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Abstract: The automatic identification system (AIS) facilitates the monitoring of ship movements and
provides essential input parameters for traffic safety. Previous studies have employed AIS data to
detect behavioral anomalies and classify vessel types using supervised and unsupervised algorithms,
including deep learning techniques. The approach proposed in this work focuses on the recognition
of vessel types through the “Take One Class at a Time” (TOCAT) classification strategy. This approach
pivots on a collection of adaptive models rather than a single intricate algorithm. Using radar
data, these models are trained by taking into account aspects such as identifiers, position, velocity,
and heading. However, it purposefully excludes positional data to counteract the inconsistencies
stemming from route variations and irregular sampling frequencies. Using the given data, we
achieved a mean accuracy of 83% on a 6-class classification task.

Keywords: AIS; vessel classification; TOCAT

1. Introduction

The automatic identification system (AIS) serves as a vital monitoring apparatus for
maritime vessel surveillance. It supplies essential input parameters that feed into naval
traffic simulation models. These models are instrumental in conducting maritime risk
analysis and devising strategies for incident prevention. The AIS enables the monitoring
of maritime movements via the electronic exchange of navigational data between various
entities. This system interlinks vessels, onboard transmitters, ground stations, and satellites,
fostering a comprehensive network for efficient tracking. These data include information
that is relevant to traffic safety. Although the exchange of AIS data is legally mandatory
only for larger vessels, the usage is on the rise, enabling the deduction of various levels of
contextual information, from the characterization of ports and offshore platforms to the
spatial and temporal distribution of routes.

Numerous studies have harnessed AIS data to examine anomalies in ship behaviors,
intending to pinpoint potential navigational threats. Unsupervised anomaly detection
algorithms have been employed, using Ornstein–Uhlenbeck stochastic processes based on
the analysis of historical routes [1], or identifying outliers derived from the clustering of
behaviors and trajectories [2]. Other studies have concurrently used infrared images to
discriminate noise, irrelevant objects, and suspicious vessels [3]. Recently, deep learning
techniques have been applied, with models aimed at classifying suspicious trajectories
using convolutional neural networks (CNNs) and generative-discriminative learning algo-
rithms [4].

Within the specific context of vessel classification aimed at tracking fishing activities,
and more broadly, in the pursuit of augmenting maritime situational awareness (MSA),
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supervised multiclass methodologies have been implemented. These methodologies em-
ployed several algorithms, frequently including random forest models [5–7] and light
gradient-boosting machine (Light GBM) [8], to distinguish between different types of
vessels. In the latter case, a classification model was effectively implemented using 60-
dimensional feature vectors as input, although its application was confined to just three
distinct categories of vessels. These feature vectors encapsulated various metrics derived
from AIS trajectory data, such as the mean, first quartile, median, third quartile, standard
deviation, and coefficient of dispersion associated with changes in speed, course, longitude,
latitude, and displacement.

From the studies examined so far, it emerges that current approaches mainly rely on the
creation of a single, albeit complex, neural network to which the entire task of recognition
is delegated. From an innovative perspective, this paper proposes an alternative strategy
rooted in the idea of building an ecosystem of neural networks, diverse in both topological
and mathematical terms, and not based exclusively on gradient descent or decision trees.
In this regard, each network is purposefully designed to focus on a particular statistical
subset of ship trajectories, resulting in an enhancement in performance.

More specifically, this study has focused on the need to provide the Italian Navy with
an accurate and efficient solution for monitoring and classifying ship trajectories, employing
AIS signals in the context of the Mediterranean Sea. A significant problem arises when ships
refuse to respond to AIS signals or provide potentially misleading responses, making it
difficult for the Navy to correctly identify the type of ship and its intention. In this context,
a solution was needed that allowed the Navy to filter and prioritize its interventions,
enabling it to focus resources on cases that presented higher levels of risk or suspicion. This
involved the development of a system capable of distinguishing, for example, between a
fishing boat and a cruise ship based solely on trajectories, thereby improving the efficiency
and effectiveness of the Navy’s monitoring and response operations.

The approach presented here aims to recognize the type of vessel among N possible
classes using adaptive algorithms specifically trained for this purpose. The data considered
for the feature vector include the identifier, position, instantaneous velocity, and heading of
each vessel. The adaptive algorithms have been trained using data acquired from radars on
multiple vessels (after excluding the identifiers). Positional data are not included as vessels
may follow new routes that are not present in the database, making the algorithm less
reliable. Additionally, changes in vessel positions have been eliminated due to variations
in sampling frequency, which could result in unreliable acceleration and deceleration data.

2. Materials and Methods

The experiments that were conducted during the search are summarized in three steps:
(A) data preparation; (B) experimentation; (C) results analysis. The first step, data preparation,
is structured in additional three phases: (A.I) data cleaning; (A.II) data pre-processing; (A.III)
model definition;

2.1. A.I—Data Cleaning

To ensure a reliable dataset for the experiments, the following data-cleaning procedure
was implemented (Figure 1):

Following this process, the analysis sample comprises 3669 vessels, each with a min-
imum of 100 consecutive radar detection points. Furthermore, in accordance with the
Navy’s approval, six distinct vessel classes have been identified (N = 6), serving as the
targets for intelligent recognition by the adaptive models (Table 1). Note that it was not
possible to measure the acceleration of naval vessels as their positions were detected at
non-uniform time intervals.



Algorithms 2023, 16, 414 3 of 12

Figure 1. Flowchart of the data-cleaning procedure. (1) Identifying and eliminating any data-
formatting errors; (2) removing records with missing data; (3) discarding records with incorrect data
(such as velocity exceeding 100 knots, positional data on land, etc.); (4) excluding all vessels for
which the number of sequential detections is below a certain threshold (100 points); (5) excluding any
vessels that appear in two different and distant parts of the world within a short time span.

Table 1. Number of vessels belonging to each of the six classes, before and after data cleaning.
The maximum, minimum, and average readings of each class and the standard deviation from the
averages are also shown.

Data PAX-TMP TM TMC TMO TU TUG TOT

No. Vessels 871 1074 576 2857 849 303 6522
No. Vessels (no. pts ≥ 100) 502 634 323 1717 304 194 3669
Min Route Distance 103 101 101 101 100 100 100
Max Route Distance 4774 5315 3550 4813 3610 4985 4985
No. Routes-avg 1240.08 1143.85 873.88 950.60 570.01 1280.52 ~
No. Routes-std dev 956.32 971.77 602.44 650.53 495.49 937.40 ~

2.2. A.II—Data Pre-Processing

The strategic objective of this experiment is to represent each vessel through the
statistical profile of its route. In the dataset provided by the Navy, there are only two
variables that characterize the route of a vessel: the velocity and direction of the bow at the
time of radar detection. This is regardless of the stretch of sea crossed.

For example, by dividing the variable “velocity” into regular intervals (bins), you can
measure how often the velocity of each vessel falls within each of them, during its journey.
With an appropriate transformation, one can define the general probability with which a
vessel can be found in each of these intervals. By establishing a defined number of intervals
(bins) for each variable that characterizes the vessel’s navigation, the statistical profile of
each vessel’s route can be established through the use of the probability density function.

Utilizing these intervals, we decided to characterize the only two variables available
in the database for each vessel: Punctual velocity and direction at every radar detection
point along the route. However, it is important to note that these measurements are taken
in an unsystematic manner, rather than following a strict sampling plan.

A new variable is introduced to the statistical profile of the route of each vessel: delta
velocity. Table 2 illustrates the variables that define the statistical profile of the route of each
vessel, according to the pre-processing strategy adopted in experimentation no. 3.
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Table 2. A total of 67 variables that will be used to rewrite the database of 3669 vessels.

ID Variable Name Code Calculation No.
Intervals

1 Punctual velocity v(t) Available 22
2 Delta direction bow r(t, t− 1) |r(t)− r(t− 1)| 19
3 Delta velocity dv(t, t− 1) v(t)− v(t− 1) 23

4 Global average velocity 1 value
5 Global velocity variance 1 value
6 Global velocity variance with 1 value

Total variables 67

For illustrative purposes, we provide the statistical profile of the velocity, v(t), of
the change of route, r(t, t− 1), and of the dynamic delta of the velocity, dv(t, t− 1), of a
vessel randomly selected for each class. This is to give an idea of the type of input that the
adaptive algorithms must manage to define an analysis model that allows the automatic
classification of unknown vessels. See Figures 2–4.

Although Figures 2–4 represent examples of vessels randomly chosen in the database,
it is evident that these new variables should provide a reliable portrait of the navigation
style of each of the six types of vessels. In the following paragraphs, we will measure the
accuracy and precision of this third pre-processing strategy.

Figure 2. Statistical profile of the punctual velocity of 6 vessels randomly selected, each belonging to
one of the 6 classes, with the goal of automatic classification.

Figure 3. Statistical profile of the change of direction of route of 6 vessels randomly chosen, each
belonging to 6 target classes used for automatic classification.
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Figure 4. Statistical profile of the dynamic delta of the punctual velocity of 6 vessels randomly chosen,
each belonging to the 6 target classes used for the automatic classification.

2.3. A.III—Model Definition

To address the complexities in this classification problem, we propose a new approach,
denoted as ’Take One Class at a Time’ (TOCAT). This classification strategy operates on
two fundamental principles during the training/testing stage:

(a) Breakdown of a multinomial classification (1 of N) into N independent binary
classifications (1 of 2). Each class is treated separately: all records of the focus class are
assigned target 1 while all records belonging to other classes are assigned target 0. The
advantage of this system is that even when faced with a high number of classes N, these are
reduced to N binary classification processes. Therefore, instead of having a single process
that must decide the class membership of a record to N possible classes, there will be N
processes, each specialized in a single class, which must decide whether the record is of
that class or not;

(b) Free identification of the best algorithm for each class. As each class is treated
separately, each will be reviewed by multiple Machine Learning methods to select the type
of algorithm and structure that obtains the best predictive result in testing. This procedure,
which allows for the selection of a different algorithm for each class, can improve the overall
performance of the system.

TOCAT, therefore, is not tied to a specific algorithm, but draws on a variety of algo-
rithms to tackle individual bimodal classifications. At the end of the training/testing stage,
each class will be associated with the algorithm that achieved the best result, as assessed by
the values of Sensitivity and Specificity on the confusion matrix. Only the algorithm with
the best performance will be used for the recall stage on new records.

The output of the recall stage of the TOCAT system, in which unclassified new input
records are assigned a target by the N networks, is complex. Each network specialized in
a single target is called to respond; thus, there may be conflicts in the assignments. This
feature is an advantage when it is important to identify ambiguous records that need to be
reported by the system. Therefore, using the TOCAT strategy, it is possible for each new
pattern to be attributed a fuzzy membership (from 0 to 1) with each of the N Classes.

For the training phase, many adaptive algorithms are used (machine learning and
artificial neural networks). The results of these algorithms were finally filtered by a neural
meta-network [9,10], which significantly exceeded the results of the best basic algorithm.
The different algorithms were implemented through two types of Software, accredited for
scientific research: (a) Supervised ANNs (version 27.5, Semeion, 1999–2017); (b) Meta Net Multi
Train (version 3.5, Semeion, 2010–2015).

For the experimental phase, a set of algorithms was utilized to explore and ana-
lyze the data. Some of the algorithms are commonly used in the literature (kNN [11,12],
naive Bayes [13–17], majority vote [9,10,18]), while the remaining algorithms have been
specifically developed by Semeion for pattern recognition. The objective was to compare
the effectiveness and efficiency of the algorithms and determine which ones would yield
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the most accurate and reliable results: (a) backpropagation (Bp) [19–21]; (b) deep learning
(Deep) [22–24]; (c) adaptive vector quantization (AVQ) [25–28]; (d) kNN [11,12]; (e) meta Bayes
(Mb) [29]; (f) Conic Net [30]; (g) Sine Net (Sn) [31]; (h) bimodal (Bm) [32]; (i) majority vote
(Mv) [9]; (j) naive Bayes [13–17]; (k) supervised contractive map (SVCm) [32]. The valida-
tion protocol used for all the algorithms is the training–testing protocol [33–35] (Figure 5:
Validation protocol—5 × 2 CV (training–testing)).

Figure 5. Validation protocol—5 × 2 CV (training–testing)).

In this experiment, three classification lines are used: (a) Classification 1 of 5: The
attempt is to automatically classify each vessel in one of the five possible classes. In this
specific case, class 2 (TM9) is excluded, as the results appear to be difficult to interpret
and potentially confusing. This complexity arises from the indiscriminate inclusion of
vastly different types of vessels within this class. (b) Classification 1 of 6: The attempt is
to automatically classify each vessel in one of the six classes provided; (c) Classification
“Take One Class at a Time” (TOCAT): Adaptive algorithms are trained to recognize when
each vessel belongs or not to a specification of the six possible classes, and the operation is
repeated by placing one class at a time in relation to all the others. This procedure generates
six different datasets, each of which is subjected to two-class validation (focused class
versus other classes).

3. Results
3.1. Exploratory Analysis

At this juncture, an unsupervised neural network is deployed once more to discern
the extent to which our pre-processing step can spontaneously segregate the database into
the six distinct vessel classes. A self-organizing map (SOM) [28] is used for this purpose
with a square grid of 15 × 15, capable of generating 225 codebooks, where each codebook
represents a similar group of vessels; Figure 6 shows the results of the SOM software.

Figure 6 illustrates a more defined spontaneous separation of vessels into the six
targeted classes for classification, compared to the outputs produced by previous pre-
processing strategies. Class 2 (TM) remains the most difficult to characterize and therefore
to be separated from the others. In all cases, even with this pre-processing strategy, the defi-
nition of the classification model is very complex due to the notable non-linear separability
of some classes.

Figure 7 shows the projection grid of the SOM with the overlap percentage of vessels
of different classes in each of the 225 codebook cells.

The results of the analysis using SOMs highlight the potential of the selected set of
variables. Each class is distributed in specific areas of the map, even though the resulting
overlaps between classes make it difficult to obtain an accurate classification system that
can be used in operational mode.
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Figure 6. PAX-TMP = Som1; TM = Som2; TMC = Som3; TMO = Som4; TU = Som5; TUG = Som6.

Figure 7. A 15x15 grid of the SOM with the overlap percentage in each cell of vessels belonging to
different classes (PAX-TMP = 1; TM = 2; TMC = 3; TMO = 4; TU = 5; TUG = 6).

3.2. Results Analysis
3.2.1. Classification with Five Classes

Table 3 shows the results of classifications one of five.

3.2.2. Classification with Six Classes

Table 4 shows the results obtained by repeating the experiment with all six classes. In
this case, the use of the meta-network is ineffective.

The outcomes of this experiment hold merit academically, but their practical applica-
bility remains limited.
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3.2.3. Class Classification of TOCAT

In this experiment, we present results from the six one-of-two classifications (class vs.
other classes) to determine the sensitivity and specificity for each classification, as detailed
in (Tables 5–10).

Table 3. Results of the classifications on 5 classes. Class 2 (TM) is excluded.

Adaptive Algorithms PAX-TMP TMC TMO TU TUG A.Mean W.Mean Error SW

Mb 0.7602 0.6757 0.9468 0.8593 0.6591 0.7802 0.8622 193 Sem. no. 55
Mv 0.6878 0.6622 0.885 0.837 0.7614 0.7667 0.818 255 Sem. no. 55
DeepSn 0.6742 0.6554 0.8702 0.8148 0.7727 0.7575 0.8051 273 Sem. no. 12
kNN_N1 0.6471 0.7365 0.9345 0.8667 0.5682 0.7506 0.8387 226 Sem. no. 12
DeepBp 0.6109 0.6959 0.8307 0.7852 0.8295 0.7504 0.7773 312 Sem. no. 12
DeepBm 0.7376 0.6351 0.8863 0.8222 0.6591 0.7481 0.8158 258 Sem. no. 12
K-CM 0.6471 0.723 0.9333 0.8593 0.5682 0.7461 0.8358 230 Sem. no. 12
DeepConic 0.6968 0.6216 0.8764 0.837 0.6818 0.7427 0.8051 273 Sem. no. 12
Bm 0.6968 0.6892 0.8591 0.8222 0.6364 0.7407 0.798 283 Sem. no. 12
Sn 0.6516 0.7095 0.8739 0.8667 0.5909 0.7385 0.803 276 Sem. no. 12
Conic 0.6561 0.6081 0.8826 0.8519 0.6932 0.7384 0.803 276 Sem. no. 12
Bp 0.7104 0.7162 0.8467 0.8148 0.5909 0.7358 0.7923 291 Sem. no. 12

Table 4. Results of the classification on 6 classes.

Adaptive Algorithms PAX-TMP TM TMC TMO TU TUG A.Mean W.Mean Error SW

kNN_1 63.89% 50.95% 75.51% 86.79% 80.95% 42.16% 66.71% 73.45% 481 Sem. no. 12
Bm 71.43% 21.84% 67.35% 84.91% 78.91% 55.88% 63.39% 68.49% 571 Sem. no. 12
Conic 68.65% 38.61% 67.35% 81.72% 71.43% 45.10% 62.14% 68.32% 574 Sem. no. 12
DeepBp 71.83% 37.97% 61.90% 76.53% 79.59% 34.31% 60.36% 65.84% 619 Sem. no. 12
SVCm 71.83% 27.53% 63.95% 83.96% 72.79% 41.18% 60.21% 67.49% 589 Sem. no. 12
DeepConic 59.52% 37.34% 63.95% 77.48% 71.43% 42.16% 58.65% 64.40% 645 Sem. no. 12
AVQ 50.00% 33.86% 71.43% 81.72% 74.83% 30.39% 57.04% 64.68% 640 Sem. no. 12
Naive Bayes 11.11% 0.32% 41.50% 75.83% 0.68% 97.06% 37.75% 45.97% 979 Sem. no. 12

Table 5. Classification of Class 1: PAX-TMP.

ANN Class1 Others A.Mean W.Mean Errors

Conic(C1) 81.12% 91.03% 86.08% 89.65% 185
DeepConic(C1) 80.32% 91.61% 85.97% 90.04% 178
DeepBm(C1) 80.32% 91.61% 85.97% 90.04% 178
FFBp(C1) 79.92% 90.57% 85.25% 89.09% 195
DeepBp(C1) 78.71% 93.50% 86.11% 91.44% 153
DeepSn(C1) 76.31% 92.65% 84.48% 90.37% 172
kNN(C1) 74.30% 95.77% 85.04% 92.78% 129

Table 6. Classification of Class 2: PAX-TM.

ANN Class1 Others A.Mean W.Mean Errors

Conic(C2) 72.03% 70.01% 71.02% 70.35% 539
DeepConic(C2) 68.81% 70.74% 69.77% 70.41% 538
DeepBp(C2) 64.95% 75.71% 70.33% 73.87% 475
FFBm(C2) 62.70% 76.05% 69.37% 73.76% 477
DeepBm(C2) 62.06% 77.24% 69.65% 74.64% 461
kNN(C2) 58.52% 93.56% 76.04% 87.57% 226
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Table 7. Classification of Class 3: TMC.

ANN Class1 Others A.Mean W.Mean Errors

Deep_Conic(C3) 76.36% 88.70% 82.53% 87.57% 223
FFBm(C3) 75.76% 90.67% 83.21% 89.30% 192
Conic(C3) 73.94% 93.43% 83.69% 91.64% 150
Conic(C3) 72.73% 93.25% 82.99% 91.36% 155
DeepBp(C3) 71.52% 92.69% 82.11% 90.75% 166
kNN(C3) 70.30% 98.16% 84.23% 95.60% 79

Table 8. Classification of Class 4: TMO.

ANN Class1 Others A.Mean W.Mean Errors

kNN(C4) 88.71% 87.34% 88.03% 87.99% 218
FFBp(C4) 84.52% 82.74% 83.63% 83.58% 298
DeepBm(C4) 85.10% 81.17% 83.14% 83.03% 308
DeepBp(C4) 84.52% 80.65% 82.58% 82.48% 318

Table 9. Classification of Class 5: TU.

ANN Class1 Others A.Mean W.Mean Errors

DeepBm(C5) 88.00% 88.11% 88.06% 88.10% 207
DeepBp(C5) 81.33% 93.90% 87.62% 92.82% 125
Conic(C5) 80.67% 96.42% 88.54% 95.06% 86
kNN(C5) 80.00% 98.93% 89.47% 97.30% 47
FFBp(C5) 80.00% 97.67% 88.84% 96.15% 67
DeepConic(C5) 79.33% 96.92% 88.13% 95.40% 80

Table 10. Classification of Class 6: TUG.

ANN Class1 Others A.Mean W.Mean Errors

Conic(C6) 88.24% 80.51% 84.37% 80.95% 346
DeepBm(C6) 84.31% 76.14% 80.23% 76.60% 425
DeepConic(C6) 63.73% 91.66% 77.69% 90.09% 180
DeepBp(C6) 65.69% 89.26% 77.48% 87.94% 219
FFBp(C6) 65.69% 88.62% 77.15% 87.33% 230
kNN(C6) 53.92% 98.72% 76.32% 96.20% 69

Table 11 summarizes, in an overview, the results of the best algorithms in each of the
6 classifications

Table 11. The best algorithms of the 6 classifications with the TOCAT procedure.

Classes Algorithm Sensibility Specificity A.Mean W.Mean Errors

Class 1 PAX-TMP Conic 81.12% 91.03% 86.08% 89.65% 185
Class 2 TM Conic 72.03% 70.01% 71.02% 70.35% 539
Class 3 TMC DeepConic 76.36% 88.70% 82.53% 87.57% 223
Class 4 TMO kNN_1 88.71% 87.34% 88.03% 87.99% 218
Class 5 TU DeepBm 88.00% 88.11% 88.06% 88.10% 207
Class 6 TUG Conic 88.24% 80.51% 84.37% 80.95% 346

Average × Class 82.41% 84.28% 83.35% 84.10% 286.33

4. Discussion

Significant findings have emerged. Firstly, the study highlighted the potential of
an approach that involves transforming a sparse and incomplete dataset of vessel paths
into a consistent set of features that could be universally applicable across all types of
vessels, despite variations in the number of observations. While the individual techniques
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employed to convert vessel trajectories into fixed features were not new, the innovation
lay in their combined application, resulting in the transformation of temporal flows into
spatial features, derived from highly heterogeneous data.

The second significant result was the development of the TOCAT (take one class
at a time) research design. While the TOCAT strategy itself is not entirely new, as it is
already used in support vector machine algorithms [36,37] for multinomial classifications,
our innovative application of this processing strategy was significant. Existing methods
typically rely on the development of a singular, albeit sophisticated, convolutional or
recurrent neural network, which shoulders the full responsibility of recognition. The
TOCAT strategy, however, hinges on the concept of creating a diversified ecosystem of
neural networks, varying both topologically and mathematically, which is not strictly
reliant on gradient descent or decision trees. Each of these networks is adept at specializing
in a statistical niche within the vessels’ trajectories.

By utilizing different artificial neural networks (ANNs) and machine learning tech-
niques for distinct “one of two” classification tasks, we achieved diverse mathematical
and topological representations for each ANN used. This diversity enhanced classification
accuracy, as each “one of two” classification tasks could leverage a specific ANN suitable
for recognizing a particular class of vessels. The efficacy of this mathematical “biodiversity”
in improving the final results represents an important milestone in this work. In summary,
the collective integration of small, distinct artificial systems outperformed a single large
ANN attempting to comprehend the entire scope independently.

5. Conclusions

This paper proposes a novel approach to vessel classification, using the normalization
of sparse and incomplete vessel trajectory data into a universal set of features, which is
applicable despite varying observation numbers. Our model utilizes the TOCAT (take one
class at a time) design, a strategy typically used in support vector machine algorithms,
but uniquely applied in this study to individual ’one versus rest’ classification tasks using
a variety of diverse artificial neural networks (ANNs). We derived distinct mathemati-
cal and topological representations from vessel trajectory data for each ’one versus rest’
classification task, leveraging the proven capabilities of specific ANNs for recognizing
certain vessel classes. The findings, which show a mean accuracy of 83% in a six-class
classification task, suggest that the collaborative employment of these specialized ANNs
could potentially outperform a single, larger ANN assigned to the entire classification task.
During the experiments, we also pinpointed several critical aspects tied to data processing:
primarily, the need for statistical sampling of the AIS signals from each vessel’s trajectories.
This method enables a robust estimation of vital parameters such as the vessel’s speed,
deceleration, and acceleration. Furthermore, as anticipated, the analysis highlights the im-
portance of avoiding the use of overly complex algorithms, especially when the number of
input variables is limited and the samples have not been collected through robust sampling
procedures. Future research endeavors may explore the scalability and generalizability of
the proposed approaches and extend their applications to other domains beyond vessel
recognition and comparisons with the most recent techniques existing in the field.
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