
Citation: Maniezzo, V.; Zhou, T.

Learning Individualized

Hyperparameter Settings. Algorithms

2023, 16, 267. https://doi.org/

10.3390/a16060267

Academic Editor: Frank Werner

Received: 5 May 2023

Revised: 24 May 2023

Accepted: 24 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Learning Individualized Hyperparameter Settings
Vittorio Maniezzo 1,* ,† and Tingting Zhou 2,†

1 Department of Computer Science, University of Bologna, 47521 Cesena, Italy
2 Department of Economics and Management, University of Science and Technology Beijing,

Beijing 100083, China; b20190402@xs.ustb.edu.cn
* Correspondence: vittorio.maniezzo@unibo.it
† These authors contributed equally to this work.

Abstract: The performance of optimization algorithms, and consequently of AI/machine learning
solutions, is strongly influenced by the setting of their hyperparameters. Over the last decades, a rich
literature has developed proposing methods to automatically determine the parameter setting for a
problem of interest, aiming at either robust or instance-specific settings. Robust setting optimization is
already a mature area of research, while instance-level setting is still in its infancy, with contributions
mainly dealing with algorithm selection. The work reported in this paper belongs to the latter
category, exploiting the learning and generalization capabilities of artificial neural networks to
adapt a general setting generated by state-of-the-art automatic configurators. Our approach differs
significantly from analogous ones in the literature, both because we rely on neural systems to suggest
the settings, and because we propose a novel learning scheme in which different outputs are proposed
for each input, in order to support generalization from examples. The approach was validated on
two different algorithms that optimized instances of two different problems. We used an algorithm
that is very sensitive to parameter settings, applied to generalized assignment problem instances,
and a robust tabu search that is purportedly little sensitive to its settings, applied to quadratic
assignment problem instances. The computational results in both cases attest to the effectiveness of
the approach, especially when applied to instances that are structurally very different from those
previously encountered.

Keywords: optimization algorithms; inductive learning; parameter setting; neural network
generalization; data abstraction; combinatorial optimization

1. Introduction

Most optimization algorithms, and consequently most AI/machine learning (ML)
solutions, have an effectiveness that depends heavily on the values imposed on high-level
guiding parameters, usually called hyperparameters. Choosing a bad setting can result in
anything from needing more time to reach the solution to being denied any success in the
search. Therefore, the identification of an effective hyperparameter setting is configured as
a higher-level optimization task, instrumental in obtaining a successful application of the
search algorithm of interest.

Over the last few decades, a rich literature has developed proposing methods for auto-
matically estimating parameter settings, using approaches ranging from purely statistical
to tailored heuristics. Two main lines of research have emerged, one aiming at identifying a
robust setting that makes an algorithm of interest effective on all (most) instances of the
problem to be optimized, and one tailoring the setting to each specific instance. In fact, it
is a common practical awareness that different instances of the same problem can require
very different computational efforts to solve, even if their dimensions are the same. The
computational complexity theory justifies such diversity among problems, but it cannot be
declined at the instance level, while the “no free lunch” theorem is valid even among in-
stances [1]. More efficient solution processes could therefore benefit from different settings

Algorithms 2023, 16, 267. https://doi.org/10.3390/a16060267 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060267
https://doi.org/10.3390/a16060267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1220-1235
https://orcid.org/0000-0003-0397-0603
https://doi.org/10.3390/a16060267
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060267?type=check_update&version=2

Algorithms 2023, 16, 267 2 of 15

tailored at the individual instance level, but the marginal benefits must be weighed against
the costs of achieving them.

This work considers both objectives, building upon automatic configurators but taking
into account the large diversity among instances of the same problem. The approach we
follow differs from that usually proposed in the literature of individual settings in that we
adapt prelearned settings to each specific instance, relying on neural networks, specifically
multilayer perceptrons (MLPs), to obtain the adapted settings in real time. Specifically, the
methodology we present makes use of state-of-the-art automatic algorithm configurators
to generate datasets of instance/setting pairs to be processed by the neural module. The
generalization and abstraction capabilities of the neural component are used to obtain
instance-specific hyperparameter settings for out-of-sample instances.

We assume that the different computational requests coming from different instances
are due to different structures in the data distribution at the instance level and use this
assumption to derive a pipeline that allows us to tailor the parameter setting of a given
search algorithm to single, previously unforeseen instances.

It is clearly ineffective to propose raw instances as learning bases, so we rely on sets of
descriptive statistics computed on both in-sample and out-of-sample (i.e., train and test)
instances and pass them as input to the neural module. The pipeline starts by computing a
set of descriptive statistics on the available instances, possibly filtering them, and applying
a state-of-the-art configurator to different subsets of structurally similar instances. This
produces a dataset of instance/setting pairs that can be used to instantiate learning. The
learning module consists of a multilayer perceptron, whose abstraction and generalization
capabilities are well known, and which is used in this case to abstract the mapping between
instance statistics and setting, so that when a new instance is proposed, its statistics are
computed and fed as input to the MLP, which in turn outputs the individualized setting.

We applied this pipeline to two different well-known combinatorial optimization
heuristic algorithms whose code was made available by the authors and used it to solve
two different problems. First, we considered a Lagrangian matheuristic [2,3], an algorithm
that is very sensitive to its settings, and applied it to generalized assignment problem (GAP)
instances. Second, we tested a robust tabu search [4], an algorithm that is considered robust
precisely because of its relative insensitivity to hyperparameter settings, and applied it to
quadratic assignment problem (QAP) instances.

The paper is structured as follows. Section 2 provides an overview of the state of the art
in robust and instance-level parameter setting optimization. Section 3 details the problems
we considered in this study and the algorithms we used to solve them and introduces
the parameters of these algorithms that need to be set. Section 4 describes the pipeline
we propose, including the stages of feature selection, possibly data augmentation, MLP
learning, and parameter setting generation. Finally, Section 5 contains the computational
results obtained in our study, and Section 6 draws some conclusions from the results
obtained.

2. Related Literature

State-of-the-art optimization algorithms typically have a large number of parameters
that need to be modified to ensure their performance. Traditionally, the identification of
an effective setting has been achieved through a manual, experimental approach, mostly
guided by the experience of the algorithm designers. However, manual exploration of the
combinatorial space of parameter settings is tedious and tends to produce unsatisfactory
results. Expectedly, the manual search can be less efficient than automatic procedures,
so automatic configurators have been proposed for use when very high performance is
required. Automatic or at least computer-assisted configuration has evolved along a line
that tries to identify robust settings to be used on all problem instances, and along a second
line that tries to propose individualized settings. There are several surveys that cover these
topics [3,5–7].

Algorithms 2023, 16, 267 3 of 15

Configurators of the first type [8–12] typically assume that an instance set of diverse
representative instances is available, and specific methods are applied to the set to derive
a robust setting that is effective on all of them, and thus hopefully on other instances
of the same problem. Widely used systems in this group include ParamILS and irace,
besides generic nonlinear optimization algorithms such as the Nelder–Mead simplex,
swarm optimization [13], Bayesian optimization [14], or a random search [15] applied to
this specific task.

ParamILS [11] is an iterated local search (ILS) algorithm that works in the search
space of the parameters. It works on categorical parameters; therefore, real and integer
parameters must first be converted to discrete values. After a possibly random initialization,
a local search is started. The local search in ParamILS is a first-improvement local search,
based on a one-exchange neighborhood, which can only change one parameter at a time.
Each time a move finds a new improvement, it takes it and continues the search until all
neighborhoods are examined or the budget is exhausted. At that point, the better of the
current or previous local minima is kept, and the last solution is perturbed to reinitialize
the search. ParamILS can be used for run-time configurations because it implements a
procedure called adaptive capping, which prunes the search early to evaluate potentially
poor-performing configurations, greatly reducing computation time.

The irace package [12] implements the so-called iterated race method, which is a
generalization of the iterated F-race method for the automatic configuration of optimization
algorithms [16]. irace is based on three successive phases. In the first phase, it generates
candidate configurations using an appropriate statistical model. In the second phase, it
selects the best candidate configurations using a race method based on either F-race or a
paired Student’s t-test. Third, it updates the system’s probability model to give the most
promising configurations a higher probability of being used. The general process starts by
generating configurations within the user-specified value intervals for each parameter and
subjecting them all to a race. In the race, configurations are evaluated on a first instance
of the provided instance set, then on the second, and so on. As soon as a configuration is
judged to be bad, it is eliminated, and the search continues until a small subset, by default
four, of configurations survive, which are proposed in the output.

These algorithms represent the state of the art for robust setting optimization. The
literature on individualized configuration uses them as a module of a more complex process,
as our approach suggests as well.

Individualized tuning itself has different goals and follows different approaches.
One approach is adaptive configuration, where parameter values are adjusted during the
optimization process based on the performance of the algorithm [5]. This was pioneered
by evolution strategies [17,18] and has received considerable attention since then but falls
outside the scope of our research.

Even if we narrow the focus to static settings that do not change values during the
search, there is a second subdivision to be made, namely between configurators that select
the most promising solution algorithm, or part thereof, from a portfolio of candidate
algorithms [19], and those that work on a single algorithm and optimize its parameters.

Individualized algorithm selection has been more extensively studied and has proven
to be able to significantly improve the state of the art in some notable combinatorial
problems, including propositional satisfiability [20] and the traveling salesman problem [21].
Prominent systems in this area are hydra [22] or llama [23], which are primarily algorithm
portfolio selection systems, where the included automatic parameter configurator passes
the task to optimizers such as ParamILS. Another interesting effort in the area of algorithm
selection is the instance space analysis for algorithm testing [24], a proposal to structure the
analysis of instance complexity and the degree of coverage of the universe of instances of a
given problem guaranteed by the available test sets.

Research on optimizing parameters of a single algorithms, which has been named per-
instance algorithm configuration (PIAC) [6], has seen less contributions. It typically involves
two phases: an offline phase, during which the configurator is trained, and an online phase,

Algorithms 2023, 16, 267 4 of 15

in which the configurator is run on given problem instances. The result of the second
phase is a parameter configuration determined on the features of the specific instance to be
solved. We remark the difference from a standard algorithm configuration, which typically
produces a single configuration that is then used on all presented instances.

The state of the art in PIAC is currently represented by ISAC (instance-specific al-
gorithm configuration) [25]. Its general approach is the same as that described above or
in instance space analysis, and as the one we adopted in our proposal as well. First, the
available benchmark instances are clustered into distinct sets based on the similarity of
their feature vectors as computed by a geometric norm. Then, assuming that instances with
similar features behave similarly under the same algorithm, some kind of search is used to
find good parameters for each cluster of instances. Finally, new instances are presented,
and the optimized settings are used to determine the one to use for that instance. The way
this is done may vary across systems. ISAC uses a g-means algorithm to cluster the training
instances, and when a new instance is shown, it checks if there is a cluster whose center
is close enough to the feature vector of the input. If so, the parameters for that cluster are
used, otherwise a robust setting optimized for each problem instance is used. Our proposal
differs in that it relies on the generalization ability of neural networks, which allows the
adaptation of the learned settings to any new instance.

A final note is in order here. We found a contribution that seems to overlap with
ours [26], but unfortunately it was presented only as an abstract with no details nor reported
results, so it was hard to understand the extent of the overlap, let alone compare the results.

3. Algorithms and Problems

Two algorithms from the literature with the authors’ code available from the Inter-
net [27,28] were tested for individualized parameter setting: a Lagrangian heuristic applied
to the GAP and a robust tabu search applied to the QAP. In the following, we present some
details on them.

3.1. Lagrangian Heuristic and the GAP

Lagrangian heuristics, as the name suggests, are rooted in Lagrangian relaxation, a
largely used decomposition technique providing bounds to the optimal solution values of
combinatorial optimization problems (COP) but also usable as a basis for effective heuristic
approaches [3].

The general structure of a Lagrangian code, whose pseudocode is provided in
Algorithm 1, is aimed at finding the optimal, or at least a good feasible solution xUB of
a problem that can be modeled as min{cTx : Ax ≥ b, Cx ≥ d, x ∈ Zn

+}, where the
constraints Ax ≥ b are “hard” and the constraints Cx ≥ d are “easy”. The method requires
to remove the hard constraints and penalize them in the objective function by means of a
penalty vector λ of Lagrangian multipliers, then to decompose the problem into a master prob-
lem and a subproblem. The subproblem LR(λ), min{cTx + λT(b− Ax

)
: Cx ≥ d, x ∈ Zn

+},
provides a (lower, in case of minimization) bound as a function of λ. The solution of the
subproblem can be infeasible for the whole problem, but a fixing heuristic (which is a driven
heuristic, hence the denotation of metaheuristic for the whole procedure) can turn it into
a feasible solution xh. The last element to mention is the penalty update procedure that
hopefully drives the process toward better and better lower and upper bounds; this can be
done in different ways, the most common being a subgradient optimization [29].

In the pseudocode of Algorithm 1, step 4 solves the subproblem, obtaining a solution
xλ which is possibly infeasible for the whole problem but whose cost zlambda is a lower
bound to the problem’s optimal cost. Step 6 checks its feasibility and returns a vector s
of subgradients, which is null in the case of a feasible solution. Step 7 is the optimality
check and step 8 is the call to the fixing heuristic. Finally steps 10–11 implement the penalty
update heuristic and step 12 implements Polyak’s rule [30] that ensures the convergence of
the series of penalty vectors.

Algorithms 2023, 16, 267 5 of 15

Algorithm 1: Lagrangian heuristic

1 procedure LagrHeuristic;
Input : Control parameters (see below)
Output : A feasible solution xUB of value zUB

2 Initialize α, zUB, zLB and the penalty vector λ;
3 repeat
4 xλ = solve subproblem LR(λ) ;
5 zLB = max(zLB, zλ) ; // Lower-bound update
6 check for unsatisfied constraints, return subgradient vector s ;
7 if (s = 01,m and λ(Ax− b) = 0) then solution is optimal; stop;
8 construct heuristic solution xh using xλ and λ ;
9 zUB = min(zUB, zh) ; // Upper-bound update

10 compute steps as θ = α(zUB−zLB
∑i s2

i
);

11 update the penalty as λi = max(0, λi + θsi) ;
12 if (step reduction condition) then decrease α; // α decrease
13 until end_condition;

The specific problem we applied the Lagrangian heuristic to is the GAP. This problem
asks to uniquely assign n clients, index set J = {1, . . . , n}, to m servers, index set I =
{1, . . . , m}, so that a cost function gets minimized while satisfying capacity constraints.
Assignment costs are specified by a cost matrix C = [cij]

n
m, server capacities by a vector

Q = [Qi]m and client requests to servers by a request matrix q = [qij]
n
m. Partial assignments

are not allowed, thus the mathematical formulation of the GAP is as follows.

zGAP = min ∑
i∈I

∑
j∈J

cijxij (1)

subject to ∑
j∈J

qijxij ≤ Qi i ∈ I (2)

∑
i∈I

xij = 1 j ∈ J (3)

xij ∈ {0, 1} i ∈ I, j ∈ J (4)

It is possible to relax in a Lagrangian fashion either constraints (2) or constraints (3)
(or both), thus obtaining two (three) different subproblems to solve at step 4.

Algorithm 1 when applied to the GAP has six parameters to set, which are:

• alphainit: initial α value for penalty updates;
• alphastep: step reduction (step 12);
• minalpha: minimum step length value (step 12);
• inneriter: internal iteration number before changing alpha (step 12);
• maxiter: maximum number of iterations (terminating condition, step 13);
• algotype: which subproblem is used (step 4) (see [2] for details).

The GAP is a very well known and studied problem, and several benchmark instance
sets exist. The online collection from which we downloaded our test set was the GAPLIB
instance library [31], which contains most instances from the literature.

3.2. Robust Tabu Search and the QAP

Tabu search is a very well-known metaheuristic, originally proposed in [32,33], that
basically extends a local search by forcing a move to the best neighbor solution at each
iteration, even if it is worse than the incumbent one. To avoid cycling, a memory structure
is used that keeps track of the last explored solutions, or abstractions thereof, and forbids
going back to them by declaring them “tabu”. The number of iterations when an element
is considered tabu, corresponding to the length of the tabu list, is also called the “tenure”

Algorithms 2023, 16, 267 6 of 15

of the tabu elements. Several details in the algorithm can be varied, giving rise to a rich
specific literature [34]. We used a specific variant called robust tabu search [4] which,
despite its simplicity, proved to be effective on the QAP. The pseudocode is presented as
Algorithm 2. The label robust was given because it “requires less complexity and fewer
parameters than earlier adaptations”, further specifying that it “has a minimum number of
parameters and is (. . .) capable of obtaining solutions comparable to the best previously
found without requiring (. . .) altered parameter values” [4]. This focus on parameter
independence makes this algorithm particularly well suited for validating our approach to
individualized settings.

Two specific elements make this version of tabu search robust. The first is that the
tenure of the tabu items is a random variable instead of a static value. A maximum and
minimum tenure is given, and a value is generated iteratively within that interval.

The second feature is a long-term diversification method that favors moves that have
not been performed for a long time. If a move has not been tested for a long number of
iterations, the move is executed regardless of its quality. This is included in an “aspiration”
test, which otherwise dictates that if a move generates a solution better than any previous
one, it will be executed even if it is tabu.

Algorithm 2: Robust Tabu Search

1 function TabuSearch();
Input : Control parameters (see below)
Output : A feasible solution xUB of value zUB

2 for nrep times do
3 Generate a feasible solution x;
4 Set xUB = x and TL = ∅;
5 Generate a feasible solution x′ ∈ N (x) such that

z(x′) = min{z(x̂), x̂ ∈ N (x), x̂ /∈ TL or z(x̂) < z(x∗) or test diversification} ;
// aspiration condition

6 Set x = x′, TL = TL ∪ {x};
7 if (|TL| > TT) then remove from TL the oldest element;
8 if (z(xUB) > z(x)) then set xUB = x;
9 if (tabu tenure update condition) then update TT; // Tabu tenure update

10 if not(terminating condition) then go to 5;
11 end
12 return xUB;

The heuristic was applied to the QAP, whose formulation can be described as follows.
We are given an index set F of n facilities to be assigned to an index set L of n locations.
Let D = [dih]

n
n be the distance matrix from each location i ∈ L to each location h ∈ L, and

let F = [f jk]
n
n be the expected flow from facility j ∈ F to facility k ∈ F. Finally, let cik be a

fixed cost for assigning facility k to location i, for each i ∈ L and k ∈ F. By using binary
variables xik = 1 iff facility k is assigned to location i, the QAP can be stated as the following
quadratic 0-1 problem:

zQAP = min ∑
i∈L

∑
j∈F

∑
h∈L

∑
k∈F

dih f jkxijxhk + ∑
i∈L

∑
k∈F

cikxik (5)

subject to ∑
i∈L

xik = 1 k ∈ F (6)

∑
k∈F

xik = 1 i ∈ L (7)

xik ∈ {0, 1} i ∈ L, k ∈ F (8)

Considering all possible hyperparameter choices actually embedded in the down-
loaded code, the robust tabu search was run with 7 parameters to set, which were:

Algorithms 2023, 16, 267 7 of 15

• maxcpu, maximum total CPU allowed time (terminating condition, step 10);
• maxiter, maximum number of iterations (terminating condition, step 10);
• iter2resize, number of iterations before resizing the tabu list (step 9);
• minTLlength, minimum tabu list length (step 9);
• maxTLlength, maximum tabu list length (step 9);
• iter2aspiration, number of iterations before unconditional acceptance (test diversifica-

tion, step 5);
• nrep, number of search restarts (step 2).

The QAP is a well-known and studied problem; there is an online repository, the
QAPLIB library [35], which has collected most of the instances from the literature over the
years. We downloaded our test set from that site.

4. Learning Configurations

Both formulations, GAP and QAP, assume that the instances are described by matrices
of coefficients, two 2D matrices and a 1D vector in the case of GAP and three 2D matrices
in the case of QAP. The use of a single data repository for the GAP and a single one for
the QAP allowed us to take advantage of a common format for each of the two problems
and, more importantly, to know exactly how each subset of instances contained in the
repositories was generated. We had access to the underlying structural characteristics
that led to the input data, and we were able both to generate new instances structured
according to the repository instances and to design generative procedures that produced
structures very different from those that appear in the literature instances. In the following
subsections, we first describe how we obtained the learning examples to present to the
neural network from the matrices and then, for each algorithm, how we constructed the
corresponding training/validation/test sets.

4.1. Feature Selection

To abstract the details of each instance and to make instances with different dimensions
compatible with a same learner, we used sets of descriptive statistics computed on each
matrix, the same statistics for all matrices. We also computed sets of correlation statistics
between matrices. The descriptive statistics included basic ones such as mean, standard de-
viation, IQR, etc., but also distribution fits for uniform (chi-square, Kolmogorov–Smirnov),
for normal (chi-square, Shapiro–Wilk, Kolmogorov–Smirnov, Anderson–Darling), and
for gamma (chi-square, Kolmogorov–Smirnov) distributions. Correlations quantified the
average request vs. average capacity, cost/request correlation, etc. We are aware of con-
tributions that have identified particularly significant complexity predictors for specific
problems, such as ruggedness and flow dominance for the QAP [36], but we wanted to
present here a general methodology that can be applied to any combinatorial optimization
problem of interest, so we computed the same statistics on all matrices, regardless of the
problem they referred to.

This resulted in about 100 different statistics for each instance in the case of the QAP
and about 70 in the case of the GAP, which were preprocessed for relevance and only the
surviving ones were to be used as input for the learning module. Data filtering was done
first by removing all statistics that varied too little over the training set (low variance filter),
then we ran a PCA which suggested that 7 variables could account for more than 97% of
the variance, both in the case of the GAP and QAP, but we could not use the principal
components as we wanted to keep the original statistics. However, following the decreasing
relevance order and the analysis of the heat map of the correlations between the variables,
we were able to shortlist the set and reduce it to 11 variables in the case of the GAP and 14
in the case of the QAP. Figure 1 shows the heat map of surviving descriptive statistics for
the case of the Lagrangian heuristic; blue balloons outline the subsets of highly correlated
variables that were eventually represented by a single variable of each subset.

Algorithms 2023, 16, 267 8 of 15

Figure 1. Descriptive statistics correlation, heat map.

4.2. Learning Lagrangian Heuristic Setting

All instances from the GAPLIB repository were generated under controlled settings
and already separated into subsets of structurally similar instances. The main benchmarks
from the literature, both included in the GAPLIB, are Yagiura’s [37] and Beasley’s OR-
library [38]. Both authors generated instances that were supposed to range from easy
to difficult. We independently optimized the parameter setting on 4 different subsets,
2 derived from the biggest OR-library instances (sets 11 and 12) and 2 consisting of the
hardest Yagiura instances (sets D and E) by means of the automatic configurator irace [12].
The other sets from these literature benchmarks were composed of instances too easy to
solve and would have biased the parameter choice toward values of little interest for more
complex tasks.

Beasley’s OR-library instances were generated with costs cij as integers from the uni-
form distribution U(15, 25), requests qij from uniform distribution U(5, 25), and capacities
were computed as bi = 0.8 ∑j∈J qij/m. Set 11 had m = 10 and n = 50 (r = n/m = 5) while
set 12 had m = 10 and n = 60 (r = n/m = 6).

Yagiura’s instances of type D had requests qij from uniform distribution U[1, 100],
costs computed as cij = 111− qij + e1, where e1 is from uniform distribution U[−10, 10] and
bi = 0.8 ∑j∈J qij/m. Type E instances had requests qij = 1− 10ln e2, with e2 from uniform
distribution U(0, 1], costs cij = 1000/aij − 10e3, with e3 from uniform distribution U[0, 1]
and capacities bi = 0.8 ∑j∈J qij/m.

This detailed knowledge of the generation procedure allowed us to generate additional
instances that were structurally similar to the benchmark ones.

4.2.1. Data Augmentation

The chosen benchmark sets consisted of a total of 31 instances, which were too few
for effective generalization. However, we were able to extend the training dataset without
losing the knowledge of the instance structures. The data augmentation resulted from two
contributions.

Algorithms 2023, 16, 267 9 of 15

The first augmentation stemmed from the observation that learning in our system
used a feature that distinguished it from standard supervised learning. Typically, learning
is implemented by defining a training set, possibly a validation set, and then a test set.
It is assumed that the input–output pairs presented with the training set are learned as
shown, and that the network works as much as possible as an associative memory on
them, reproducing the output when the training input is re-presented. In our case, we were
much more interested in supporting abstraction and generalization, and we did this also
by means of a feature offered by irace. This configurator proposes, for each set of instances
on which parameters are optimized, up to 4 best settings it can find. We used them all in
the training set, which was therefore composed of records that associated the same input to
different outputs, making it impossible for the network to reproduce exactly the training
set after learning. We experimentally noticed that including all suggested settings in the
training set permitted a more effective generalization than generating only a record from
the best one. This resulted in 77 records derived from the automatic configurator.

However, that set was still a small one, so we artificially enlarged it. This was possible
because the authors described the generators used for producing the instances of the
subsets, along with the parameter values they used. We reimplemented the generators and
obtained 28 further instances similar to the examples used by the configurators, and we
associated each of them with the best parameter configurations obtained for the published
instances. The final complete training composed by literature-related instances set consisted
of 105 records.

4.2.2. Neural Learning

Finally, the subset of relevant statistics was separately related to each parameter to
be set, in order to determine which of the statistics were relevant to each parameter. This
allowed us to reduce the search space because we could compute further correlations with
respect to each specific output.

The final parameter settings were generated by neural networks, specifically feed-
forward MLPs. The network input consisted of arrays containing the selected statistical
values computed on each instance, and the output was the corresponding parameter value.
The networks, all composed of 3 dense layers, had the structure reported below, where for
each parameter, we detail the number of input neurons, the number of hidden neurons, and
the number of output neurons (always one, since each network is tailored to one parameter)
of the corresponding network. The activation function was a sigmoid for the hidden layer
and a ReLU for the output layer. The number of hidden neurons was determined by
checking the effectiveness of all values in the interval [n/2, 2n], where n is the number of
input neurons, and keeping the best one, the smallest in case of ties. Comparable results
were also obtained with n-4-4-1 architectures, which were discarded because they required
more connections.

• alphainit: 5-10-1 network (71 weights);
• alphastep: 7-7-1 network (64 weights);
• minalpha: 8-5-1 network (51 weights);
• inneriter: 5-10-1 network (71 weights);
• maxiter: 6-4-1 network (33 weights);
• algotype: 8-7-1 network (71 weights).

In the case of the GAP, network learning could also have been modeled as a multival-
ued, multioutput regression with 11 inputs and 6 outputs. However, given the limited size
of the training set and the limited correlation among parameter values, the resulted search
was more effective when optimizing a specific network for each parameter as described.

4.3. Learning Tabu Search’s Heuristic Setting

The structure of the experiment for the QAP was the same as for the GAP. The QAP has
more diverse instance sets, often derived from real-world applications, and QAP instances
can be very challenging, even at relatively small dimensions. Therefore, for our tests, we

Algorithms 2023, 16, 267 10 of 15

removed the instances that were too small, which would be too easy to solve anyway, and
those that were too large, which would require a long CPU time to optimize. Furthermore,
we also removed the instances from the sets that, after the above selection, were left with
too few items and those for which we were uncertain about the generation procedure. The
available QAPLIB benchmark sets that met these requirements consisted all of midsized
instances (n between 12 and 50) of the sets BUR, CHR, ESC, HAD, LIPA, NUG, and TAI.
Collectively, they amounted to 85 instances that, after the inclusion of the best configuration
for each group proposes by irace (up to 4), generated a training set of 305 records.

In that case, there was no need for data augmentation because we considered the
dataset to be of sufficient size. However, even in that case, we independently optimized
an MLP network for each of the control parameters, according to what we did in the GAP
case. We separately optimized the tabu search control parameters on each of these sets
using irace. The number of hidden neurons was determined as for GAP, resulting in the
following architectures.

• maxiter: 5-4-1 network (29 weights);
• minTLlength: 6-8-1 network (65 weights);
• maxTLlength: 6-7-1 network (57 weights);
• iter2aspiration: 5-9-1 network (64 weights);
• iter2resize: 7-5-1 network (46 weights);
• maxcpu: 6-7-1 network (57 weights);
• nrep: 7-8-1 network (73 weights).

5. Computational Results

All computational tests were conducted on a Windows 10 machine with 16 GB of RAM,
and all computations were performed on a single CPU, in a single thread. Notwithstanding
that MLP backpropagation-based learning is a standard procedure, network training
was tested on four different frameworks based on four different languages to verify this
assumption. The frameworks were: accord.net (C#) [39], ANNT (C++) [40], tensorflow
(python) [41], and nnet (caret) (R) [42]. The efficiency and effectiveness were indeed
comparable between all frameworks, possibly because the learning task was very simple,
so a few seconds of CPU time were sufficient to achieve the final good performance in all
cases. In the following, results were produced by the python/tensorflow implementation.
We remark that the training time was incurred only once per algorithm per problem, so
each new instance did not incur any additional training time for its solution.

5.1. In-Sample Validation

A first set of tests verified whether individualized settings improved over problem-
wide ones on the training set. To this end, a base setting S0 was obtained by running
irace on a subset of 20 instances, uniformly chosen among all instance subsets, first for
the GAP, then for the QAP. Each instance of the test set was optimized either by LagrHeu
or by a tabu search, both with the S0 setting and with the Sn setting suggested by the
network. Finally, for each problem, we computed how many times S0 or Sn was better. A
configuration was considered better than another on a given instance if it produced a better
solution, or if it produced a solution of the same quality as its counterpart but in less CPU
time. When solution quality was equal and cpu times differed by less than 10%, S0 was
considered better, breaking ties in favor of the null hypothesis. While a simple numerical
comparison could determine relative performance, a statistical significance test based on the
binomial distribution was used to assess the significance of the difference, with hypothesis
H0 assuming that all differences were due to chance alone (p = 0.5). Note that the results
reported in the S0 column correspond to the results obtained by irace alone; therefore, the
table shows a comparison of the results obtained by the individualized settings against
those obtained with a state-of-the-art automatic configurator.

Algorithms 2023, 16, 267 11 of 15

We did not report the CPU times needed for obtaining the individualized settings
because they corresponded to the time needed to propagate the input in a small three-level
MLP, therefore less than 1 ms.

In the case of the GAP, the in-sample validation produced the results shown in Table 1.
The individualized setting produced more dominating results on all instance subsets,
although statistical significance (α = 0.05) was never reached, albeit close for the Yagiura E
subset, possibly because it counted a larger number of instances.

Table 1. GAP, in-sample validation.

Type n S0 Sn p (Binomial)

Beasley 11 5 1 4 0.188
Beasley 12 5 2 3 0.500
Yagiura D 6 2 4 0.344
Yagiura E 13 4 11 0.059

In the case of the QAP, the in-sample validation reported in Table 2 was, as expected,
less conclusive, as can be seen from the higher values of the binomial probabilities. Al-
though the individualized setting produced dominating results in almost all rows, statistical
significance was again never reached. This is not surprising, since the robust tabu search
was explicitly designed to be insensitive to the parameter setting, so tuning it should not
have much effect. Another possible reason for the failure to reach significance is the low
numerosity of the instance sets. Given these obstacles, the consistently higher number of
better results obtained with individualized settings is noteworthy. Note that the Lagrangian
heuristic is deterministic, while the robust tabu search has a random component, so the
results in Table 2 are six-run averages. However, it is worth noting that the robust tabu
search proved to be very stable in its results, in most cases producing identical results in all
repetitions.

Table 2. QAP, in-sample validation.

Type n S0 Sn p (Binomial)

BUR 8 3 5 0.363
CHR 14 4 10 0.090
ESC 18 8 10 0.407
HAD 5 3 2 0.813
LIPA 6 2 4 0.344
NUG 13 4 9 0.133
TAI 17 5 12 0.072

5.2. Out-of-Sample Validation

In out-of-sample tests, the optimized problemwide setting and the neural-suggested
setting were applied to instances not used by irace in the optimization phase. This was
done in two steps, first using the full datasets from the literature and then augmenting
them with newly generated benchmarks.

5.2.1. Full Datasets

In the first step, a test set was used for the GAP that included all literature instances
of the chosen subsets, not just a sample of them, although the simplest sets were quickly
solved to optimality in all cases. Each instance was solved with both the global setting and
the individualized setting. The results are given in Table 3 and are consistent with those of
Table 1. We can see that the significance was slightly improved, mainly due to the increased
cardinalities, but the relative performance was basically the same. The comparatively
higher number of instances better solved by the global setting was mainly due to the fact
that the tie-breaking policy acted on instances that were quickly solved to optimality.

Algorithms 2023, 16, 267 12 of 15

Table 3. GAP, full literature test sets.

Type n S0 Sn p (Binomial)

Beasley 60 23 37 0.046
Yagiura 39 14 25 0.054

Similarly, we constructed a test set including all QAPLIB instances with n between 12
and 50. This resulted in the inclusion of the sets ELS (one instance), KRA (three instances),
ROU (three instances), SCR (three instances), SKO (two instances), STE (three instances),
THO (two instances), and WIL (one instance). This brought the total number of instances
to 103 but the added sets being so small, we present in Table 4 the results grouped by size
rather than by name.

Table 4. QAP, full literature test sets.

Size n S0 Sn p (Binomial)

12–15 19 11 8 0.820
16–20 31 14 17 0.360
21–30 27 9 18 0.061
31–40 19 7 12 0.180
41–50 7 2 5 0.227

The results of Table 4 were consistent with those of Table 2 in that individualized
settings outperformed global settings in all but one row, without reaching statistical signifi-
cance. The only subset where global settings performed better, modulo the tie-breaking
policy, was that of the simplest instances, where both codes could quickly solve all instances.

5.2.2. New Instances

In order to better evaluate the abstraction power of the neural adaptation, we gen-
erated some new instances either according to the literature generators or based on data
distributions that were clearly different from the literature ones. In particular, since we had
to generate data matrices for both problems, we generated them according to a gamma
distribution, which is both very flexible and possibly very different from the uniform
distribution that is usually at the core of the generation of the literature benchmarks.

In the case of the GAP, we generated 15 instances structurally similar to Beasley’s
OR-library ones, 18 similar to Yagiura’s E ones, and 30 instances based on the gamma
distribution. The literature-like instances were generated in order to achieve a clearer
significance, while the gamma ones were to assess the abstraction power of the trained
networks. All instances are available from [31] and validation results are reported in
Table 5.

The table shows that the number of instances better solved with the individualized set-
tings was higher than with the global setting in all rows. In this case, statistical significance
at α = 0.05 was reached for two subsets, the Yagiura-like and the newly generated gamma.
The results for the Yagiura were consistent with those of Table 5, which already bordered
significance, but in that case, from the nonsignificance side. The results on the gamma
instances confirmed that a setting optimized for a subset of the instance space can be
suboptimal when applied to instances from a different subset, and that neural abstraction
can help to constrain the problem. Indeed, we see that the significance of the difference was
greatly increased on these instances, and we interpreted this result as consistent with the
assumption that motivated the generation of these instances, i.e., that a setting optimized
for a given instance set can be suboptimal when applied to instances that are structurally
very different from those on which it was optimized.

Algorithms 2023, 16, 267 13 of 15

Table 5. GAP, generated instances.

Type n S0 Sn p (Binomial)

Beasley-like 15 4 11 0.059
Yagiura-like 18 5 13 0.048
gamma 30 7 23 0.003

Finally, we also generated instances for the QAP, both replicating the generation
procedure for the subsets where it was reproducible (i.e., the CHR, NUG, and TAI subsets)
and using the gamma generator to generate the QAP matrices. The results are shown
in Table 6. Again, compared to the results of their GAP counterpart in Table 5, these
results outlined a smaller impact of the individualized approach, and this testified to the
robustness of the robust tabu search, i.e., the low sensitivity to parameters as indicated
by the name of the method. However, even in that case, the highest significance was
achieved on the new gamma instances. This was consistent with the results presented in
Table 5, where the gamma instances also had a greater significance. We thus have further
confirmation that unexplored instance subspaces can limit the effectiveness of settings
optimized elsewhere in the instance space, and that the MLP abstraction can help mitigate
this problem, possibly biasing the setting in a direction related to the properties of the
vector of statistics of structural properties.

Table 6. QAP, generated instances.

Type n S0 Sn p (Binomial)

CHR-like 15 5 10 0.151
NUG-like 15 6 9 0.304
TAI-like 15 5 10 0.151
gamma 30 11 19 0.100

6. Conclusions

This work reported on results obtained by exploiting the abstraction capabilities
of neural networks, in particular multilayer perceptrons, when attempting to identify
optimized instance-level parameter settings for an algorithm of interest applied to a given
problem. Our proposal did not cover adaptive parameter optimization or algorithm
portfolio selection, but it is a contribution to the relatively unexplored area of instance-level
continuous parameter optimization.

We proposed a generic pipeline from feature identification through feature selection,
possibly data augmentation, and neural learning, where standard supervised learning was
adapted to favor abstraction over precision. Computational results on different algorithms
and different problems confirmed the effectiveness of the method.

Future work includes a quantitative analysis of the improvement in solution quality
that can be achieved by individualized settings. In this paper, we committed to using codes
from the literature, codes that were unaware of our target use. This entailed the problems
to which they were applied and resulted in differences in solution quality between global
and individualized settings usually well below 5%, a position that did not change much
using larger instances. An analysis of codes and problems that allows for larger differences
in solution quality due to different settings can take this research beyond the analysis of
rankings presented in this work.

Author Contributions: Conceptualization, V.M.; Methodology, V.M. and T.Z.; Writing—original
draft, V.M. and T.Z. All authors contributed equally to this work. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Algorithms 2023, 16, 267 14 of 15

Data Availability Statement: The data presented in this study are openly available in the repositories
cited in the text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wolpert, D.; Macready, W. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
2. Boschetti, M.A.; Maniezzo, V. Benders decomposition, Lagrangean relaxation and metaheuristic design. J. Heuristics 2009,

15, 283–312. [CrossRef]
3. Maniezzo, V.; Boschetti, M.; Stützle, T. Matheuristics; EURO Advanced Tutorials on Operational Research; Springer International

Publishing: New York, NY, USA, 2021.
4. Taillard, E. Robust taboo search for the quadratic assignment problem. Parallel Comput. 1991, 17, 443–455. [CrossRef]
5. Aleti, A.; Moser, I. A Systematic Literature Review of Adaptive Parameter Control Methods for Evolutionary Algorithms. ACM

Comput. Surv. 2016, 49, 1–35. [CrossRef]
6. Kerschke, P.; Hoos, H.; Neumann, F.; Trautmann, H. Automated Algorithm Selection: Survey and Perspectives. Evol. Comput.

2018, 27, 1–47. [CrossRef] [PubMed]
7. Talbi, E.G. Machine Learning into Metaheuristics: A Survey and Taxonomy. ACM Comput. Surv. 2021, 54, 1–32. [CrossRef]
8. Bartz-Beielstein; Flasch, O.; Koch, P.; Konen, W. SPOT: A Toolbox for Interactive and Automatic Tuning in the proglangR

Environment. In Proceedings 20. Workshop Computational Intelligence; KIT Scientific Publishing: Karlsruhe, Germany, 2010.
9. Birattari, M.; Stützle, T.; Paquete, L.; Varrentrapp, K. A Racing Algorithm for Configuring Metaheuristics. In Proceedings of

the GECCO 2002, New York, NY, USA, 9–13 July 2002; Langdon, W., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R.,
Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., et al., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2002;
pp. 11–18.

10. Hutter, F.; Hoos, H.; Leyton-Brown, K. Automated Configuration of Mixed Integer Programming Solvers. In Proceedings of the
CPAIOR 2010, Bologna, Italy, 14–18 June 2010; Lodi, A., Milano, M., Toth, P., Eds.; Lecture Notes in Computer Science; Springer:
New York, NY, USA, 2012; Volume 6140, pp. 186–202.

11. Hutter, F.; Hoos, H.H.; Leyton-Brown, K.; Stützle, T. ParamILS: An Automatic Algorithm Configuration Framework. J. Artif.
Intell. Res. 2009, 36, 267–306. [CrossRef]

12. López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Birattari, M.; Stützle, T. The irace package: Iterated racing for automatic
algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

13. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Optimizing Convolutional Neural Network Hyperparameters by
Enhanced Swarm Intelligence Metaheuristics. Algorithms 2020, 13, 67. [CrossRef]

14. Filippou, K.; Aifantis, G.; Papakostas, G.; Tsekouras, G. Structure Learning and Hyperparameter Optimization Using an
Automated Machine Learning (AutoML) Pipeline. Information 2023, 14, 232. [CrossRef]

15. Esmaeili, Z.A.; Ghorrati, E.T.M. Agent-Based Collaborative Random Search for Hyperparameter Tuning and Global Function
Optimization. Systems 2023, 11, 228. [CrossRef]

16. Birattari, M.; Yuan, Z.; Balaprakash, P.; Stützle, T. F-Race and Iterated F-Race: An Overview. In Experimental Methods for the
Analysis of Optimization Algorithms; Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 311–336.

17. Rechenberg, I. Evolutionsstrategie—Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution; Frommann-Holzboog-
Verlag: Stuttgart, Germany, 1973.

18. Beyer, H.G.; Schwefel, H.P. Evolution Strategies—A Comprehensive Introduction. Nat. Comput. 2002, 1, 3–52. [CrossRef]
19. Rice, J.R. The Algorithm Selection Problem. Adv. Comput. 1976, 15, 65–118.
20. Xu, L.; Hutter, F.; Hoos, H.; Leyton-Brown, K. SATzilla2009: An Automatic Algorithm Portfolio for SAT. 2009. Available online:

https://www.cs.ubc.ca/~hutter/papers/09-SATzilla-solver-description.pdf (accessed on 4 May 2023).
21. Kerschke, P.; Kotthoff, L.; Bossek, J.; Hoos, H.H.; Trautmann, H. Leveraging TSP Solver Complementarity through Machine

Learning. Evol. Comput. 2017, 26, 597–620. [CrossRef] [PubMed]
22. Xu, L.; Hoos, H.; Leyton-Brown, K. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. Proc. AAAI

Conf. Artif. Intell. 2010, 24, 210–216. [CrossRef]
23. Kotthoff, L. LLAMA: Leveraging Learning to Automatically Manage Algorithms. arXiv 2013. [CrossRef]
24. Smith-Miles, K.; Muñoz, M.A. Instance Space Analysis for Algorithm Testing: Methodology and Software Tools. ACM Comput.

Surv. 2023, 55, 1–31. [CrossRef]
25. Kadioglu, S.; Malitsky, Y.; Sellmann, M.; Tierney, K. ISAC—Instance-Specific Algorithm Configuration. Front. Artif. Intell. Appl.

2010, 215, 751–756.
26. Dobslaw, F. A Parameter Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks; World

Academy of Science, Engineering and Technology: Istanbul, Turkey, 2010; Volume 64.
27. Maniezzo, V. LagrHeu Public Code. Web Page. 2018. Available online: https://github.com/maniezzo/LagrHeu (accessed on 9

February 2023).

http://doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/s10732-007-9064-9
http://dx.doi.org/10.1016/S0167-8191(05)80147-4
http://dx.doi.org/10.1145/2996355
http://dx.doi.org/10.1162/evco_a_00242
http://www.ncbi.nlm.nih.gov/pubmed/30475672
http://dx.doi.org/10.1145/3459664
http://dx.doi.org/10.1613/jair.2861
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.3390/a13030067
http://dx.doi.org/10.3390/info14040232
http://dx.doi.org/10.3390/systems11050228
http://dx.doi.org/10.1023/A:1015059928466
https://www.cs.ubc.ca/~hutter/papers/09-SATzilla-solver-description.pdf
http://dx.doi.org/10.1162/evco_a_00215
http://www.ncbi.nlm.nih.gov/pubmed/28836836
http://dx.doi.org/10.1609/aaai.v24i1.7565
http://dx.doi.org/10.48550/ARXIV.1306.1031
http://dx.doi.org/10.1145/3572895
https://github.com/maniezzo/LagrHeu

Algorithms 2023, 16, 267 15 of 15

28. Taillard, E. Éric Taillard Public Codes. Web Page. 1991. Available online: http://mistic.heig-vd.ch/taillard/ (accessed on 9
February 2023).

29. Shor, N.Z. Minimization Methods for Non-Differentiable Functions; Springer: Berlin/Heidelberg, Germany, 1985.
30. Polyak, B.T. Minimization of Unsmooth functionals. USSR Comput. Math. Math. Phys. 1969, 9, 14–29. [CrossRef]
31. Maniezzo, V. GAPlib: Bridging the GAP. Some Generalized Assignment Problem Instances. Web Page. 2019. Available online:

http://astarte.csr.unibo.it/gapdata/GAPinstances.html (accessed on 9 February 2023).
32. Glover, F. Tabu Search—Part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
33. Glover, F. Tabu Search—Part II. ORSA J. Comput. 1990, 2, 14–32. [CrossRef]
34. Glover, F.; Laguna, M. Tabu Search; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997.
35. Burkard, R.; Çela, E.; Karisch, S.E.; Rendl, F.; Anjos, M.; Hahn, P. QAPLIB—A Quadratic Assignment Problem Library—Problem

Instances and Solutions. Web Page. 2022. Available online: https://datashare.ed.ac.uk/handle/10283/4390 (accessed on 9
February 2023).

36. Angel, E.; Zissimopoulos, V. On the Hardness of the Quadratic Assignment Problem with Metaheuristics. J. Heuristics 2002,
8, 399–414. [CrossRef]

37. Yagiura, M. GAP (Generalized Assignment Problem) Instances. Web Page. 2006. Available online: https://www-or.amp.i.kyoto-
u.ac.jp/members/yagiura/gap/ (accessed on 9 February 2023).

38. Cattrysse, D.; Salomon, M.; Van Wassenhove, L.N. A set partitioning heuristic for the generalized assignment problem. Eur. J.
Oper. Res. 1994, 72, 167–174. [CrossRef]

39. Accord.net. Web Page. Available online: http://accord-framework.net/ (accessed on 9 February 2023).
40. ANNT. Web Page. Available online: https://github.com/cvsandbox/ANNT (accessed on 9 February 2023).
41. Tensorflow. Web Page. Available online: https://www.tensorflow.org/ (accessed on 9 February 2023).
42. Nnet (caret). Web Page. Available online: https://cran.r-project.org/web/packages/nnet (accessed on 9 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://mistic.heig-vd.ch/taillard/
http://dx.doi.org/10.1016/0041-5553(69)90061-5
http://astarte.csr.unibo.it/gapdata/GAPinstances.html
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1287/ijoc.2.1.4
https://datashare.ed.ac.uk/handle/10283/4390
http://dx.doi.org/10.1023/A:1015454612213
https://www-or.amp.i.kyoto-u.ac.jp/members/yagiura/gap/
https://www-or.amp.i.kyoto-u.ac.jp/members/yagiura/gap/
http://dx.doi.org/10.1016/0377-2217(94)90338-7
http://accord-framework.net/
https://github.com/cvsandbox/ANNT
https://www.tensorflow.org/
https://cran.r-project.org/web/packages/nnet

	Introduction
	Related Literature
	Algorithms and Problems
	Lagrangian Heuristic and the GAP
	Robust Tabu Search and the QAP

	Learning Configurations
	Feature Selection
	Learning Lagrangian Heuristic Setting
	Data Augmentation
	Neural Learning

	Learning Tabu Search's Heuristic Setting

	Computational Results
	In-Sample Validation
	Out-of-Sample Validation
	Full Datasets
	New Instances

	Conclusions
	References

