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Abstract: Heart disease is a global health concern of paramount importance, causing a significant
number of fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in
preventing adverse outcomes and improving patient well-being, thereby creating a growing demand
for intelligent approaches to predict heart disease effectively. This paper introduces an ensemble
heuristic–metaheuristic feature fusion learning (EHMFFL) algorithm for heart disease diagnosis using
tabular data. Within the EHMFFL algorithm, a diverse ensemble learning model is crafted, featuring
different feature subsets for each heterogeneous base learner, including support vector machine,
K-nearest neighbors, logistic regression, random forest, naive bayes, decision tree, and XGBoost
techniques. The primary objective is to identify the most pertinent features for each base learner,
leveraging a combined heuristic–metaheuristic approach that integrates the heuristic knowledge of
the Pearson correlation coefficient with the metaheuristic-driven grey wolf optimizer. The second
objective is to aggregate the decision outcomes of the various base learners through ensemble learning.
The performance of the EHMFFL algorithm is rigorously assessed using the Cleveland and Statlog
datasets, yielding remarkable results with an accuracy of 91.8% and 88.9%, respectively, surpassing
state-of-the-art techniques in heart disease diagnosis. These findings underscore the potential of
the EHMFFL algorithm in enhancing diagnostic accuracy for heart disease and providing valuable
support to clinicians in making more informed decisions regarding patient care.

Keywords: heart disease diagnosis; ensemble learning; feature selection; heuristics; metaheuristics;
Pearson correlation coefficient (PCC); grey wolf optimizer (GWO)

1. Introduction

Currently, a person’s workload has significantly increased as a result of more work.
There is a great likelihood that the person will get heart disease as a result of this terrible
situation, which cannot be avoided [1–3]. Heart diseases are brought on by a reduction
in the amount of blood circulating to the brain, heart, lungs, and other vital organs. The
most prevalent and least serious kind of cardiovascular illness is congestive heart failure.
Blood is transported to the heart by blood veins in the human anatomy. Defective heart
valves, which can cause heart failure, are one of the additional causes of heart disease.
Anesthesia may also be present together with upper abdominal muscle pain, which is
a characteristic indication of heart illness. It is advised to reduce blood pressure, lower
cholesterol, and exercise frequently to reduce the risk of heart disease. Angina pectoris,
dilated cardiomyopathy, stroke, and congestive heart failure are among the conditions
most closely associated with heart disease. As a result, it is important to keep an eye on
indicators of cardiovascular disease and speak with medical professionals [4–6].

Algorithms 2024, 17, 34. https://doi.org/10.3390/a17010034 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17010034
https://doi.org/10.3390/a17010034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7370-4760
https://orcid.org/0000-0003-2945-9387
https://orcid.org/0000-0002-0709-3591
https://doi.org/10.3390/a17010034
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17010034?type=check_update&version=1


Algorithms 2024, 17, 34 2 of 23

Cardiovascular diseases are one of the most prevalent causes of global mortality, and
their diagnosis and prediction have consistently posed substantial challenges due to their
dynamic nature. Risk factors contributing to the elevated risk of heart disease encompass
age, gender, smoking habits, family medical history, cholesterol levels, poor dietary choices,
high blood pressure, obesity, physical inactivity, and alcohol consumption. Additionally,
hereditary factors like high blood pressure and diabetes heighten susceptibility to heart
disease. Certain risk factors can be influenced by individual choices. In conjunction with
the aforementioned risk factors, lifestyle decisions, such as dietary patterns, sedentary
behavior, and obesity, are recognized as significant contributors [7–9]. Heart conditions
manifest in various forms, including myocarditis, angina pectoris, congestive heart failure,
cardiomyopathy, congenital heart disease, and coronary heart disease. Manual calculations
to assess the likelihood of heart disease based on these risk factors are intricate, necessitating
the adoption of computer-assisted techniques for efficient and accurate evaluation [10].

Machine learning is effective for a wide range of problems. Utilizing the values of
independent variables to predict the value of a dependent variable is one use for this
technique. Since the healthcare industry has huge data resources that are challenging to
manage manually, it is an application area for data mining. Even in wealthy nations, heart
disease has been found to be one of the leading causes of death. The hazards are either not
recognized or are not recognized until much later, which is one of the causes of fatalities
from heart disease. Machine learning techniques, on the other hand, can be helpful in
overcoming this issue and enabling early risk prediction [11].

In this study, we introduce an advanced method for detecting and predicting heart
disease patients using ensemble learning, feature selection, and heuristic–metaheuristic
optimization. The presented method has two stages. In the first stage, we utilize a com-
bined heuristic–metaheuristic feature selection algorithm based on the Pearson correlation
coefficient (PCC) and the grey wolf optimizer (GWO), called the PCC–GWO, to increase
the accuracy and performance of each machine learning model. In the second stage, a
heterogeneous ensemble learning model is applied to generate the final outputs based on
the aggregation of the opinion of the different base learners. As a result, the following
significantly contribute to this evolved diagnosis model of heart disease:

• The introduction of an advanced ensemble heuristic–metaheuristic feature fusion
learning (EHMFFL) algorithm as a robust model in predicting heart diseases;

• The construction of a heterogeneous ensemble learning model for heart disease di-
agnosis comprising seven base learners: support vector machine (SVM), K-nearest
neighbors (KNNs), logistic regression (LR), random forest (RF), naive bayes (NB),
decision tree (DT), and eXtreme Gradient Boosting (XGBoost) techniques;

• The presentation of a combined heuristic–metaheuristic algorithm (called PCC–GWO)
to select an optimal feature subset for each machine learning model, separately. In
the PCC–GWO model, at first, the PCC is used to calculate an importance score for
each feature. Then, these scores are used as heuristic knowledge to guide the search
process of the GWO for obtaining the best achievable feature subset;

• The analysis of the relationships between different variables within the cardiovascular
datasets using a correlation heat map (CHM), and the evaluation of the performance
of the EHMFFL algorithm using different measures: accuracy, precision, recall, F1
score, specificity, and the receiver operating characteristic (ROC);

• The successful development of the EHMFFL algorithm in MATLAB R2022b for heart
disease prediction using the Cleveland and Statlog datasets, respectively.

The rest of this paper is organized as follows: In the Section 2, we examine related
works. The Section 3 provides details on the two datasets used in this paper. The proposed
EHMFFL algorithm is introduced in the Section 4. The results are provided and assessed in
the Section 5 and, finally, concluding remarks are presented in the Section 6.
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2. Literature Review

In this section, we delve into the realm of machine learning, ensemble learning,
and deep learning techniques. Machine learning methods for classification are widely
adopted across various industries, and researchers are continually working on advancing
their categorization capabilities. One such approach is ensemble learning, which can be
either homogeneous or heterogeneous. Early techniques, such as bootstrap aggregating
(bagging) [12] and boosting [13], exemplify the power of ensemble learning, often leading
to improved classification performance when implemented. In addition to these, various
strategies have been explored by researchers, including methods like majority voting, to
effectively combine multiple classifiers or partitions for enhanced results.

2.1. Machine Learning Approaches

Miao and Miao [14] underscored the critical significance of early detection and diag-
nosis of coronary heart disease (CHD), a leading global cause of mortality. To facilitate the
training and evaluation of diverse deep neural network (DNN) architectures, including con-
volutional neural networks and recurrent neural networks, they curated a comprehensive
dataset comprising 303 patients and 14 clinical attributes, encompassing factors like age,
gender, and cholesterol levels. Their results demonstrated that the proposed DNN models
outperformed established methods like logistic regression and decision trees, showcasing
high accuracy in CHD detection. Furthermore, feature importance analysis revealed that
age, maximum heart rate, and ST segment depression, were the three most critical variables
for predicting CHD.

Vijayashree and Sultana [15] introduced a machine learning framework designed for
feature selection in heart disease classification, leveraging an enhanced particle swarm
optimization (PSO) algorithm in conjunction with an SVM classifier. The innovative
PSO algorithm, crafted with the unique blend of a hybrid mutation operator, velocity
clamping, and adaptive inertia weight, aimed to overcome the limitations of conventional
PSO methods. Evaluating the framework using the Cleveland heart disease dataset, the
results showcased its superiority over alternative feature selection techniques. Notably, the
framework exhibited a high degree of accuracy in classifying heart disease, underscoring
its potential for improving the accuracy and effectiveness of heart disease diagnosis.

Waigi et al. [16] presented a study focused on predicting the risk of heart disease
by employing advanced machine learning techniques. The research explores innovative
approaches to risk assessment in cardiovascular health, utilizing a diverse range of machine
learning algorithms. By leveraging extensive data and applying advanced analytics, the
study aims to enhance the accuracy and effectiveness of heart disease risk prediction. This
work contributes to the field of cardiovascular medicine and underscores the potential of
machine learning in improving heart disease risk assessment and patient care.

Tuli et al. [17] presented HealthFog, a smart healthcare system that used ensemble
deep learning techniques for the autonomous diagnosis of cardiac illnesses in an integrated
Internet of Things (IoT) and fog computing environment. The system was able to effectively
diagnose heart illnesses by processing real-time data from numerous sensors and devices,
including blood pressure monitors and electrocardiogram (ECG) devices. The HealthFog
system’s patient monitoring module, data preprocessing module, feature extraction and se-
lection module, and classification module, were all covered in the authors’ full architecture
presentation. The findings demonstrated that the HealthFog system performed better than
other current systems in terms of precision and timeliness.

Jindal et al. [18] focused on heart disease prediction through the application of nu-
merous algorithms, including KNNs, LR, and RF. Their research explores the utilization of
these algorithms to enhance the accuracy of heart disease risk assessment and prediction.
By leveraging advanced data analytics and machine learning techniques, the study aims to
contribute to the field of cardiovascular medicine and improve the effectiveness of heart
disease prediction, potentially leading to better patient care.
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Sarra et al. [19] reported on a study that used machine learning and statistical analysis
to increase the precision of heart disease prediction. They chose the most important
candidate features from a list of candidate features using the two statistical models. On the
basis of the chosen features, they then applied a support vector machine to create prediction
models. According to the findings, the two statistical models and the SVM combination
had the highest level of success in predicting heart disease.

Aliyar Vellameeran and Brindha [20] introduced a new type of deep belief network
(DBN) for diagnosing heart disease utilizing IoT wearable medical devices that was sup-
ported with optimal feature selection. The main objective of the study was to train the
DBN model by analyzing and selecting the most important features from a big dataset.
The proposed method was evaluated using actual data gathered from wearable medical
devices connected to the Internet of Things, and it has shown promising results in correctly
identifying heart disease.

2.2. Ensemble Learning Approaches

In the case of ensemble learning models, Latha and Jeeva [21] examined the effective-
ness of several machine learning techniques, including support vector machines, decision
trees, and random forests. They contrasted the distinct methods with an ensemble method
that brought these models together. The results showed that the ensemble method out-
performed the individual algorithms in terms of prediction accuracy, sensitivity, and
specificity. The study also emphasized the importance of feature selection in raising the
model’s accuracy.

Ali et al. [22] have innovated a smart healthcare monitoring system designed to
integrate multiple clinical data sources for accurate heart disease prediction. This system
employs a combination of deep learning models, outperforming traditional methods in
terms of accuracy. A standout feature of this system is its real-time patient data monitoring
capability, facilitating timely intervention and heart disease prevention. By incorporating
ECG readings, blood pressure, body temperature, and other pertinent clinical factors, the
system provides precise cardiac illness prognosis.

Shorewala [23] delved into the realm of coronary heart disease early detection, with
a specific focus on harnessing the potential of ensemble methods. They pinpointed the
most effective approach for early disease detection by rigorously analyzing a spectrum
of models and algorithms, including DT, RF, SVM, KNNs, and artificial neural networks
(ANNs). The results underscore the superiority of ensemble approaches, which seamlessly
integrate multiple algorithms, yielding the highest accuracy in disease prediction. This
research highlights the significance of ensemble techniques in enhancing early detection
capabilities for coronary heart disease.

Ghasemi Darehnaei et al. [24] introduced an approach known as swarm intelligence
ensemble deep transfer learning (SI-EDTL), designed for the task of multiple vehicle
detection in images captured by unmanned aerial vehicles (UAVs). This method combines
the power of swarm intelligence algorithms and deep transfer learning to enhance the
accuracy of vehicle detection in UAV imagery. The research demonstrated the effectiveness
of SI-EDTL, offering a solution for the challenging task of detecting multiple vehicles
in aerial images, which has significant applications in fields such as surveillance and
autonomous navigation.

Shokouhifar et al. [25] have presented a novel approach for accurately measuring
arm volume in patients with lymphedema. This method utilized a three-stage ensemble
deep learning framework empowered by swarm intelligence techniques. By combining
the power of deep learning and swarm intelligence, the research aimed to enhance the
precision of arm volume measurement, which is crucial in the diagnosis and management
of lymphedema. The proposed model demonstrated promising results, showcasing its
potential to improve healthcare outcomes for individuals with lymphedema by providing
more accurate and reliable measurements of arm volume.
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2.3. Feature Selection Algorithms

There are also various feature selection techniques applied for the enhancement of
prediction accuracy in heart diseases. For example, Nagarajan et al. [26] introduce a feature
selection and classification model tailored for the prediction of heart disease. The research
explores advanced techniques for selecting relevant features and enhancing the accuracy of
heart disease prediction. Their results showed that this technique can efficiently improve the
effectiveness of early detection and risk assessment for heart disease, potentially benefiting
both patients and healthcare providers.

Al-Yarimi et al. [27] presented a heart disease prediction model using supervised
learning techniques. The focus of their study was on feature optimization, where they
employ discrete weights to enhance the accuracy of heart disease prediction models. By
selecting and assigning weights to relevant features, the research aims to improve the
efficiency and precision of predictive models in diagnosing heart disease.

Ahmad et al. [28] conducted a comparative investigation on the optimal medical
diagnosis of human heart disease using machine learning techniques. They specifically
examined the impact of sequential feature selection, comparing its inclusion with conven-
tional machine learning approaches that do not employ this feature selection method. The
research aimed to enhance the efficiency and accuracy of heart disease diagnosis through
the identification of the most relevant features. They provided some insights into the utility
of sequential feature selection in improving the performance of machine learning-based
heart disease diagnostic models.

Pathan et al. [29] proposed an analysis to assess the influence of feature selection on
the accuracy of heart disease prediction. The study specifically focused on understanding
how different feature selection techniques could enhance or affect the accuracy of predictive
models for heart disease. By investigating the impact of feature selection, the research
aimed to optimize the heart disease prediction model.

Zhang et al. [30] developed a heart disease prediction model that combines feature
selection methods with deep neural networks. The research focused on optimizing the
feature selection process to enhance the accuracy of heart disease prediction. By utilizing
deep neural networks, they achieved more efficient results for diagnosing heart disease,
which resulted in the development of diagnostic tools for heart disease diagnosis.

2.4. Our Contributions Compared with the Literature

This paper addresses a significant gap in the existing literature by introducing an
innovative EHMFFL algorithm for heart disease diagnosis using tabular data. The EHMFFL
approach stands out by seamlessly integrating ensemble learning and feature fusion into
a comprehensive framework. The EHMFFL algorithm not only leverages an ensemble
of base learners, including SVM, KNNs, LR, RF, NB, DT, and XGBoost techniques, but it
also combines the advantages of heuristic–metaheuristic approaches for the selection of
a specific feature subset for each base learner within the ensemble learning model. The
hybridization of the PCC as a heuristic knowledge source with the metaheuristic-driven
GWO sets our combined PCC–GWO feature selection algorithm apart.

3. Data Gathering

In our analysis, we utilize two well-established datasets on cardiac illnesses sourced
from the University of California’s Irvine Machine Learning Repository, specifically the
Cleveland and Statlog datasets [31,32]. Table 1 details the attributes common to both
datasets, with the final attribute serving as an indicator of a person’s heart disease status.
To gain deeper insights into the feature distribution, we present Figures 1 and 2, which illus-
trate the relationship between the maximum heart rate and age, as well as the distribution
of the remaining 12 features, respectively.
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Table 1. Description of the attributes in the datasets.

Feature Description Type Values

Age Age of the patients Numeric Years
Sex Gender of the patients Categorial M, F
Ca Number of major vessels Categorial 0–4
Chol Serum cholesterol Numeric mg/dL
Exang Exercise induced angina Categorial Yes = 1, No = 0
Cp Chest pain type Categorial Male = 1, Female = 0
Oldpeak ST depression induced by exercise relative to rest Numeric 0–6.2
Fbs Fasting blood sugar Categorial mg/dL
Restecg Resting electrocardiographic Categorial 0, 1, 2
Thal Normal; Fixed defect; Reversible defect Categorial 0, 1, 2, 3
Thalach Maximum heart rate achieved Numeric 71–202
Slope Slope of the peak exercise ST segment Categorial 0, 1, 2
Trestbps Resting blood pressure Numeric 94–200
Num Heart disease status Categorial Yes/No

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 24 
 

illustrate the relationship between the maximum heart rate and age, as well as the distri-
bution of the remaining 12 features, respectively. 

The Cleveland dataset comprises medical records from individuals who underwent 
heart disease evaluations at the Cleveland Clinic Foundation in the late 1980s, containing 
303 instances, each representing a patient, and encompassing 13 features, including criti-
cal factors like age, gender, blood pressure, cholesterol level, chest pain presence, and re-
sults from various medical tests. This dataset has played a pivotal role in the development 
and testing of machine learning algorithms aimed at predicting cardiac disease. 

The Statlog dataset, part of a dataset collection, consists of 270 instances (patients) 
with 13 a ributes, including age, gender, blood pressure, cholesterol, fasting blood sugar, 
and various electrocardiography (ECG) and exercise stress test readings. Originally 
sourced from the Cleveland Clinic Foundation, this dataset has been widely employed in 
studies related to machine learning algorithms for medical diagnosis. The primary objec-
tive is to enable physicians to make more informed treatment decisions by accurately 
identifying patients based on their feature values. 

Table 1. Description of the a ributes in the datasets. 

Feature Description Type Values 
Age Age of the patients Numeric Years 
Sex Gender of the patients Categorial M, F 
Ca Number of major vessels Categorial 0–4 
Chol Serum cholesterol Numeric mg/dL 
Exang Exercise induced angina Categorial Yes = 1, No = 0 
Cp Chest pain type Categorial Male = 1, Female = 0 
Oldpeak ST depression induced by exercise relative to rest Numeric 0–6.2 
Fbs Fasting blood sugar Categorial mg/dL 
Restecg Resting electrocardiographic Categorial 0, 1, 2 
Thal Normal; Fixed defect; Reversible defect Categorial 0, 1, 2, 3 
Thalach Maximum heart rate achieved Numeric 71–202 
Slope Slope of the peak exercise ST segment Categorial 0, 1, 2 
Trestbps Resting blood pressure Numeric 94–200 
Num Heart disease status Categorial Yes/No 

 
Figure 1. Maximum heart rate versus age. Figure 1. Maximum heart rate versus age.

The Cleveland dataset comprises medical records from individuals who underwent
heart disease evaluations at the Cleveland Clinic Foundation in the late 1980s, containing
303 instances, each representing a patient, and encompassing 13 features, including critical
factors like age, gender, blood pressure, cholesterol level, chest pain presence, and results
from various medical tests. This dataset has played a pivotal role in the development and
testing of machine learning algorithms aimed at predicting cardiac disease.

The Statlog dataset, part of a dataset collection, consists of 270 instances (patients) with
13 attributes, including age, gender, blood pressure, cholesterol, fasting blood sugar, and
various electrocardiography (ECG) and exercise stress test readings. Originally sourced
from the Cleveland Clinic Foundation, this dataset has been widely employed in studies
related to machine learning algorithms for medical diagnosis. The primary objective is to
enable physicians to make more informed treatment decisions by accurately identifying
patients based on their feature values.
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4. Proposed EHMFFL Algorithm

The proposed EHMFFL algorithm represents a heterogeneous ensemble learning
framework, featuring seven base learners, namely SVM, KNNs, LR, RF, NB, DT, and
XGBoost techniques. To optimize the performance of each machine learning model, a
combined heuristic–metaheuristic algorithm known as the PCC–GWO is performed on
each base learner, separately. Initially, the PCC method is employed to calculate the feature
importance scores, serving as critical heuristic knowledge for guiding the GWO in selecting
the most effective features for the heart disease diagnosis. Subsequently, the tuned machine
learning models (SVM, KNNs, LR, RF, NB, DT, and XGBoost) are employed to create
the final ensemble learning model. The subsequent sections provide a detailed account
of the feature selection process using the PCC–GWO algorithm and the comprehensive
classification process with the tuned EHMFFL model.

4.1. Feature Selection Using PCC–GWO

Feature selection is a crucial step in machine learning, particularly when dealing with
datasets with high dimensionality. Its primary objective is to streamline the dataset by
reducing its dimensionality, thereby identifying the most relevant features that contribute
significantly to predictive accuracy, while discarding irrelevant or noisy attributes. This
process not only enhances computational efficiency, but also minimizes redundancy among
the selected features. Feature selection is essential in various domains, including text
categorization, data mining, pattern recognition, and signal processing [33], where it aids
in improving model performance by focusing on the most informative attributes and
discarding superfluous ones.

Feature selection poses a challenging problem, acknowledged as non-deterministic
polynomial hard (NP-hard) [34], making exact (exhaustive) search methods impractical
due to their computational complexity and time requirements. Therefore, heuristic and
metaheuristic algorithms and their hybridizations become essential in this context [35].
When crafting a metaheuristic algorithm for an NP-hard problem, a delicate balance
between exploration and exploitation must be carefully maintained to optimize search
algorithms [36]. The GWO is recognized in the literature for its adeptness in striking
the right equilibrium between exploration and exploitation. Simultaneously, the PCC
stands out as a swift heuristic method for identifying and eliminating highly correlated
features [37]. Hence, we have chosen to employ PCC and GWO as the heuristic and
metaheuristic components of our integrated PCC–GWO feature selection algorithm. This
strategy aims to harness the advantages of both methods concurrently, combining the speed
of heuristic-based PCC with the precision of metaheuristic-driven GWO to enhance the
feature selection process.

Algorithm 1 outlines the PCC–GWO feature selection approach, offering a hybrid
method for selecting an optimal feature subset for each base learner within the ensemble
learning model. Initially, the algorithm employs the PCC method to compute an impor-
tance score for each feature. Subsequently, these scores serve as heuristic knowledge to
guide the GWO during the search process. To achieve this, the importance scores are
normalized within the range of [0, 1], and a roulette wheel selection method is utilized to
choose features for each grey wolf within the initial population generation procedure. The
subsequent sections delve into the specifics of the PCC–GWO algorithm, encompassing
both the PCC and GWO phases, facilitating a comprehensive understanding of the feature
selection process.
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Algorithm 1. Feature selection using PCC–GWO algorithm.

Input:
Full heart disease dataset

Output:
Optimal Feature Subset for Machine Learning Model

Heuristic Feature Selection: Calculation of Importance Scores using PCC:

1. For (i = 1: Number of Features)
2. Calculation of the correlation of feature i with the class: CCi
3. Calculation of the correlation of feature i in relation to the other features: CFi
4. Calculation of the PCC importance score of feature i: ISi = CCi/CFi
5. End For

Metaheuristic Feature Selection: Final Feature Subset Selection using GWO:
1. t = 0 (Initial Population)
2. For (s = 1: PopSize)
3. for (i = 1: Number of Features)
4. Calculation of the probability of feature i in solution s using Equation (3)
5. Deciding to select or decline feature i using roulette wheel selection
6. end for
7. Calculation of the fitness of each grey wolf s using Equation (4)
8. End For
9. Considering the best solution as alpha wolf: Xα

10. Considering the second best solution as beta wolf: Xβ

11. Considering the third best solution as delta wolf: Xδ

12. For (t = 1: MaxIter)

% Population Updating

13. for each grey wolf s
14. Updating a, Ai, and Ci, rAi, and rCi.
15. Calculation of updating factor towards alpha grey wolf using Equation (13)
16. Calculation of updating factor towards beta grey wolf using Equation (14)
17. Calculation of updating factor towards delta grey wolf using Equation (15)
18. if (|Ai| ≥ 1)
19. Updating the wolf s using search for prey by Equation (16)
20. elseif (|Ai| < 1)
21. Updating the wolf s using attacking prey by Equation (16)
22. end if
23. end for

% Fitness Evaluation

24. for (s = 1: PopSize)
25. Calculation of the fitness of each grey wolf s using Equation (4)
26. End for
27. Updating the best solution as alpha wolf: Xα

28. Updating the second best solution as beta wolf: Xβ

29. Updating the third best solution as delta wolf: Xδ

30. End For

Return Xα as the optimized feature subset

4.1.1. Calculating the Importance Score of Features Using PCC

The PCC is a measure of the degree and direction of a relationship between two
variables [38]. The PCC values vary from −1 to +1. A value of zero shows that there is no
correlation between the two variables, while values near −1 or +1 suggest that there is a
strong association between the two variables. The PCC is determined by:

rx,y =
∑ (xi − x)(yi − y)√

∑ (xi − x)2∑ (yi − y)2
, (1)
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where x and y are the means of the two variables x and y, respectively. Moreover, xi denotes
the i-th value of the variable x, and yi denotes the i-th value of the variable y.

By computing the correlation coefficient between each feature and the target variable,
the method identifies the most informative features for an accurate classification. Then,
by considering the correlation of each feature with respect to all the other features in the
dataset, the method identifies redundant or highly correlated features that may not provide
much additional information. The selection status of each feature is then determined based
on a threshold value derived from its correlation coefficients. Finally, the GWO algorithm is
used to repeat the selection process multiple times, and the feature subset with the highest
fitness value is selected as the final solution. This method provides an effective way to
identify and select the most valuable features in high-dimensional datasets, leading to
improved predictive accuracy and better performance of machine learning models. The
overall operation of PCC can be summarized as follows:

(1) The correlation coefficient of each feature i with the class is computed as CCi;
(2) The correlation coefficient of each feature i in relation to the other features is calculated

as CFi;
(3) The importance score of each feature i can be calculated as ISi = CCi/CFi.

Concerning the PCC, if the value of ISi is greater than a specific threshold TH (ISi > TH),
the feature i is selected; otherwise, it is not chosen. However, in the proposed combined
PCC–GWO algorithm, the importance scores obtained by the PCC are used to guide the
search process of the GWO for achieving a better level of convergence.

4.1.2. Feature Subset Selection Using GWO

The GWO was originally introduced by Mirjalili et al. [39]. It is based on the hunting
behavior and social order of grey wolves found in nature. The social hierarchy of grey
wolves is described by four types of wolves, which are the following:

• Alpha (α): the finest solution;
• Beta (β): the second best solution;
• Delta (δ): the third best solution;
• Omega (ω): the rest of the grey wolves.

Similar to other metaheuristic algorithms, the GWO initiates its search procedure
by creating an initial population of viable solutions. Subsequently, it undergoes itera-
tive phases, comprising a fitness assessment and population adaptation, until it fulfills a
predefined stopping condition, such as reaching a specific number of iterations.

Representation of Feasible Solutions: The encoding of a feasible solution X (i.e., a grey
wolf) is depicted in Figure 3. If the quantity of the i-th variable is equal to 1, the feature i is
selected by the grey wolf; otherwise, it is not picked. Consequently, a value of 1 is used to
represent the feature subset’s scope, which is expressed as follows:

X(i) =
{

1 i f f eature i is selected
0 otherwise

. (2)
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Initial Population Generation: As mentioned above, the original GWO algorithm starts
its search process with a random population of grey wolves. However, in the proposed
combined PCC–GWO algorithm, the importance scores of the features obtained by the PCC
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are utilized to generate a set of near-optimal initial solutions for the GWO. To achieve this
purpose, at first the normalized importance score for each feature i is calculated and, then,
the probability of feature i to be selected in each solution (grey wolf) s can be expressed
using the roulette wheel selection method, as follows:

NISi =
ISi − min(ISs)

max(ISs)− min(ISs)
. (3)

Fitness Evaluation: The original dataset is separated into train and test datasets. The
train dataset is considered for the optimization procedure via the GWO by means of K-
fold cross-validation. However, the test dataset is unseen for the final evaluation of the
generalizability of the trained model. The following is the fitness function of the GWO to
assign the quality of each solution, which aims to be maximized:

maximize Fitness =
(

µ × accuracy + (1 − µ)× Number o f all f eatures
Number o f selected f eatures

)
, (4)

where accuracy is the total accuracy of the base learner using the validation dataset, and µ is
a parameter (0 < µ < 1) that determines the relative importance of accuracy and the number
of selected features on the fitness value. The higher µ, the higher impact of accuracy on the
fitness value. We consider µ = 0.99 to ensure that high-accuracy solutions are achieved,
while the number of features in the second rank is minimized.

Population Updating: At every iteration of the GWO, after the fitness evaluation of all
the wolves, the first three best wolves, α, β, and δ, are in charge of leading the optimizer’s
hunting process, while ω simply obeys and follows them. Encircling, hunting, and attacking
are the three well-organized steps that the GWO does during the optimization process. The
following equations were used to determine the encircling process:

→
D =

∣∣∣∣→C ·
→
Xp(t)−

→
X(t)

∣∣∣∣, (5)

→
X(t + 1) =

→
Xp(t) +

→
A ·

→
D , (6)

where t indicates the number of iterations, X represents the location vector of the wolf,
and Xp represents the location vector of the prey. Moreover, A and C represent the vector
coefficients expressed as follows:

→
A = 2

→
a ·→r 1 −

→
a , (7)

→
C = 2 ·→r 2 , (8)

Where [0, 1] is a random range for the vectors r1 and r2, and the elements within the
vector a start at 2 and fall linearly to 0 during the execution of the algorithm, as follows:

→
a = 2 − t · 2

Maxlter
, (9)

where MaxIter denotes the maximum number of iterations.
The GWO keeps the top three solutions (α, β, and δ) obtained so far and compels ω to

modify their placements in order to follow them. As a result, a series of equations that run
for each search candidate is used to simulate the GWO hunting process. To achieve this, at
first, the parameters of D for alpha, beta, and delta wolves are expressed as follows:

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣ , (10)
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→
Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣ , (11)

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣ , (12)

Then, the moving vectors of the grey wolf X towards the alpha, beta, and delta wolves
can be calculated as Equations (12)–(14), respectively. Finally, the movement of the grey
wolf X is obtained through the aggregation of the three moving vectors according to
Equation (15).

→
X1 =

→
Xα − A1 · (

→
Dα) , (13)

→
X2 =

→
Xβ − A2 · (

→
Dβ) , (14)

→
X3 =

→
Xδ − A3 · (

→
Dδ) , (15)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
. (16)

4.2. Ensemble Learning Model

Ensemble learning is a technique for improving the performance of a classifier. It is
an efficient classification strategy that combines a weak classifier with a strong classifier
to improve the effectiveness of the weak learner [40]. The proposed EHMFFL algorithm
utilizes the ensemble technique to improve the accuracy of the SVM, KNNs, LR, RF,
NB, DT, and XGBoost base learners for diagnosing heart disease. When compared to a
single classification, the goal of integrating numerous learning models is to achieve better
performance with more robustness. Figure 4 illustrates how ensemble learning is used to
improve heart disease diagnosis using these seven base learners.
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Finally, using a weighted averaging method, we predict heart disease using each
dataset. The weights of the different base learners are adjusted so that each learner with
a higher accuracy has a higher weight in the ensemble learning model. The algorithm
involves separately predicting each class and, then, using a weighted function to combine
the outcomes. In contrast to hard voting with an equal chance for each base learner,
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each prediction receives a weight, and the final results are combined by computing the
weighted average. More specifically, the weight of base learner b is proportional to its
normalized accuracy using the validation dataset against all the base learners within the
ensemble model.

5. Evaluation and Findings

This section offers a comprehensive view of the performance metrics and results
obtained in our study. All simulations were meticulously conducted on a PC, featuring an
Intel i7 CPU with 2.6 GHz and 16 GB of RAM, and executed on MATLAB R2022b within
the Windows 10 environment. Table 2 provides a snapshot of the parameter set applied to
the GWO algorithm, facilitating a clearer understanding of the experimental setup. In the
following, we evaluate the performance of the proposed EHMFFL algorithm against the
seven base learners, as well as the state-of-the-art techniques.

Table 2. Parameter settings for the GWO.

Parameter Value

Number of grey wolves (PopSize) 30
Number of iterations (MaxIter) 100

Search domain {0, 1}
Solution dimension No. Features

5.1. Performance Metrics

In this paper, each dataset was split into 80% and 20% to train and test the datasets. The
train dataset (using K-fold cross-validation with K = 10) was applied to optimize the model,
while the test dataset was used to assess the generalizability of the tuned model on new
unseen data samples. Considering the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN), we utilized different performance measures to evaluate the
performance of the different techniques:

• True positive (TP): the number of correctly identified positive instances inside the
desired class;

• True negative (TN): the number of correctly identified negative instances outside the
desired class;

• False positive (FP): the number of incorrectly predicted positive samples when the
actual target was negative;

• False negative (FN): the number of incorrectly predicted negative samples when the
actual target was positive.

Accuracy: Occurs when the proportion of occurrences correctly classified by the
classification learner equals the proportion of correctly predicted samples to the total
number of examples, which can be calculated as follow:

Accuracy =
TP + TN

TP + FP + TN + FN
. (17)

Precision: It is one of the performance indicators that will be used to determine how
many correct positive forecasts were made. So, precision measures the minority class’s
accuracy; then, the ratio of correctly predicted positive instances divided by the total
number of positive cases predicted is utilized to compute it, using:

Precision =
TP

TP + FP
. (18)

Recall: It is a measurement that quantifies the proportion of actual positive predictions
correctly identified out of all potential positive predictions. Unlike precision, which consid-
ers the correctly predicted positives relative to all positive predictions, recall focuses on the
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positives that were overlooked. Essentially, it signifies the extent to which the positive class
is comprehensively captured, which is calculated as follows:

Recall =
TP

TP + FN
. (19)

F1 score: In an ideal classifier, we aim for both accuracy and recall to be maximized,
equating to values of one. This optimal scenario indicates that both the FP and FN are
reduced to zero, highlighting the classifier’s ability to make accurate and comprehensive
predictions; ultimately, minimizing errors in both positive and negative classifications. As
a result, we need a statistic that takes precision and recall into account. The F1 score is a
precision and recall-based measure that is defined as follows:

F1−score =
2 × Precision × Recall

Precision + Recall
. (20)

Specificity: It is the proportion of true negative samples to all actual negative samples,
which indicates the ratio of the projected presence to the total samples with heart disease
presence. The specificity is expressed as follows:

Specificity =
TN

TN + FP
. (21)

5.2. Experimental Findings

As mentioned above, 80% of each dataset were used for the training of the proposed
model, while the remaining 20% of the data samples were kept unseen for the validation of
the tuned model. More specifically, 61 and 54 data samples were used to test the proposed
model and compare it with the other techniques using the Cleveland and Statlog datasets,
respectively. The obtained confusion matrix by the proposed EHMFFL algorithm using
both datasets can be seen in Figure 5.
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To find the effectiveness of the proposed ensemble EHMFFL algorithm against the base
learners, a comparison of various performance measures using the test data samples from
the Cleveland and Statlog datasets is provided in Tables 3 and 4, respectively. While
some algorithms may display higher performance than the EHMFFL algorithm on a
measure, the proposed method outperforms all the techniques on average for both datasets.
Figures 5 and 6 show the accuracy of the EHMFFL algorithm using various methods. The
EHMFFL algorithm surpasses all other methods, as illustrated in Figures 6 and 7.
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Table 3. Comparison of the EHMFFL algorithm with existing methods using the Cleveland dataset.

Algorithms Accuracy Precision Recall Specificity F1 Score

LR 85.2 90.3 82.4 88.9 86.2
DT 82 84.8 82.4 81.5 83.6
RF 90.2 96.7 85.3 96.3 90.6
NB 85.2 87.9 85.3 85.2 86.6
SVM 86.9 88.2 88.2 85.2 88.2
KNNs 83.6 87.5 82.4 85.2 84.8
XGBoost 88.5 96.6 82.4 96.3 88.9
EHMFFL (Proposed) 91.8 91.4 94.1 88.9 92.8

Table 4. Comparison of the EHMFFL algorithm with existing methods using the Statlog dataset.

Algorithms Accuracy Precision Recall Specificity F1 Score

LR 79.6 80 82.8 76 81.4
DT 81.5 85.2 79.3 84 82.1
RF 84.4 86.2 85.5 76 87.4
NB 77.8 79.3 79.3 76 79.3
SVM 83.3 81.3 89.7 76 85.2
KNNs 80.8 84.5 78.9 83 81.6
XGBoost 85.2 88.9 82.8 88 85.7
EHMFFL (Proposed) 88.9 92.6 86.2 92 89.3
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Figure 6. Comparison of the results of different methods using the Cleveland dataset in terms of
precision, recall, and accuracy.

According to the different performance metrics for various classification techniques
using the Cleveland dataset, the EHMFFL algorithm outperforms all the base learners with
an accuracy of 91.8%, a precision of 91.4%, a recall of 94.1%, an F1 score of 92.8%, and a
specificity of 88.9. This shows that the EHMFFL algorithm is the most effective and efficient
method for the supplied dataset. Other algorithms also perform well in some cases, with
accuracies ranging from 82% to 90.2%. When comparing the other algorithms, RF is the
best base learner with an accuracy of 90.2% and, then, XGBoost and SVM with accuracies of
88.5% and 86.9% are in the next in order. Also, based on the results in Table 4, the EHMFFL
algorithm exceeds all other algorithms with an accuracy score of 88.9%. After the EHMFFL
algorithm, XGBoost, RF, and SVM, obtained better results than the other base learners with
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accuracy scores of 85.2%, 84.4%, and 83.3%, indicating that these three methods are the
most accurate base learners, the same as observed for the Cleveland dataset. The results
show that the EHMFFL algorithm again shines out in terms of all the performance metrics,
on average.
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Figure 7. Comparison of the results of different methods using the Statlog dataset in terms of
precision, recall, and accuracy.

5.2.1. Running Time Analysis

To assess the trade-off between enhanced performance and time-consuming cost in
the proposed EHMFFL algorithm, we conducted a comprehensive analysis comparing
its running time with the seven base learners and an ensemble model utilizing all the
original features for each base learner, named “Ensemble” in Table 5. Our findings, detailed
in Table 5, delineate the offline training/tuning phase and the online test phase time
comparisons for both datasets. The offline time for each base learner signifies its individual
training time, while for the Ensemble model, it represents the total training duration of the
seven base learners within the model. Conversely, in our EHMFFL model, this duration
encapsulates the time for feature selection via the PCC–GWO algorithm and training the
base learners with the reduced feature subsets.

Table 5. Comparison of the running time (in seconds) of the different techniques.

Algorithms
Offline Training/Tuning Phase Online Test Phase

Cleveland Dataset Statlog Dataset Cleveland Dataset Statlog Dataset

LR 0.01 0.01 0.02 0.02
DT 0.13 0.12 0.03 0.03
RF 0.74 0.7 0.08 0.07
NB 0.12 0.14 0.04 0.04
SVM 0.21 0.23 0.06 0.07
KNNs 0.08 0.07 0.03 0.02
XGBoost 0.86 0.83 0.1 0.09
Ensemble 2.3 2.2 0.17 0.16
EHMFFL
(Proposed) 142 137 0.13 0.13
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Analysis of Running Time in Offline Training/Tuning Phase: Table 5 indicates that the
Ensemble model, leveraging all the original features for each base learner, approximately
accumulates the total time consumption of the training phase for individual base learners,
given their sequential training approach. However, the huge increase in the running time
of the EHMFFL algorithm, compared to the Ensemble model, primarily stems from the
implementation of the time-intensive PCC–GWO feature selection algorithm for selecting
an appropriate feature subset for each base learner. Notably, these processes are confined
to the offline model’s tuning and do not affect the test phase time.

Analysis of Running Time in Online Test Phase: In the online test phase, both the
Ensemble and EHMFFL models exhibit slightly higher time consumption than the single
base learners. As the test phase operations occur in parallel, the cumulative time of the
base learners is not entirely additive for these models. While the Ensemble model shows
around a 70% increase compared to the most time-consuming base learner (i.e., XGBoost),
the EHMFFL model, owing to the PCC–GWO feature selection, presents reduced response
times for the base learners compared to the Ensemble model. As a result, the online time of
the EHMFFL algorithm exhibits a 24% and 19% reduction when using the Cleveland and
Statlog datasets, respectively.

Despite the significant increase in the offline running time of the EHMFFL model
caused by the combined heuristic–metaheuristic PCC–GWO feature selection algorithm,
the implementation of PCC–GWO yields a reduction in the online processing time when
compared to the Ensemble model encompassing all the original features.

5.2.2. Analysis of the Correlation Heat Map (CHM)

This section presents the CHM, illustrating the relationships between different variables
within the cardiovascular data for both the Cleveland and Statlog datasets. Figures 8 and 9
display these CHMs, where each column signifies a specific variable, and each row visual-
izes its correlations with other variables. The numerical values within the tables convey
the strength and direction of these correlations, which can span from −1, indicating a
perfect inverse correlation, to 1, representing a perfect positive correlation. This visual
representation offers valuable insights into the interplay among the dataset variables and
their potential impacts on heart disease prediction.

In Figure 8, the CHM of the Cleveland dataset illustrates the comparisons among
various variables. These variables include age, gender, blood pressure (trestbps), cholesterol
level (chol), fasting blood sugar (fbs), electrocardiogram results (restecg), maximum heart
rate achieved (thalach), exercise-induced angina (exang), ST depression induced by exercise
relative to rest (oldpeak), the number of major vessels colored by fluoroscopy (ca), type
of chest pain (cp), and slope of the peak exercise ST segment (slope). Additionally, the
presence of two types of thalassemia, indicated as thal and thal2, are considered. The values
within the matrix fall within the −1 to 1 range, where positive values signify a positive
correlation, negative values indicate a negative correlation, and a value of 0 denotes no
discernible correlation between the variables. Analysis of the CHM for the Cleveland
dataset reveals the following insights:

• The first section of the matrix compares age, sex, and blood pressure. The correla-
tion between age and blood pressure is weakly positive (0.28), while the correlation
between sex and blood pressure is weakly negative (−0.098);

• The second section compares cholesterol and blood sugar. Cholesterol and blood sugar
have a weakly negative correlation (−0.057);

• The third section compares restecg, thalach, exang, and oldpeak. The resting elec-
trocardiogram results (restecg) and exercise-induced angina (exang) have a weakly
positive correlation (0.14), while the maximum heart rate achieved during exercise
(thalach) has a weakly negative correlation (−0.044) with ST depression induced by
exercise relative to rest (oldpeak);
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• The fourth section compares the number of major vessels colored by fluoroscopy (ca)
with the other variables. There is a weakly positive correlation between ca and age
(0.12), and a weakly positive correlation between ca and cholesterol (0.097);

• The fifth section compares the different types of chest pain (cp) and their correlations
with the other variables. Chest pain type 0 (cp_0) has a weakly positive correlation
with ca (0.14), while chest pain type 1 (cp_1) has a weakly negative correlation with
thal2 (−0.15). Chest pain type 2 (cp_2) has a weakly positive correlation with fbs
(0.084), and chest pain type 3 (cp_3) has a weakly positive correlation with age (0.048);

• The final section of the matrix compares the slope of the peak exercise ST segment
(slope) and the two types of thalassemia (thal and thal2). There is a weakly positive
correlation between slope and thal2 (0.18), and a weakly negative correlation between
slope and thal (−0.42).
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Also, according to the results of the CHM analysis for the Statlog dataset in Figure 9, it
can be understood that:

• The values in the matrix represent the correlations between each pair of variables.
A positive value indicates a positive correlation (as one variable increases, so does
the other), while a negative value indicates a negative correlation (as one variable
increases, the other decreases);

• For example, we can see that age is highly negatively correlated with itself (correlation
coefficient of −1.00), since it is impossible for someone’s age to be negatively correlated
with their own age. Sex is negatively correlated with BP and positively correlated with
cholesterol levels. We can also see that the ST depression is positively correlated with
exercise-induced angina, thallium stress test results, and chest pain types 3 and 4;

• Some notable correlations include a positive correlation between age and BP (r = 0.27),
a negative correlation between age and max HR (r = −0.4), and a positive correlation
between chest pain type 3 and ST depression (r = 0.35). There also appear to be some
negative correlations between certain variables, such as sex and chest pain type 3
(r = −0.26) and slope of ST 3 and thal2 (r = −0.24).
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5.2.3. Analysis of the Receiver Operating Characteristic (ROC)

In Figures 10 and 11, we present the ROC curves, which illustrate the performance of
various heart disease prediction models, encompassing the seven base learners within our
ensemble learning model, the EHMFFL algorithm as a whole, and random classification.
These curves showcase the trade-off between sensitivity and specificity at different decision
thresholds. To gauge the diagnostic value of these tests, we calculate the area under the
ROC curve (AUC), where a larger AUC signifies a more effective test. According to the
obtained results, the EHMFFL algorithm outperforms all the other compared techniques,
achieving AUC values of 0.95 for the Cleveland dataset and 0.88 for the Statlog dataset,
underscoring its superior predictive capability in heart disease diagnosis.
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5.3. Comparison with Existing Techniques

In this section, we conduct a comparative analysis of the EHMFFL algorithm against
three existing heart disease diagnosis methods. Since the EHMFFL algorithm utilizes a
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heuristic–metaheuristic-driven feature selection algorithm (i.e., PCC–GWO) embedded in
an ensemble learning model, we considered the machine learning approach based on LR by
Jindal et al. (2021) [18] (referred to as ML), an ensemble of different machine learning mod-
els, including DT, RF, SVM, KNNs, and ANN, developed by Shorewala (2021) [23] (referred
to as EL), and a sequential heuristic feature selection method by Ahmad et al. (2022) [28]
(referred to as FS). We assess the precision, recall, and accuracy of the different methods,
as depicted in Figures 12 and 13, for the Cleveland and Statlog datasets, respectively. The
results in Figure 12 indicate that the EL model outperforms the EHMFFL algorithm in
terms of recall when using the Cleveland dataset. A similar trend is observed in Figure 13
for the Statlog dataset, where the FS method excels in achieving the highest recall among
all the techniques. However, when considering overall performance and emphasizing
accuracy as the main metric, the proposed EHMFFL model demonstrates its superiority
over all the compared techniques for both datasets, underscoring its effectiveness in heart
disease diagnosis.
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Figure 12. Comparison of the results of the EHMFFL algorithm with the existing techniques using
the Cleveland dataset.
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6. Conclusions

In this study, we have introduced an ensemble heuristic–metaheuristic feature fusion
learning (EHMFFL) algorithm, as a powerful tool for heart disease diagnosis using tabular
data. The EHMFFL algorithm’s first phase employed a hybrid feature selection approach,
combining heuristic-based PCC and metaheuristic-driven GWO techniques through the
innovative PCC–GWO method. This approach effectively selects the essential features for
each machine learning model, facilitating the construction of a robust predictive model
through ensemble learning. We evaluated the performance of the EHMFFL algorithm
using the Cleveland and Statlog datasets. With an accuracy rate of 91.8% for the Cleveland
dataset and 88.9% for the Statlog dataset, our method outperformed the base learners
and state-of-the-art approaches. These outcomes highlight the potential of our strategy to
elevate cardiac disease prediction accuracy and support healthcare professionals in making
more informed patient care decisions.

In implementing the EHMFFL algorithm, the choice of classical machine learning
methods within the ensemble model was driven by their inherent benefits related to the
utilized datasets in this paper. Classical models offer superior interpretability crucial for
comprehending feature influences, especially conspicuous with straightforward attributes.
Their efficiency in handling smaller datasets, computational simplicity, and lower risk of
overfitting in scenarios with limited samples, outweigh the potential gains from deep learn-
ing techniques, particularly considering the simplicity of the provided features. However,
if we encounter larger datasets with intricate patterns, the utilization of deep learning
techniques becomes imperative. Looking ahead, expanding the application of the EHMFFL
algorithm to larger-scale datasets with complex features and more extensive sample sizes
stands as a key future endeavor. An appealing prospect is to use deep neural networks inte-
grated with metaheuristic-driven ensemble learning techniques, employing deep networks
as base learners within the ensemble model. This amalgamation holds the promise of creat-
ing resilient systems adept at deciphering intricate heart disease data streams. Additionally,
the integration of real-time patient data streams and the development of a user-friendly
interface remain pivotal avenues, promising transformative healthcare tools for timely
disease detection and proactive intervention. Furthermore, we plan to explore further
enhancements to the proposed algorithm by delving into more advanced feature selection
methods and metaheuristic algorithms, continually striving to optimize diagnostic accuracy
and efficiency in healthcare.
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