content completion: FID = 19.49, L1 = 0.0617

2. Xiong et al. [63] Coarse-to-fine structure with a
PatchGAN discriminator

1. For contour completion: a focal loss
based content loss, and Hinge loss for ad-
versarial loss. 2. For content completion:
L1 loss.

Places2 [121], and custom-
designed dataset

Contour and content comple-
tion

L1 = 0.009327, L2 = 0.002329, PSNR = 29.86,
SSIM = 0.9383, user study = 731 out of 1099 valid
votes

3. Zhang et al. [66] GAN with multiple PatchGAN
discriminators

1. For mask generation: adversarial loss,
perceptual loss, and BCE loss. 2. For con-
tent generation: adversarial loss, L1 loss,
style loss, content loss, and TV loss.

Custom dataset Amodal segmentation and
content completion

For mask generation: mIoU = 0.82, L1 = 0.0638;
For content completion: L1 = 0.0344, L2 = 0.0324,
FID = 33.28

4. Yan et al. [67] GAN with multiple PatchGAN-
based discriminators

L1 loss, perceptual loss, and adversarial
loss. OVD (custom dataset) Amodal segmentation and

content completion

For mask generation: P = 0.9854, R = 0.8148,
F1 = 0.8898, IoU = 0.8066, L1 = 0.0320, L2 = 0.0314;
For content completion: ICP = 0.8350, SS = 0.9356,
L1 = 0.0173, L2 = 0.0063

5. Dhamo et al. [69] PatchGAN-based Adversarial loss and L1 loss SceneNet [122] and NYU
depth v2 [123] RGB-D completion Rel = 0.017, RMSE = 0.095, SSIM = 0.903,

RMSE = 19.76, PSNR = 22.22

6. Dhamo et al. [73] Original GAN
1. For object completion: L1 loss 2. For
layout prediction: reconstruction (L1) loss,
perceptual loss, and adversarial loss.

SunCG [124] and
Stanford2D-3D [125] RGBA-D completion SunCG: MPE = 43.12, RMSE = 65.66; Stanford2D-

3D: MPE = 42.45, RMSE = 54.92

7. Mani et al. [70] GAN with two discriminators L2 loss, adversarial loss, and the discrimi-
nator loss.

KITTI [126] and Argov-
erse [127] Scene completion

KITTI object: mIoU = 26.08, mAP = 40.79; KITTI
tracking: mIoU = 24.16, mAP = 36.83; Argoverse:
mIoU = 32.05, mAP = 48.31

8. Zheng et al. [71] GAN with two discriminators Reconstruction loss, adversarial loss, and
perceptual (L1) loss.

COCOA[128], KINS [129],
and CSD (custom dataset) Scene completion RMSE = 0.0914, SSIM = 0.8768, PSNR = 30.45

9. Zhan et al. [75] PCNet with CGAN
1. For mask generation: BCE loss. 2. For
content completion: losses in PC [62], L1
loss, perceptual loss, and adversarial loss.

COCOA, and KINS Content completion KINS: mIoU = 94.76%; COCOA: mIoU = 81.35%

10. Ehsani et al. [76] SeGAN
1. For mask generation: BCE loss. 2. For
content generation: Adversarial loss and
L1 loss.

DYCE (custom dataset) Content completion L1 = 0.07, L2 = 0.03, user study = 69.78%
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Table 4. Cont.

# Paper Model Loss Function Dataset Task Results

11. Kahatapitiya
et al. [78]

Inpainter with contextual atten-
tion

Spatially discounted reconstruction L1
loss, local and global WGAN-GP adver-
sarial loss.

COCO-Stuff [130] and MS
COCO [131] Content completion User study positive = 79.7%, negative = 20.3%

12. Fabbri et al. [108] DCGAN-based

1. For attribute classification: weighted
BCE loss. 2. For content completion: recon-
struction loss and adversarial loss of the
generator.

RAP [132] Content completion mA = 65.82, accuracy = 76.01, P = 48.98, R = 55.50,
F1 = 52.04

13. Fulgeri et al. [110] Modified GAN (one generator
and three discriminators)

Adversarial loss, content loss, and at-
tribute loss (weighted BCE).

RAP, and Aic (custom
dataset) Content completion

RAP: mA = 72.18, accuracy = 59.59, P = 73.51,
R = 73.72, F1 = 73.62, SSIM = 0.8239, PSNR = 20.65;
AiC: mA = 78.37, accuracy = 53.3, P = 55.73,
R = 85.46, F1 = 67.46, SSIM = 0.7101, PSNR = 21.81

14. Papadopoulos
et al. [112] PizzaGAN

Adversarial loss, classification loss, cycle
consistency loss as in CycleGAN, mask reg-
ularization mask.

Custom dataset Amodal segmentation and
content completion

Mask generation mIoU = 29.30% (quantitative re-
sults are not reported for content generation)

15. Zhang et al. [113] CGAN Adversarial loss. Market-1501 [133] Content completion mAP = 90.42, Rank-1 = 93.35, Rank-5 = 96.87,
Rank-10 = 97.92

16. Tagore et al. [114] OHGAN BCE loss, and L2 loss.

CUHK01 [134],
CUHK03 [135], Market-
1501, and DukeMTMC-
reID [136]

Content completion

CUHK01: Rank-1 = 93.4, Rank-5 = 96.4, Rank-
10 = 98.8; CUHK03: Rank-1 = 92.8, Rank-5 = 95.4,
Rank-10 = 97.0; Market-1501: Rank-1 = 94.0, Rank-
5 = 96.4, Rank-10 = 97.5, mAP = 86.4; DukeMTMC-
reID: Rank-1 = 91.2, Rank-5 = 93.4, Rank-10 = 95.8,
mAP = 82.4

17. Wang et al. [115] A custom-designed adversarial
network BCE loss. VOC2007, VOC2012 [137],

and MS COCO
Occlusion generation and de-
formation

VOC2007: mAP = 73.6; VOC2012: mAP = 69.0;
MS COCO: AP50 = 27.1

18. Han et al. [117] Adversary occlusion module BCE loss. VOC2007, VOC2012, MS
COCO, and KITTI Occlusion generation VOC2007: mAP = 78.1; VOC2012: mAP = 76.7;

MS COCO: AP = 42.7; KITTI: mAP = 89.01

19. Wu et al. [120] Original GAN Euclidean loss, and BCE loss. CUHK03, Market-1501,
and DukeMTMC-reID Content completion

Market-1501: mAP = 90.36, Rank-1 = 93.29, Rank-
5 = 96.96, Rank-10 = 97.68; DukeMTMC-reID:
mAP = 82.81, Rank-1 = 86.35, Rank-5 = 92.87,
Rank-10 = 94.56; CUHK03: mAP = 61.95, Rank-
1 = 59.78, Rank-5 = 70.64
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6. Loss Functions

In GAN, the generator G and the discriminator D play against each other in a two-
player mini–max game until they reach Nash equilibrium through a gradient-based op-
timization method. The gradient of the loss value indicates the learning performance of
the network. The loss value is calculated via a loss (objective) function. In fact, defining a
loss function is one the fundamental elements of designing GAN. Consequently, numerous
objective functions have been proposed to stabilize and regularize GAN. The following
losses are the most common ones used in training GAN for amodal completion.

1. Adversarial Loss: The loss function used in training GAN is known as an adversarial
loss. It measures the distance between the distribution of the generated sample and
the real sample. Each of G and D have their dedicated loss function which together
form the adversarial loss, as shown in Equation (1). However, G is trained as the
term that reflects the distribution of the generated data (Ez∼pz(z)[log(1−D(G(z)))]).
Extensions to the original loss function are the conditional loss and the Wasserstein
loss defined in CGAN and WGAN, respectively.

2. Content Loss: In image generation, content loss [138] measures the difference between
the content representation of the real and the generated images, to make them more
similar in terms of perceptual content. If p and x are the original and the generated
images, and pl and Xl are their respective representations in layer l, the content loss is
calculated as

Lcontent(p, x, l) =
1
2 ∑

i,j
(Fl

ij − Pl
ij)

2 (3)

3. Reconstruction Loss: The key idea behind reconstruction loss proposed by Li et al. [139]
is to benefit from the visual features learned by D from the training data. The extracted
features from the real data by D are fed to G to regenerate real data. By adding recon-
struction loss to the GAN’s loss function, G is encouraged to reconstruct from the features
of D, which brings G closer to the configurations of the real data. The reconstruction loss
equation is as follows:

Lφ,θ
X = Ex∼px [‖Gθ(Dφ

F(X))− X‖1] (4)

where Dφ
F is a part of the discriminator which encodes the data to features, and Gθ

decodes the features to the training data.
4. Style Loss: The style loss, originally designed for image style transfer by Gatys

et al. [138], is defined to ensure that the style representation of the generated image
matches that of the input style image. It depends on the feature correlation between the
feature maps, given by the Gram matrix (Gl). Let a and x be the original image and the
generated image, respectively, and Al and Gl their corresponding style representation
in layer l. The style loss is computed by the element-wise mean square difference
between Al and Gl ,

Lstyle(a, x) =
L

∑
l=0

wl
1

4N2
l M2

l
∑
i,j
(Gl

ij − Al
ij)

2 (5)

where wl is the weighting factor of each layer, and N and M represent the number and
the size of the feature maps, respectively.

5. L1 and L2 Loss: L1 loss function is the absolute difference between the ground-
truth and the generated image. On the other hand, L2 loss is the squared difference
between the actual and the generated data. When used alone, these loss functions
lead to blurred results [140]. However, when combined with other loss functions, they
can improve the quality of the generated images, especially L1 loss. The generator
is encouraged to not only fool the discriminator but also to be closer to the real data
in L1 or L2 sense. Although these losses cannot capture high-frequency details, they
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accurately capture low frequencies. L1 loss enforces correctness in low-frequency
features; hence, it results in less blurred images compared to L2 [8]. Both losses are
defined in Equations (6) and (7).

L1 = Ex,y,z[‖y− G(x, z)‖1] (6)

L2 = Ex,y,z[‖y− G(x, z)‖2
2] (7)

where x, y, and z are the ground-truth image, the generated image, and the random
noise, respectively.

6. Perceptual Loss: The perceptual loss measures the high-level perceptual and semantic
differences between the real and the fake images. Several works [141,142] introduce
perceptual loss as a combination of the content loss (or feature reconstruction loss)
and the style loss. However, Liu et al. [62] simply compute the L1 distance between
the real and the completed images. Others incorporate more similarity metrics into
it [140].

7. BCE Loss: BCE loss measures how close the probability of the predicted data is to the
real data. Its value increases as the predicted probability deviates from the real label.
The BCE is defined as

LBCE = − 1
N

N

∑
i=1

(yilog(D(i) + (1− yi)log(1− D(i))) (8)

where yi is the label of i. yi=0 and yi=1 represents fake and real samples.
BCE is used in training the discriminator in amodal segmentation task [76], and in
training the generator [110].

8. Hinge Loss: In GAN, Hinge loss is used to help the convergence to a Nash equilibrium.
Proposed by Lim and Ye [143], the objective function for G is

LG = −Ez∼pz(z)[D(G(z))] (9)

and for D is

LD = Ex∼pdata(x)[max(0, 1− D(x)] +Ez∼pz(z)[max(0, 1 + D(G(z))] (10)

where x and z are the ground-truth and the generated images, respectively.

As it can be seen from Tables 3 and 4, many of the previously mentioned loss functions
are combined with others to train a GAN model. Adversarial loss is the base objective
function for training the two networks of the GAN. However, with the original GAN’s
adversarial loss function, the model may not converge. Therefore, the Hinge loss is often
implemented as an alternative objective function. In some works, global and local adver-
sarial losses are used to train local and global discriminators to ensure that the generated
data is semantically and locally coherent. In addition to this, L1 or L2 losses are frequently
utilized to capture low-frequency features, and hence improve the quality of the generated
images. Furthermore, the reconstruction loss is employed to encourage the generator to
maintain the contents of the original input image. On the other hand, perceptual loss
encourages the model to capture patch-level information when completing a missing patch
in an object/image. Furthermore, to emphasize on the style match between the generated
image and the input image, style loss is implemented.

The choice of the objective functions is an essential decision of designing a model.
In amodal completion and inpainting, designing a loss function is still an active area
of research. The ablation studies performed by the reviewed works show that there is
no optimal objective function. For different tasks and data, a different set of loss terms
produces the best results. In addition, using a complex loss function may lead to problems
of instability, vanishing gradient, and mode collapse.
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7. Open Challenges and Future Directions

Despite the significant progress of the research in GAN and amodal completion in the
last decade, there remain a number of problems that can be considered as future directions.

1. Amodal training data: Up until now, there has been no fully annotated generic
amodal dataset with sufficient ground-truth labels for the three sub-tasks in amodal
completion. Most of the existing datasets are specific to a particular application or
task. This not only makes training the models themselves more difficult, but verifying
their learning capability as well. In many cases, there is no sufficient labeled amodal
validation data to establish the accuracy of the model. We present the challenges
related to each sub-task in amodal completion.
For amodal segmentation, the current datasets do not contain sufficient occlusion
cases between similar objects. Hence, the model cannot tell where the boundary of
one object ends and the other one begins.
The existing real (manually annotated) amodal datasets have no ground-truth ap-
pearance for the occluded region. This makes training and validating the model for
amodal content completion more challenging.
As for the case of order recovery, some occlusion situations are very rare in the existing
datasets. On the other hand, it is impossible to cover all probable cases of occlusion
in the real datasets. Nevertheless, in the future, the current datasets can be extended
through generated occlusion to include more of those infrequent cases with varying
degrees of occlusion.

2. Evaluation metrics: There are several quantitative and qualitative evaluation mea-
sures for GAN [59]. However, as it can be noticed from the results, there is no standard
and unanimous evaluation metric for assessing the performance of GAN when it gen-
erates the occluded content. Many existing works depend on the human preference
judgement which can be biased and subjective. Therefore, designing a consensus
evaluation metric is of utmost importance.

3. Reference data: Existing GAN models fail to generate occluded content accurately
if the hidden area is large. Particularly, when the occluded object is non-symmetric,
such as the face or the human body. The visible region of the object may not hold
sufficient relevant features to guide a visually plausible regeneration. As the next
step, reference images can be used along the input image to guide the completion
more effectively.

In addition to the above-mentioned problems, the challenges in the stability and
convergence of GAN remain open issues [28].

8. Discussion

Current computational models approach the human capability of visible perception
when performing visual tasks such as recognition, detection, and segmentation. However,
our environment is complex and dynamic. Most of the objects we perceive are incomplete
and fragmented. Therefore, the existing models that are designed and trained with a
fully visible sample of instances do not perform well when tested on real-world scenes.
Hence, overcoming occlusion is essential for leveraging the performance of available
models. Amodal completion tasks address the occluded patches of an image to infer the
occlusion relation between objects (i.e., order recovery), predict the full shape of the objects
(i.e., amodal segmentation), and complete the RGB appearance of the missing pixels (i.e.,
amodal content completion). These tasks are usually interleaved and depend on each other.
For example, amodal segmentation can benefit order recovery [144] and it is crucial for
amodal content completion [76]. On the other hand, order recovery can guide the amodal
segmentation [75].

Although GAN is notorious for its stability issues and is difficult to train, it is a popular
approach for tasks that require generative capability. In handling occlusion, the initially
incomplete representation needs to be extended to a complete representation with the miss-
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ing region filled in. Therefore, GAN is the chosen architecture for processes/sub-processes
involved in amodal completion. However, depending on the nature of the problems, the
applicability of GAN varies. For example, in amodal appearance reconstruction, GAN is the
ideal option of architecture and it produces superior results in comparison to other methods.
Comparably, in amodal segmentation and order recovery tasks, GAN is less commonly
used. Nevertheless, to take advantage of the potential of GAN, it can be combined with
other architectures and learning strategies to tackle those tasks too.

In order to help GAN in learning implicit features from the visible regions of the
image, various methods are used, which can be summarized as follows:

• Architecture: While the original GAN consists of a single generator and discriminator,
several works utilize multiple generators and discriminators. The implementation of
local and global discriminators is especially common, because it enhances the quality
of the generated data. The generator is encouraged to concentrate on both the global
contextual and local features, and produce images that are closer to the distribution
of the real data. In addition to this, an initial-to-refined (also called coarse-to-fine)
architecture is implemented in many models. The initial stage produces a coarse
output from the input image, which is then further refined in the refinement step.

• Objective function: To improve the quality of the generated output and stabilize
the training of the GAN, a combination of loss terms is used. While adversarial
loss and Hinge loss are used in training the two networks in the GAN, other objec-
tive functions encourage the model to produce an image that is consistent with the
ground-truth image.

• Input: Under severe occlusion, the GAN may fail to produce a visually pleasing
output solely depending on the visible region. Therefore, providing additional input
information guides GAN in producing better results. In the amodal shape and content
completion, synthetic instances similar to the occluded object are useful, because they
can be used as a reference by the model. A priori knowledge is also beneficial, as
it can either be manually encoded (e.g., utilizing various human poses for human
deocclusion) or transferred from a pre-trained model (e.g., using a pre-trained face
recognition model in face deocclusion). In addition to these, employing the amodal
mask and the category of the occluded object in the content completion task restricts
the GAN model to focus on completing the object in question. For producing the
amodal mask, a modal mask is needed as an input. If the input is not available, most
of existing works depend on a pre-trained segmentation model to predict the visible
segmentation mask.

• Feature extraction: The pixels in the visible region of an image are rather important
and contain essential information for various tasks; hence, they are considered as
valid pixels. Contrary to this, the invisible pixels are invalid ones; hence, they should
not be included in the feature extraction/encoding process. However, the vanilla
convolution process cannot differentiate between valid and invalid pixels, which
generates images with visual artifacts and color discrepancies. Therefore, partial
convolution and a soft gating mechanism are implemented to enforce the generator to
focus only on valid pixels and eliminate/minimize the effect of the invalid ones. On
the other hand, dilated convolution layers can replace the vanilla convolution layers
to borrow information from relevant spatially distant pixels. Additionally, contextual
attention layers and attention mechanism are added to the networks of the GAN to
leverage the information from the image context and capture global dependencies.

Among the various architectures of GAN, three types are most commonly used in the
reviewed works in this article, namely CGAN, WGAN-GP, and PatchGAN. The application
of CGAN is mostly in amodal content completion tasks, because the GAN is encouraged to
complete an object of a specific class. WGAN-GP stabilizes the training of GAN with an
EM distance objective function and a weight clipping method. Therefore, it is a preferred
architecture to ensure GAN convergence. On the other hand, PatchGAN is used in design-
ing the discriminator, as it attempts to classify patches of the generated image as real or
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fake. Consequently, the image is penalized for style consistency between pixels that are
spatially more than a patch diameter away from each other.

Finally, handling occlusion is fundamental in several computer vision tasks. For
example, completing an occluded facial image helps in better recognizing the face and
predicting the identity of the person. Similarly, inferring the full shape of pedestrians and
vehicles as well as the occlusion relationship between them can lead to a safer autonomous
driving. Furthermore, in surveillance cameras, amodal completion helps in target tracking
and security applications.

9. Conclusions

GANs are considered the most interesting idea in machine learning since their in-
vention. Due to their generative capability, they are extending the ability of artificial
intelligence systems. The GAN-based models are creative instead of mere learners. In the
challenging field of amodal completion, GAN has had a significant impact especially in
generating the appearance of a missing region. This brings existing vision systems closer to
the human capability in predicting the occluded area.

To help the researchers in the field, in this survey we have reviewed the available works
in the literature wherein a GAN is applied in accomplishing tasks of amodal completion and
resolving the problems that arise when addressing occlusion. We discussed the architecture
of each model along with its strengths and limitations in detail. Then, we summarized the
loss function and the dataset that was used in each work and presented their results. Then,
we discussed the most common types of objective functions which are implemented in
training the GAN models for occlusion handling. Finally, we provided a discussion of the
key findings of our survey article.

However, after reviewing the current progress in overcoming occlusion using a GAN,
we detected several key issues that remain an open challenge in the research of addressing
occlusion. These issues pave the way for the future research direction. By addressing them,
the field will progress significantly.
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