
Citation: Ma, N.; Wang, Z.; Ba, Z.; Li,

X.; Yang, N.; Yang, X.; Zhang, H.

Hierarchical Reinforcement Learning

for Crude Oil Supply Chain

Scheduling. Algorithms 2023, 16, 354.

https://doi.org/10.3390/a16070354

Academic Editor: Mircea-Bogdan

Radac

Received: 8 May 2023

Revised: 4 July 2023

Accepted: 12 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Hierarchical Reinforcement Learning for Crude Oil Supply
Chain Scheduling
Nan Ma 1, Ziyi Wang 2,3, Zeyu Ba 2,3, Xinran Li 2,3, Ning Yang 2,3,*, Xinyi Yang 1 and Haifeng Zhang 2,3

1 Key Laboratory of Oil & Gas Business Chain Optimization, CNPC, Petrochina Planning and Engineering
Institute, Beijing 100083, China; manan2013@petrochina.com.cn (N.M.); yangxy234@petrochina.com.cn (X.Y.)

2 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; wangziyi2021@ia.ac.cn (Z.W.);
bazeyu2022@ia.ac.cn (Z.B.); lixinran2022@ia.ac.cn (X.L.); haifeng.zhang@ia.ac.cn (H.Z.)

3 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: ning.yang@ia.ac.cn; Tel.: +86-1305-150-9251

Abstract: Crude oil resource scheduling is one of the critical issues upstream in the crude oil industry
chain. It aims to reduce transportation and inventory costs and avoid alerts of inventory limit
violations by formulating reasonable crude oil transportation and inventory strategies. Two main
difficulties coexist in this problem: the large problem scale and uncertain supply and demand.
Traditional operations research (OR) methods, which rely on forecasting supply and demand, face
significant challenges when applied to the complicated and uncertain short-term operational process
of the crude oil supply chain. To address these challenges, this paper presents a novel hierarchical
optimization framework and proposes a well-designed hierarchical reinforcement learning (HRL)
algorithm. Specifically, reinforcement learning (RL), as an upper-level agent, is used to select the
operational operators combined by various sub-goals and solving orders, while the lower-level agent
finds a viable solution and provides penalty feedback to the upper-level agent based on the chosen
operator. Additionally, we deploy a simulator based on real-world data and execute comprehensive
experiments. Regarding the alert number, maximum alert penalty, and overall transportation cost,
our HRL method outperforms existing OR and two RL algorithms in the majority of time steps.

Keywords: hierarchical reinforcement learning; crude oil supply chain scheduling; operations
research; linear programming

1. Introduction

With the rapid development of the economy and society, the production scheduling
problem has gained more attention than ever in various industries. In particular, resolving
the scheduling optimization with limited resources in real-world scenarios has become
crucial [1–3]. In the field of petroleum energy, the resource production scheduling of crude
oil is a sequential process of the industry chain. From upstream to downstream, there
are seven processes in this complex industrial chain, including petroleum production,
procurement, refining, sales, product transportation, storage, and trade. These aspects
are closely linked and influence each other [4]. However, in recent years, unexpected
events and uncertainties in international oil prices, geopolitics, and foreign and domestic
markets have continuously made the steady operation of the petroleum industry chain
more challenging. Moreover, articulation conflicts caused by local supply and demand
imbalances have been common [5]. Therefore, in such an uncertain environment, an
efficient and accurate petroleum resource scheduling decision is an effective way to solve
this problem [6].

The crude oil supply chain scheduling optimization problem can be summarized as a
resource optimization allocation problem of a multi-level supply chain complex system.
Previous research on this issue has focused on OR, complex system science, and manage-

Algorithms 2023, 16, 354. https://doi.org/10.3390/a16070354 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16070354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1458-2828
https://doi.org/10.3390/a16070354
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16070354?type=check_update&version=1

Algorithms 2023, 16, 354 2 of 20

ment and has accumulated specific results [7–9]. However, due to the inherent complexity
of this issue, there are still many challenges:

First, current optimization research and applications of petroleum resource scheduling
are mainly at the long-period strategic level, which usually takes months or years. Since
this period is relatively long, supply and demand will change continuously, affected by the
actual environment. However, the traditional OR method relies on the accurate prediction
of supply and demand to realize the modeling and solution of scheduling problems [10].
Consequently, it is difficult to precisely predict supply and demand in long-term decision-
making, which limits traditional methods of solving such problems.

Second, due to uncertain factors in the entire petroleum industry chain, the results
obtained by OR are not good enough. Uncertainties such as node inventory, transportation
on the road, node demand, and future demand will all lead to a dynamically changing
environment. However, in the scheduling field, traditional OR methods are only suitable for
solving model-based problems with a deterministic state transfer distribution. Regarding
highly uncertain environments, OR has a gap in performance in terms of adaptability and
efficiency [11].

Third, the OR method will encounter many difficulties when solving the petroleum
scheduling problem, which is a large-scale problem [12,13]. Due to the increasing di-
mension of large-scale problems, it is time-consuming to explore the vast decision space
effectively. On the other hand, high dimensionality will also increase the number of locally
optimal solutions to the problem, making it difficult for the algorithm to find the global
optimal solution. In addition, concerning non-convex and non-differentiable cases, classical
algorithms cannot be applied to large-scale problems.

To solve these three main challenges, our work optimizes a problem with random
supply and demand. This problem differs from the preview work to optimize a scenario
where all information is priorly known. (1) It is challenging to accurately predict supply
and demand in long-period decision-making; thus, traditional methods are not applicable.
We establish a model to solve time-varying environments which change every day. (2) To
meet the challenges of uncertain factors in a dynamic environment, we use RL to learn an
optimization policy through the online interaction between the agent and the environment.
(3) Regarding crude oil supply chain scheduling being a large-scale problem, our work uses
HRL to solve the high-dimensional problem. HRL decomposes the complex problem into
several sub-problems and divides the strategy into different levels of sub-strategies [14].
Although it performs well in solving large-scale problems, HRL still needs more reasoning
ability and better representation efficiency.

The intelligent scheduling of the crude oil supply chain needs to predictably generate
dynamic adjustment plans when facing various uncertain factors and emergencies and use
them as the basis for contingency plans. In this paper, we combine HRL with traditional
optimization algorithms to provide a fast solution to the intelligent scheduling problem of
the crude oil supply chain, and the main contributions include:

• A Novel Hierarchical Optimization Framework: The framework uses an upper level
to control the dynamic impacts of uncertain environmental variables; thus, the large-
scale long-period scheduling optimization problem is broken down into small-scale
single-step problems. To the best of our knowledge, this framework is first proposed
and used in the supply chain scheduling problem.

• A Well-designed HRL Algorithm: We formulate the Markov Decision Process (MDP)
for the supply chain scheduling problem. We use RL as the upper-level agents that
determine the desired inventory volume at the end of the time step. The lower-level
agent conducts a quick local search and satisfies the inventory limits while sending
penalty feedback to the upper-level agent. The strengths of both methods are subtly
integrated.

• Deployment: We deploy our algorithm to a large-scale long-period crude oil schedul-
ing optimization problem of CNPC. We develop a simulator with real-world data and

Algorithms 2023, 16, 354 3 of 20

demonstrate that our approach can significantly improve stable inventory volumes
and low transportation costs.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce
the fundamental problems and HRL, which are the main frameworks in our method.
Section 3 formally formulates the crude oil supply chain scheduling issue. In Section 4,
we illustrate the overall architecture of the HRL scheduling scheme. Section 5 introduces
the dataset and the simulator we used to evaluate and train RL algorithms. In Section 6,
we implement the experiment and discuss comparing baselines and our method. Finally,
in Section 7, we draw the conclusions.

2. Related Work

This section introduces the fundamental problems and summarizes the crude oil
supply chain scheduling problem as a resource allocation problem. In addition, we also
present the main hierarchical idea used in our method.

2.1. Crude Oil Supply Chain Scheduling Issues

In the past few decades, the most popular and effective models for describing the
form and function of supply chains have been based on mathematical programming. They
were also combined with heuristic algorithms for optimization [15–19]. Mohammad [16]
proposed a mixed integer linear programming and two approaches to minimize the total
weighted tardiness and transportation costs. These two approaches include an exact
procedure based on a Branch-and-Bound (B&B) algorithm and a metaheuristic genetic
algorithm (GA). The B&B algorithm performs well in solving small-scale problems, but its
running speed is slower than GA, while GA performs well in solving large-scale problems.
Nima [17] established a mathematical model for multi-objective scheduling problems and
customized two meta-heuristics algorithms, including the multi-objective particle swarm
optimization algorithm and the non-dominated sorting genetic algorithm to minimize the
total weighted tardiness and the total operation time. This work gained good results on
both small and large-scale problems. However, it lacks constraints for real-life conditions,
leading to a low transfer ability. Considering the uncertainties in intelligent production,
Thitipong [18] used a strategy that integrates event-driven and period-driven methods
to minimize the makespan. This method considered a dynamic environment but only
fit in some industry scenarios, lacking versatility. Ali [19] established a mathematical
model of bi-objective linear programming to minimize logistical costs and incorporated
possible scenarios and fuzzy data, increasing the flexibility of the system. This method only
considered uncertain factors in a simplified environment, which might not be suitable for
complex environments involving more effect factors and constraints.

2.2. Complex Resource Allocation Approaches

Resource scheduling is a common problem in OR and production. An efficient schedul-
ing plan can save resources and gain benefits. We model the crude oil supply chain
scheduling problem as a resource scheduling problem for analysis. Considering some
system dynamics model parameters are indeterminate, Mu [20] proposed a data-driven
optimization approach to cope with multi-period resource allocation problems with peri-
odic incoming observations. This approach has scenario-based stochastic planning which
cannot solve large-scale problems, e.g., real-world decisions. Mathematical programming
models are standard in solving supply chain problems, including mixed integer linear and
nonlinear programming [21]. In multi-objective optimization problems, modeling methods
simultaneously optimizing individual and overall objectives are effective [22]. Prior works
have already applied methods based on RL to resolve dynamic resource allocation problems
in real-life situations, including mobile edge computing [23,24], vehicle network traffic
distribution [25], and predictive production planning for large manufacturing systems [26].
The resource scheduling problem has the properties of multi-constraints, computational

Algorithms 2023, 16, 354 4 of 20

complexity, uncertainty, and multi-objectives. Since problem modeling is usually relatively
complicated, it is necessary to introduce new methods to solve it.

2.3. HRL

Traditional RL methods often suffer from dimensional disasters when dealing with
large-scale problems. Specifically, when the environment or task is relatively complex,
the state space of the agent will be vast. This considerable state space will rapidly increase
the parameters learned and the required storage space, making it difficult for RL to achieve
the desired effect. To solve this problem, researchers propose HRL, of which the basic idea
is to divide the problem into multiple levels. The upper layer calls the lower layer to solve
the task, and the lower layer executes the command of the upper layer.

Currently, HRL is mainly divided into goal-based and option-based, where the goal-
based method is more mainstream than the other. For instance, Nachum [27] chose the
state space as the objective to solve the off-policy of HRL in the non-stationary problem.
To approximate the solution of combinatorial optimization problems with time windows,
a hierarchical strategy is employed to find the optimal solution under constraints [28]. Each
layer of the hierarchy is designed with a separate reward function, enabling regular training.
Hierarchical decision-making approaches can also significantly reduce the reliance on large
amounts of labeled data [29] by learning sub-policies for each action and a master policy
for the policy selection. There is less related work based on options, which can be observed
as a summary of actions. Bacon [30] developed the option–critic algorithm by combining
the options framework and deep RL. Here, the option is a sub-policy, and each option
corresponds to a lower-layer policy. In the scheduling and resource allocation problem,
Ren [31] proposed the hierarchical trajectory optimization and offloading optimization,
which decomposed the scheduling problem into two layers of sub-problems and performed
alternate optimization by HRL. Ying He [32] combined HRL and meta-learning, which
made it possible to quickly adapt to new tasks by optimizing the upper-level master
network. HRL was also applied in the energy management strategy, which solves the
problem of the sparse reward and achieves higher training efficiency [33]. Although HRL
can improve the efficiency of solving large-scale models and solve the problem of sparse
rewards, it usually requires artificially setting goals to achieve good results, and there is no
better way to improve this process.

3. Problem Formulation

In this section, we formulate the problem of crude oil supply chain scheduling.
As shown in Figure 1, the system involves four facilities: oil fields, import ports, transfer
stations, and refineries. The crude oil supply chain scheduling problem is a sequential
decision-making problem. As crude oil is dynamically provided by oil fields and import
ports at each time step and transported to transfer stations and refineries, the processing
and transportation plans should be designed to satisfy system constraints such as the in-
ventory and processing capacity. In order to facilitate the correspondence between symbols
and definitions, Table 1 lists the notations defined throughout the paper.

Algorithms 2023, 16, 354 5 of 20

Oilfiled

Import Port

Mixed

Oil

Gasoline1

Diesel2

Diesel1

Process

Plan
Upper Physical Limit

Lower Safety Limit

Transfer Station Refinery

Transportation Volume

Processing Volume

Lower Physical Limit

Upper Safety Limit

Gasoline2

Gasoline3

Figure 1. Crude oil supply chain scheduling problem.

Table 1. Notations.

Symbols Definitions
M = (T, K, V , E, C, L) A crude oil supply chain scheduling problem
t, T A time step and the number of total time steps
k, K A material kind and the set of material kinds
c, d, g The material kind of crude, diesel, and gasoline
v, V, V A facility, facility set of a set, and facility set of all types
e, E, E A road, road set related to a facility, and the set of all roads
o, p, f , r Oilfield, import port, transfer, and refinery
C The set of constraints
LV = {lk

i |vi ∈ V , k ∈ K} The lower safety inventory limits
UV = {uk

i |vi ∈ V , k ∈ K} The upper safety inventory limits
PV = {phk

i |vi ∈ V , k ∈ K} The physical inventory limits
LQ = {lt

qr |vr ∈ Vr, t = 1, . . . , T} The lower bound of processing volumes
UQ = {ut

qr |vr ∈ Vr, t = 1, . . . , T} The upper bound of processing volumes
TQ = {Uqr |vr ∈ Vr} The upper bound of total processing volumes
UE = {ueij |eij ∈ E} The upper limits of transportation volumes
L The set of constant coefficients
ζ = {ζi|vi ∈ V} The unit cost of oil in facilities
λ = {λeij ∈ E} The unit cost of oil on roads
m, n The inventory volume and the demand volume in facilities
pr, ρ The processing plan and the proportions in processing plan
q Decision of the processing volume plan in refineries
w Decision of the transportation volume on roads
P ,H,R The alert penalty, the transportation cost, and the total cost
s, a, R The state, action, and reward of a Markov decision process (MDP)
Q The Q-function in Q-learning algorithm
or The solving order
J The objective function
x The decision variables
α, β, ε, µ and N Hyperparameters

The crude oil supply chain scheduling problem is formally defined as M = (T, K, V , E, C, L),
in which T, K, V , E, C, and L represent the total time steps and the set of petroleum materials,
facilities, roads, constraints, and constants, respectively. To be specific,

• The petroleum material set K contains crude c, diesel d, and gasoline g. Let k ∈ K
represent one of the petroleum materials.

Algorithms 2023, 16, 354 6 of 20

• Define the facility set V = {Vo, Vp, Vf , Vr}, where Vo is the set of oil fields, Vp is the
set of import ports, Vf is the set of transfer stations, and Vr is the set of refineries.
For convenience, let Vi ∈ V be the set of facilities of type i, where i = o, p, f , r,
and vi ∈ Vi is a single facility of type i. In each facility, vi, the inventory volume of
petroleum kind k at time step t is denoted as mk,t

i , and the demand volume of the
petroleum kind k at time step t is nk,t

i . For each refinery, vr, qt
r represents the processing

volume of crude oil at time step t, and a fixed processing scheme prr determines that
the ρd

r unit of diesel and ρ
g
r unit of gasoline can be produced from 1 unit of crude oil.

• Define the set of roads E = {Eo f , Eor, Ep f , Epr, E f r}, where Eij ∈ E is the set of transport
roads from facility vi to facility vj (i.e., j = o, p, f , r is the facility type). Each eij ∈ Eij
represents one road from vi to vj, and the set of roads starting from facility vi is
denoted as Ei. In addition, the transportation volume on road eij at time step t is
denoted as wt

eij
, and if there is no road from vi to vj, wt

eij
= 0.

• The constraints of the crude oil supply chain scheduling problem are defined in C,
which contains seven sets: LV = {lk

i |vi ∈ V , k ∈ K} and UV = {uk
i |vi ∈ V , k ∈ K}

are the lower and upper safety inventory limits of facility vi for petroleum kind k,
PV = {phk

i |vi ∈ V , k ∈ K} is the upper physical inventory limit of facility vi for the
petroleum kind k, LQ = {lt

qr |vr ∈ Vr, t = 1, . . . , T} and UQ = {ut
qr |vr ∈ Vr, t=1,. . . ,T}

are the lower and upper bound of the processing volume in refinery vr at time step
t, TQ = {Uqr |vr ∈ Vr} is the upper bound of total processing volume in refinery vr
for the whole T steps, and UE = {ueij |eij ∈ E} is the upper limit of the transportation
volume on road eij.

• The constant coefficients related to the system cost are denoted as L = {ζ, λ}, where
each ζi ∈ ζ is the unit cost of facility vi when its inventory volume mk,t

i exceeds upper
limit uk

i or lower safe limits lk
i , and each λeij ∈ λ is the unit cost of the road eij as

wet
ij
6= 0.

At each time step t, the amount of crude oil from oil fields and import ports is
randomly generated from the environment and is observed in real-time. Denote wt

eo f
,

wt
eor , wt

ep f
, and wt

epr as the supplied volume from oil field vo to transfer station v f , oil field
vo to refinery vr, import port vp to transfer station v f and import port vp to refinery vr.

Meanwhile, the demand volume nk,t
i of each facility vi is observed from the environment.

The processing volume plan qt
r and transportation plan wt

e f r
are controlled by our system,

then the corresponding inventory volume mk,t
i of each facility can be deduced as follows:

mc,t
f =mc,t−1

f + ∑
eo f∈Eo f

wt
eo f

+ ∑
ep f∈Ep f

wt
ep f

− ∑
e f r∈E f

wt
e f r
− nc,t

f (1)

mc,t
r =mc,t−1

r + ∑
eor∈Eor

wt
eor + ∑

epr∈Epr

wt
epr − nc,t

r

+ ∑
e f r∈E f

wt
e f r
− qt

r (2)

md,t
r =md,t−1

r + ρd
r qt

r − nd,t
r (3)

mg,t
r =mg,t−1

r + ρ
g
r qt

r − ng,t
r (4)

Equation (1): The transfer station v f receives crude oil c from all oil fields to which
the import ports connected with the amount of wt

eo f
and wt

ep f
(wei f = 0 if vi and v f are

disconnected) sends crude oil c to all connected refineries with the amount wt
e f r

and

provides a nc,t
f amount of crude oil c on demand. Equation (2): Different from the transfer

Algorithms 2023, 16, 354 7 of 20

station, a refinery vr also receives crude oil c from all connected transfer stations with
amount wt

e f r
and processes the amount qt

r of crude c into gasoline and diesel. Equation (3):

At time step t, the ρd
r qt

r amount of diesel is processed out, and the nd,t
r amount of it is

deducted from the refinery on demand. Equation (4) has the same logic as Equation (3).
When the inventory volume exceeds safety limitations LV and UV, the alert penalty

at time step t is

P t = ∑
vi∈V ,k∈K

ζi(m
k,t
i − uk

i)1[m
k,t
i > uk

i]

+ ∑
vi∈V ,k∈K

ζi(lk
i −mk,t

i)1[mk,t
i < lk

i] (5)

Moreover, the total transportation cost of the system at time step t is

Ht = ∑
e f r∈E f r

λe f r wt
e f r

(6)

This problem aims to minimize the total cost of T steps. At the same time, the system
keeps all petroleum volumes under physical limitations (Equations (7b) and (7c)) and
processing volumes under capacity limitations (Equations (7d) and (7e)):

max
we f r ,qr

J =
T

∑
t=1
−α1P t − α2Ht (7a)

s.t.0 ≤ mk,t
i ≤ phk

i ∀vi ∈ V , k ∈ K, t = 1, . . . , T (7b)

0 ≤ wt
eij
≤ ueij ∀eij ∈ E, t = 1, . . . , T (7c)

lt
qr ≤ qt

r ≤ ut
qr ∀vr ∈ Vr, t = 1, . . . , T (7d)

T

∑
t=1

qt
r = Uqr ∀vr ∈ Vr (7e)

where α1 and α2 are weights.
The difficulties of this problem lay in two aspects: (1) Large problem scale. We aim

to solve the crude oil supply chain scheduling problem in the real world, which includes
hundreds of facilities and thousands of roads, and the decision period lasts about 30-time
steps. These form a decision space of about 107 with continuity. (2) Uncertain environment.
Environment variables are not deterministic but are generated in real-time, which means
the variables at time step t + 1 cannot be observed at time step t. Suppose the environment
variables of T steps are known in advance; in that case, the problem can be formulated
as a Linear Programming (LP) problem which can be solved by powerful solvers (e.g.,
Gurobi [34]). However, this kind of method cannot be applied to our problem directly
due to uncertainty. On the other hand, as the one-step problem is also an LP problem,
an intuitive way might be solving the multi-step problem step by step. However, traditional
solvers are unable to take the future influence of the current solution into consideration,
thus leading to sub-optimal solutions when dealing with multi-step problems, and even
failing to find a feasible solution after several steps (as shown in Section 6).

4. Hierarchical RL Scheduling Scheme

In this section, we demonstrate the whole architecture of our framework, including the
upper-level and lower-level agents. Necessary constraints are also described in this section.

4.1. Overall Architecture

As described in Section 2, the main challenges of this problem are the large decision
space and uncertainty. Traditional solvers are powerful tools to solve large-scale LP prob-
lems but cannot deal with uncertainty. In contrast, RL methods can solve problems with

Algorithms 2023, 16, 354 8 of 20

stochastic state transitions but are hard to train when the problem scale is enormous. Con-
sidering the property of this problem, we design an HRL-based optimization architecture,
as shown in Figure 2 and Algorithm 1.

Algorithm 1 Hierarchical RL Scheduling Algorithm

1: Initialize model parameters θ
2: while Not converged do
3: Observe initial state s0
4: Initialize Ũ0

qr = Uqr

5: for t=1 to T do
6: Select action at ∼ Qθ(st, at) by Section 4.2.2
7: Solve the LP problem Equation (18a), where mk

i ← at, Uqr ← Ũt
qr , get wt

e f r
and qt

r
8: Transit from st to st+1 by Equations (11)–(16)
9: Set Ũt

qt ← Ũt−1
qr − qt

r
10: end for
11: end while

The entire crude oil supply chain scheduling problem involves T steps. The supply
volume of crude oil and the demand volume for diesel and gasoline at each step is dy-
namic, forming a stochastic environment. Moreover, the transportation plan and processing
volume plan decided in each step will affect future decisions. The impacts are reflected
explicitly in two ways: the initial inventory of the future steps and the remaining available
processing volume, since there is a constraint on total processing volumes Uqr . The latter
can be dealt with shaped constraints at each time step with Ũt

qr ← Ũt−1
qr − qt

r and Ũ1
qr = Uqr .

Then, suppose the initial inventory mk,t
i , the ending inventory mk,t+1

i , the supply volume
wt

eo f
, wt

eor , mt
ep f

and wt
epr , and the demand volume nk,t

i at time step t are given; then, the prob-
lem for time step t is an LP problem, independent from other time steps. Therefore, we can
use an RL agent to learn the inventory volume and use a solver to solve the LP problem.

Figure 2. Overall Architecture.

The upper layer is the RL layer. The RL agent takes the inventory volumes of each
facility at the end of the time step t as the action, denoted as m̃k

i . The goal of the RL agent
is to minimize the summation of the alert penalty for multiple steps and the transporta-
tion penalty, as defined in Equation (7a). However, using the hierarchical framework,
the transportation penalty is received from the lower-layer agent.

The lower layer is a traditional optimizer layer, which solves the LP problem Equation (7a)
of one time step. At time step t, the solver receives the end-stage inventory volumes m̃k

i ,
and the remaining processing volume of each refinery qt

r from the upper-level agent uses
them to form the one-step constraints which split from the multi-steps constraints in
Equations (7b) and (7e). The lower layer takes the process volume plan qt

r and the trans-
portation plan wt

e f r
of the time step t as decision variables and minimizes the total trans-

portation costsHt defined in Equation (6), which is passed back to the upper-level agent.

Algorithms 2023, 16, 354 9 of 20

In addition, based on experience, we know that RL performs better on small-scale
discrete problems; thus, we propose a variant for our crude oil supply chain scheduling
problem. We discretize the action space into several end-stage inventory values and add
one dim, indicating the solving orders of the solver. Compared to the vanilla architecture,
the lower layer of the variant architecture receives an extra signal, determining the solving
order of wt

e f r
and qt

r.

4.2. Upper-Level Agent

The decision interval of the upper agent is one time step, and there are T steps in each
episode. For t = 1, . . . , T, the environment stochastically provides the supply volume of
crude oil from each oil field to each transfer station or refinery wt

eo f
and wt

eor , the supply

volume from each import port to each transfer station or refinery wt
ep f

and wt
epr , and the

demand volume for gasoline or diesel in the transfer station and refinery nk,t
i . The RL agent

observes status st from the environment and determines the expected inventory volume of
each refinery and transfer station at the end of this time step t, noted as at. The upper-level
agent will provide these end-stage inventory volumes to the lower-level agent, which will
search out an actual execution strategy. The environment moves to the next time step t + 1,
based on the actual strategy. The reward Rt is calculated by combining the inventory alert
penalty P t and the feedback Jt from the lower-level agent.

It is worth noting that at the beginning of training, the lower-level agent may not find
feasible solutions if it intends to strictly meet the expected inventory at. Therefore, at the
lower layer, these expected inventory values are not used as hard constraints (see Section 4.3
for specification), and the inventory volumes caused by the execution strategy (including
processing volume and transportation plan) are not necessarily equal to the expected
inventory. In other words, from the perspective of the upper-level agent, although the
action is the expected inventory at the end of the time step t, i.e., the expected inventory at
the beginning of the next time step, the actual observed inventory from the environment
at time step t + 1 is not necessarily equal to the action at. In the next part, we provide the
Markov decision processes (MDP) corresponding to the description.

4.2.1. Markov Decision Process (MDP)

The state of the RL agent includes all kinds of variable attributes in the facilities related
to the problem, denoted as st = {wt

eo f
, wt

eor , wt
ep f

, wt
epr , mc,t

f , mc,t
r , md,t

r , mg,t
r , Ũt

qr}, as detailed
in Table 2.

Table 2. States of upper-level MDP.

Note Dim Notations

wet
o f

|Eo f | Crude supply volume from vo to v f

wet
or

|Eor| Crude supply volume from vo to vr
wet

p f
|Ep f | Crude purchase volume from vp to v f

wet
pr

|Epr| Crude purchase volume from vp to vr

mc,t
f |Vf | Crude inventory volume of v f

mc,t
r |Vr| Crude inventory volume of vr

md,t
r |Vr| Diesel inventory volume of vr

mg,t
r |Vr| Gasoline inventory volume of vr

Ũt
qr |Vr| Remained processing volume of vr

The actions of time step t of the upper-level agent are expected inventory volumes of
crude, gasoline, and diesel in transfer stations and refineries, denoted as at = {m̃c,t+1

f , m̃c,t+1
r ,

Algorithms 2023, 16, 354 10 of 20

m̃d,t+1
r , m̃g,t+1

r }, and the total |Vf |+ 3× |Vr| dimensions. Each dimension is continuous and
bounded by the physical inventory limit phk

i .
The reward function Equation (8) consists of two parts. One is the inventory alert

penalty P t, which can be calculated by substituting at into Equation (5). The other is
the feedback penalty Jt returned by the lower-level agent. The detailed definition of
the feedback penalty Jt is described in Equation (18a); conceptually, it includes the total
transportation costHt, as defined in Equation (6) and the deviation of m̃k

i from constraints in
Equation (7b). This encourages the actions of the upper-level agent to optimize the objective
of the crude oil supply chain scheduling problem as well as satisfies the constraints.

R(st, at) = −α1P t(at)− α2 Jt (8)

where α1 and α2 are the same parameters defined in Equation (7a).

4.2.2. Agent Model

We use the Q-learning algorithm for the upper-level agent, a model-free, on-policy
algorithm. We parameterize a Q-network Qθ and update it as follows.

Qθ(st, at)← R(st, at) + γ max Qθ(st+1, at+1) (9)

where γ is a discount factor.
The action is selected according to Qθ using the ε−greedy policy:

at =

{
arg max

a
Qθ(st, at) w.p. 1− ε

random w.p. ε
(10)

4.3. Lower-Level Agent

The goal of the lower-level agent is to search for a feasible execution strategy (including
a processing volume qt

r(∀vr ∈ Vr) and a transportation plan wt
e f r
(∀e f r ∈ E f r)) in the current

time step t, which minimizes the overall transportation cost Ht and satisfies the one-
step constraints. In other words, the lower-level agent solves the one-step problem of
Equation (7a). Constraints are composed of two parts; one is obtained from the upper
agent, including at representing the end-stage inventory volume of each facility to substitute
Equation (7b) and Ũqr representing the remained processing volume until time step t to
substitute Equation (7e), and the other part is obtained according to the problem itself,
including processing constraints in refineries as Equation (7d) and the transportation
volume constraints on the roads as Equation (7c).

Since the constraints and the objective function are linear concerning the processing
volume qt

r and transportation volume wt
e f r

, this problem can be formalized as a large LP
problem and solved with traditional solvers. However, because at might be unreasonable
at the beginning of training, without dealing with the constraints, this LP problem is likely
to be unsolvable. In this case, as a lower-level agent, the emergence of no solution not
only makes the decision-making of this step fail but also terminates this training episode.
In consequence, the upper-level agent is held back on the convergence speed.

To solve this problem, we relax the constraints. The main idea is to relax all equality
constraints, design corresponding barrier functions according to each original equality
condition, and add them to the objective function. In this way, in most cases, the linear
programming problem has a solution, and the objective function value J corresponding to
the optimal solution reflects the quality of at, which can be sent back to the upper agent as
a suitable incentive signal.

Algorithms 2023, 16, 354 11 of 20

4.3.1. LP Formulation

We define decision variables xe f r as a transportation volume of crude on the road e f r

from transfer station v f to refinery vr at time step t (i.e., wt
e f r

), and xr as a processing volume

of crude oil in refinery vr at time step t (i.e., qt
r), respectively.

Since the LP problem is independent of time step t, we omit the superscript t in the
LP formulation for simplicity. We rewrite the definition Equations (1)–(4) of the inventory
volumes here, and we call mc

f , mc
r , md

r and mg
r the auxiliary variables.

mc
f ←mc

f + ∑
eo f∈Eo f

weo f + ∑
ep f∈Ep f

wep f (11)

− ∑
e f r∈E f r

xe f r − nc
f (12)

mc
r ←mc

r + ∑
eor∈Eor

weor + ∑
epr∈Epr

wepr + ∑
e f r∈E f r

xc
e f r

(13)

− nc
r − xr (14)

md
r ←md

r + ρd
r xc

r − nd
r (15)

mg
r ←mg

r + ρ
g
r xc

r − ng
r (16)

Then, the original LP problem can be formulated as:

min
xe f r ,xr

J = Ht = ∑
e f r∈E f r

λe f r xe f r (17a)

s.t. mc
f = m̃c

f , ∀v f ∈ Vf (17b)

mc
r = m̃c

r , ∀vr ∈ Vr (17c)

md
r = m̃d

r , ∀vr ∈ Vr (17d)

mg
r = m̃g

r , ∀vr ∈ Vr (17e)

xr ≤ Ũqr , ∀vr ∈ Vr (17f)

lqr ≤ xr ≤ uqr , ∀vr ∈ Vr (17g)

0 ≤ xe f r ≤ ue f r , ∀e f r ∈ E f r (17h)

The objective is to minimize the total transportation costsHt, as shown in Equation (17a)
(equivalent to Equation (6)) when meeting conditions of inventory capacity in
Equations (17b) and (17e) (split from Equation (7b)), processing capacity in
Equation (17f) and (17g) (split from Equations (7e) and (7d)), and transportation capac-
ity in Equation (17h) (split form Equation (7c)). According to the overall architecture,
the auxiliary variables mk

i representing end-stage inventory volumes are required not to
deviate from the inventory suggestions of the upper agent.

To guarantee that a feasible solution can be searched for in any at, so that the lower-
level agent always passes back a meaningful value J to the upper-level agent, we relax
the constraints and reformulate the LP problem with barrier functions B(m), which are
detailed as described in Section 4.3.2.

min
xe f r ,xr

J = µ1Ht − µ2B(mc
f)− µ3B(mc

r)−

µ4B(md
r)− µ5B(mg

r) (18a)

s.t. xr ≤ Uqr , ∀vr ∈ Vr (18b)

lqr ≤ xr ≤ uqr , ∀vr ∈ Vr (18c)

0 ≤ xe f r ≤ ue f r , ∀e f r ∈ E f r (18d)

where µ1, . . . , µ5 are coefficients of the different parts of the objective function.

Algorithms 2023, 16, 354 12 of 20

4.3.2. Barrier Function

The purpose of designing the barrier function is to convert the hard constraints on the
auxiliary variables into penalty items in the objective function. Each auxiliary variable mk

i
representing the end-stage inventory volume of the material kind k in facility vi corresponds
to an expected inventory volume m̃k

i given by the upper-level agent. We hope that mk
i

is as close to m̃k
i as possible. The greater the deviation from m̃k

i , the greater the penalty.
In addition, the problem requires that the storage mk

i is within the physical inventory limit
phk

i all the time, and preferably within the upper and lower safety inventory limit of uk
i and

lk
i ; then, for mk

i , which deviates a lot from m̃k
i and thus exceeds the upper and lower safety

inventory limit or the physical inventory limit, a higher penalty should be given.
Based on these considerations, we design the barrier function as a piece-wise linear

function, as shown in Figure 3. The barrier function of mk
i is expressed mathematically as

Equation (19), where β1 < β2 < β3, ∆1 = uk
i − lk

i , ∆2 = lk
i − 0, ∆3 = phk

i − uk
i .

Figure 3. Barrier function: (Left) lk
i < m̃k

i ≤ uk
i . (Middle) 0 < m̃k

i ≤ lk
i . (Right) uk

i < m̃k
i ≤ phk

i .

B(mk
i) =

β1|lk
i − m̃k

i |+ β2∆2 + β3|mk
i − 0| if mk

i < 0

β1|lk
i − m̃k

i |+ β2|mk
i − lk

i | if 0 < mk
i ≤ lk

i

β1|mk
i − m̃k

i | if lk
i < mk

i ≤ uk
i if lk

i < m̃k
i ≤ uk

i

β1|uk
i − m̃k

i |+ β2|mk
i − uk

i | if uk
i < mk

i ≤ phk
i

β1|uk
i − m̃k

i |+ β2∆3 + β3|mk
i − phk

i | if phk
i < mk

i

β2|0− m̃k
i |+ β3|mk

i − 0| if mk
i < 0

β2|mk
i − m̃k

i | if 0 < mk
i ≤ lk

i

β2|lk
i − m̃k

i |+ β1|mk
i − m̃k

i | if lk
i < mk

i ≤ uk
i if 0 < m̃k

i ≤ lk
i

β2|lk
i − m̃k

i |+ β1∆1 + β2|mk
i − uk

i | if uk
i < mk

i ≤ phk
i

β2|lk
i − m̃k

i |+ β1∆1 + β2∆3 + β3|mk
i − phk

i | if phk
i < mk

i

β2|uk
i − m̃k

i |+ β1∆1 + β2∆2 + β3|mk
i − 0| if mk

i < 0

β2|uk
i − m̃k

i |+ β1∆1 + β2|mk
i − lk

i | if 0 < mk
i ≤ lk

i

β2|uk
i − m̃k

i |+ β1|mk
i − uk

i | if lk
i < mk

i ≤ uk
i if uk

i < m̃k
i ≤ phk

i

β2|mk
i − m̃k

i | if uk
i < mk

i ≤ phk
i

β2|phk
i − m̃k

i |+ β3|mk
i − phk

i | if phk
i < mk

i

(19)

4.4. The Variant on Discrete Action Space

Exploring the optimal policy in a discrete action space with low dimensions for an RL
agent is much easier and more stable than in a continuous action space. Moreover, we aim
to solve the crude oil supply chain scheduling problem in the real world, which requires
the algorithm to converge quickly in a stable manner. Therefore, we design a variant that
combines 9 operators as the action space. The operators are shown in Table 3. The action of
the RL agent is to select one operator for each corresponding node and one operator for the
solving order ort, forming an action space of |Vr|+ |Vr|+ |Vf |+ 1 dimensions.

Algorithms 2023, 16, 354 13 of 20

Table 3. Operators of the variant algorithm.

Diesel and Gasoline in Refineries Crude in Refineries Crude in Transfer Stations Solving Order
Upper safety limit Periodic demand Increase by 10% Simultaneously
Lower safety limit Upper safety limit Decrease by 10% Sequentially
Current inventory - - -

The crude oil supply chain receives crude oil from oil fields and import ports and
provides diesel and gasoline on demand. Then, the inventory of each node can be stable
if the production and demand are balanced. In other words, the end-stage inventory of
nodes is a baseline inventory that needs to be dynamically adjusted in case the supply and
demand are unbalanced.

The demand for diesel and gasoline is uncertain at each time step; thus, we designed
3 naive operators:

• To meet the upper safety limit, which means m̃d,t
r = ud

r and m̃g,t
r = ug

r ;
• To meet the lower safety limit, which means m̃d,t

r = ld
r and m̃g,t

r = lg
r ;

• To maintain the current inventory, which means m̃d,t
r = md,t−1

r and m̃g,t
r = mg,t−1

r .

Since diesel and gasoline are produced proportionally, to control the crude inventory
in refineries, we approximate the demand for crude oil accordingly:

ñc,t
r = max

{
nd,t

r

ρd
r

,
ng,t

r

ρ
g
r

}
(20)

The refinery could process crude oil into diesel and gasoline if its crude oil inventory
is about to overflow, but it is hard to replenish the inventory when the crude oil supply is
short; thus, the operators for the end-stage inventory of crude oil are designed as follows:

• To meet periodic demand, which means m̃c,t
r = N · ñc,t

r , where N is a length of time
step period;

• To meet the upper safety limit, which means m̃c,t
r = uc

r .

To avoid the sharp rise and fall of the inventory, the operators of transfer stations are
designed as follows:

• To increase by 10%, which means m̃c,t
f = 1.1×mc,t−1

f ;

• To decrease by 10%, which means m̃c,t
f = 0.9×mc,t−1

f .

In addition, we use another operator to control the solving order of the lower-level
agent. The idea is that when the processing volumes qt

r in refineries are settled, the amount
of crude oil consumed at this time step is known, and the approximate range of the amount
of crude oil that the refineries need to receive from the transfer stations can be deduced,
facilitating the optimization of wt

e f r
. On the contrary, if the transportation volumes wt

e f r

are settled first, there is a high probability that the refineries will not be able to meet
the inventory requirements only by adjusting the processing volume of qt

r. However,
mindlessly optimizing qt

r first may cause inventory overflow of many transfer stations;
thus, we use an operator ort to control the optimization order:

• To solve qt
r and wt

e f r
simultaneously, which means ort = 0;

• To solve qt
r and wt

e f r
sequentially, which means ort = 1.

At each time step t, the upper-level agent makes decisions in two steps: firstly, the RL
agent selects one way of the combination of these operators, and secondly, m̃k

i and ort

are calculated according to the operators. Then, the lower-level agent will solve the LP
problem as discussed in Section 4.3 according to the solving order ort.

Algorithms 2023, 16, 354 14 of 20

5. Simulator

We create a simulator to evaluate and train RL algorithms to solve the problem
described in Section 4. This section will introduce the simulator we used and the function
of the simulator in training and testing.

5.1. Data for Simulator

During our research, we harnessed real-world data from an oil distribution company
that produces and transports crude oil and refined products. This comprehensive dataset
includes attributes associated with transportation modes and four types of nodes, namely:
oil fields, import ports, transfer stations, and refineries, as stated in Section 3. Specifically, it
encompasses refined product categories, inventory capabilities of refineries, sales stations,
transfer nodes, and the demand figures from the aforementioned sales stations. In addition,
our data also incorporate essential operational aspects such as transportation costs between
nodes and conversion ratios from crude oil to refined products.

Certain preprocessing measures were employed for our experimental framework to
address inherent anomalies in the raw dataset. Notably, missing data, denoted as ‘NAN’ in
the raw dataset, were substituted based on contextual relevance; values of 0 and 999 were
designated as lower and upper bounds, respectively. These preprocessed values were then
assigned to their corresponding node classes to enhance the realism and robustness of our
simulator. This simulator faithfully represents the intricate dynamics of a crude oil supply
chain and serves as an integral part of our RL framework. For comparative experiments,
we consider 26 supply nodes, 20 transfer nodes, 26 refineries, and 164 roads between each
node to meet the daily demand for products and the inventory constraints. The dynamic
simulator allows our model to interact with a continuously evolving environment, learn
from it, and evaluate its performance.

5.2. Simulator Design

The simulator preprocesses the raw data from facilities and roads and provides con-
tinuous feedback to the algorithm in training and testing. The simulator also serves as an
evaluation environment after training. In addition, our simulator offers essential indicators
such as alert penalty and transportation cost that were mentioned in Section 3. Addition-
ally, we also record the number of alerts triggered during the simulation. By analyzing
these metrics, we can evaluate the performance of different algorithms in a systematic and
quantitative manner.

6. Experiment

The experiments consist of: (1) using the same dataset to implement our method HRL
and three other baselines, illustrating the average train loss and average test reward of
HRL; (2) comparing three probable effect factors, including the alert number, the maximum
alert penalties, and the transportation cost.

6.1. Experiment Settings

We compare four algorithms: the traditional OR linear programming solved by Gurobi,
proximal policy optimization (PPO), soft actor–critic (SAC), and our method, HRL.

All of the baseline models use the same dataset and have 30-time steps per episode.
For SAC and PPO, the action space and state space are 298 and 131, respectively, based
on the simulator described in Section 5.1. For our method HRL, we set the replay buffer
size for Q-network to 2,000,000 and the batch size to 1024. We use ε-greedy for exploration
during learning. The networks are trained with Adam [35] with a learning rate of 1× 10−5

and discount over training epochs. We implement the pipelines using Pytorch and train
them on GPUs with Nvidia Geforce 3090 Ti. We average the results over 16 repeat runs.
The average training loss and average testing reward of HRL are shown in Figures 4 and 5.

Algorithms 2023, 16, 354 15 of 20

Figure 4. Average training loss of HRL.

Figure 5. Average test reward of HRL.

6.2. The Comparison against Baselines

Although our goal is to avoid the frequency of inventory overrun alerts as much
as possible, such alerts may inevitably occur due to limitations of the initial state of
the environment determined by real-world data. We first compare the number of alerts
and the maximum alert penalty to verify that our two-level HRL agents learn to make
suitable scheduling plans at different time steps. The x-axis shows the time step in both
Figures 6 and 7. The y-axis shows the exact number of alerts in each time step in Figure 6.
OR and HRL perform better than traditional RL algorithms in most time steps. Overall,
HRL generates fewer alerts than the other three algorithms. In Figure 7, we record the
maximum alert penalty for 30-time steps. As a result of SAC and PPO, a gradual increase is
shown by the curve in Figure 7. We think that the reason for the poor performance of these
two RL algorithms may be that the action space and state space are too large. As mentioned
in Section 6, such a large action space and state space for RL will make it difficult to train
and obtain acceptable results.

Moreover, we compare the maximum alert penalty in percentage in Figure 7. After all,
we mainly focus on those nodes with a low upper inventory limit, which is more important
than the same alert penalty amount with a high upper limit because it increases the risk
of exceeding the inventory limit. Similarly, OR and HRL results are much better than
traditional RL algorithms.

Algorithms 2023, 16, 354 16 of 20

0 5 10 15 20 25 30
Timesteps

0
2
4
6
8

10
12
14
16
18

Nu
m
be

r o
f A

le
rts

OR
SAC
PPO
HRL

Figure 6. A comparison of the alert number at each time step.

0 5 10 15 20 25 30
Timesteps

0

10

20

30

40

M
ax
iu
m
 A
le
rt
Pe
na

lty
/%

OR
SAC
PPO
HRL

Figure 7. A comparison of maximum alert penalties at each time step in percentage.

Besides the alert penalty, transportation costs also matter for the objective function
and algorithm effectiveness. In Figure 8, HRL generates transportation costs below 20,000
except for time step 15. The results of SAC and PPO are consistently higher than 20,000,
and OR accomplishes this for approximately half of the time steps and fails to maintain
costs at a consistently low level due to the transportation duration spanning multiple days;
the scheduling of transportation volume cannot effectively align with changes in demand.

Another critical issue is the solving time of the algorithm, which holds great sig-
nificance in balancing solution quality and computational costs. Table 4 demonstrates
a comparative analysis of computational time, revealing that our approach exhibits the
longest solution time among the considered methods. Nevertheless, it is noteworthy that
our method remains considerably affordable, with only a slight deviation compared to
other RL algorithms and its exceptional performance.

Table 4. A comparison of solution time.

Algorithm Solution Time (in Seconds)

OR 0.58
PPO 0.71
SAC 0.68
HRL 1.17

Algorithms 2023, 16, 354 17 of 20

In conclusion, our HRL can achieve the smallest warning penalties and the lowest
overall transportation costs compared to other algorithms. Despite the higher computa-
tional cost, the prolonged duration enables the discovery of an optimal solution for the
crude oil supply chain problem through its two-level design.

（

Figure 8. A comparison of transportation cost at each time step.

6.3. The Influence of Parameter N

As mentioned in Section 4.4, our HRL algorithm is designed to meet the target of
N time steps’ demand (i.e., N times “crude oil demand value”). We then compare the
performance when N equals 3, 5, and 7 steps in Figure 9. A suitable N value leads to a
balanced node distribution, resulting in relatively low alert penalties and transportation
costs. We compare them to two aspects to demonstrate this parameter’s effect on the results.
The left y-axis in the figure shows the total transportation costs, and the right y-axis shows
the total alert penalties over 30-time steps.

Figure 9. A comparison of HRL using different operator parameter to meet periodic demand.

6.4. Discussion

Compared to prior studies of supply chain scheduling or resource allocation issues, our
hierarchical optimization framework demonstrated superior performance in considering
both solution quality and transportation costs. Our methods align with research conducted
by [11] and [25], who also modeled the scheduling problem in linear programming or the
MDP form. However, our HRL algorithm surpasses the existing methodology by expanding

Algorithms 2023, 16, 354 18 of 20

the planning horizon to more time steps and decomposing the large-scale problem with
well-designed operations operators. One of the limitations of our proposed model is that the
training and solving time is longer compared to RL algorithms such as PPO and SAC due
to the increased complexity of the hierarchical framework. Additionally, taking the refinery
node or transfer node as an example, selecting the same operator for all nodes implies
that they all have the same optimization objective, resulting in a certain loss of flexibility.
Consequently, it may not achieve the overall optimality for more complex problems.

7. Conclusions and Future Works

This paper presents a framework based on HRL to address the complex problem of
petroleum transportation and processing. The upper-level agent is equipped with the
foresight ability, whose target is to reduce the penalty caused by inventory limit violations,
demand dissatisfaction, and infeasible plans. The lower-level agent makes decisions on
the specific process strategy and transportation plan for the time step according to the end-
stage inventory volume from the upper-level agent. It is worth noting that the combination
of upper-level and lower-level agents allows our method to find globally better solutions
that consider the effects on subsequent time steps. Online testing on a simulator based on
real-world data demonstrated that our approach achieves better solutions than baselines.
Moreover, our work is only a first step towards using HRL for larger-scale problems
in real-world scenarios. Future research should be devoted to the development of the
following parts.

• Problem Representation via Graph Neural Networks
In future research, more research is needed to apply and test Graph Neural Networks
(GNNs). GNNs can inherently work with graph-structured data. They utilize the
graph structure and apply neural networks to learn from the graph data. Employing
GNNs to represent nodes and edges interconnecting nodes in large-scale scheduling
problems enables capturing node dependencies and relationships.

• Multi-agent Reinforcement Learning
Multi-agent reinforcement learning algorithms can accomplish objectives through
cooperation between agents. Concretely, each facility can be modeled as an individual
agent. Each agent selects the optimal action so that the overall action is optimal.
The flexibility of the framework can be significantly improved with the insurance
of optimality. It will be important that future research explore how multi-agent
algorithms can be designed, which nodes should be modeled as agents, and how
credit can be assigned among these agents.

• Generalized Simulator and Operator Design
While our simulator is based on real-world data and can handle large-scale scheduling
problems, if there are new scheduling or other graph structure optimization problems,
the simulator needs to be redesigned or reconstructed in many places. This is an
issue for future research to explore. A more generalized simulation environment and
operators have great potential for HRL to solve optimization problems.

Author Contributions: All authors contributed to the study conception and design. Conceptualiza-
tion, investigation, data analysis, and model verification: N.M.; Writing—formulation, methodology,
and editing: Z.W.; Writing—simulator, experiment, and conclusion: Z.B.; Writing—introduction and
related work: X.L.; Writing—critically review: N.Y.; Data curation: X.Y. Management and supervision:
H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Beijing Municipal Natural Science Foundation under Grant
Agreement Grant No. 4224092 and Scientific Research and Technology Development Project, CNPC
(2021DJ7704).

Data Availability Statement: The data that support the findings of this study are available from
China National Petroleum Corporation (CNPC). Still, restrictions apply to the availability of these
data, which were used under license for the current study and are not publicly available. Data are,
however, available from the authors upon reasonable request and with the permission of CNPC.

Algorithms 2023, 16, 354 19 of 20

Acknowledgments: The authors are grateful for the support of oversight and leadership from Hualin
Liu and the project administration and funding acquisition from Lei Yang.

Conflicts of Interest: The authors declare they have no financial interest or personal relationships
relevant to the content of this article’s content.

References
1. Yu, L.; Chen, M.; Xu, Q. Simultaneous scheduling of multi-product pipeline distribution and depot inventory management for

petroleum refineries. Chem. Eng. Sci 2020, 220, 115618. [CrossRef]
2. Ma, A.; Ji, J.; Khayatnezhad, M. Risk-constrained non-probabilistic scheduling of coordinated power-to-gas conversion facility

and natural gas storage in power and gas based energy systems. Sustain. Energy Grids Netw. 2021, 26, 100478. [CrossRef]
3. Sedghi, M.; Kauppila, O.; Bergquist, B.; Vanhatalo, E.; Kulahci, M. A taxonomy of railway track maintenance planning and

scheduling: A review and research trends. Reliab. Eng. Syst. Saf. 2021, 215, 107827. [CrossRef]
4. Kazemi, Y.; Szmerekovsky, J. Modeling downstream petroleum supply chain: The importance of multi-mode transportation to

strategic planning. Transport. Res. Part E-Logist. 2015, 83, 111–125. [CrossRef]
5. Beiranvand, H.; Ghazanfari, M.; Sahebi, H.; Pishvaee, M.S. A robust crude oil supply chain design under uncertain demand and

market price: A case study. Oil Gas Sci. Technol. 2018, 73, 66. [CrossRef]
6. Yang, X.; Wang, Z.; Zhang, H.; Ma, N.; Yang, N.; Liu, H.; Zhang, H.; Yang, L. A Review: Machine Learning for Combinatorial

Optimization Problems in Energy Areas. Algorithms 2022, 15, 205. [CrossRef]
7. Patriksson, M. A survey on the continuous nonlinear resource allocation problem. Eur. J. Oper. Res. 2008, 185, 1–46. [CrossRef]
8. Islam, S.R.; Zeng, M.; Dobre, O.A.; Kwak, K.S. Resource allocation for downlink NOMA systems: Key techniques and open

issues. IEEE Wirel Commun 2018, 25, 40–47. [CrossRef]
9. Mirdashtvan, M.; Najafinejad, A.; Malekian, A.; Sa’doddin, A. Sustainable water supply and demand management in semi-arid

regions: Optimizing water resources allocation based on RCPs scenarios. Water Resour. Manag. 2021, 35, 5307–5324. [CrossRef]
10. Merkert, L.; Harjunkoski, I.; Isaksson, A.; Säynevirta, S.; Saarela, A.; Sand, G. Scheduling and energy–Industrial challenges and

opportunities. Comput. Chem. Eng. 2015, 72, 183–198. [CrossRef]
11. Neiro, S.M.; Pinto, J.M. A general modeling framework for the operational planning of petroleum supply chains. Comput. Chem.

Eng. 2004, 28, 871–896. [CrossRef]
12. Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid

storage. Energy Environ. Sci. 2018, 11, 2696–2767. [CrossRef]
13. Jain, P.; Kar, P. Non-convex optimization for machine learning. Found. Trends Mach. Learn. 2017, 10, 142–363. [CrossRef]
14. Botvinick, M.M. Hierarchical reinforcement learning and decision making. Curr. Opin. Neurobiol. 2012, 22, 956–962. [CrossRef]
15. Shapiro, J.F. Challenges of strategic supply chain planning and modeling. Comput. Chem. Eng. 2004, 28, 855–861. [CrossRef]
16. Tamannaei, M.; Rasti-Barzoki, M. Mathematical programming and solution approaches for minimizing tardiness and transporta-

tion costs in the supply chain scheduling problem. Comput. Ind. Eng. 2019, 127, 643–656. [CrossRef]
17. Farmand, N.; Zarei, H.; Rasti-Barzoki, M. Two meta-heuristic algorithms for optimizing a multi-objective supply chain scheduling

problem in an identical parallel machines environment. Int. J. Ind. Eng. Comput. 2021, 12, 249–272. [CrossRef]
18. Jamrus, T.; Wang, H.K.; Chien, C.F. Dynamic coordinated scheduling for supply chain under uncertain production time to

empower smart production for Industry 3.5. Comput. Ind. Eng. 2020, 142, 106375. [CrossRef]
19. RezaHoseini, A.; Noori, S.; Ghannadpour, S.F. Integrated scheduling of suppliers and multi-project activities for green construction

supply chains under uncertainty. Autom. Constr. 2021, 122, 103485. [CrossRef]
20. Du, M.; Sai, A.; Kong, N. A data-driven optimization approach for multi-period resource allocation in cholera outbreak control.

Eur. J. Oper. Res. 2021, 291, 1106–1116. [CrossRef]
21. Aminzadegan, S.; Tamannaei, M.; Rasti-Barzoki, M. Multi-agent supply chain scheduling problem by considering resource

allocation and transportation. Comput. Ind. Eng. 2019, 137, 106003. [CrossRef]
22. Jarumaneeroj, P.; Dusadeerungsikul, P.O.; Chotivanich, T.; Akkerman, R. A multi-objective modeling approach to harvesting

resource scheduling: Decision support for a more sustainable Thai sugar industry. Comput. Ind. Eng. 2021, 162, 107694. [CrossRef]
23. Deng, S.; Xiang, Z.; Zhao, P.; Taheri, J.; Gao, H.; Yin, J.; Zomaya, A.Y. Dynamical resource allocation in edge for trustable

Internet-of-Things systems: A reinforcement learning method. IEEE Trans. Ind. Inf. 2020, 16, 6103–6113. [CrossRef]
24. Peng, H.; Shen, X. Multi-agent reinforcement learning based resource management in MEC-and UAV-assisted vehicular networks.

IEEE J. Sel. Areas Commun. 2020, 39, 131–141. [CrossRef]
25. Chen, M.; Wang, T.; Ota, K.; Dong, M.; Zhao, M.; Liu, A. Intelligent resource allocation management for vehicles network: An

A3C learning approach. Comput. Commun. 2020, 151, 485–494. [CrossRef]
26. Morariu, C.; Morariu, O.; Răileanu, S.; Borangiu, T. Machine learning for predictive scheduling and resource allocation in large

scale manufacturing systems. Comput. Ind. 2020, 120, 103244. [CrossRef]
27. Nachum, O.; Gu, S.S.; Lee, H.; Levine, S. Data-efficient hierarchical reinforcement learning. Adv. Neural Inf. Process. Syst. 2018,

31, 3303–3313.
28. Ma, Q.; Ge, S.; He, D.; Thaker, D.; Drori, I. Combinatorial optimization by graph pointer networks and hierarchical reinforcement

learning. arXiv 2019, arXiv:1911.04936.

http://doi.org/10.1016/j.ces.2020.115618
http://dx.doi.org/10.1016/j.segan.2021.100478
http://dx.doi.org/10.1016/j.ress.2021.107827
http://dx.doi.org/10.1016/j.tre.2015.09.004
http://dx.doi.org/10.2516/ogst/2018056
http://dx.doi.org/10.3390/a15060205
http://dx.doi.org/10.1016/j.ejor.2006.12.006
http://dx.doi.org/10.1109/MWC.2018.1700099
http://dx.doi.org/10.1007/s11269-021-03004-0
http://dx.doi.org/10.1016/j.compchemeng.2014.05.024
http://dx.doi.org/10.1016/j.compchemeng.2003.09.018
http://dx.doi.org/10.1039/C8EE01419A
http://dx.doi.org/10.1561/2200000058
http://dx.doi.org/10.1016/j.conb.2012.05.008
http://dx.doi.org/10.1016/j.compchemeng.2003.09.013
http://dx.doi.org/10.1016/j.cie.2018.11.003
http://dx.doi.org/10.5267/j.ijiec.2021.3.002
http://dx.doi.org/10.1016/j.cie.2020.106375
http://dx.doi.org/10.1016/j.autcon.2020.103485
http://dx.doi.org/10.1016/j.ejor.2020.09.052
http://dx.doi.org/10.1016/j.cie.2019.106003
http://dx.doi.org/10.1016/j.cie.2021.107694
http://dx.doi.org/10.1109/TII.2020.2974875
http://dx.doi.org/10.1109/JSAC.2020.3036962
http://dx.doi.org/10.1016/j.comcom.2019.12.054
http://dx.doi.org/10.1016/j.compind.2020.103244

Algorithms 2023, 16, 354 20 of 20

29. Duan, J.; Eben Li, S.; Guan, Y.; Sun, Q.; Cheng, B. Hierarchical reinforcement learning for self-driving decision-making without
reliance on labelled driving data. IET Intell. Transp. Syst. 2020, 14, 297–305. [CrossRef]

30. Bacon, P.L.; Harb, J.; Precup, D. The option-critic architecture. In Proceedings of the AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; Volume 31.

31. Ren, T.; Niu, J.; Dai, B.; Liu, X.; Hu, Z.; Xu, M.; Guizani, M. Enabling Efficient Scheduling in Large-Scale UAV-Assisted
Mobile-Edge Computing via Hierarchical Reinforcement Learning. IEEE Internet Things J. 2021, 9, 7095–7109. [CrossRef]

32. He, Y.; Wang, Y.; Lin, Q.; Li, J. Meta-Hierarchical Reinforcement Learning (MHRL)-based Dynamic Resource Allocation for
Dynamic Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 71, 3495–3506. [CrossRef]

33. Qi, C.; Zhu, Y.; Song, C.; Yan, G.; Xiao, F.; Wang, D.; Zhang, X.; Cao, J.; Song, S. Hierarchical reinforcement learning based energy
management strategy for hybrid electric vehicle. Energy 2022, 238, 121703. [CrossRef]

34. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. Available online: http://www.gurobi.com (accessed on 14 June
2023).

35. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1049/iet-its.2019.0317
http://dx.doi.org/10.1109/JIOT.2021.3071531
http://dx.doi.org/10.1109/TVT.2022.3146439
http://dx.doi.org/10.1016/j.energy.2021.121703
http://www.gurobi.com

	Introduction
	Related Work
	Crude Oil Supply Chain Scheduling Issues
	Complex Resource Allocation Approaches
	HRL

	Problem Formulation
	Hierarchical RL Scheduling Scheme
	Overall Architecture
	Upper-Level Agent
	Markov Decision Process (MDP)
	Agent Model

	Lower-Level Agent
	LP Formulation
	Barrier Function

	The Variant on Discrete Action Space

	Simulator
	Data for Simulator
	Simulator Design

	Experiment
	Experiment Settings
	The Comparison against Baselines
	The Influence of Parameter N
	Discussion

	Conclusions and Future Works
	References

