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Abstract: In this paper, an algorithm for Mathematica is proposed for the computation of the
asymptotic Fisher information matrix for a multivariate time series, more precisely for a controlled
vector autoregressive moving average stationary process, or VARMAX process. Meanwhile, we
present briefly several algorithms published in the literature and discuss the sufficient condition
of invertibility of that matrix based on the eigenvalues of the process operators. The results are
illustrated by numerical computations.
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1. Introduction

In this paper, we present an algorithm for the symbolic software package Mathematica
to compute the asymptotic Fisher information matrix for a multivariate time series, more
precisely a controlled vector autoregressive moving average stationary process, or VAR-
MAX process. There are several ways to obtain the Fisher information matrix for time series
models. The most used procedure is computing the Hessian of the Gaussian log-likelihood
when a model is fitted to the time series, usually after non-linear optimization (since the
model is non-linear with respect to the parameters except for the pure VAR case), e.g., [1].
Another much less used method consists of determining the exact (Gaussian) Fisher infor-
mation, see [2–8]. This is nice when the data are available but, as [9] indicates, it can be
useful to know the matrix at a tentative parameter point before obtaining the data, in order
to determine the series length necessary to reach some specific accuracy for the estimators
of the parameters. Then, an algorithm for the computation of the so-called asymptotic
Fisher information matrix at a given parameter point is what is needed. It was provided
in the form of an algebraic expression for a handful of small-order (1 or 2) ARMA models
by Box and Jenkins in 1970, see [10]. Otherwise, there is a vast literature for scalar models,
i.e., simple ARMA models, e.g., [11,12], seasonal ARMA models [13], ARMAX models [14],
single input single output models [15], and for vector models, i.e., VARMA models [16,17]
and VARMAX models [18,19].

We introduce a new algorithm well-suited to symbolic computation software pack-
ages (here Mathematica) and we present an illustrative example. Then, we discuss the
invertibility of the Fisher information matrices and provide other examples.

The proposed algorithm differs from the works of Zadrovny [3,20], see also Zadrozny
and Mittnick [21], who developed their methods for VARMAX models, in the sense that
they are based on an approximation of the exact Fisher information. Here, we follow
Whittle’s approach [22] of expressing the asymptotic information matrix by computing a
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circular integral of a rational function, related to the autoregressive and moving average
operators. That was the way used by Newton for VARMA models, see [16], with the
difference that we make the effective computation and that we consider VARMAX models.
The more fundamental source is [19], who obtained an explicit expression for the Fisher
information matrix of a VARMAX model under the form of a sum of two integrals while [18]
contains expressions for each element of that matrix. As a matter of fact, we first need to
generalize [19], which is developed for the special case where the number of explanatory
variables equals the number of variables of interest and, moreover, the coefficient matrix at
lag 0 is the identity matrix. These restrictions were explained by the revealed objective of
the paper which was to exploit tensor Sylvester matrices and try to extend to VARMAX
models the resultant property of the Fisher information matrix wrongly claimed for VARMA
models by [17]. Indeed, in [17] (p. 1986), it is written “[a] representation [based on tensor
Sylvester matrices] is more appropriate . . . to prove a possible resultant property of the Fisher
information matrix of a VARMAX process”. Such a tensor Sylvester matrix is associated with
two matrix polynomials and it becomes singular if, and only if, the two matrix polynomials
have at least one common eigenvalue, see [23].

In [17], it is said that the Fisher information matrix of a VARMA process becomes
invertible if, and only if, the tensor Sylvester matrix is invertible, in other words, if, and only
if, the autoregressive and moving average matrix polynomials of the VARMA process have
no common eigenvalue. This is called the Sylvester resultant property. In [17], the Sylvester
resultant property is shown for a scalar ARMAX process but it is no longer true, in general,
for other than scalar ARMA or ARMAX processes. Indeed, in [24] Mélard indicated the
error in the claim and explained why the example in [17] was wrong. In the present paper,
we correct the assertion stated in [17] for VARMA processes, and we extend the “if” part
to a class of VARMAX processes. As will be shown, the “only if” part of that result is,
however, wrong when the dimension of the process is larger than 1. We will also compare
our algorithms with other algorithms proposed for special cases in the literature. Although
the results are less powerful, they are what is needed in practice: a sufficient condition of
invertibility of the Fisher information matrix, indicating a possible lack of identifiability
so that parameter estimation is risky. A necessary condition that should involve more
information about the matrix polynomials is not as useful.

Consider the vector stochastic difference equation representation of a linear system of
order (p, r, q) of the process {yt, t ∈ Z}, Z is the set of integers

p

∑
j=0

Ajyt−j =
r−1

∑
j=0

Cjxt−j +
q

∑
j=0

Bjεt−j, t ∈ Z (1)

where yt, xt, and εt are, respectively, the n-dimensional stochastic observed output, the m-
dimensional observed input, and the n-dimensional unobserved errors, and where
Aj ∈ Rn×n, j = 1, . . . , p, Cj ∈ Rn×m, j = 0, . . . , r − 1, and Bj ∈ Rn×n, j = 1, . . . , q, are
associated parameter matrices. We additionally assume A0 = B0 = In, the n× n identity
matrix. We also assume that C0 is an invertible matrix. In the examples, we will sometimes
take C0 = In fixed instead of being a matrix of parameters so that the maximum lag r− 1
is replaced by r. Note that the absence of lag induced by (1) is purely conventional. For
example, a lagged effect of x′t on yt can be produced by defining xt = x′t−1. More pre-
cisely, we suppose that xt is stochastic and that (yt, xt) is a Gaussian stochastic process.
The error {εt, t ∈ Z} is a sequence of independent zero-mean n-dimensional Gaussian
random variables with a strictly positive definite covariance matrix Σ. We denote this by
Σ � 0. We denote the transposition by T , the complex conjugate transposition by ∗, and the
mathematical expectation is E. We assume E{xtε

T
t′} = 0, for all t, t′. We denote z as the

backward shift operator, for example, zxt = xt−1. Then (1) can be written as

A(z)yt = C(z)xt + B(z)εt, (2)
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where

A(z) =
p

∑
j=0

Ajzj, C(z) =
r−1

∑
j=0

Cjzj, B(z) =
q

∑
j=0

Bjzj (3)

are the associated matrix polynomials, where z ∈ C (the duplicate use of z as an operator
and as a complex variable is usual in the signal and time series literature, e.g., [25–27]).
The assumptions det(A(z)) 6= 0 for all |z| ≤ 1 (causality) and det(B(z)) 6= 0 for all |z| ≤ 1
(invertibility) are imposed so that the eigenvalues of the matrix polynomials A(z) and B(z)
will be outside the unit circle, see [25]. Remind that the eigenvalues of an n× n matrix
polynomial D(z) are the roots of the equation det(D(z)) = 0 (see [28], p. 14). We will also
use the reciprocal polynomial of D(z), with degree d, say. It is D̃(z) = zdD(z−1). If D(0)
is full-rank, there are dn eigenvalues for D̃(z). The eigenvalues of D(z) are the inverse of
those of D̃(z), provided the missing eigenvalues of the former are treated as being at ∞.

Remark 1. Note that there are restrictions in the VARMAX model being considered. The dimen-
sions of the unobserved errors εt and the observed output yt are the same. This is often the case in
the literature, although [29], for example, consider a VARMA model where the dimension of the
unobserved errors is smaller than that of the observed output. Except when we will mention the
tensor Sylvester matrices, the dimensions of the observed input xt and the observed output yt need
not be the same, like [7,18] but contrary to [19].

We store the VARMAX (p, r, q) coefficients in an l = (n2(p + q) + nmr)× 1 vector ϑ
defined as follows:

ϑ = vec{A1, A2, . . . , Ap, C0, . . . , Cr−1, B1, B2, . . . Bq}.

The vec operator transforms a matrix into a vector by stacking the columns of the matrix
one underneath the other, according to vec X = col(col(Xij)

n
i=1)

n
j=1, see, e.g., [30].

The observed input variable xt is assumed to be a stationary m-dimensional Gaussian
VARMA process with white noise process ηt satisfying E{ηtη

T
t } = Ω � 0 and

a(z)xt = b(z)ηt,

where a(z) and b(z) are, respectively, the autoregressive and moving average matrix
polynomials, such that a(0) = b(0) = Im and det(a(z)) 6= 0 far all |z| ≤ 1 and det(b(z)) 6= 0
for all |z| ≤ 1. The spectral density of process xt is defined as, see, e.g., [26]

Rx(ei f ) = a−1(ei f )b(ei f )Ωb∗(ei f )a∗−1(ei f ), (4)

where i is the standard imaginary unit, f is the frequency, the spectral density matrix
Rx(ei f ) is Hermitian, and we further have, Rx(ei f ) � 0 and

∫ π
−π Rx(ei f )d f < ∞. Therefore,

there is at least one solution of (1) which is stationary.

2. The Fisher Information Matrix of VARMAX Processes

Using (2) for all t ∈ Z enables us to determine the residual εt(ϑ) which depends on
the parameter vector, ϑ. Under the above assumptions, the asymptotic Fisher information
matrix, F (ϑ), is defined by the following (l × l) matrix, which does not depend on t:

F (ϑ) = E
{(

∂εt(ϑ)

∂ϑT

)T
Σ−1

(
∂εt(ϑ)

∂ϑT

)}
(5)

where the (n× l) matrix ∂(·)/∂ϑT is the derivative with respect to ϑT . That derivative is
computed in [19], using the Kronecker product ⊗, to obtain:
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∂εt

∂ϑT = {[(A−1(z)C(z)xt)T + (A−1(z)B(z)εt)T ]⊗ B−1(z)}∂ vec A(z)
∂ϑT

(6)

−{xT
t ⊗ B−1(z)}∂vec C(z)

∂ϑT − (εT
t ⊗ B−1(z))

∂ vec B(z)
∂ϑT .

For each positive integer k, denote uk(z) = (1, z, z2, . . . , zk−1)T . Let us define:

G(z) =



up(z)⊗ A−1(z)(−B(z))
Orm×n

uq(z)⊗ In


, K(z) =




up(z)⊗ A−1(z)(−C(z))
ur(z)⊗ Im

Oqn×m


. (7)

Let σ(z) = B−T(z)Σ−1B−1(z−1) and the square matrices of dimension (p + q)n + rm

P(z) := G(z)ΣG∗(z) and Q(z) := K(z)Rx(z)K∗(z), (8)

using the Hermitian spectral density matrix, Rx(z), defined in (4). Then, as shown in [19]
(for the special case where m = n), the Fisher information matrix is given by:

F (ϑ) = 1
2πi

∮

|z|=1
(P(z)⊗ σ(z))

dz
z

+
1

2πi

∮

|z|=1
(Q(z)⊗ σ(z))

dz
z

. (9)

The integrals are counter-clockwise. It is easy to check that the result in (Proposition 2.1, [19])
is valid even if m 6= n and C(0) is not the identity matrix. The main changes are in (7) but
also in the middle block of (Equations (18)–(20), [19]) where In2 has to be replaced by Inm.
Note that the subsequent sections of [19] are not valid if m 6= n.

3. New Algorithm and Comparison with Other Algorithms

We propose an algorithm based on the method in the previous section and an imple-
mentation as a notebook for Mathematica. To make use of exact computations, the coeffi-
cients of the VARMAX model as well as Σ and Rx are entered as fractions, if possible. The
algorithm is provided in Figure 1 using some notations that are detailed here.

The arguments (z) are written [z] for the polynomials. Given the polynomial matrices
A(z), B(z), and C(z) (hence denoted A[z], B[z], and C[z], respectively, in Figure 1),
the vectors up(z), uq(z), and ur(z) (denoted up[z], uq[z], and ur[z], respectively), the zero
matrices Orm×n and Oqn×m (denoted Orm$n and Oqn$m, respectively), the identity matrices
In and Im (denoted In and Imm, respectively, noting that Im is a locked symbol), plus Σ(z)
(denoted Sigma[z]) and Rx(z) (denoted Rx[z]). Then, the block matrices G(z) (Gcal[z])
and K(z) (Kcal[z]), are computed using the ArrayFlatten command of Mathematica,
plus KroneckerProduct and Inverse, then σ(z) (sigma[z]), P(z) (Pcal[z]), and Q(z)
(Qcal[z]) using also the Transpose function. Since Mathematica does not treat well circular
integrals, we transform them into line integrals between 0 and 2π by using the change
of variable z = ei f , 0 ≤ f ≤ 2π, hence dz/z = id f . We compute the two transformed
integrals of matrices using the command Integrate and sum them up. Contrary to the
computations in (Appendix B, [7]), where individual formulas (taken from [18]) were used
for each element and computed using the Cauchy rule, here the (two) integrals of the whole
matrices are computed symbolically. To simplify the expressions as much as possible as
rational functions of z, we use several times the commands Together and also Simplify.
The algorithm is shown in Figure 1 as a Mathematica notebook. The example is related to a
VARMAX model used by [31] and also used by [32]. The model is defined by:

(1− 1.5z + 0.7z2)yt = (1 + 0.5z)xt + (1− z + 0.2z2)εt. (10)
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The coefficients are entered as fractions, hence A1 = −3/2, A2 = 7/10, C0 = 1, C1 = 1/2,
B1 = −1, and B2 = 1/5. Part of the results are thus shown in Figures 2–4. It took about
7.2 min to produce the output. Making the computation using the numerical program
described in [32] on the same computer took 30 s but for one million evaluations.

Figure 1. Snapshot of the Mathematica notebook to treat a VARMAX model, given A[z], B[z],
and C[z]. The result Fcal is F (ϑ) as defined in (9). See the text for the other notations.

Supplementary Materials Supplementary S1 contains the corresponding notebook
(Figure1234.nb) that can be read using the free Wolfram’s CDF Player and its PDF copy
(Figure1234.pdf). We will show and discuss other examples in the next Section. Note that we
tried to implement the algorithm in two open-source packages for symbolic computation,
Octave and Maxima. It is feasible because both programs allow us to integrate matrices but
it appears that there is an error in the computation of the integrals being involved. We have
informed the respective developers of the bug but the errors are not corrected yet.

Before showing other examples, let us look at other algorithms published in the
literature. As said already, most of them are for the exact Fisher information, not the
asymptotic Fisher information and we will not discuss them here, focusing instead on the
asymptotic information matrix. Note that none of the existing algorithms is developed for
VARMAX models, but only for VARMA or univariate models.
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Figure 2. Partial snapshot of the Mathematica notebook to treat the example in (10). Gcal[z] is G(z)
and Kcal[z] is G(z), both defined in (7).

Figure 3. Partial snapshot of the Mathematica notebook to treat the example in (10). Pcal[z] is P(z)
and Qcal[z]Q(z), both defined in (8). To save space, only the first two elements of the first integrand
in (9) are shown.
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Figure 4. Partial snapshot of the Mathematica notebook to treat the example in (10). Fcal1 and Fcal2
are, respectively, the first and second terms in the right-hand side of (9) and Fcal is their sum, so
equal to F (ϑ).

The first algorithm was due to Newton [16] for VARMA models. It is based on [22]
who expressed the information matrix by a trigonometric integral involving the derivatives
of the spectral density matrix of the process with respect to the parameters. The spectral
density at frequency f , f ∈ [−π, π], of a VARMAX process, e.g., (1) without the term
∑r−1

j=0 Cjxt−j, is given by (1/2π)A−1(ei f )B(ei f )ΣB∗(ei f )A∗−1(ei f ). Newton [16] does not
indicate how to evaluate these matrix integrals that he obtained. It can be seen that the
integrand of each element of these matrix integrals is a rational function of ei f . Furthermore,
the condition of stationarity implies that the denominator has a factor with zeroes in the
unit circle and zeroes outside of it. Peterka and Vidinčev [33] have proposed an algorithm
for evaluating circular integrals of a rational function around the unit circle and [34] has
proposed an implementation that consists of a series of reduction in the degrees of the
involved polynomials. That method was used by [12] for the evaluation of the Fisher
information matrix of ARMA models.

A completely different early and effective method but restricted to ARMA models was
proposed by Godolphin and Unwin [11]. It makes use of simple matrix operations with the
inversion of two matrices, one of order p and one of order q.

Another approach was proposed by [35] which consists of replacing the computation
of the integral by the evaluation of the cross-covariance of two ARMA processes based on
the same white noise process, and this problem can be transformed in the computation
of the autocovariance of a single AR process. There are excellent algorithms for that
computation due to [36,37]. They require a number of operations which is quadratic in
the AR order, much less than previous algorithms where a matrix of that order had to be
inverted. The first algorithm was used by [13] for the evaluation of the Fisher information
matrix of seasonal ARMA models. Ref. [38] have complained that several high-order AR
models are sometimes involved and have proposed an alternative approach. Nevertheless,
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the algorithm making use of the autocovariances of an AR process using [37] could be
developed for SISO models [15] and even for seasonal SISO models [32]. For ARMAX
models, ref. [14] did not insist on algorithms but more on checking the invertibility of the
Fisher information matrix, the subject of the next section. For ARMAX or SISO models,
the Fisher information matrix is a sum of two integrals. The approach has however reached
its limitations because the construction of the polynomials involved in the procedure
becomes complex. For instance, the algorithm in [32] made use of a table with letters
identifying the regular polynomials (a to f) and the seasonal polynomials (A to F) among
others (the constant and the regression coefficient) involved as numerators or denominators
in the different integrals. For a VARMAX model, there are 3 polynomials, hence the
information matrix is a 3× 3 block matrix with, according to symmetry, 6 different blocks,
including 1 corresponding to the parameters in the Aj where a sum of two integrals appears.
A simple inspection of the expressions for the different blocks in [18] reveals that obtaining
the polynomials is a complex task.

4. A Sufficient Condition of Identifiability

The conditions for the identifiability of a VARMAX model have been studied by [25],
among others. They are repeated later. A clear indication of identifiability is the invert-
ibility of the Fisher information matrix. In this section, we derive a sufficient condition of
invertibility for the case where m = n and we enforce that the condition is not necessary,
as could be deduced from the wrong arguments of [17]. For an ARMAX model, i.e., when
n = m = 1, [14] proved that a necessary and sufficient condition for invertibility of the
Fisher information matrix is that the three polynomials have no common root. Indeed,
as will be seen, the result of [14] cannot be extended to vector processes.

We have already been reminded of the concepts of reciprocal polynomials and eigen-
values of matrix polynomials. There remains to define what are a unimodular polynomial
matrix and the common left divisor of matrix polynomials, see, e.g., [39].

A unimodular polynomial matrix U(z) is a polynomial square matrix such that its
determinant is a non-zero constant, instead of being a polynomial in z. Consequently,
U−1(z) is also a polynomial matrix. In general, the inverse of a square polynomial matrix
is a matrix with rational elements, not polynomial elements.

Three matrix polynomials A(z), B(z), and C(z) with the same number of rows n have
a common left divisor if there exist n× n polynomial matrices F(z), A′(z), B′(z), and C′(z),
such that A(z) = F(z)A′(z), B(z) = F(z)B′(z), and C(z) = F(z)C′(z). In matrix form, we
can write (A(z) B(z) C(z)) = F(z)(A′(z) B′(z) C′(z)). Then (A(z) B(z) C(z)) is called
a right multiple of F(z). A left divisor F(z) is called the greatest common left divisor of
(A(z) B(z) C(z)) if it is a right multiple of all left divisors. Multiplying a greatest common
left divisor to the right by any unimodular polynomial matrix yields another greatest
common left divisor. As indicated by (Section 2.2, [25]), a greatest common left divisor can
be constructed by elementary column operations: interchange any two columns, multiply
any column by a real number different from 0, and add a polynomial multiple of any
column to any column. Also, it corresponds to the right multiplication of (A(z) B(z) C(z))
by an appropriate unimodular matrix. The concept can also be defined for rectangular
matrices with the same number of rows although we will not consider that generalization.

Lemma 1. Assume that A(z), B(z), and C(z) have the prescribed degrees, respectively, p, q, and
r− 1, with det(A(z)) 6= 0 and det(B(z)) 6= 0, for z in the unit circle of C, and Σ is non-singular.
Assume also that xt has an absolutely continuous spectrum with spectral-density non-zero on a
set of positive measure on (−π, π]. Then a necessary and sufficient condition of identifiability of a
stationary VARMAX process satisfying (1) is (i) A(z), B(z), and C(z) have In as greatest common
left divisor, (ii) the matrix (Ap Bq Cr−1) has rank n.
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Proof. Since Σ is non-singular and given the assumptions on A(z) and B(z), the conditions
(8a), (8b), and (8c) of [40] are satisfied for A−1(z)B(z), and the lemma is a special case of
(Theorem 2, [40]) in the case (iii)2.

Since identifiability is equivalent to the inversibility of the Fisher information matrix,
we are interested in finding a sufficient condition for identifiability. Equivalently, we are
looking for a simple necessary condition for the lack of identifiability or the singularity of
the Fisher information matrix, when m = n.

We can state the following theorem.

Theorem 1. Under the assumptions of Lemma 1 and if m = n, a sufficient condition of invertibility
of the Fisher information matrix, F (ϑ), associated with the VARMAX model with the matrix
polynomials A(z), C(z), and B(z) of degree p, r− 1, q, respectively, is that the reciprocal matrix
polynomials Ã(z), B̃(z), and C̃(z) have no common eigenvalue.

Proof. If the lack of identifiability occurs because (i) in Lemma 1 is not satisfied, that
means that there exists a non-unimodular polynomial matrix F(z), i.e., with det(F(z))
different from a constant and matrices A′(z), B′(z), and C′(z), such that (A(z) B(z) C(z)) =
F(z)(A′(z) B′(z) C′(z)). Since the three polynomial matrices are square, we can consider
their determinant stored in a row vector for which

(det(A(z)) det(B(z)) det(C(z))) = det(F(z))(det(A′(z)) det(B′(z)) det(C′(z))),

where det(F(z)) is a polynomial different from a constant. Hence, the equations det(A(z)) = 0,
det(B(z)) = 0, and det(C(z)) = 0 have at least one common root. Consequently, the matrix
polynomials A(z), B(z), and C(z) have at least one common eigenvalue. The same is also
true for the reciprocal matrix polynomials Ã(z), B̃(z), and C̃(z).

Now, if the lack of identifiability occurs because (ii) in Lemma 1 is not satisfied,
that means that the matrix (Ap Bq Cr−1) has a rank strictly smaller than n. Conse-
quently, row n, say, of that matrix is a linear combination of the other n − 1 rows and
the matrices Ap, Bq, and Cr−1 do not have full rank. Hence the determinants det(A(z)),
det(B(z)), and det(C(z)) are polynomials of degree strictly smaller than, respectively, np,
nq, and n(r− 1). Each of the reciprocal matrix polynomials Ã(z), B̃(z), and C̃(z) have at
least an eigenvalue equal to 0, hence at least one common eigenvalue.

Note that [17] has implicitly assumed that the determinants of A(z) and B(z) have
their maximum degrees. For a discussion of identifiability without co-primeness, see [41].
For VARMA models, Ref. [24] has shown that it is not true to say, as [17] did, that the
conditions in Theorem 1 are also necessary for invertibility of the Fisher information matrix.
The approach of [17] used tensor Sylvester matrices which are a generalization of Sylvester
matrices for the case of matrix polynomials instead of scalar polynomials. Consequently,
the expectations of [19] mentioned in the second paragraph of Section 1 are not met for
VARMAX models. Moreover, since there are three matrix polynomials and C(z) does not
need to be a square matrix, the tensor Sylvester matrices are not useful. It is also not useful
to detail the alternative representations to (6) developed in (Sections 2.4 to 2.7, [19]) using
the tensor Sylvester matrices. Let us just say that these representations seem to be correct
in the sense that we have checked on all our examples for which m = n that the Fisher
information matrix obtained using them is identical to what is obtained using (7)–(9).

5. Numerical Experiments

The approach developed above can be used for any VARMAX model, for instance,
the one produced by [42] obtained using a least-squares-based iterative estimation method.
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To save space, we will use examples based on the simplest case, i.e., n = m = 2,
C0 = I2, and p = r = q = 1. We denote simply A = A1, B = B1, and C = C1. For our first
three examples, we will have:

Rx =

(
2.0 0.0
0.0 3.0

)
, Σ = I2.

Example 1. Let A, B, and C be defined by

A =

( −0.8 0.0
−0.5 −a

)
, B =

( −b 0.0
−0.5 −0.6

)
, C =

( −a 0.0
−0.5 −0.7

)
,

where a and b are constants. The eigenvalues of A(z), B(z), and C(z) are, respectively, the pairs
(0.8, a), (0.6, b), and (0.7, a) so that, whatever a and b, there is a common eigenvalue for A(z) and
C(z). Clearly, the model is identifiable except if a = b = 0.8 because then the factor 1− 0.8z can be
simplified on the first row of the system equation. In this case, because of the presence of the symbolic
constants a and b, the algorithm needs to be changed by adding a command Assuming, as shown
in Figure 5, with the mention that a and b are restricted to the interval [−1, 1]. It is of course not
possible to show here more of the matrix, see Supplementary Materials.

Take b = 0.8 to simplify the discussion. Then, using Mathematica, it can be seen that the
Fisher information matrix has a determinant proportional to (4− 5a) with a strictly positive factor,
and indeed it is 0 if, and only if, a = 0.8. If a = 0.8, the 2nd, 6th, and 10th rows of the Fisher
information matrix contain the fractions

Row2 =

(
1125
416

,
75
16

, 0, 0,−375
208

,−25
8

, 0, 0,−375
416

,−25
16

, 0, 0
)

,

Row6 =

(
−375

208
,−25

8
, 0, 0,

375
208

,
25
8

, 0, 0, 0, 0, 0, 0
)

,

Row10 =

(
−375

416
,−25

16
, 0, 0, 0, 0, 0, 0,

375
416

,
25
16

, 0, 0
)

,

and it is easy to check that −Row2 = −Row6 − Row10. Since the asymptotic information matrix is
singular, there is no need to show it.

As we said, the computations described in Section 3 were implemented as matrix computations
in Mathematica with coefficients given in the fractional form (e.g., 8/10 instead of 0.8) to have
exact results. The complete Mathematica notebook (Example51.nb) is provided as Supplementary
Materials, with its PDF output (Example51.pdf).
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Figure 5. Partial snapshot of the Mathematica notebook to treat Example 5.1. Note that the integration command
is prefixed by a constraining assumption.

roots (−0.6, 0), (−0.5, 0), and (−0.8, 0). Hence, we can consider the singularity of the Fisher
information matrix. This is confirmed by computation with Mathematica which shows
that the matrix has rank 10. Moreover, rows 3, 4, 7, 8, 11, and 12 of the Fisher information
matrix contain the fractions

Row3 =

(
4

105
,

38
2625

,
16
3

,
152
75

, 0, 0,−4,−38
25

, 0, 0,−4
3

,−38
75

)

Row4 =

(
152

2625
,

1444
65625

,
152
75

,
13276
1875

, 0, 0,−38
25

,−3319
625

, 0, 0,−38
75

,−3319
1875

)

Row7 =

(
−4

7
,− 38

175
,−4,−38

25
, 0, 0, 4,

38
25

, 0, 0, 0, 0
)

Row8 =

(
−152

175
,−1444

4375
,−38

25
,−3319

625
, 0, 0,

38
25

,
3319
625

, 0, 0, 0, 0
)

Row11 =

(
8

15
,

76
375

,−4
3

,−38
75

, 0, 0, 0, 0, 0, 0,
4
3

,
38
75

)

Row12 =

(
304
375

,
2888
9375

,−38
75

,−3319
1875

, 0, 0, 0, 0, 0, 0,
38
75

,
3319
1875

)

and it appears that Row3 = − Row11 − Row7 and Row4 = − Row8 − Row12. 310

Example 5.3. Let A, B, and C be defined by 311

A =

(
0.6 0.2
0.4 -0.6

)
, B =

(
0.5 0.76

0.25 −0.5

)
, C =

(
0.7 0.1
−0.5 −0.7

)
. (11)

This example is a generalization of Example 1 of the bivariate VARMA(1,1) model in 312

[17]. There, the two matrix polynomials had the same two eigenvalues. In [17], it was 313

concluded, wrongly, that the Fisher information matrix should be singular although the 314

numerical computations in Matlab lead to the smallest eigenvalue equal to 0.0067. This 315

incoherency was explained by numerical inaccuracy. In [24], Mélard gave a second view to 316

that example and discovered that the necessity and sufficiency of invertibility of the Fisher 317

information matrix is only a necessary condition. For the VARMAX model related to (11), 318

the three matrix polynomials have the same eigenvalues ±5/
√

11. Exact computations 319

with Mathematica indicate, however, that the determinant of the 12× 12 Fisher information 320

matrix is strictly positive and that the smallest eigenvalue is 0.0919. The inverse of the 321

asymptotic Fisher information matrix is shown in Figure 6. This example provides a 322

counter-example that the sufficient condition in Theorem 4.2 is not necessary. 323

Example 5.4. This example is based on the example in [7, Section 4.1] so with n = 2, m = 3, 324

p = q = r = 1, Σ = I2, and Rx(z) = I3. Let A1 = O2×2 , C0 = C1 = O2×3, and B1 be 325

defined by 326

B1 =

(
6/5 1/2
−7/5 −1/5

)
. (12)

Figure 5. Partial snapshot of the Mathematica notebook to treat Example 5.1. Note that the integration
command is prefixed by a constraining assumption.

Example 2. Let A, B, and C be defined by:

A =

(
0.6 0.2
0.0 0.0

)
, B =

(
0.5 0.76
0.0 0.0

)
, C =

(
0.8 0.0
0.0 0.0

)
.

This example is a generalization of a VARMA model considered by [24] based on an example in [43].
The determinants of A(z), B(z), and C(z) have degree 1, so we need to consider the reciprocal matrix
polynomials Ã(z), B̃(z), and C̃(z) which have respective roots (−0.6, 0), (−0.5, 0), and (−0.8, 0).
Hence, we can consider the singularity of the Fisher information matrix. This is confirmed by
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computation with Mathematica which shows that the matrix has rank 10. Moreover, rows 3, 4, 7, 8,
11, and 12 of the Fisher information matrix contain the fractions

Row3 =

(
4

105
,

38
2625

,
16
3

,
152
75

, 0, 0,−4,−38
25

, 0, 0,−4
3

,−38
75

)

Row4 =

(
152

2625
,

1444
65625

,
152
75

,
13276
1875

, 0, 0,−38
25

,−3319
625

, 0, 0,−38
75

,−3319
1875

)

Row7 =

(
−4

7
,− 38

175
,−4,−38

25
, 0, 0, 4,

38
25

, 0, 0, 0, 0
)

Row8 =

(
−152

175
,−1444

4375
,−38

25
,−3319

625
, 0, 0,

38
25

,
3319
625

, 0, 0, 0, 0
)

Row11 =

(
8

15
,

76
375

,−4
3

,−38
75

, 0, 0, 0, 0, 0, 0,
4
3

,
38
75

)

Row12 =

(
304
375

,
2888
9375

,−38
75

,−3319
1875

, 0, 0, 0, 0, 0, 0,
38
75

,
3319
1875

)

and it appears that Row3 = − Row11 − Row7 and Row4 = − Row8 − Row12.

Example 3. Let A, B, and C be defined by

A =

(
0.6 0.2
0.4 −0.6

)
, B =

(
0.5 0.76
0.25 −0.5

)
, C =

(
0.7 0.1
−0.5 −0.7

)
. (11)

This example is a generalization of the bivariate VARMA(1,1) model in (Example 1, [17]). There,
the two matrix polynomials had the same two eigenvalues. In [17], it was concluded, wrongly,
that the Fisher information matrix should be singular although the numerical computations in
Matlab lead to the smallest eigenvalue equal to 0.0067. This incoherency was explained by numerical
inaccuracy. In [24], Mélard gave a second view to that example and discovered that the necessity
and sufficiency of invertibility of the Fisher information matrix is only a necessary condition.
For the VARMAX model related to (11), the three matrix polynomials have the same eigenvalues
±5/
√

11. Exact computations with Mathematica indicate, however, that the determinant of the
12× 12 Fisher information matrix is strictly positive and that the smallest eigenvalue is 0.0919.
The inverse of the asymptotic Fisher information matrix is shown in Figure 6. This example provides
a counter-example that the sufficient condition in Theorem 1 is not necessary.

Figure 6. Output of the inverse of the Fisher information matrix for Example 3.

Example 4. This example is based on the example in (Section 4.1, [7]) so with n = 2, m = 3,
p = q = r = 1, Σ = I2, and Rx(z) = I3. Let A1 = O2×2 , C0 = C1 = O2×3, and B1 be
defined by:

B1 =

(
6/5 1/2
−7/5 −1/5

)
. (12)

The total number of parameters is 4 + 6 + 6 + 4 = 20. In (Section 4.1, [7]), the exact Fisher
information matrix was computed and compared to those obtained using the E4 Toolbox for Matlab,
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see [5,44], but (Appendix B, [7]) contains the results for the asymptotic Fisher information matrix
obtained using individual formulas in [18] for each of the 10 different blocks, the computation of
the integrals being performed using the algorithm in [33]. Here, we do not bother with complex
individual expressions and the computation of integrals. We simply use the notebook described in
Figure 1 and adapt the model specifications. See the resulting information matrix in Figure 7.

Figure 7. Output of the Fisher information matrix for Example 4.

6. Conclusions

In this paper, we have proposed for the first time an exact method to compute the
asymptotic Fisher information matrix of VARMAX processes, an algorithm for symbolic
computation software, and an implementation for Mathematica. It is based on an extension
of the method proposed in [19].

Therefore, we could not compare it with other algorithms in the general case. Never-
theless, we could compare it to the special case of an ARMAX process where there exists
alternative algorithms.

The open-source packages Octave and Maxima should be able to do the job since their
symbolic integration procedure can work on matrices of functions, but they do not work
presently. More developments would be needed to circumvent their failing integration.

We also provide a simple sufficient condition of invertibility of the asymptotic Fisher
information matrix and Example 3 shows that the condition is not necessary.

We did not examine the complexity of our algorithm because the concept is not
well-established for symbolic computation. Let us just say that, at this stage, it will take
much more running time, as seen in the special case discussed in Section 3. For instance,
the timings given for the ARMAX model of Section 3 show that the numerical method is
considerably faster. Also, the program implementing the algorithm relies on the capabilities
of the symbolic computation package and possible hardware and software limitations. This
is the price to pay for the ability to provide exact results, at least when the matrix entries
are given as fractions, not as decimal numbers. We believe, however, that the fact that,
when it works at least, the notebook that we have produced the result for an arbitrary
VARMAX model.

We should conclude with possible extensions of our results. There have been papers
on the asymptotic information matrix for extended models like ARMA models with peri-
odic coefficients [45,46], state-space models [46], Markov switching VARMA models [47],
or VARFIMA models [48]. It is possible that the approach described in this paper can be
extended to these extended models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/a16080364/s1, File Figure 1234.nb: Mathematica notebook containing
Figures 1–4; File Figure 1234.pdf: pdf version of the Mathematica notebook containing Figures 1–4;
File Example51.nb: Mathematica notebook corresponding to Example 5.1; File Example51.pdf: pdf
version of the Mathematica notebook corresponding to Example 5.1.

https://www.mdpi.com/article/10.3390/a16080364/s1
https://www.mdpi.com/article/10.3390/a16080364/s1
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33. Peterka, V.; Vidinčev, P. Rational-fraction approximation of transfer functions. In Proceedings of the IFAC Symposium on

Identification in Automatic Control Systems, Prague, Czech Republic, 12–17 June 1967.
34. Söderström, T. Description of a Program for Integrating Rational Functions Around the Unit Circle; Technical Report 8467R; Department

of Technology, Uppsala University: Uppsala, Sweden, 1984. [CrossRef]
35. Pham, D.T. Cramér-Rao bounds for AR parameter and reflection coefficient estimators. IEEE Trans. Acoust. Speech Signal Process.

1989, 37, 769–772. [CrossRef]
36. Tunnicliffe Wilson, G.T. Some efficient computational procedures for high order ARMA models. J. Stat. Comput. Simul. 1979,

8, 303–309.
37. Demeure, C.J.; Mullis, C.T. The Euclid algorithm and the fast computation of cross-covariance and autocovariance sequences.

IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 545–552. [CrossRef]
38. Godolphin, E.J.; Bane, S.R. On the evaluation of the information matrix for multiplicative seasonal time series models. J. Time Ser.

Anal. 2005, 27, 167–190. [CrossRef]
39. Hannan, E.J. The identification of vector mixed autoregressive-moving average systems. Biometrika 1969, 56, 223–225. [CrossRef]
40. Hannan, E.J. The identification problem for multiple equation systems with moving average errors. Econometrica 1971, 39, 223–225.

[CrossRef]
41. Wegge, L.L. Armax(p,r,q) Parameter Identifiablity without Coprimeness; Department of Economics Working Paper 12-17; University

of California: Davis, CA, USA, 2012. Available online: https://www.researchgate.net/publication/254396797_ARMAXprq_
Parameter_Identifiability_Without_Coprimeness (accessed on 19 May 2023).

42. Bao, B; Xu, Y.; Sheng, J.; Ding, R. Least squares based iterative parameter estimation algorithm for multivariable controlled ARMA
system modelling with finite measurement data. Math. Comput. Model. 2011, 53, 1664–1669.

43. Athanasopoulos, G.; Vahid, F. VARMA versus VAR for macroeconomic forecasting. J. Bus. Econ. Stat. 2008, 26, 237–252.
44. Terceiro, J.; Casals, J.M.; Jerez, M.; Serano, G.R.; Sotoca, S. Time Series Analysis Using MATLAB, Including a Complete MATLAB

Toolbox. 2000. Available online: http://www.ucm.es/info/icae/e4 (accessed on 19 May 2023).
45. Bentarzi, M.; Aknouche, A. Calculation of the Fisher information matrix for periodic ARMA models. Commun. Stat. Theory

Methods 2005, 34, 891–903.
46. Hamdi, F. Computing the exact Fisher information matrix of periodic state-space models. Commun. Stat. Theory Methods 2012,

41, 4182–4199.
47. Cavicchioli, M. Asymptotic Fisher information matrix of Markov switching VARMA models. J. Multivar. Anal. 2017, 157, 124–135.
48. Contreras-Reyes, J.E. Rényi entropy and divergence for VARFIMA processes based on characteristic and impulse response

functions. Chaos Solitons Fractals 2022, 160, 112268.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10463-012-0357-x
http://dx.doi.org/10.1016/0005-1098(86)90064-6
http://dx.doi.org/10.1111/j.1467-9892.2004.01863.x
http://dx.doi.org/10.1080/00949657908810273
http://dx.doi.org/10.1109/29.17535
http://dx.doi.org/10.1111/j.1467-9892.2005.00461.x
http://dx.doi.org/10.2307/1909577
http://dx.doi.org/10.1016/j.mcm.2010.12.034
http://dx.doi.org/10.1198/073500107000000313
http://dx.doi.org/10.1081/STA-200054428
http://dx.doi.org/10.1080/03610926.2011.569864
http://dx.doi.org/10.1016/j.jmva.2017.03.004
http://dx.doi.org/10.1016/j.chaos.2022.112268
 https://www.researchgate.net/publication/254396797_ARMAXprq_Parameter_Identifiability_Without_Coprimeness
 https://www.researchgate.net/publication/254396797_ARMAXprq_Parameter_Identifiability_Without_Coprimeness
http://www.ucm.es/info/icae/e4

	Introduction
	The Fisher Information Matrix of VARMAX Processes
	New Algorithm and Comparison with Other Algorithms
	A Sufficient Condition of Identifiability
	Numerical Experiments
	Conclusions
	References

