
Citation: Santos, V. Analytical

Solution for the Problem of Point

Location in Arbitrary Planar Domains.

Algorithms 2024, 17, 444. https://

doi.org/10.3390/a17100444

Academic Editors: Shuai Li, Dunhui

Xiao and Frank Werner

Received: 27 July 2024

Revised: 19 September 2024

Accepted: 3 October 2024

Published: 5 October 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Analytical Solution for the Problem of Point Location in
Arbitrary Planar Domains
Vitor Santos

Department of Mechanical Engineering, Institute for Electronics Engineering and Informatics of Aveiro,
University of Aveiro, 3810-193 Aveiro, Portugal; vitor@ua.pt

Abstract: This paper presents a general analytical solution for the problem of locating points in planar
regions with an arbitrary geometry at the boundary. The proposed methodology overcomes the
traditional solutions used for polygonal regions. The method originated from the explicit evaluation
of the contour integral using the Residue and Cauchy theorems, which then evolved toward a
technique very similar to the winding number and, finally, simplified into a variant of ray-crossing
approach slightly more informed and more universal than the classic approach, which had been used
for decades. The very close relation of both techniques also emerges during the derivation of the
solution. The resulting algorithm becomes simpler and potentially faster than the current state of the
art for point locations in arbitrary polygons because it uses fewer operations. For polygonal regions,
it is also applicable without further processing for special cases of degeneracy, and it is possible to
use in fully integer arithmetic; it can also be vectorized for parallel computation. The major novelty,
however, is the extension of the technique to virtually any shape or segment delimiting a planar
domain, be it linear, a circular arc, or a higher order curve.

Keywords: cauchy theorem; residue theorem; Jordan curve theorem; generalized polygons; complex
calculus; parametric curves; Bézier segments; winding number; negative real axis intersection

1. Introduction

Testing whether a point is enclosed by a polygon is a problem that many programmers
in numerous fields, such as in computer graphics, geographic information systems, machine
vision, or robotics, among others, have certainly come across more than once, as many
authors have been asserting for a long time [1]. Indeed, the issue is very important
and is the object of several concerns in Computational Geometry. It has already been
studied and solved for practically all cases of polygonal regions, despite the fact that
some earlier algorithms occasionally needed iterative computations, were ambiguous in
special cases of on-boundary point locations, or show numerical instability in situations
of extreme proximity to borders and vertices. Nonetheless, these limitations are often not
very relevant in terms of practical implementation, and the algorithms are actually used
on many applications in the software industry. What these algorithms are not aimed at,
though, is the analytical evaluation of whether a point lies inside a more complex region
bounded by mixed linear and curved segments. Actually, there is no published solution
known to the author that indicates how it is possible, with the very same base algorithm
and in a straightforward and scalable procedure, to determine analytically, i.e., without
linearizing the contour or performing geometric approximations, whether a point is inside
or outside regions such as those illustrated in Figure 1.

Algorithms 2024, 17, 444. https://doi.org/10.3390/a17100444 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17100444
https://doi.org/10.3390/a17100444
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1283-7388
https://doi.org/10.3390/a17100444
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17100444?type=check_update&version=2

Algorithms 2024, 17, 444 2 of 34

•
a1

•
a2

Version September 18, 2024 submitted to Algorithms 2 of 34

•
a1

•
a2 a3

a4

a5

a6a7

•

•

•

•
•

Figure 1. Examples of shapes bounded by linear, circular, or Bézier segments, including twisting and
self-intersection, and for which lacks a procedure to determine with the same algorithmic process the
relative location of the points illustrated. Complex cases (right) can be challenging, also for humans.

Shamos, published in 1985 [5], and by Sedgewick, published in 1990 [6], also covered the 39

point in polygon problem and have been useful references for many other authors and 40

programmers, who have developed specific implementations with adaptations for their 41

own set-ups. Still nowadays, it is easy to find papers in conferences and journals, in very 42

diverse contexts, that address this problem, even if novelties have stabilized a long time 43

ago around the two main principles, as described further. 44

Eventually, what has become one of the most well known references in the literature 45

was the publication Point in Polygon Strategies, in 1994, by Eric Haines [7], and also some 46

years later, the work of Hormann and Agathos, in 2001 [8], which is the algorithm being 47

used in Matlab for point location in arbitrary polygons. 48

A clarification is recommended here to better focus the scope of the paper. Actually, 49

there are two kinds of challenges in this problematic: the "point in region" problem, and 50

the "point location in subdivisions of the plane". Although related, there are some formal 51

differences in these problems. 52

In the first problem, there is only one region, and we are testing whether a point 53

lies inside or outside of it. In the second problem, there is a group of regions (typically a 54

subdivision of the plane), and we need to identify which specific region the point belongs to. 55

The first problem is to be solved using containment tests specific to the region (e.g., point- 56

in-polygon), and it has constant-time complexity relative to the number of regions, but may 57

depend on the complexity of the region’s boundary. The second problem typically involves 58

building a data structure for efficient spatial querying across many regions, with logarithmic 59

or sublinear complexity relative to the number of regions in the subdivision. The second 60

problem usually involves triangulated regions (using Delaunay triangulation) and several 61

works standout in that front ranging from the fundamentals from Voronoi diagrams [9] and 62

Delaunay triangulation, including later optimizations for better data structure management 63

[10], up to actual point location algorithms in such triangular subdivisions of the plane 64

[11,12]. 65

This paper focuses specifically on the first problem and proposes an alternative solu- 66

tion by including additionally the ability to extend the regions to general curve shaped 67

boundaries. So, in this paper the expression "point location" refers to assessing whether 68

some point lies inside or outside a given planar region. 69

2.1. Ray-crossing approaches 70

For a long time, one of the most popular algorithms was the one based on the idea of 71

defining an infinite line starting at the point being analysed: the number of intersections 72

with the polygon boundary gives indications for the solution, as described, for example, by 73

Preparata and Shamos [5]. Briefly stated, a point belongs to a polygon if an infinite straight 74

Figure 1. Examples of shapes bounded by linear, circular, or Bézier segments, including twisting and
self-intersection, and for which lacks a procedure to determine with the same algorithmic process the
relative location of the points illustrated. The case on the right is much more complex than the one on
the left, and that can be challenging, even for humans.

2. Related Work

The first known reference to an algorithm for the point location problem dates back to
1962 by M. Shimrat [2]. That early algorithm had some limitations pointed out soon after
by R. Hacker [3], and later by W. Randolph Franklin, who also states to have delivered,
in 1970, a code written in FORTRAN for this same problem [4]. The books by Preparata
and Shamos, published in 1985 [5], and by Sedgewick, published in 1990 [6], also covered
the point in the polygon problem and have been useful references for many other authors
and programmers who have developed specific implementations with adaptations for their
own set-ups. Still, nowadays, it is easy to find papers in conferences and journals—in very
diverse contexts—where this problem is addressed, even if the novelties have stabilized a
long time ago around the two main principles, as described further below.

Eventually, what has become one of the most well-known references in the literature
was the publication Point in Polygon Strategies, in 1994, by Eric Haines [7], and also some
years later, the work of Hormann and Agathos, in 2001 [8], which is the algorithm being
used in Matlab for point location in arbitrary polygons.

A clarification is recommended here to better focus the scope of the paper. Actually,
there are two kinds of challenges in this problem: the “point in region” problem, and the
“point location in subdivisions of the plane”. Although related, there are some formal
differences in these problems.

In the first problem, there is only one region, and we are testing whether a point
lies inside or outside of it. In the second problem, there is a group of regions (typically a
subdivision of the plane), and we need to identify which specific region the point belongs
to. The first problem is to be solved using containment tests specific to the region (e.g.,
point-in-polygon), and it has constant-time complexity relative to the number of regions
but may depend on the complexity of the region’s boundary. The second problem typically
involves building a data structure for efficient spatial querying across many regions, with
logarithmic or sublinear complexity relative to the number of regions in the subdivision.
The second problem usually involves triangulated regions (using Delaunay triangula-
tion), and several works stand out in that front, ranging from the fundamentals from
Voronoi diagrams [9] and Delaunay triangulation, including later optimizations for better
data structure management [10], up to actual point location algorithms in such triangular
subdivisions of the plane [11,12].

This paper focuses specifically on the first problem and proposes an alternative solu-
tion by including additionally the ability to extend the regions to general curve-shaped
boundaries. So, in this paper, the expression “point location” refers to assessing whether
some point lies inside or outside a given planar region.

Algorithms 2024, 17, 444 3 of 34

2.1. Ray-Crossing Approaches

For a long time, one of the most popular algorithms was the one based on the idea of
defining an infinite line starting at the point being analyzed: the number of intersections
with the polygon boundary gives indications for the solution, as described, for example, by
Preparata and Shamos [5]. Briefly stated, a point belongs to a polygon if an infinite straight
line starting on it intersects the polygon an odd number of times in one direction (Figure 2).
This algorithm is also known as the ray-crossing [13], the crossing number [14] algorithm,
and the even-odd rule algorithm [15].

Version September 18, 2024 submitted to Algorithms 3 of 34

line starting on it intersects the polygon an odd number of times in one direction (Figure 2). 75

This algorithm is also known as the ray-crossing [13] or the crossing number [14] algorithm, 76

or also the even-odd rule algorithm [15].

a

b

c

d

Figure 2. The traditional ray-crossing algorithm is based on the parity of intersection points. An
odd number of intersections of an horizontal line starting on the point being tested along one of its
two sides indicates that the point is inside the polygon, and an even number of intersections (also 0)
indicates that the point is outside.

77

One traditional issue with the ray-crossing algorithm was that it may require further 78

tests to account for the cases where the intersections of the line coincide with one or 79

more vertices, or even with an entire edge of the polygon itself. Implementations of this 80

algorithm can be found in many places, and the earlier most well known occur in the works 81

of Sedgewick [6], Haines [7] or O’Rourke [16]. 82

The ray-crossing algorithm is simple and of limited computational cost, tOpnqu, but, 83

for more functionality it may require additional steps, hence reducing its elegance. Ad- 84

ditionally, applying its technique to general shaped areas other than polygons, although 85

possible in theory, could pose huge computational and practical difficulties since systems 86

of simultaneous equations might need to be managed and solved. Still, and although it 87

surely has not been intended for that, its applicability for more general self-intersecting 88

(non-simple) domains may fail, as illustrated in Figure 3, where the point e would be 89

evaluated as being in the “outside”, which contradicts both the mathematical concept based 90

on the winding number [17], and the human perception of "insideness" on a folded (and/or 91

twisted) polygon.

e

Figure 3. The classic ray-crossing algorithm is not meant to deal with non-simple or self-intersecting
polygons. Point e would be detected as "outside", but it is "inside".

92

2.2. Winding number based approaches 93

The problem of non-simple polygons (self-intersecting) has nonetheless been practi- 94

cally solved with algorithms based on the winding number [7], also named nonzero-rule 95

Figure 2. The traditional ray-crossing algorithm is based on the parity of intersection points. An
odd number of intersections of a horizontal line starting on the point being tested along one of its
two sides indicates that the point is inside the polygon, and an even number of intersections (also 0)
indicates that the point is outside.

One traditional issue with the ray-crossing algorithm was that it may require further
tests to account for the cases where the intersections of the line coincide with one or more
vertices or even with an entire edge of the polygon itself. Implementations of this algorithm
can be found in many places, and the earlier most well-known implementations occur in
the works of Sedgewick [6], Haines [7], and O’Rourke [16].

The ray-crossing algorithm is simple and of limited computational cost, tOpnqu, but,
for more functionality, it may require additional steps, hence reducing its elegance. Addi-
tionally, applying its technique to generally shaped areas other than polygons, although
possible in theory, could pose huge computational and practical difficulties since systems
of simultaneous equations might need to be managed and solved. Still, and although it
surely has not been intended for that, its applicability for more general self-intersecting
(non-simple) domains may fail, as illustrated in Figure 3, where the point e would be
evaluated as being in the “outside”, which contradicts both the mathematical concept
based on the winding number [17], and the human perception of “insideness” on a folded
(and/or twisted) polygon.

Version September 18, 2024 submitted to Algorithms 3 of 34

line starting on it intersects the polygon an odd number of times in one direction (Figure 2). 75

This algorithm is also known as the ray-crossing [13] or the crossing number [14] algorithm, 76

or also the even-odd rule algorithm [15].

a

b

c

d

Figure 2. The traditional ray-crossing algorithm is based on the parity of intersection points. An
odd number of intersections of an horizontal line starting on the point being tested along one of its
two sides indicates that the point is inside the polygon, and an even number of intersections (also 0)
indicates that the point is outside.

77

One traditional issue with the ray-crossing algorithm was that it may require further 78

tests to account for the cases where the intersections of the line coincide with one or 79

more vertices, or even with an entire edge of the polygon itself. Implementations of this 80

algorithm can be found in many places, and the earlier most well known occur in the works 81

of Sedgewick [6], Haines [7] or O’Rourke [16]. 82

The ray-crossing algorithm is simple and of limited computational cost, tOpnqu, but, 83

for more functionality it may require additional steps, hence reducing its elegance. Ad- 84

ditionally, applying its technique to general shaped areas other than polygons, although 85

possible in theory, could pose huge computational and practical difficulties since systems 86

of simultaneous equations might need to be managed and solved. Still, and although it 87

surely has not been intended for that, its applicability for more general self-intersecting 88

(non-simple) domains may fail, as illustrated in Figure 3, where the point e would be 89

evaluated as being in the “outside”, which contradicts both the mathematical concept based 90

on the winding number [17], and the human perception of "insideness" on a folded (and/or 91

twisted) polygon.

e

Figure 3. The classic ray-crossing algorithm is not meant to deal with non-simple or self-intersecting
polygons. Point e would be detected as "outside", but it is "inside".

92

2.2. Winding number based approaches 93

The problem of non-simple polygons (self-intersecting) has nonetheless been practi- 94

cally solved with algorithms based on the winding number [7], also named nonzero-rule 95

Figure 3. The classic ray-crossing algorithm is not meant to deal with non-simple or self-intersecting
polygons. Point e would be detected as “outside”, but it is “inside”.

Algorithms 2024, 17, 444 4 of 34

2.2. Winding Number Based Approaches

The problem of non-simple polygons (self-intersecting) has nonetheless been practi-
cally solved with algorithms based on the winding number [7], also named nonzero-rule
algorithms, which have been refined and even made as efficient as the ray-crossing ap-
proach [14]. Its formulation, based on the sum of all the oriented angles with a center in the
test point and delimited by each pair of successive vertices of the polygon, allows to obtain
the winding number around a point (the number of times a closed curve winds around a
given point in the positive sense), and then conclude whether the point is inside or outside
the region. If α1, α2, . . . , αM are the M oriented angles defined by the testing point and the
M segments defined with the M vertices of a polygon, the winding number is calculated by
WN “ 1

2π
řM

i“1 αi. If WN is equal to zero, then the number of winds of the polygon around
the point is zero, meaning that the point is “outside” the polygon. Any other value for WN
will indicate that the point is “inside” the polygon.

Figure 4 illustrates the geometric principle of the procedure for a simple polygon.

a

b

c

d p1p2

p3

p4

p5

α1

α2

α4

α5
α3

Figure 4. Algorithm based on the winding number. If
ř

i αi “ 0, then the testing point (b in this case)
is outside the polygon.

However, the traditional winding number-based algorithms may be ambiguous if
the point lies on the boundary and nearly all implementations show some degree of false
positives and missed detections, as demonstrated by S. Shirra in [18]. The technique
described generically in Figure 4 is often seen in the literature as the calculation of the
winding number contribution of each linear segment (p1 p2) relative to a point a, where all
of the contributions are added up. Mathematically, the procedure is simple, as presented,
for example in [19], and can be easily understood as the calculation of the winding number
contribution of that segment relative to the given test point a:

$
’&
’%

u⃗ “ p1 ´ a
v⃗ “ p2 ´ a
α “ atan2pu⃗ ˆ v⃗, u⃗ ¨ v⃗q

. (1)

Demonstration of (1) is straightforward because u⃗ ˆ v⃗ “ |⃗u||⃗v| sinpαq and u⃗ ¨ v⃗ “ |⃗u||⃗v| cospαq.
In this context u⃗ ˆ v⃗ is actually supposed to mean the third component of the actual cross
product pux, uy, 0q ˆ pvx, vy, 0q. Possible alternative notations would be to replace u⃗ ˆ v⃗ in (1)
by det ru⃗⊺ v⃗⊺ 1

⊺s , where 1 “ r1 1 1s , or pu⃗ ˆ v⃗q3 or, of course, puxvy ´ uyvxq.
When a point falls over the boundary of a region, more than one interpretation

may arise. An example of that occurs in Figure 5, where two adjacent regions R1 and
R2 (delimited by different shades and without the border lines being drawn to visually
enhance the effect) seem to share a point a because it falls precisely on the boundaries of

Algorithms 2024, 17, 444 5 of 34

the regions. This raises the question of whether point a belongs to both regions, to only one
of them, or neither of them!

•
a

R1 R2

Figure 5. Example of two adjacent regions R1 and R2 where point a lies precisely on the border,
raising the question to which region it belongs.

The possibility of belonging to neither of the regions must be discarded since a lies in
a area covered by both regions altogether, seeming absurd to affirm that a does not belong
to neither of the regions and at the same time belonging to their union. So, there remains
the possibility of belonging to only R1 or R2, or both at the same time. This is where the
variation of interpretation can take place. If regions are analyzed independently, and using
the winding number approach, any conclusion (belonging or not to R1 or R2) can be taken
depending on the circulation sense of the polygonal lines, as described next. If, on the
other hand, the two regions are taken as a degenerate self-intersecting polygon where the
common edge is actually a double edge, it will be demonstrated further that a belongs
naturally to the compound region (R1 Y R2), independently of the circulation sense.

As mentioned earlier, when the testing point is over the boundary, the winding
number approach has a variable behavior, depending on the circulation sense, which can
be illustrated with this simple example based on a triangle with vertices p1 “ p´1, 0q,
p2 “ p0, ´1q, p3 “ p0, 1q and a test point a “ p0, 0q. For the triangle longer segment,
we have u⃗ “ p1 ´ p0, 0q and v⃗ “ p2 ´ p0, 0q. Also, u⃗ ˆ v⃗ “ 1 ˆ 1 ˆ sinpπq “ 0 and
u⃗ ¨ v⃗ “ 1 ˆ 1 ˆ cospπq “ ´1, and consequently α “ atan2p0, ´1q “ π. If we swap p1 with p2,
which is equivalent to reversing the circulation sense, the result is the same for this segment
(because it still holds α12 “ `π), which indicates that the approach does not distinguish
the sense of circulation (winding number contribution) along a segment when the point is
over it. But, for the remainder two segments, the winding number contribution is detected
accordingly in different values and, therefore, the overall winding number changes! In
conclusion, there are cases where the point will be considered inside and others outside the
polygon, depending on the circulation sense. Figure 6 shows the elements that provide a
simple example demonstrating this situation, which is occasionally mentioned by some
authors, but also usually dismissed as irrelevant or avoided with specific argumentation,
such as in [4].

Version September 18, 2024 submitted to Algorithms 5 of 34

•
a

R1 R2

Figure 5. Example of two adjacent regions R1 and R2 where point a lies precisely on the border,
raising the question to which region it belongs.

variation of interpretation can take place. If regions are analysed independently, and using 129

the winding number approach, any conclusion (belonging or not to R1 or R2) can be taken 130

depending on the circulation sense of the polygonal lines, as described next. If, on the 131

other hand, the two regions are taken as a degenerate self-intersecting polygon where the 132

common edge is actually a double edge, it will be demonstrated further that a belongs 133

naturally to the compound region (R1 Y R2), independently of the circulation sense. 134

As mentioned earlier, when the testing point is over the boundary, the winding 135

number approach has a variable behaviour, depending on the circulation sense, which 136

can be illustrated with this simple example based on a triangle with vertices p1 “ p´1, 0q, 137

p2 “ p0, ´1q, p3 “ p0, 1q and a test point a “ p0, 0q. For the triangle longer segment, 138

we have u⃗ “ p1 ´ p0, 0q and v⃗ “ p2 ´ p0, 0q. Also, u⃗ ˆ v⃗ “ 1 ˆ 1 ˆ sinpπq “ 0 and 139

u⃗ ¨ v⃗ “ 1 ˆ 1 ˆ cospπq “ ´1, and consequently α “ atan2p0, ´1q “ π. If we swap p1 with p2, 140

which is equivalent to reverse the circulation sense, the result is the same for this segment 141

(because it still holds α12 “ `π), which indicates that the approach does not distinguish 142

the sense of circulation (winding number contribution) along a segment when the point is 143

over it. But, for the remainder two segments, the winding number contribution is detected 144

accordingly in different values and, therefore, the overall winding number changes! In 145

conclusion, there are cases where the point will be considered inside and others outside the 146

polygon, depending on the circulation sense. Figure 6 shows the elements that provide a 147

simple example demonstrating this situation, which is occasionally mentioned by some 148

authors, but also usually dismissed as irrelevant or avoided with specific argumentation, 149

such as in [4]. 150

x

y

v⃗1 “ p1, 0q

α23
α31

α12

x

y

v⃗1 “ p´1, 0q
u⃗1 “ p1, 0q

α31α23

α12

u⃗1 “ p´1, 0q p3 p3

p1p2p1 p2

a “ p0, 0q a “ p0, 0q

Figure 6. Example of the behaviour of the winding number technique for a point on the border,
a “ p0, 0q, of a triangle when the circulation sense is reversed (the order p1 Ñ p2 Ñ p3 Ñ p1 is
always assumed). For the inclusion of a, the sum of the three angles is expected to be

ř
αij “ ˘2π,

which does not occur on the right (clockwise circulation sense) because, α12 “ `π, causing a netř
αij “ 0. For the sake of clarity, auxiliary vectors u⃗ and v⃗ (from eq. (1)) are shown only for the first

oriented segment (p1 Ñ p2).

Although apparently inconvenient and potentially unexplainable (the sense of cir- 151

culation was not expected to determine the conclusion of the point inclusion test), this 152

behaviour is actually predicted by the Jordan Curve Theorem. 153

Figure 6. Example of the behavior of the winding number technique for a point on the border,
a “ p0, 0q, of a triangle when the circulation sense is reversed (the order p1 Ñ p2 Ñ p3 Ñ p1 is
always assumed). For the inclusion of a, the sum of the three angles is expected to be

ř
αij “ ˘2π,

which does not occur on the right (clockwise circulation sense) because α12 “ `π, causing a netř
αij “ 0. For the sake of clarity, auxiliary vectors u⃗ and v⃗ (from Equation (1)) are shown only for the

first oriented segment (p1 Ñ p2).

Algorithms 2024, 17, 444 6 of 34

Although apparently inconvenient and potentially unexplainable (the sense of circula-
tion was not expected to determine the conclusion of the point inclusion test), this behavior
is actually predicted by the Jordan curve theorem.

Indeed, an important concept related to the problem of point location is the well-
known Jordan curve theorem (JCT) that, in a simple redaction, as is done in [20], states
that “Every Jordan curve (a non-self-intersecting continuous loop in the plane) separates
the plane into exactly two components”. This means that any point is either in one region
or in the other, and implicitly, there is no distinct third region, like, for example, “the
border”. So, formally, any results derived from the JCT, namely those based on the winding
number, may find ambiguity in assessing which of the two regions is the point lying on the
boundary, and this is an unavoidable fact that must be managed when using techniques
based on circulation or winding number. Actually, for simple curves, when the observer
is traveling along the curve counter-clockwise, the points on this curve (boundary), by
convention, will belong to the region on the left hand side; so, the identification of which is
the “inside” region depends on the traveling (circulation) sense of the observer, and this is
where the ambiguity may take place.

2.3. Generalization to Generic Shapes

The generalization of the problem for domains beyond polygons (simple or non-
simple) can be carried out by using the winding number approach. However, the literature
has not shown a definitive viable implementation to do it, which includes the case of S.
Gatilov in [19], who gives a methodology to calculate the winding angle associated with a
circular arc. But Gatilov’s approach counts on the winding number technique described
in (1), with its ambiguity for points over segments, which in the case of arcs would be
points over the chord of the arc. That is not viable since the point will not even be on the
boundary, and the calculation may fail depending on the sense of the circulation! Let us
consider the example in Figure 7 with a “ p0, 0q. The contribution for the winding number
only by the arc p1"p2 depends on the circulation sense, as happens with any segment, but
in case of this arc, the value is not symmetric: it is π or 0! Since the contributions of the
other two segments are symmetric depending on the circulation sense (˘π), this all adds
up to ambiguity in detecting whether a lies inside or outside the region, which is absurd
because point a is clearly inside the region.

Version September 18, 2024 submitted to Algorithms 6 of 34

Indeed, an important concept related to the problem of point location is the well- 154

known Jordan Curve Theorem (JCT) that, in a simple redaction, as is done in [20], states 155

that “Every Jordan curve (a non-self-intersecting continuous loop in the plane) separates 156

the plane into exactly two components”. This means that any point is either in one region 157

or in the other, and implicitly there is no distinct third region, like for example "the border". 158

So, formally, any results derived from the JCT, namely those based on the winding number, 159

may find ambiguity in assessing in which of the two regions is the point lying on the 160

boundary, and this is an unavoidable fact that must be managed when using techniques 161

based on circulation or winding number. Actually, for simple curves, when the observer 162

is travelling along the curve counter-clockwise, the points on this curve (boundary), by 163

convention, will belong to the region on the left hand side; so, the identification of which is 164

the "inside" region depends on the travelling (circulation) sense of the observer, and this is 165

where the ambiguity may take place. 166

2.3. Generalization to generic shapes 167

The generalization of the problem for domains beyond polygons (simple or non- 168

simple) can be carried out by using the winding number approach. However, the literature 169

has not shown a definitive viable implementation to do it, including the case of S. Gatilov 170

in [19] who gives a methodology to calculate the winding angle associated to a circular arc. 171

But Gatilov’s approach counts on the winding number technique described in (1), with its 172

ambiguity for points over segments, which in the case of arcs would be points over the 173

chord of the arc. That is not viable since the point will not even be on the boundary, and the 174

calculation may fail depending on the sense of the circulation! Let’s consider the example 175

of Figure 7 with a “ p0, 0q. The contribution for the winding number only by the arc p1"p2 176

depends on the circulation sense, as happens with any segment, but in case of this arc, 177

the value is not symmetric: it is π or 0! Since the contributions of the other two segments 178

are symmetric depending on the circulation sense (˘π), this all adds up to ambiguity in 179

detecting whether a lies inside or outside the region, which is absurd because point a is 180

clearly inside the region. 181

x

y

p3 “ p0, 1q

p2p1

p1 “ p´1, 0q
p2 “ p1, 0q

p3

a

Figure 7. Case where point a is without doubt included in the delimited region, including a circular
arc, independently of the circulation sense, but which could fail by the application of the traditional
winding number technique proposed by [19].

Actually, the problem of point location in regions that may have curve segments was 182

first mentioned, although not actually solved in practice, by Edelsbrunner and Maurer in 183

1981 [21], and the general problem is seen by Kirkpatrick in 1983 as a challenge that may 184

require a completely new approach: 185

[...]While the algorithm [proposed by Kirkpatrick] can be adapted to certain other 186

situations (for example, when all internal regions are star shaped), the general 187

problem of optimal search in subdivisions formed from arbitrary curve segments 188

may require a totally new approach. ([22]) 189

The winding number approach has been a well accepted solution for the problem of 190

point location, and the calculation of the winding number of a polygonal curve Γ around 191

Figure 7. Case where point a is without doubt included in the delimited region, including a circular
arc, independently of the circulation sense, but which could fail by the application of the traditional
winding number technique proposed by [19].

Actually, the problem of point location in regions that may have curve segments was
first mentioned, although not actually solved in practice, by Edelsbrunner and Maurer in
1981 [21], and the general problem is seen by Kirkpatrick in 1983 as a challenge that may
require a completely new approach:

[...] While the algorithm [proposed by Kirkpatrick] can be adapted to certain
other situations (for example, when all internal regions are star shaped), the
general problem of optimal search in subdivisions formed from arbitrary curve
segments may require a totally new approach. ([22])

Algorithms 2024, 17, 444 7 of 34

The winding number approach has been a well-accepted solution for the problem of
point location, and the calculation of the winding number of a polygonal curve Γ around
some point a is easy to calculate by determining the number of intersections of Γ with
the real (horizontal) axis, as first pointed out in [23] and later implemented into a specific
algorithm by [1]. However, in the literature, nothing specific is added concerning the
winding number of other curves for the purpose of point inclusion, although algorithms
exist to calculate the winding number contribution of Bézier curves [24].

2.4. Background and Scope of This Paper

This paper demonstrates and gives implementations of a unified approach that covers
the traditional solutions based on ray-crossing or winding numbers, solves the cases where
those algorithms may find limitations or ambiguities, and extends and demonstrates a
practical, viable solution for generic contours that can be expressed in a parametric form,
which is its major novelty.

In the early 1990’s, information was not so easy to obtain or track, and faced with the
need, the author proposed, during his Ph.D. Thesis [25], an approach for the problem of
point location in polygons based on the Cauchy and Residue theorems, which is closely
related to the winding number approach, although unfamiliar at the time.

The algorithm operates by explicitly evaluating contour integrals in the complex plane
of a specially chosen function. The solution, found by accidental simplification (it was not
fully demonstrated then), proved to work well with a very simple and elegant mathematical
formulation. Only later, when formal full mathematical demonstrations were needed, was
the current solution developed, as presented in this paper. Hence, it can be said that
the solution came to be after the usage of the Cauchy and Residue theorems, but it later
became as it it now in its present state. The next sections describe in detail the foundations
of the technique, including algorithmic implementations, followed by illustrative results
and conclusions.

Code for this research and demonstrations of the algorithms described in the remainder
of this paper are publicly available in a GitHub repository (https://github.com/vitoruapt/
PointInclusion (accessed on 2 October 2024)).

3. Base Approach and Related Theorems

The relative location of a point in a polygon, or actually any other form of closed
contour in the plane, can be explored by the results provided by the theorem of Residue
and the theorem of Cauchy, which are introduced next.

Theorem 1 (Residue Theorem). If Γ is a closed curve of the plane, and f pzq is an analytic
function in the domain RpΓq enclosed by Γ (included), except in a finite number of points inside
R, then: ¿

Γ

f pzq dz “ 2πj
ÿ

k

rk (2)

being rk the residues of f pzq at the singular points inside R (being j “ ?´1).

The residue r of a complex function f pzq at a point a, which is a pole of order n of f , is
calculated by r “ 1

pn´1q! lim
zÑa

dn´1

dzn´1 rpz ´ aqn f pzqs. A complex function is analytic on a region

R if it is complex differentiable at every point in R. A common alternative designation is
“holomorphic function”, usually the preferable variant by some mathematicians.

Another important fact is given by the Cauchy theorem (or Cauchy–Goursat theorem,
since Edouard Goursat (1858–1936) proved this theorem without imposing the condition
that f 1pzq should be continuous inside RpΓq and on the boundary, which was an additional
condition left by Cauchy [26]) that states the following:

https://github.com/vitoruapt/PointInclusion
https://github.com/vitoruapt/PointInclusion

Algorithms 2024, 17, 444 8 of 34

Theorem 2 (Cauchy–Goursat Theorem). If RpΓq is a simply or multiply connected region whose
boundary Γ is sectionally smooth, and if f pzq is analytic in RpΓq, then the following result applies:

¿

Γ

f pzq dz “ 0. (3)

The previous statement is actually the formalization of the common expression, which
states that a line integral of any analytic function is independent of the path. So, the
advantage here is to use non-analytic functions on the regions of interest. After selecting a
function that is non-defined in only one point inside RpΓq, and whose residue is non-null
on that point, by using the Residue and Cauchy theorems, the following reasoning can
be engaged:

f pzq is analytic inside Γ ñ
¿

Γ

f pzq dz “ 0 (4)

or, conversely: ¿

Γ

f pzq dz ‰ 0 ñ f pzq is not analytic inside Γ. (5)

Asserting that f pzq is not analytic inside Γ means that f pzq has at least one discontinuity
inside Γ. Consequently, and being aware that a is the unique pole (discontinuity) of f pzq in
RpΓq, i.e., the unique point where it is not defined, a function such as f pzq “ 1

z´a allows
us to state this final and most valuable conclusion: if the contour integral of f pzq along a
given contour Γ is not null, then its pole lies in the region delimited by that contour, or, in
mathematical terms: $

’&
’%

a is the pole of f pzq¿

Γ

f pzq dz ‰ 0 ô a P RpΓq. (6)

It is now necessary to draw some considerations to select an appropriate function and
the procedures to apply and take advantage of the previous result. Let a boundary Γ be
decomposed in M parts Ωk with 1 ď k ď M. After reminding ourselves that a contour
integral is no more than a line integral where the integration path is a closed curve, the
following is clear:

¿

Γ

f pzq dz “
Mÿ

i“1

ż

Ωi

f pzq dz . (7)

Although other possibilities exist, we can adopt for f pzq the one suggested earlier and
presented in (8):

f pzq “ 1
z ´ a

. (8)

The residue of f pzq at pole a has the value 1. The option for f pzq given in (8) is due to the
fact that the integrand function should be simple for concerns of computational cost, and
that it must possess a non-null residue, which would otherwise lead to inconclusive results.
For example, all functions of the type f pzq “ 1

pz´aqn , with n ą 1, or the type f pzq “ z
pz´aqn ,

with n ą 2, have a residue of 0 on point a, making them useless for this purpose. On
the other hand, there are many other possibilities, all with residue 1 at point a, such as
the following: f pzq “ z

pz´aq2 , f pzq “ 1
1´epz´aq or f pzq “ 1

sin pz´aq . However, in all these
(usable) alternatives, there would always be the need to calculate a complex logarithm for
the anti-derivative. Therefore, the simplest and most obvious case found was precisely the
function in expression (8), but, indeed, the principle is independent of the function, which
is, however, useful only if it has poles and non-null residues.

Algorithms 2024, 17, 444 9 of 34

4. Calculation of the Contour Integral

If f pzq is analytic in any path between z1 and z2, then the fundamental theorem of
calculus along curves applies:

ż

Γz1z2

f pzq dz “ F
`
z2

˘ ´ F
`
z1

˘
. (9)

Expression (9) states a very well-known and useful technique, where Fpzq is the anti-
derivative of f pzq; however, it can be directly applied only if Fpzq is continuous along the
integration path and f pzq is defined over the integration path; this later condition may not
be satisfied when the point being tested is over the contour. Nonetheless, and based on the
definition of the Cauchy Principal Value (CPV), the contour integral can still be calculated
even if the function being integrated has a pole on the contour. That can be performed by
using expression (10) assuming that the pole is enclosed by a circle of radius δ, and the
fraction of the path outside that circle is named Γpδq, where the function f pzq is always
integrable independently of how small δ becomes [27]:

ż

Γ

f pzq dz “ lim
δÑ0

ż

Γpδq
f pzq dz . (10)

Having solved the possible problem of the non-definition of f pzq in a finite number of
points, it only remains the issue of the continuity of Fpzq, which is going to be managed
with a methodology derived further.

4.1. The Complex Logarithm

The anti-derivative of the chosen function (8) is the logarithm of a complex number,
which, formally, is a multi-valued result. By definition, the logarithm of a complex number
z is the number w that satisfies the expression z “ ew. After this definition, it is then clear
that the logarithm of z, Lnpzq, is multi-valued; if z “ rejθ , using j “ ?´1, and being true
that rejθ “ rejpθ`2kπq “ eln r`jpθ`2kπq, the following arises:

Lnpzq “ ln r ` jpθ ` 2kπq, k “ 0, ˘1, ˘2, . . . (11)

It must be noted that the logarithm of a complex number is here graphed with a capital
letter to stress its multi-valued nature. With multi-valued expressions, it is not possible to
establish comparisons or other relational operations without precautions. The meaning of
Lnpzq depends on the branch where the logarithm is being evaluated, that is, the value of k
in (11). However, the logarithm can be restricted to a single branch, called the principal
value, where the imaginary part is unique, hence with only one possible argument, called
the principal argument (often designated by the mathematical argpq function). The principal
value is obtained by making k “ 0 in (11) resulting in:

lnpzq “ ln r ` j argpzq “ ln r ` jθ. (12)

When restricted to the principal values, logarithms exhibit some particularities like,
for example, ln

´
e´j 5

4π
¯

equals 3
4πj rather than ´ 5

4πj, and, as well, ln
`
e´jπ˘ “ `πj and not

´πj! As expected, the restriction of the function output to an interval will certainly cause
discontinuity of that function and, indeed, lnpzq is not continuous for all points of the
non-positive real axis because it is clear that:

$
&
%

lim
θÑ0´

ln ejpπ`θq “ lim
θÑ0`

ln ejpπ´θq “ `πj
lim

θÑ0`
ln ejpπ`θq “ ´πj . (13)

Algorithms 2024, 17, 444 10 of 34

These issues of the principal value and continuity also affect the logarithms of products
(or quotients) when expanded to sums (or subtractions) of logarithms; subtraction or
addition of complex logarithms may not always give a result with the imaginary part
restricted to the principal value and that is why the following definitions are stated for the
logarithm of a quotient, or equivalently, subtraction of logarithms:

ln
z1

z2
“

$
’&
’%

ln z1 ´ ln z2 ð´πăarg z1´arg z2ď`π
ln z1 ´ ln z2 ´ 2πj ð arg z1´arg z2ą`π
ln z1 ´ ln z2 ` 2πj ð arg z1´arg z2ď´π

(14)

and, conversely,

ln z1 ´ ln z2 “

$
’’&
’’%

ln z1
z2

ð´πăarg z1´arg z2ď`π
ln z1

z2
` 2πj ð arg z1´arg z2ą`π

ln z1
z2

´ 2πj ð arg z1´arg z2ď´π
. (15)

4.2. Line Integral for Linear Segments

Resuming back to the genesis of the algorithm, the essence of the entire procedure is
then to evaluate explicitly

ű
Γ

dz
z´a and verify whether its value is null or not. It will not be

null if a lies within or over the contour Γ. By applying (9) to a segment of a path between
points z1 and z2, the following result would potentially occur:

ż

rz1z2s

dz
z ´ a

“ lnpz2 ´ aq ´ lnpz1 ´ aq. (16)

4.2.1. Concerns When Calculating the Line Integral

Despite the elegant solution given by (16), there remains the uncertainty of its applica-
bility due to the possible non-continuity of lnpzq along the path rz1z2s. That non-continuity
will occur precisely when the path from z1 to z2 crosses the negative real axis (NRA), that
is, in a neighborhood where z on the path passes from the 2nd quadrant (Q2) to the 3rd

quadrant (Q3) or vice-versa. The following notation is adopted to define the situations of a
path crossing the NRA:

path crosses the NRA from Q2 to Q3.

path crosses the NRA from Q3 to Q2.

path crosses the NRA in any sense.

path touches the NRA from Q2.

path touches the NRA from Q3.

path does not cross the NRA.

(17)

So, the problem is then to calculate the line integral in such conditions of discontinuity,
which is explained next. The discontinuity of lnpzq occurs when z crosses the negative
real axis, but this effect may occur with other functions apart from the logarithm. So, let
us assume that some generic function f can be parametrized on θ (to ease the practical
calculation, knowing that z “ rejθ), and its definite integral is to be evaluated from pπ´ αq
to pπ` βq, where α and β are positive angles smaller than π radians, i.e., α, β Ps0, πr. Being δ
an infinitesimal positive value, then the following can be written:

π`βż

π´α

f pθq dθ “
π´δż

π´α

f pθq dθ `
π`δż

π´δ

f pθq dθ `
π`βż

π`δ

f pθq dθ . (18)

Algorithms 2024, 17, 444 11 of 34

From the three terms on the right side of (18), the first and the last are always defined
for any value of δ (for the functions involved in this analysis). So, taking the limit when
δ Ñ 0 will also force the middle term to be zero because the following holds true for any
function f pθq:

lim
δÑ0

π`δż

π´δ

f pθq dθ “
πż

π

f pθq dθ “ 0. (19)

Therefore, and being Fpθq the anti-derivative of f pθq, expression (18) can be developed
into (20):

π`βż

π´α

f pθq dθ “ lim
δÑ0`

«
Fpθq

ˇ̌
ˇ̌
π´δ

π´α

` Fpθq
ˇ̌
ˇ̌
π`β

π`δ

ff

“ lim
δÑ0`

rFpπ´ δq ´ Fpπ´ αq ` Fpπ` βq ´ Fpπ` δqs
“ Fpπ` βq ´ Fpπ´ αq ` lim

δÑ0`
rFpπ´ δq ´ Fpπ` δqs.

(20)

Expression (20) shows that, when the integration path crosses the negative horizontal
axis, the line integral of a function f , has an additional term of limδÑ0`rFpπ´ δq ´ Fpπ` δqs,
whose concrete value depends obviously on the continuity of Fpθq. If Fpθq happens to be
continuous on the value θ “ π, then that additional term is null, and we fall back to the
fundamental theorem (9). Resuming to the case in discussion, using Fpθq=ln

`
rejθ˘

, then, by
taking into account (13), the following holds:

lim
δÑ0`

”
ln

´
rejpπ´δq¯

´ ln
´

rejpπ`δq¯ı
“ rlnprq ` πjs ´ rlnprq ´ πjs “ `2πj, (21)

which, by recovering the original variable (z “ rejθ), yields:
ż

rz1z2s

dz
z ´ a

“ lnpz2 ´ aq ´ lnpz1 ´ aq ` 2πj, for . (22)

A similar reasoning is easy to replicate for the case where the sense of the path is
reversed, e.g., swap the integral limits in (20), that is, when the crossing occurs from 3rd
quadrant (Q3) to 2nd quadrant (Q2), and the result for that case is:

ż

rz1z2s

dz
z ´ a

“ lnpz2 ´ aq ´ lnpz1 ´ aq ´ 2πj, for . (23)

In summary, it can be concluded that the line integral for a path between two points z1
and z2 of 1

z´a is given by:

ż

rz1z2s

dz
z ´ a

“

$
’&
’%

lnpz2 ´ aq ´ lnpz1 ´ aq ` 2πj ð
lnpz2 ´ aq ´ lnpz1 ´ aq ´ 2πj ð .
lnpz2 ´ aq ´ lnpz1 ´ aq ð

(24)

Considering points z1 and z2 to be such that
#

pz1 ´ aq P Q2 ñ `π2 ă argpz1 ´ aq ă π
pz2 ´ aq P Q3 ñ ´π ă argpz2 ´ aq ă ´π2

, (25)

Algorithms 2024, 17, 444 12 of 34

makes it simple to assert that, for this case, we have:

lim
`

maxtargpz2 ´ aqu ´ mintargpz1 ´ aqu˘ “ ´π, (26)

and consequently, the following always holds true:

argpz2 ´ aq ´ argpz1 ´ aq ă ´π. (27)

Similarly, if we have the reverse situation,
#

pz1 ´ aq P Q3
pz2 ´ aq P Q2

, (28)

then, the following can also be demonstrated:

argpz2 ´ aq ´ argpz1 ´ aq ą `π. (29)

In summary, when NRA intersection occurs from Q2 to Q3 (), we have the first case
in (24) which, by using the equality of case 3 from (15), certified by (27), allows to state
the following:

ż

rz1z2s

dz
z ´ a

“ lnpz2 ´ aq ´ lnpz1 ´ aq ` 2πj

“
ˆ

ln
z2 ´ a
z1 ´ a

´ 2πj
˙

` 2πj “ ln
z2 ´ a
z1 ´ a

(30)

Similarly, when NRA intersection occurs from Q3 to Q2 (), we have the second case
in (24), which allows us to state the following by using the equality of case 2 from (15), as
confirmed by (29):

ż

rz1z2s

dz
z ´ a

“ lnpz2 ´ aq ´ lnpz1 ´ aq ´ 2πj

“
ˆ

ln
z2 ´ a
z1 ´ a

` 2πj
˙

´ 2πj “ ln
z2 ´ a
z1 ´ a

(31)

In conclusion, and by comparing expressions (24) and (15), the following final result is
obtained for any a ‰ z1, z2: ż

rz1z2s

dz
z ´ a

“ ln
z2 ´ a
z1 ´ a

. (32)

A non-null value for expression (32) as the indicator of point inclusion in polygons
is precisely the methodology firstly used by the author in [25] (pp. 149–152), in the early
1990’s, as mentioned before, and whose validity has just been formally demonstrated.

4.2.2. Simplifying the Calculation of the Contour Integral

The result expressed by (32) allows to assert the full methodology because it calculates,
directly and in a straightforward mode, the circulation of a path made up of linear segments.
In the particular case of Γ defined as M linear segments, and with f pzq “ 1

z´a , expression (7)
with the results of expression (32) yields the following generic result:

Algorithms 2024, 17, 444 13 of 34

¿

Γ

f pzqdz “ ln
z2 ´ a
z1 ´ a

` ln
z3 ´ a
z2 ´ a

` ¨ ¨ ¨ ` ln
zM ´ a

zM´1 ´ a
` ln

z1 ´ a
zM ´ a

“
Mÿ

n“1

ln
zpn mod Mq`1 ´ a

zn ´ a
.

(33)

Furthermore, to simplify the calculation and avoid using at all the complex logarithms,
the previous calculations can be even more simplified since the possible variations of
the contour calculations only occur in the imaginary part, as it is intuitive from previous
statements, and easily demonstrable by expression (34). Indeed, being zk “ rkejθk and
zm “ rmejθm and therefore ℜ

!
ln zk

zm

)
“ ℜ

!
ln rk

rm
` j arg zk

zm

)
“ ln rk

rm
, the calculation of the

real part of (33) for the polygon with M vertices is always null, as shown next:

ℜ

$
&
%

¿

Γ

f pzq dz

,
.
- “ ℜ

"
ln

z2

z1
` ¨ ¨ ¨ ` ln

zM
zM´1

` ln
z1

zM

*

“ ln
r2

r1
` ¨ ¨ ¨ ` ln

rM
rM´1

` ln
r1

rM

“ ln
ˆ

r2

r1

r3

r2
¨ ¨ ¨ rM

rM´1

r1

rM

˙
“ lnp1q “ 0.

(34)

Finally, it may then be stated that the circulation can be obtained by simply calculating
argpq operations using (35):

¿

Γ

f pzq dz “
Mÿ

n“1

arg
zpn mod Mq`1 ´ a

zn ´ a
. (35)

Reminding the definition in (14), and being z1 “ r1ejθ1 and z2 “ r2ejθ2 , the definition
of the argpq function for a quotient of two complex numbers is, of course, given by (36):

arg
z1

z2
“

$
’&
’%

θ1 ´ θ2 ð ´π ă θ1 ´ θ2 ď `π
θ1 ´ θ2 ´ 2π ð θ1 ´ θ2 ą `π
θ1 ´ θ2 ` 2π ð θ1 ´ θ2 ď ´π

. (36)

Resorting to the actual geometric problem, and denoting the testing point by a “
pxa, yaq, and a generic point to delimit segments by Pn “ pxn, ynq, it is immediate to
state that

θn “ argpPn ´ aq “ atan2pyn ´ ay, xn ´ axq (37)

and, hence, Algorithm 1 on the following page can be promptly established. Moreover,
since the circulation of f pzq always has a null real part (34), only the imaginary part is
relevant and, therefore, the variant for the calculation given by (35) is preferred (simpler)
than the calculation using expression (33).

In conclusion, in a closed contour, the neat value of (35) will be null if, along the path,
there are no transitions between quadrants Q2 and Q3, but if they occur, additional terms
of ˘2πj must be added at each time, as expressed by (36). So, the following proposition can
be asserted:

Theorem 3 (NRA intersection theorem). In a region enclosing a singularity of a function f pzq,
the value of the contour integral (hence, the point inclusion) depends exclusively on the number and
sense of path transitions over the negative real axis (NRA).

Algorithms 2024, 17, 444 14 of 34

This section has demonstrated how the contour integral is indeed the translation of
the winding number approach introduced earlier as one of the well-known techniques for
point location in polygons. Moreover, as stated in the NRA intersection theorem, it is also
clear that the issues of the winding number calculation (angle contributions) occur only
when the path crosses the NRA, which resembles very much the ray crossing method.

Algorithm 1: Polygon inclusion test using real arctanpq
Require: a “ pax, ayq, Pn “ pxn, ynq for n “ 1, 2, . . . , M

1: if a P tP1, P2, . . . , Pnu then
2: return true //point a is one of the vertices

3: end if
4: for n “ 1 to M do
5: θn Ð atan2pyn ´ ay, xn ´ axq
6: end for
7: S Ð 0
8: for n “ 1 to M do
9: θ Ð θpn mod Mq`1 ´ θn

10: if θ ą π then
11: θ Ð θ ´ 2π
12: else if θ ď ´π then
13: θ Ð θ ` 2π
14: end if
15: S Ð S ` θ

16: end for
17: if S ‰ 0 then
18: return true //point a is included

19: else
20: return false //point a is not included

21: end if

4.2.3. Points on the Boundary of Polygons with Undefined Orientation

Algorithm 1 is valid for all combinations of point a and polygon tP1, P2, . . . , PMu,
and requires no post-processing; however, there can be ambiguity in a special situation
described next, which is nevertheless easily solvable with a more general approach.

The special situation just mentioned concerns the points over the boundary when the
orientation of the polygon (coarsely, the order in which the vertices are browsed) is not
the direct orientation, which may give ambiguous results, as expected by the Jordan curve
theorem, and mentioned at the beginning of this paper. Indeed, the contour integral

ű
Γ

dz
z´a ,

when a is over the path Γ, can result either in 0 or 2πj or, equivalently, a winding number
of 0 or 1. Additionally, if the polygon is not simple (i.e., is self-intersecting), the polygon
orientation is not adjustable (by reversing the order of vertices, for example) because the
orientation changes locally after each self-intersection of the boundary line! For those cases,
the contour integral is nonetheless always defined, and Figure 8 shows several examples of
points near a self-intersecting polygon.

In Figure 8, several observations immediately arise: the first is that clear “outside”
and “inside” points are always well determined (winding number of zero or non-zero,
respectively). A second observation is that points on the boundary may yield a winding
number of 0 or 1, depending on the circulation sense.

Algorithms 2024, 17, 444 15 of 34

P1 P2

P6

0´1

0 1

10 1

1

0
0

1

01

0

11 0

0

1
1

0

P1

P2

P6

´1

Figure 8. Several examples of winding numbers for testing points (* in the image) in different
situations on a non-simple (self-intersecting) polygon. On the left, the direct sense of circulation was
used when starting on P1 and moving toward P2, and on the right the reverse sense was used (also
starting on P1 but toward a new P2). Some points over the boundary result in an ambiguous winding
number that depends on the circulation sense.

There is also a particular case of a point being twice on the boundary (in the inter-
sections), which is always considered “inside”, no matter the sense of circulation. The
mentioned ambiguity is however not unsolvable since it is detectable: simply, in case
of doubt about the sense of the polygon orientation, to cover even for points over the
boundary, a double calculation can be performed: one with the given vertex point order,
and the other with its reverse sense; in case one of the calculations yields zero and the
other non-zero, then it is the case of a point over the boundary, and further decision can be
taken (normally to be considered included in the polygon). This avoids the need of special
analysis to detect points on the boundary, which could be absolutely not recommend on
general shaped contours, as managed ahead in this paper.

The challenge of points over the boundary is recurrent in all algorithms in the literature.
Even one of the most common approaches in the state of the art (the already cited work
of Hormann and Agathos [8] used in Matlab) has a special treatment for the points on the
boundary that the authors call boundary version and is included in Algorithm 7 in their
paper, and deals efficiently with points on boundaries of polygons.

In conclusion, if there can be points anywhere on the boundary that need to be precisely
assessed, and there is no knowledge whether a sequence of points tP1, P2, . . . , PMu of a
simple polygon is not given in the positive circulation sense, or whether the polygon is
not simple, then Algorithm 1 must be called twice, being the second time done with the
polygon vertices in the reverse order. If the two calls of the algorithm yield different results,
then we are in the presence of a point over the boundary, and it is (usually) to be considered
inside the polygon (Algorithm 2 on the following page).

Algorithm 2 on the next page requires double the computation resources since it
calls the actual calculation algorithm twice. This is required only for the absolutely gen-
eral case of totally random polygons and testing points, although total randomness will
hardly generate situations of points exactly over the border. Anyway, alternatives will be
presented ahead.

Despite being effective and elegant, in practice, Algorithm 1 is computationally de-
manding because one trigonometric function (arctan) is used per each side of the polygon,
making it less efficient computationally than other alternatives. That, too, is a reason for a
change in the paradigm of the calculation, which will align with the existing state of the art
algorithms for polygons but also go beyond their performance, not only by outperforming
the computational cost but also going where they do not go actually, that is, extension
for shapes other than polygons with linear segments. That paradigm is the parametric
definition of the integration path.

Algorithms 2024, 17, 444 16 of 34

Algorithm 2: Unambiguous test for generalized polygons
Require: a “ pax, ayq, Pn “ pxn, ynq for n “ 1, 2, . . . , M

1: Create Rm “ pxm, ymq for m “ M, M ´ 1, . . . , 1
2: VD Ð call Algorithm1pPn, aq
3: VR Ð call Algorithm1pRm, aq
4: if VD ‰ VR then
5: return true //point a is over the boundary

6: else
7: return VD //True/false if a is inside/outside

8: end if

4.3. Parametric Definition of the Integration Path

An observation that can be made about the technique described in the previous
sections is that calculating the line integral for a function with a non-continuous anti-
derivative requires care because of the sense of the integration path crossing the NRA,
which results in different contributions, as seen. Anyway, for linear segments, the method
just described circumvents that issue; however, for non-straight paths to be discussed
further, that may not be so clear. Hence, let us adopt an alternative approach to obtain (32)
by using parametric integration paths because that explicitly defines a path from a start
to an end, along with the variation of the parameter that describes the curve. Let us use a
parameter t that varies from 0 to 1 to cover the full path segment, and let us start with the
case of linear segments. Being z1 and z2 the extremities of a linear path, any point of the
path from z1 to z2 is given by:

z “ z1 ` tpz2 ´ z1q , 0 ď t ď 1. (38)

After adjusting the integration variable, dz “ pz2 ´ z1qdt, the line integral can now be
calculated as follows:

ż

rz1z2s

dz
z ´ a

“
1ż

0

pz2 ´ z1q dt
z1 ` tpz2 ´ z1q ´ a

(39)

that results in: „
lnpz1 ` tpz2 ´ z1q ´ aq

ȷ1

0
“ lnpz2 ´ aq ´ lnpz1 ´ aq, (40)

which is the same as (16), but shares the same risks of discontinuity because the anti-
derivative is still a logarithm, despite the fact that the integration variable is now t. There-
fore, the solution is exactly the same as before, given in (22) and (23). In the case of NRA
crossing, and depending on the sense (or), there will be a contribution of ˘j2π to the
contour integral, or ˘1 in the NRA crossings counter.

Although it could have been stated and adopted earlier, working for a segment z1z2
in respect to a point a is actually equivalent to working with segment pz1 ´ aqpz2 ´ aq in
respect to a “ 0. So, from now onwards, when z points are used, it is assumed that they
result from the original points subtracted from a, i.e., (z ´ a), and that the reference point in
analysis is the system origin p0, 0q.

5. NRA Crossing in Parametric Paths

We can now settle the procedures to calculate the contour integral along a closed path
or, equivalently, the inclusion of a point by a region based solely on the intersection of that
path with the NRA.

Algorithms 2024, 17, 444 17 of 34

5.1. NRA Crossings and Their Sense for Linear Segments

What we seek to detect is whether there is an intersection and what is its sense. And
this is straightforward to calculate after (38), which can be expanded into:

#
ℜtzu “ x “ x1 ` tpx2 ´ x1q ð 0 ď t ď 1
ℑtzu “ y “ y1 ` tpy2 ´ y1q ð 0 ď t ď 1

. (41)

A NRA intersection occurs at some point zc when ℑtzcu “ 0 and ℜtzcu ď 0 in
zc “ z1 ` tcpz2 ´ z1q , 0 ď tc ď 1, i.e., intersection occurs for the value tc that verifies:

"
y1 ` tcpy2 ´ y1q “ 0
x1 ` tcpx2 ´ x1q ď 0

ô
#

tc “ y1
y1´y2

tcpx1 ´ x2q ě x1
. (42)

Notice that the case y1 “ y2 represents a horizontal segment, and “intersection” only
occurs for y1 “ y2 “ 0. However, that is not actually an intersection of the NRA, as
explained later, and this special situation is to be discarded early in the algorithms (also to
avoid the division by 0). Apart from that case, if a valid tc is found, then it is necessary to
determine the sense of the NRA crossing, and that is easily verifiable by the derivative of
the imaginary component ℑtzu in relation to t. If the derivative is positive for that value of
tc, it means that the y “ ℑtzu component is increasing with t, therefore the path segment
is passing from Q3 to Q2, or , that is, there is a contribution of ´1 to the intersection
counting (IC), or `1 for the reverse case (Q2 to Q3, or). This can be formalized as:

IC “ ´ sgn
ˆ

dy
dt

ˇ̌
ˇ
t“tc

˙
. (43)

For linear segments, the previous expression is constant for any point of the segment
where the NRA crossing might occur:

IC “ ´ sgnpy2 ´ y1q “ sgnpy1 ´ y2q. (44)

If, by chance, the testing point happens to be an intersection point of the polygon
boundary with the NRA, either along the path segment (tc ‰ 0 and tc ‰ 1) or strictly on a
vertex (tc is 0 or 1), that can be promptly detected because its real coordinate would be zero:
x1 ` tcpx2 ´ x1q “ 0. This indicates that the point is over the boundary, and a decision can
be made immediately without further calculations. Formally: if x1 “ tcpx1 ´ x2q “ tc∆x,
then the point is on the boundary, and can be dispatched earlier in the algorithm.

There are also the particular cases of tc “ 0 or tc “ 1; these represent the cases where
the segment starts or ends exactly on the NRA (or). In those cases, this means that
another segment starts or ends there too! To leave the contributions separate, but allowing
them to add up or cancel, for those cases, the intersection contribution calculated above
should be halved, that is, a ˘0.5 contribution for segments that originate or end on the
NRA is to be applied. In other words, each crossing of the NRA can be accounted with ˘1,
but reaching or leaving it can be accounted as a half-crossing, or ˘0.5. Formally, this can be
stated as in (45):

tc “ 0 _ tc “ 1 ñ IC “ ´0.5 sgn
ˆ

dy
dt

ˇ̌
ˇ
t“tc

˙
. (45)

Figure 9 illustrates the situation of IC values for several testing points (a1, a2, . . . , a9)
in a polygonal self-intersecting region; the associated table details the partial and total
values of NRA intersection counting. At each case (point ai), the imaginary axis would be a
vertical line that crosses the enclosed domain exactly at each of the ai points.

In summary, if a path does not intersect the NRA (), the calculation of the line
integral is simple (actually, not necessary in practice) because there are no discontinuities
in the process and, in the end, all terms of the closed path will cancel altogether; only
the intersections of the path with the NRA will affect contour evaluation or the winding

Algorithms 2024, 17, 444 18 of 34

number. Also, notice that horizontal segments (y1 “ y2) never intersect NRA; they may
even lie over it but never actually cross it, so their contribution to the IC is null, as can be
seen in the segment that contains the a2 point in Figure 9.

Version September 18, 2024 submitted to Algorithms 18 of 34

ℜpzq`1

´1´0.5 `0.5

`0.5 ´0.5

a1 a2 a3 a4

a6

a7

`1 ´1

a5

a8 a9

´1

a1 a2 a3 a4 a5 a6 a7 a8 a9

`1 `1 `1.5 `1.5 `2 `3 `4 `4 `4
0 ´0.5 ´0.5 ´1.5 ´2 ´2 ´2 ´3 ´4

Total IC `1 `0.5 `1 0 0 `1 `2 `1 0
Is ai inside? yes yes yes no no yes yes yes no

Figure 9. Contributions of NRA intersections/touchings on the left side of nine example test points.
The sense of NRA reaching/crossing is relevant for the final sum. Since the imaginary axis would lie
over each ai point, the numbers in the table indicate the IC partial and total values, i.e., the counting
of intersections (crossings) of the NRA. For example, the total down IC for a6 is given by summing all
downward NRA intersections at its left: `3 “ `1 ` 0.5 ` 0.5 ` 1 and, similarly, for the total up IC,
the count is: ´2 “ ´0.5 ´ 1 ´ 0.5. The net total is IC “ `1, hence a6 is inside. Curiously, the result for
a7 is IC “ `2, that is, we could consider that a7 is inside "twice", which is graspable from the figure!

5.2. The case of points on the border, again! 509

In Figure 9 specific situations arise if the testing point is exactly a NRA crossing point 510

or, which is to say, the testing point is over the border. Once again, this situation forbids the 511

possibility of applying seamlessly a unique algorithm for points on the border. For example, 512

still in Figure 9, if the testing point occurs on the first crossing point (the one on the left of 513

a1), since it has no other crossing on its left, this implies being outside the region; so, its own 514

intersection contribution (IC) should be counted to consider it inside. But, if this reasoning 515

is applied to the 4th intersection (between a3 and a4), then the overall contribution at that 516

point (`1 ´ 0.5 ` 0.5 ´ 1) would result in 0 and that point would be considered outside the 517

region, contrarily to the intention of considering it as inside. The conclusion is that there is 518

no unique solution to distinguish with the same operation whether a point on the border is 519

always considered inside or outside the region: this is unavoidable, as supported by the 520

Jordan Curve Theorem presented earlier, where the sense of crossing (circulation) affects 521

the winding contribution, and therefore the conclusion about inclusion. The solution, as 522

already mentioned, is to check those situations before further calculation. 523

5.3. Universal algorithm for arbitrary polygons 524

All the previous procedures are integrated in Algorithm 3 on the following page that 525

shows all the steps to test polygonal inclusion of any point a on any polygon with M 526

vertices (for any M ą 0, but only M ą 2 is really meaningful), normal or self-intersecting. 527

The computational cost of Algorithm 3 is Opnq, and the arithmetic operations in- 528

volved are only sums (or subtractions) and at most M floating point divisions per polygon, 529

although optimizable, as described further. 530

In Algorithm 3 on the next page, the points on the border, including vertices, are 531

considered inside the polygon but, if wanted otherwise, this can be easily modified to 532

exclude them. It can be done either with an optional initial checking for a being one of the 533

vertices, or during the normal flow of the algorithm after test from line 12 that results from 534

the NRA crossing conditions in expression (42). The decision on line 13 of Algorithm 3 535

could be set to false if point on boundary would be to define as being outside. 536

Notice also that the apparent risk of division by zero in line 11 of the algorithm never 537

occurs because of early analysis in line 6 of the algorithm; indeed, if Y1 ““ Y2, we also have 538

sgnpY1q ““ sgnpY2q and the algorithm skips to next segment since there is no contribution 539

a1 a2 a3 a4 a5 a6 a7 a8 a9

`1 `1 `1.5 `1.5 `2 `3 `4 `4 `4
0 ´0.5 ´0.5 ´1.5 ´2 ´2 ´2 ´3 ´4

Total IC `1 `0.5 `1 0 0 `1 `2 `1 0
Is ai inside? yes yes yes no no yes yes yes no

Figure 9. Contributions of NRA intersections/touchings on the left side of nine example test points.
The sense of NRA reaching/crossing is relevant for the final sum. Since the imaginary axis would lie
over each ai point, the numbers in the table indicate the IC partial and total values, i.e., the counting
of intersections (crossings) of the NRA. For example, the total down IC for a6 is given by summing all
downward NRA intersections at its left: `3 “ `1 ` 0.5 ` 0.5 ` 1 and, similarly, for the total up IC,
the count is ´2 “ ´0.5 ´ 1 ´ 0.5. The net total is IC “ `1, hence a6 is inside. Curiously, the result for
a7 is IC “ `2, that is, we could consider that a7 is inside “twice”, which is graspable from the figure!

The major novelties in this approach for polygonal regions are that the existence of
NRA crossing can be determined by detecting the value of a single parameter t and the
sense of crossing can be determined by a simple comparison operation.

5.2. The Case of Points on the Border, Again!

In Figure 9 specific situations arise if the testing point is exactly a NRA crossing point
or, which is to say, the testing point is over the border. Once again, this situation forbids the
possibility of seamlessly applying a unique algorithm for points on the border. For example,
still in Figure 9, if the testing point occurs on the first crossing point (the one on the left of
a1), since it has no other crossing on its left, this implies being outside the region; so, its own
intersection contribution (IC) should be counted to consider it inside. But, if this reasoning
is applied to the 4th intersection (between a3 and a4), then the overall contribution at that
point (`1 ´ 0.5 ` 0.5 ´ 1) would result in 0 and that point would be considered outside the
region, contrarily to the intention of considering it as inside. The conclusion is that there is
no unique solution to distinguish with the same operation whether a point on the border is
always considered inside or outside the region: this is unavoidable, as supported by the
Jordan curve theorem presented earlier, where the sense of crossing (circulation) affects
the winding contribution, and therefore the conclusion about inclusion. The solution, as
already mentioned, is to check those situations before further calculation.

5.3. Universal Algorithm for Arbitrary Polygons

All of the previous procedures are integrated in Algorithm 3 on the following page,
which shows all the steps to test polygonal inclusion of any point a on any polygon with M
vertices (for any M ą 0, but only M ą 2 is really meaningful), normal or self-intersecting.

The computational cost of Algorithm 3 is Opnq, and the arithmetic operations in-
volved are only sums (or subtractions) and at most M floating point divisions per polygon,
although optimizable, as described further.

Algorithms 2024, 17, 444 19 of 34

Algorithm 3: Universal inclusion test in arbitrary polygons
Require: a “ pax, ayq, Pn “ pxn, ynq for n “ 1, 2, . . . , M

1: Pn Ð Pn ´ a for n “ 1, 2, . . . , M
2: IC Ð 0 //NRA Intersection counter

3: for n “ 1 to M do
4: Y1 Ð yn ; Y2 Ð ypn mod Mq`1

5: X1 Ð xn ; X2 Ð xpn mod Mq`1

6: if sgnpY1q ““ sgnpY2q then
7: continue //no NRA crossing: horizontal segment or segment entirely in one quadrant.

Jump to next segment.

8: end if
9: ∆Y Ð Y1 ´ Y2

10: ∆X Ð X1 ´ X2

11: tc Ð Y1
∆Y

12: if tc∆X ““ X1 then
13: return true //point a is on the boundary (included)

14: end if
15: if tc ě 0 and tc ď 1 and tc∆X ě X1 then
16: IP Ð sgnp∆Yq
17: if tc ““ 0 or tc ““ 1 then
18: IP Ð IP ˆ 0.5 //touch NRA only

19: end if
20: IC Ð IC ` IP

21: end if
22: end for
23: if IC ‰ 0 then
24: return true //point a is included

25: else
26: return false //point a is not included

27: end if

In Algorithm 3, the points on the border, including vertices, are considered inside the
polygon, but, if wanted otherwise, this can be easily modified to exclude them. It can be
done either with an optional initial checking for a being one of the vertices or during the
normal flow of the algorithm after test from line 12 that results from the NRA crossing
conditions in expression (42). The decision on line 13 of Algorithm 3 could be set to false if
the point on the boundary is defined as being outside.

Notice also that the apparent risk of division by zero in line 11 of the algorithm never
occurs because of early analysis in line 6 of the algorithm; indeed, if Y1 ““ Y2, we also
have sgnpY1q ““ sgnpY2q and the algorithm skips to the next segment since there is no
contribution of the current linear segment to the value of IC. Illustration of the functionality
and results of Algorithm 3 can be found in the GitHub repository indicated earlier.

5.4. Multi-Ring Polygons and Multi-Polygons

There is a category of planar domains commonly used in Geographical Information
Systems (GIS), namely to represent contours of countries and other geographical entities,
that accounts both for multiple separate polygons (multi-polygons) or for polygons that
include “holes” defined by one (or more) separate closed lines fully included in the outer
polygon; each of these separate contours is named a ring. A simple polygon has one ring,
and a polygon with two “holes” has three rings [28]. There are also strict cases of multi-ring

Algorithms 2024, 17, 444 20 of 34

multi-polygons where rings nest inside each other. All these situations can be handled with
the same concepts described earlier using the sense or circulation of a contour. Figure 10
illustrates three situations of multi-ring polygons.

Figure 10. Multi-ring polygons as used in GIS contexts. The orientations are indicative, but appropri-
ate relative senses must be ensured to correctly represent, for example, a polygon with a “hole”.

The figure also illustrates the need for defining correctly the sequence of the polygon
vertices in order to apply the same concepts of winding sense and, therefore, obtain the
number of NRA intersections. Extension of the algorithm to this type of region is achieved
by simply applying the procedure on each of the 2, 3, or more contours (rings) and sum up
the separate results of NRA intersections.

5.5. Optimizing Algorithm 3

Algorithm 3 on the preceding page can be computationally alleviated by avoiding
unnecessary divisions in case the NRA intersection does not occur. Indeed, as required by
expression (42), for NRA intersection to occur we must have the following: 0 ď y1

y1´y2
ď 1.

In other words, if either y1
y1´y2

ą 1 or y1
y1´y2

ă 0, then the NRA intersection does not occur,
and no more calculations need to be performed. So, a few comparisons (3 at most) can
be made before asserting the need to perform the division to find the actual tc of NRA
intersection. Since y1 ´ y2 “ ∆y, consider the following:

y1

∆y
ă 0 ñ p∆y ą 0 ^ y1 ă 0q _ p∆y ă 0 ^ y1 ą 0q (46)

y1

∆y
ą 1 ñ p∆y ą 0 ^ y2 ą 0q _ p∆y ă 0 ^ y2 ă 0q, (47)

which can be combined. We are allowed to state that there is no NRA intersection if the
following occurs: #

∆y ą 0 ^ py1 ă 0 _ y2 ą 0q
∆y ă 0 ^ py2 ă 0 _ y1 ą 0q ñ . (48)

Hence, just before line 11 of Algorithm 3 a few lines could be added to optimize the
procedure, demonstrating also that at most 3 comparisons are needed to conclude whether
there is NRA intersection or not before calculating tc “ Y1{∆Y, as proposed next:

...
if ∆Y ą 0 then

if Y1 ă 0 or Y2 ą 0 then
continue //no NRA intersection

end if
else

if Y2 ă 0 or Y1 ą 0 then
continue //no NRA intersection

end if
end if

11: tc Ð Y1
∆Y

...

Algorithms 2024, 17, 444 21 of 34

Previous expressions can be further optimized because when they are reached, it is
already known that sgnpY1q ‰ sgnpY2q. Therefore, Y1 ă 0 _ Y2 ą 0 is equivalent to only
one of them, e.g., Y1 ă 0. A similar reasoning applies to the “else”. This further reduces the
number of comparisons from 3 to 2.

In case there is intersection (i.e., the previous tests concluded that there may be a NRA
intersection because 0 ď tc ď 1), it is then necessary to calculate its precise value to test
the second requirement of expression (42), that is, check the condition tcpx1 ´ x2q ě x1,
which at first glance seems unavoidable to calculate through the division. But, actually, that
division operation can be avoided and replaced by two multiplications and a comparison,

as is shown next: being x1 ´ x2 “ ∆x and tc∆x ě x1 ô y1

∆y
∆x ě x1, if ∆y ą 0 then, for

NRA crossing, we need to have: y1∆x ě x1∆y, otherwise, we need to have the following:
y1∆x ď x1∆y.

The conclusion is summarized by expression (49):
#

∆y ą 0 ^ y1∆x ě x1∆y
∆y ď 0 ^ y1∆x ă x1∆y

ñ . (49)

This last simplification not only avoids the mathematical division butalso allows the
algorithm to fully operate in integer arithmetic representation, which would improve its
usage in an approach based purely on the integer representation of points/vertices.

Yet, in line 17, Algorithm 3 still requires to check whether tc is equal to 0 or to 1 to
conclude if the “crossing” is actually a “touching”, which would imply an adjustment
on the intersection counter. But that checking turns out redundant because those cases
correspond to y1 “ 0 or y2 “ 0, that is, there is no need to calculate tc for those cases either.

In summary, the algorithm in its full extension and covering all these optimizations, is
detailed as Algorithm 4 on the next page. It can be noted, in line 32, that a multiplication
by 0.5 is present, which, although being a statistically rare situation, could be modified for
further optimization; that would be to count each full crossing as an integer of value ˘2,
by, for example, changing line 30 into IP Ð sgnp∆Yq ` sgnp∆Yq, and a half crossing being
half of that value (˘1) with the final conclusions still holding, and integer computations
could be present throughout the entire algorithm.

In conclusion, besides the simplicity of the formulation, the algorithm has also the
virtue of a straightforward operation with degeneracy situations, such as point over seg-
ments or over vertices, or even as null length segments, which could happen in situations
of rounding the point representation to integers.

5.6. Vectorization of Algorithm 4

Although not necessarily a breakthrough in reducing computational costs, Algorithm 4
on the following page can be easily vectorized for parallel computing, at least for the test of
the inclusion of one point. Follows in Figure 11 a fully operational excerpt in Matlab code
(listing) that accepts a matrix P with the polygon vertices (with the last vertex replicated
from the first) and a point A. The procedure is vector based and operates with an entire
polygon “at once”.

Despite the possibility of some finer tuning, the vectorized approach, nevertheless,
forces all the operations to be performed through the entire chain of tests. Some tests
could be dismissed early in a sequential approach, but the vector approach forces all
the operations for all cases. Hence, it may not be suited for better performance in all
computational setups.

Algorithms 2024, 17, 444 22 of 34

Algorithm 4: An optimized version of Algorithm 3
Require: a “ pax, ayq, Pn “ pxn, ynq for n “ 1, 2, . . . , M

1: Pn Ð Pn ´ a for n “ 1, 2, . . . , M
2: IC Ð 0 //initialize NRA Intersection counter

3: for n “ 1 to M do
4: Y1 Ð yn ; Y2 Ð ypn mod Mq`1

5: X1 Ð xn ; X2 Ð xpn mod Mq`1

6: if sgnpY1q ““ sgnpY2q then
7: continue //no NRA crossing: horizontal line, etc.

8: end if
9: ∆Y Ð Y1 ´ Y2, ∆X Ð X1 ´ X2

10: if ∆Y ą 0 then
11: if Y1 ă 0 then
12: //or Y2 ą 0 redundant

13: continue //no NRA intersection

14: end if
15: else
16: if Y2 ă 0 then
17: //or Y1 ą 0 redundant

18: continue //no NRA intersection

19: end if
20: end if
21: if ∆Y ě 0 then
22: if Y1 ˆ ∆X ă X1 ˆ ∆Y then
23: continue //no NRA intersection

24: end if
25: else
26: if Y1 ˆ ∆X ě X1 ˆ ∆Y then
27: continue //no NRA intersection

28: end if
29: end if
30: IP Ð sgnp∆Yq //There is NRA intersection

31: if Y1 ““ 0 or Y2 ““ 0 then
32: IP Ð IP ˆ 0.5 //touch NRA only

33: end if
34: IC Ð IC ` IP //Update NRA crossing counter

35: end for
36: if IC ‰ 0 then
37: return true //point a is included

38: else
39: return false //point a is not included

40: end if

Algorithms 2024, 17, 444 23 of 34

Q=P−repmat(A,1,size(P,2));%translate to origin
Y1=Q(2,1:end−1);
Y2=Q(2,2:end);
DY=Y1−Y2;
X1=Q(1,1:end−1);
X2=Q(1,2:end);
DX=X1−X2;
Y1DX=Y1.*DX;
X1DY=X1.*DY;
noCrossSgn=(sign(Y1)==sign(Y2));
noCrossYA=(DY >0 & Y1<0);
noCrossYB=(DY<=0 & Y2<0);
noCrossXA=(sign(DY)> 0 & Y1DX < X1DY);
noCrossXB=(sign(DY)< 0 & Y1DX > X1DY);
Ip=„(noCrossSgn | noCrossYA | noCrossYB | noCrossXA | noCrossXB);
Ip=Ip.*sign(DY).*(1−0.5*(Y1==0 | Y2==0));
IC=sum(Ip);

Figure 11. Example of vectorization of Algorithm 4 in Matlab code.

5.7. Comparison to the State-of-the-Art Algorithm

For several years, Matlab has been using a version based on the algorithm from
Hormann and Agathos [8], valid for point location in arbitrary polygons. According to
the original paper, that algorithm is based on three steps, which, on the optimized variant,
includes the following operations:

• Evaluation of the determinant: performs 2 multiplications and 1 subtraction per seg-
ment;

• Quadrant classification: uses 6 comparisons per vertex;
• Determination of winding number: performs 2 subtractions/sums and up to 4 + 1

comparisons per vertex.

Algorithm 4 has more steps (though simpler) than Algorithm 3 and requires:

• Initial test: 1 sign comparison per vertex;
• Coordinate differences: 2 per vertex;
• Y coordinate conditions: up to 3 comparisons per vertex;
• Test NRA: 2 multiplications and 2 comparisons per vertex;
• Test special cases end points: 2 comparisons with zero;
• Crossing counter: 1 addition per NRA crossing.

The comparison is given side-by-side in Table 1, where it can be seen that Algorithm 4
has fewer comparisons (1 + 2 + 2 + 2 = 7 vs. 10 + 1 = 11) and potentially much less if tests
dismiss early; there is a similar number of additions/sums: 2 + 1 vs. 3; the multiplications
are in equal number but the advantage is that in Algorithm 4 they are needed only when
x-axis intersection occurs. In the previous analysis, 2M subtractions were omitted, reporting
to the relocation of the polygon around point p0, 0q, but which is a common operation to all.

Table 1. Comparison of estimated number of operations per vertex/segment in the algorithms.

Algorithm 3 Algorithm 4 Algorithm from [8]

Comparisons 1 + 3 + 2 1 + 2 + 2 + 2 10 + 1
Sums/subtractions 2 + 1 2 + 1 3
Multiplications 1 2 2
Divisions 1 0 0

An illustrative example of simple benchmarking is shown in Figure 12 with a polygon
with more than 2200 sides and thousands of testing points in two situations: on the left,
5000 completely random points, and on the right more than 2200 points near the border.
Results are shown for Algorithm 3 and the state-of-the-art algorithm in Matlab [8]. The
result shown is the average of 100 runs and had the same outcome in both algorithms. In
both cases, Algorithm 3 proposed in this paper outperforms by a factor of about 5.

Algorithms 2024, 17, 444 24 of 34

Alg 3: 0.047 s Alg 3: 0.035 sAlg from SOTA: 0.244 s Alg from SOTA: 0.188 s

Figure 12. Example of points tested in a 2216-side polygon: 5000 random on the left and more than
2200 random points very close to the borders on the right. As indicated at the top of each image,
Algorithm 3 ran about 5 times faster than the state-of-the-art (SOTA) Matlab’s native algorithm [8].
Tested in a HP ZBook Fury 15 with Intel Core i7-10750H CPU 2.60 GHz with 32 GBytes of RAM in
Ubuntu Linux 22.04.3.

6. NRA Crossing and Sense for Circular Arcs

For circular arcs, a few changes occur relative to linear segments. What is the most
apparent is the fact that circular arcs can cross the NRA more than once or may even be
tangent (Figure 13). Moreover, the parametric definition of arcs is a little more elaborate
than for straight lines, as described next.

Version September 18, 2024 submitted to Algorithms 24 of 34

z1

z2

z0

ℜpzq

ℑpzq

θ2

θ1

z1

z2

z0

ℜpzq

ℑpzq

z1

z2

z0

ℜpzq

ℑpzq

z1

z2

z0

ℜpzq

ℑpzqI1 I2

I1

I1, I2

θ2

θ1

θ2

θ1

θ2

θ1

Figure 13. Examples of arc segments with center in z0 starting on point z1 and ending at point z2.
Depending on z0, the very same arc can intersect the negative real axis (NRA), zero times, once
(I1), twice (I1 and I2) or be tangent (I1 ” I2), which, for the purposes of path integral evaluation, is
equivalent to intersect the NRA twice, in opposite senses.

6.1. Parametric expression for circular arcs 657

Any point of a circular arc with centre at z0, and evolving in the positive sense (counter- 658

clockwise – CCW), between point z1 “ z0 ` rejθ1 and point z2 “ z0 ` rejθ2 is expressed by 659

z “ z0 ` rejθ , where θ covers the interval defined by θ1 and θ2, and r “ |z0 ´ z1| “ |z0 ´ z2|. 660

To simplify the parametrization and unify the procedures used for the linear segment, 661

the following parametric representation is used: 662

z “ z0 ` rejrθ1`tpθ2´θ1qs, 0 ď t ď 1 (50)

However, to ensure an unambiguous interpretation of the path described, for the 663

positive sense it must be θ1 ď θ2, expecting that the angles are obtained by the following 664

operations: θ1 “ argpz1 ´ z0q and θ2 “ argpz2 ´ z0q. But if that is not the case, then one of 665

the angles must be converted by modulus 2π, that is, force θ1 and θ2 to fall in the interval 666

s´2π, `2πs, by applying either θ2 Ð θ2 ` 2π or θ1 Ð θ1 ´ 2π, depending on the necessary 667

case. 668

All the situations in Figure 13 respect the proper condition, θ1 ď θ ď θ2, but different 669

situations are illustrated in Figure 14 where θ encounters a discontinuity if restricted 670

to the interval s´π, `πs. As the figure explains, in one case the solution for a proper 671

parametrization is to convert θ2 into θ2 ` 2π and the other to convert θ1 into θ1 ´ 2π. 672

On the other hand, if a negative (or clockwise, CW) sense is intended, an equivalent 673

operation must be taken into account, as illustrated in Figure 15. 674

In summary, to ensure the proper and unambiguous parametrization of a circular 675

segment, the following steps have to be carried out when defining a circular boundary 676

segment: 677

Figure 13. Examples of arc segments with center in z0 starting on point z1 and ending at point z2.
Depending on z0, the very same arc can intersect the negative real axis (NRA), zero times, once
(I1), twice (I1 and I2), or be tangent (I1 ” I2), which, for the purposes of path integral evaluation, is
equivalent to intersect the NRA twice, in opposite senses.

6.1. Parametric Expression for Circular Arcs

Any point of a circular arc with center at z0, and evolving in the positive sense (counter-
clockwise—CCW), between point z1 “ z0 ` rejθ1 and point z2 “ z0 ` rejθ2 is expressed by
z “ z0 ` rejθ , where θ covers the interval defined by θ1 and θ2, and r “ |z0 ´ z1| “ |z0 ´ z2|.

To simplify the parametrization and unify the procedures used for the linear segment,
the following parametric representation is used:

Algorithms 2024, 17, 444 25 of 34

z “ z0 ` rejrθ1`tpθ2´θ1qs, 0 ď t ď 1. (50)

However, to ensure an unambiguous interpretation of the path described for the
positive sense, it must be θ1 ď θ2 where it is expected that the angles are obtained by the
following operations: θ1 “ argpz1 ´ z0q and θ2 “ argpz2 ´ z0q. But if that is not the case,
then one of the angles must be converted by modulus 2π, that is, force θ1 and θ2 to fall in
the interval s´2π, `2πs, by applying either θ2 Ð θ2 ` 2π or θ1 Ð θ1 ´ 2π, depending on the
necessary case.

All the situations in Figure 13 respect the proper condition, θ1 ď θ ď θ2, but different
situations are illustrated in Figure 14 where θ encounters a discontinuity if restricted
to the interval s´π, `πs. As the figure explains, in one case the solution for a proper
parametrization is to convert θ2 into θ2 ` 2π and the other to convert θ1 into θ1 ´ 2π.

Version September 18, 2024 submitted to Algorithms 25 of 34

ℜpzq

ℑpzq

z2

z1

z0

θ1

θ2a

ℜpzq

ℑpzq

z2
z1

z0

θ1a

θ1b

θ2b θ2

Figure 14. Example of arc segments where the CCW evolution of θ from θ1 to θ2 would not be
monotonic when θi P s´π, `πs, but that can be made monotonic by taking the equivalent angles: on
the left, θ2 Ð θ2 ` 2π, that is, use θ2b instead of θ2a, and on the right θ1 Ð θ1 ´ 2π, that is, use θ1b
instead of θ1a.

ℜpzq

ℑpzq

z1

z2

z0

θ2a

θ1

ℜpzq

ℑpzq

z1

z0

θ1a

θ2

z2

θ1b

θ2b

Figure 15. Example of arc segments where the CW evolution of θ from θ1 to θ2 would not be
monotonic when θi P s´π, `πs, but that can be made monotonic by taking the equivalent angles: on
the left, θ1 Ð θ1 ` 2π, that is, use θ1b instead of θ1a, and on the right θ2 Ð θ2 ´ 2π, that is, use θ2b
instead of θ2a.

• Indicate z1, z2 and the centre z0 (or some other means to obtain z0, like a third point 678

zp, or a radius and the relative placement of the centre); 679

• Obtain θ1 “ argpz1 ´ z0q and θ2 “ argpz2 ´ z0q; 680

• Define circulation sense (CCW or CW); 681

• Check the potential angle adjustments given by (51): 682

$
’’’’&
’’’’%

θ2 ď θ1 ^ CCW

#
θ2 ă 0 ñ θ2 Ð θ2 ` 2π
θ2 ě 0 ñ θ1 Ð θ1 ´ 2π

θ1 ď θ2 ^ CW

#
θ1 ă 0 ñ θ1 Ð θ1 ` 2π
θ1 ě 0 ñ θ2 Ð θ2 ´ 2π

. (51)

In expression (51) the verification of the equality between θ1 and θ2 is also considered to 683

include the situation of complete circles (where θ1 and θ2 would coincide, but actually one 684

of them should be 2π larger than the other to ensure that the possibility of a full circle is 685

covered). 686

Having the circular path segments duly defined and parametrized, the calculation of 687

the NRA intersections is as straightforward as for the linear segment. Hence, to adapt for 688

Figure 14. Example of arc segments where the CCW evolution of θ from θ1 to θ2 would not be
monotonic when θi P s´π, `πs, but that can be made monotonic by taking the equivalent angles: on
the left, θ2 Ð θ2 ` 2π, that is, use θ2b instead of θ2a, and on the right θ1 Ð θ1 ´ 2π, that is, use θ1b
instead of θ1a.

On the other hand, if a negative (or clockwise, CW) sense is intended, an equivalent
operation must be taken into account, as illustrated in Figure 15.

Version September 18, 2024 submitted to Algorithms 25 of 34

ℜpzq

ℑpzq

z2

z1

z0

θ1

θ2a

ℜpzq

ℑpzq

z2
z1

z0

θ1a

θ1b

θ2b θ2

Figure 14. Example of arc segments where the CCW evolution of θ from θ1 to θ2 would not be
monotonic when θi P s´π, `πs, but that can be made monotonic by taking the equivalent angles: on
the left, θ2 Ð θ2 ` 2π, that is, use θ2b instead of θ2a, and on the right θ1 Ð θ1 ´ 2π, that is, use θ1b
instead of θ1a.

ℜpzq

ℑpzq

z1

z2

z0

θ2a

θ1

ℜpzq

ℑpzq

z1

z0

θ1a

θ2

z2

θ1b

θ2b

Figure 15. Example of arc segments where the CW evolution of θ from θ1 to θ2 would not be
monotonic when θi P s´π, `πs, but that can be made monotonic by taking the equivalent angles: on
the left, θ1 Ð θ1 ` 2π, that is, use θ1b instead of θ1a, and on the right θ2 Ð θ2 ´ 2π, that is, use θ2b
instead of θ2a.

• Indicate z1, z2 and the centre z0 (or some other means to obtain z0, like a third point 678

zp, or a radius and the relative placement of the centre); 679

• Obtain θ1 “ argpz1 ´ z0q and θ2 “ argpz2 ´ z0q; 680

• Define circulation sense (CCW or CW); 681

• Check the potential angle adjustments given by (51): 682

$
’’’’&
’’’’%

θ2 ď θ1 ^ CCW

#
θ2 ă 0 ñ θ2 Ð θ2 ` 2π
θ2 ě 0 ñ θ1 Ð θ1 ´ 2π

θ1 ď θ2 ^ CW

#
θ1 ă 0 ñ θ1 Ð θ1 ` 2π
θ1 ě 0 ñ θ2 Ð θ2 ´ 2π

. (51)

In expression (51) the verification of the equality between θ1 and θ2 is also considered to 683

include the situation of complete circles (where θ1 and θ2 would coincide, but actually one 684

of them should be 2π larger than the other to ensure that the possibility of a full circle is 685

covered). 686

Having the circular path segments duly defined and parametrized, the calculation of 687

the NRA intersections is as straightforward as for the linear segment. Hence, to adapt for 688

Figure 15. Example of arc segments where the CW evolution of θ from θ1 to θ2 would not be
monotonic when θi P s´π, `πs, but that can be made monotonic by taking the equivalent angles: on
the left, θ1 Ð θ1 ` 2π, that is, use θ1b instead of θ1a, and on the right θ2 Ð θ2 ´ 2π, that is, use θ2b
instead of θ2a.

In summary, to ensure the proper and unambiguous parametrization of a circular seg-
ment, the following steps have to be carried out when defining a circular boundary segment:

• Indicate z1, z2, and the center z0 (or some other means to obtain z0, like a third point
zp, or a radius and the relative placement of the center);

• Obtain θ1 “ argpz1 ´ z0q and θ2 “ argpz2 ´ z0q;
• Define circulation sense (CCW or CW);
• Check the potential angle adjustments given by (51):

Algorithms 2024, 17, 444 26 of 34

$
’’’’&
’’’’%

θ2 ď θ1 ^ CCW

#
θ2 ă 0 ñ θ2 Ð θ2 ` 2π
θ2 ě 0 ñ θ1 Ð θ1 ´ 2π

θ1 ď θ2 ^ CW

#
θ1 ă 0 ñ θ1 Ð θ1 ` 2π
θ1 ě 0 ñ θ2 Ð θ2 ´ 2π

. (51)

In expression (51), the verification of the equality between θ1 and θ2 is also considered
to include the situation of complete circles (where θ1 and θ2 would coincide, but actually
one of them should be 2π larger than the other to ensure that the possibility of a full circle
is covered).

Having the circular path segments duly defined and parametrized, the calculation of
the NRA intersections is as straightforward as for the linear segment. Hence, to adapt for
the circular arc, there must exist one (or two) values for t that generate an NRA crossing,
and let us call them tc:

xc ` jyc “ px0 ` jy0q ` rejrθ1`tcpθ2´θ1qs, 0 ď tc ď 1 (52)

or in expanded view:
#

xc “ x0 ` r cosrθ1 ` tcpθ2 ´ θ1qs 0 ď tc ď 1
yc “ y0 ` r sinrθ1 ` tcpθ2 ´ θ1qs 0 ď tc ď 1

. (53)

For the same conditions as before, xc ď 0 and yc “ 0 as seen in Section 5, we then have:
#

x0 ď ´r cosrθ1 ` tcpθ2 ´ θ1qs 0 ď tc ď 1
y0 “ ´r sinrθ1 ` tcpθ2 ´ θ1qs 0 ď tc ď 1

. (54)

However, since the circle can cross the NRA twice, two solutions would be expected
for tc in the second equation of (54); indeed, the total number of solutions in θ of an equation
of the type x “ sinpθq is given by the following:

θ “
#

arcsin x ˘ 2kπ k “ 0, 1, 2, . . .
π´ arcsin x ˘ 2kπ k “ 0, 1, 2, . . .

(55)

that, when restricted to the r´2π, `2πs interval, simplifies into, at most, the following
5 solutions:

θ “

$
’&
’%

arcsin x
arcsin x ˘ 2π
´ arcsin x ˘ π

. (56)

Resuming to the variables from (54), we have
$
’’’’’’’’’&
’’’’’’’’’%

tc1 “ θ1 ` arcsin y0
r

θ1 ´ θ2

tc2,3 “ θ1 ` arcsin y0
r ˘ 2π

θ1 ´ θ2

tc4,5 “ θ1 ´ arcsin y0
r ˘ π

θ1 ´ θ2

(57)

where all those potential solutions, besides needing to verify the condition 0 ď tc ď 1, must
also verify the first condition of (54), that is, x0 ď ´r cosrθ1 ` tcpθ2 ´ θ1qs.

Naturally, at most two of the solutions from (57) are valid (two intersections of the
x axis), but there can be only one, or even no, solutions at all. As just mentioned, both
potential solutions (let us name them tcA and tcB) must be tested whether they verify
expression (54). Nonetheless, there are obvious cases that can be tested beforehand to

Algorithms 2024, 17, 444 27 of 34

accelerate the numeric algorithms: one is |y0| ą r, resulting in a clear impossibility, and the
other case is when |y0| “ r, implying that the arc is tangent to the x axis.

For the case of circular arcs, the situation of tangency may be interpreted as either
a non-intersection or a double touching of the NRA (entering and leaving the NRA at
the same point). The net additional contribution for the calculation of the line integral is,
therefore, zero. Hence, if |y0| ě r, then the circular segment does not affect the intersection
counter IC. The exception occurs in case the tangency point (|y0| “ r) happens for tc being
0 or 1, which is a “half intersection”, as described next.

6.2. Sense of NRA Crossing for Circular Arcs

As before, in case there is an NRA intersection, its sense must be determined, and
expression (43) can be used and adapted for the case of arcs:

IC “ ´ sgntpθ2 ´ θ1qr cosrθ1 ` tcpθ2 ´ θ1qsu. (58)

Expression (58) can be further simplified avoiding the need to calculate the trigono-
metric function. Knowing that r ą 0 and being θptcq “ pθ1 ` tcpθ2 ´ θ1qq mod 2π, we have:

IC “
#

sgnpθ1 ´ θ2q ð ´π2 ă θptcq ă π

2

sgnpθ2 ´ θ1q ð Otherwise
. (59)

Also, as occurred for the linear segments, the particular cases of tc “ 0 or tc “ 1
correspond to “half intersections” (one extremity of the arc is over the NRA) and, therefore,
the IC calculated with (59) must be adjusted the same way, as given by (45), or formally
stated: tc “ 0 _ tc “ 1 ñ IC Ð 0.5 ˆ IC .

7. Application to Bézier Curves

Most planar domains can be defined by closed splines or other arbitrary curve seg-
ments, delimited by two extreme (anchor) points and some control points in a parametric
way, which is most frequently of a polynomial nature.Each segment can however be treated
the same way as was demonstrated earlier for linear and circular segments. For example,
Bézier curves of order n in the complex plane can be defined by:

Bnptq “
nÿ

k“0

tk

˜
n!

pn ´ kq!

kÿ

i“0

p´1qi`kzi
i!pk ´ iq!

¸
(60)

where zi are the control points, starting at z0 and ending at zn (the anchor points), and with
0 ď t ď 1.

Segments are described by polynomials, making it easy both to differentiate and find
roots, except for higher orders (like 5, 6, or more), and in that case, it can represent a
challenge for analytical approaches, although numerical approaches are always possible.
Bézier curves can also be expressed in the more compact notation:

Bnptq “
nÿ

i“0

ˆ
n
i

˙
p1 ´ tqn´itizi, 0 ď t ď 1 (61)

from which follows an example of a Bézier segment of the 3rd order, which is one of the
most commonly used, thus, representative of many challenges in computational geometry:

B3ptq “ p1 ´ tq3z0 ` 3p1 ´ tq2tz1 ` 3p1 ´ tqt2z2 ` t3z3 (62)

or, in full expansion:

B3ptq “ p3z1 ´ z0 ´ 3z2 ` z3qt3 ` 3pz0 ´ 2z1 ` z2qt2 ` 3pz1 ´ z0qt ` z0. (63)

Algorithms 2024, 17, 444 28 of 34

As described earlier, detecting the NRA crossing of such a segment requires the
solution of B3ptq “ 0, which would yield up to 3 results for t in the r0, `1s interval. If less
than 3 NRA intersections occur, this means that some solutions for t are complex, and are
to be discarded. To determine the sense of growing at the intersection points with the NRA,
the derivative of B3ptq in order to t is required, and that too is a direct operation easily
allowed by the polynomial representation of the curve segment:

dB3ptq
dt

“ 3p3z1 ´ z0 ´ 3z2 ` z3qt2 ` 6pz0 ´ 2z1 ` z2qt ` 3pz1 ´ z0q. (64)

Figure 16 shows a region defined by a cubic Bézier curve and two linear segments.
In this case, the Bézier anchor points are z0 “ p0, 0q and z3 “ p2, 1q and the two control
points are z2 “ p0, ´1q and z3 “ p2, 1q. The two linear segments are z3z4 and z4z0. Points
a1 “ p0.9, 0.6q and a2 “ p1.1, 0.4q will be tested but only a1 is included in the region.

z0

z3

z4

•
a2•a1

Point Coordinate
z0 p0, 0q
z1 p2, 2q
z2 p0, ´1q
z3 p2, 1q
z4 p2, 0q

Figure 16. Region delimited by a cubic Bézier and two linear segments. Points z1 and z2 (not plotted
in the figure) are the Bézier control points.

To test points a1 and a2, the procedure seems to require the adjustment of the “vertices”
values reported to each testing point and calculate the new resulting polynomials. Actually,
that turns out unnecessary in the parametric form because the new polynomial only changes
by an offset, and the generic expression (63) simply becomes B3ptq Ð B3ptq ´ ai, where ai is
the point being tested.

An additional relevant aspect for computational purposes is that the expression for the
Bézier polynomial derivative (64) remains the same whatever the testing point ai, which
saves computation resources when testing the inclusion of many different points for the
same region. The generic equations to test the NRA crossing and contributions (IC) for a
given ai “ paxi , ayi q are: $

’’&
’’%

xB3 “ 8t3 ´ 12t2 ` 6t ´ axi

yB3 “ 10t3 ´ 15t2 ` 6t ´ ayi
dyB3

dt
“ 30t2 ´ 30t ` 6

.

To solve the problem for this particular situation, the procedure is implemented
as follows:

1. Find the roots of yB3 “ 10t3 ´ 15t2 ` 6t ´ ayi ;
2. Test whether the found roots satisfy the condition of NRA intersection, that is, xB3 “

8t3 ´ 12t2 ` 6t ´ axi ď 0;
3. For each root that satisfies the previous expression there is a NRA intersection whose

sense needs to be assessed by the sign of
dyB3

dt “ 30t2 ´ 30t ` 6.

Table 2 shows some numerical results that illustrate the functionality of the algorithm
for a cubic Bézier segment for two test points a1 and a2.

Figures 17 and 18 illustrate the plots concerning NRA intersections by the cubic Bézier
segment for the cases of point a1 and a2, respectively.

The intersection contributions IC (detailed in Table 2) clearly translate the situations
of inclusion of the tested points. For a1, total IC is ´1 and for a2 total IC is `1 ´ 1 “ 0.
Actually, the IC contributions from the two linear segments were not analyzed, but it is
simple to confirm that they do not contribute at all because they do not cross the NRA: the

Algorithms 2024, 17, 444 29 of 34

horizontal segment will never contribute, and the vertical segment does not cross the NRA
for the points being tested.

Table 2. Detailed analysis of operations concerned with NRA crossings by a cubic Bézier segment for
two testing points in the case illustrated in Figures 16–18.

Testing Points ti xB3 ptiq dyB3
dt ptiq IC

ř
IC

a1

t1 “ 0.1517 ´0.2379 yes 2.139 ´1
´1t2 “ 0.4312 0.0974 no ´1.358 0

t3 “ 0.9171 0.6805 no 3.719 0

a2

t1 “ 0.0829 ´0.6805 yes 3.719 ´1
0t2 “ 0.5688 ´0.0974 yes ´1.358 `1

t3 “ 0.8483 0.2379 no 2.139 0

´0.8 ´0.6 ´0.4 ´0.2 0 0.2 0.4 0.6 0.8 1
´0.6

´0.4

0

0.2

0.4

t “ 0.9171t “ 0.1517 t “ 0.4312

´0.2

Figure 17. Bézier real axis intersections for testing point a1. The “*” are the points where the curve
intersects the horizontal axis, the green circle represents the point being tested when shifted to the
system origin, and the square indicates a NRA crossing that effectively contributes to the intersection
counting. Check Table 2 for more details.

´1 ´0.8 ´0.6 ´0.4 ´0.2 0 0.2 0.4 0.6 0.8
´0.4

´0.2

0

0.2

0.4

0.6

t “ 0.8483t “ 0.0829

t “ 0.5688

Figure 18. Bézier real axis intersections for testing point a2. The “*” are the points where the curve
intersects the horizontal axis, the green circle represents the point being tested when shifted to the
system origin, and the squares indicate a NRA crossing that effectively contributes to the intersection
counting. Check Table 2 for more details.

Algorithms 2024, 17, 444 30 of 34

With higher order curves, such as these 3rd order Bézier, it may happen that the
intersection point is tangent to the NRA and expression (43) would result in 0 (inconclusive).
This is an easy situation to detect (one further comparison) and concerns a case where
all three roots tc are equal. There are two solutions for that very special case to allow the
detection of the intersection sense: one would be to calculate expression (43) in a “small”
neighborhood of tc, for example, tc ´ δ instead of tc (where the value of δ can be on the
range of the precision involved—e.g., 10´6); the other solution, formally more elegant, is
simply to check the quadrants of z1 and z2, i.e., use the value of sgnpy1 ´ y2q “ sgnp∆Ybq.

Application to the Challenges Given

By using the previous techniques for linear, circular, and Bézier segments in an in-
tegrated and complementary form, it is possible to test situations as those illustrated in
Figure 1 for a set of random points, which results as shown in Figure 19.

Version September 18, 2024 submitted to Algorithms 30 of 34

Application to the challenges given 776

By using the previous techniques for linear, circular and Bézier segments in an in- 777

tegrated and complementary form, it is possible to test situations as those illustrated in 778

Figure 1 for a set of random points, which results as shown in Figure 19.

Figure 19. Results of algorithms applied to the regions of Figure 1. Due to limited resolution in the
display above, some points may seem to be on the border, but actually none of them is.

779

From the point of view of programming, three functions were created and used: 780

NRAintLin(), NRAintArc() and NRAintBez(), whose source code is also available at the 781

GitHub repository indicated earlier. These functions return the NRA counting for each 782

respective segment when invoked accordingly to the type of segment: 3 linear and 3 circular 783

arcs on the region on the left, and 2 linear, 3 circular arcs and 2 Bézier segments on the 784

region on the right. These three functions are essential to establish the general algorithm for 785

regions delimited by linear, circular or Bézier segments, which is the subject of next section. 786

8. Algorithm for arbitrary planar domains 787

After the statements, demonstrations and examples described in the previous sections, 788

it is now straightforward to establish the basis of a general algorithm for arbitrary planar 789

domains that can be described by parametric equations, which have associated a sense of 790

circulation along the boundary. The procedure can be stated as follows: 791

1. Set up the closed region by segments defined parametrically in such a way that each 792

segment is defined by two extremes z1 and z2, a parameter t, being 0 ď t ď 1, and 793

optional points or parameters depending on the type of the segments (linear, circular 794

arcs, Bézier curves, etc.) 795

• Linear segments do no require any further parameters or points; 796

• circular arcs require a third point (centre), or else a radius along with the defini- 797

tion of its orientation; 798

• other curves (of second or higher order) require additional elements to fully 799

define them (3rd order Bézier curves require two more points). 800

2. Normalize the domain delimiting points (vertices) relative positions by subtracting 801

the test point a to all vertices. 802

3. Check the intersections of this new relocated region with the negative half part of the 803

horizontal axis (x). Intersections occur from Q2 to Q3 or vice-versa. 804

Full intersections are accounted for an integer value (`1 or ´1 depending on the 805

sense, Q2 to Q3 () or Q3 to Q2 (), respectively), or a partial value (`0.5 or ´0.5) 806

if segment starts or ends on the very horizontal axis (,), and the positive or 807

negative contribution is determined once again if the segment goes or comes to/from 808

quadrants Q2 or Q3. 809

Figure 19. Results of algorithms applied to the regions of Figure 1. Due to limited resolution in the
display above, some points may seem to be on the border, but actually, none of them are.

From the point of view of programming, three functions were created and used:
NRAintLin(), NRAintArc() and NRAintBez(), whose source code is also available at the
GitHub repository indicated earlier. These functions return the NRA counting for each
respective segment when invoked accordingly to the type of segment: 3 linear and 3 circular
arcs on the region on the left, and 2 linear, 3 circular arcs and 2 Bézier segments on the region
on the right. These three functions are essential to establish the general algorithm for regions
delimited by linear, circular, or Bézier segments, which is the subject of the next section.

8. Algorithm for Arbitrary Planar Domains

After the statements, demonstrations, and examples described in the previous sections,
it is now straightforward to establish the basis of a general algorithm for arbitrary planar
domains that can be described by parametric equations, which have associated a sense of
circulation along the boundary. The procedure can be stated as follows:

1. Set up the closed region by segments defined parametrically in such a way that each
segment is defined by two extremes z1 and z2, a parameter t, being 0 ď t ď 1, and
optional points or parameters depending on the type of the segments (linear, circular
arcs, Bézier curves, etc.)

• Linear segments do not require any further parameters or points;
• circular arcs require a third point (center), or else a radius along with the defini-

tion of its orientation;
• other curves (of second or higher order) require additional elements to fully

define them (3rd order Bézier curves require two more points).

2. Normalize the domain delimiting points (vertices) relative positions by subtracting
the test point a to all vertices.

Algorithms 2024, 17, 444 31 of 34

3. Check the intersections of this newly relocated region with the negative half part of
the horizontal axis (x). Intersections occur from Q2 to Q3 or vice-versa.
Full intersections are accounted for an integer value (`1 or ´1, depending on the
sense, Q2 to Q3 () or Q3 to Q2 (), respectively), or a partial value (`0.5 or ´0.5)
if the segment starts or ends on the very horizontal axis (,), and the positive or
negative contribution is determined once again if the segment goes or comes to/from
quadrants Q2 or Q3.

4. The verification of the sense of the evolution of the path must be asserted in these
intersection/touching points: it is straightforward for linear segments, but for other
types of segments, the descendant gradient of y with respect to t must be used at that
point to determine the sense of cross/approach to the horizontal axis.

Algorithm 5 formalizes the required steps.

Algorithm 5: Universal inclusion test in arbitrary regions
Require: a “ pax, ayq, Pn “ pxn, ynq for n “ 1, 2, . . . , M
Require: Ln P t0, 1, 2, 3, . . . u //type of segment/number of control points
Require: Cnk “ tpxxk, yykqun for k “ 0, 1, . . . , Ln //Control points //It is admitted that

PM`1 “ P1.

1: if a P tP1, P2, . . . , PMu then
2: return true //point a is one of the vertices

3: end if
4: Pn Ð Pn ´ a for n “ 1, 2, . . . , M
5: Cn Ð Cn ´ a for n “ 1, 2, . . . , M
6: IC Ð 0
7: for n “ 1 to M do
8: rXptq , Yptqs “ f pPn, Pn`1, tCnu, Lnq
9: T Ð solutions of Yptq “ 0

10: for all tc in T do
11: if Xptcq ““ 0 then
12: return true //point a is on border (included).

13: end if
14: if tc ě 0 and tc ď 1 and Xptcq ď 0 then
15: IP Ð ´ sgn

´
dYptq

dt

ˇ̌
t“tc

¯
//intersects NRA

16: if IP ““ 0 and Ln is a cubic Bézier then
17: IP Ð sgn ∆Yb //Cf. text for definition of ∆Yb

18: end if
19: end if
20: if tc ““ 0 or tc ““ 1 then
21: IP Ð IP ˆ 0.5 //touch NRA only

22: end if
23: IC Ð IC ` IP

24: end for
25: end for
26: if IC ‰ 0 then
27: return true //point a is included

28: else
29: return false //point a is not included

30: end if

Algorithms 2024, 17, 444 32 of 34

A most relevant point when comparing this general algorithm to the algorithms
presented in the preceding sections is the input of data: besides the testing point and the
list of vertices that require no changes at all, there are now more parameters to be given to
distinguish and define the types of segments.

The algorithm then requires the following data as inputs:

• The testing point a (same as before)
• The vertices (extreme points) of the region segments (same as before)
• A set of numbers indicating the type of segment or number of control points (e.g., 0

for linear, 1 for circular, 2 for 3rd order Bézier segments, etc.)
• A set of control points for each segment

The steps of the algorithm that vary with the type of segment occur mainly in lines 8
and 9, where the parametric equations of the segment must be obtained and solved, and
also in line 15 to calculate a derivative and obtain the sense of NRA crossing.

As mentioned before, the GitHub repository made available also includes the code
and illustration of the application of this general algorithm with several examples besides
the ones in Figure 19. No benchmarking is performed with this general algorithm because,
in the literature, there are no other algorithms for this same purpose to compare with.

9. Discussion and Conclusions

This paper presents a methodology to solve, in analytical form, the problem of point
inclusion in planar domains for regions of virtually unlimited complexity, namely with
boundary curves of order greater than linear segments. Specifically, for the cases for regions
bounded arbitrarily by polygonal, circular arcs and Bézier lines have been derived and
implemented, and the methodology for regions with other shapes has been described and
is ready to be applied to the general algorithm.

The approaches described are handled in analytical form, so they are independent of
any numerical approximations, hence independent of scale. Nonetheless, when performing
actual calculations in floating point operations, the limitation of the numeric representation
of the computational system naturally occurs. However, due to the nature of the operations
(sums and multiplications in the Algorithms 3 and 4 for polygonal regions only), the
propagation of uncertainty is minimal, and operations can even be performed in integer
representation, which is suitable for some embedded systems. On the other hand, this is not
the case for the general approach of non-linear segments (covered in Algorithm 5) because
boundary segments are non-linear, and non-linear calculations are required, including
trigonometric or root operations. Since the accumulated chain of non-linear operations
is short, uncertainty propagation is contained, and results have shown that very good
accuracy (in 12 or more decimal places) is kept in the final outcome. This can be checked,
for example, by “zooming” into the plots extensively and verifying the correct result of
point inclusion. The mentioned GitHub repository allows these tests to be performed by
other users.

The paper also demonstrates why a simple winding number based technique for
detecting point inclusion will always be ambiguous if the testing point is on the border.
Nonetheless, the proposed algorithms detect those situations early, and the technique
relies on the need of a single pass operation, i.e., it requires no iterative procedure or
further verifications.

Besides this advantage of a single operation, the possibility of extending the algorithm
to regions of more complex shapes opens wider directions in the field of simulation and
computational geometry. The usage for curves of high orders needs to deal with negative
real axis intersection, which is equivalent to finding the roots of polynomials or other
transcendental curves. This implies unavoidable additional computational costs when
compared to straight polygonal shapes. Nevertheless, the pure analytical formulation of the
method may remain an advantage against the alternatives of linearization or approximation
of curves to polygonal lines.

Algorithms 2024, 17, 444 33 of 34

Along these lines, a final remark is worth mentioning, which concerns a potential
alternative to this approach for general shapes. We could think of the possibility of triangu-
lating a region such as the ones shown in Figure 19 and apply point location techniques
cited in Section 2. Although the technique is usually applied for a problem not addressed
in this paper, a region could be triangulated and the test of inclusion of a point in the
overall region could be performed by identifying which subregion, if any, includes that
point. Besides the variable computational costs of this extreme solution, two main lim-
itations immediately arise. The first is concerning self-intersecting regions and regions
with holes (like the ones in Figure 10) that require additional care and pre-processing to be
triangulated. Secondly, and even more relevant, if the region boundaries are curved, they
must be linearized (sampled) to perform the triangulation. This has two drawbacks: the
computational demands of the preprocessing and an additional computational cost that
depends on the scale. The dependency on scale is particularly relevant near the boundaries:
if very high accuracy is required, the samples over the curved boundaries must be more
dense; hence, a larger number of triangles is generated in the mesh. This dependency on
scale (with consequences on the accuracy in areas closer to the borders) does not occur in
the proposed approach because it is analytical.

The next list of topics explains the advantages of the proposed approach in this
paper, the reasons for better performance than existing solutions, and the reason for that
to happen.

• It involves fewer operations: besides the common sums and subtractions, at most only
one floating point division is required per segment (or two multiplications instead) and
also fewer comparisons, for the case of polygonal shaped regions. This makes it faster
than state of the art solutions (about 5 times as fast was demonstrated for polygons
with many sides and a large number of data points for the algorithm implemented in
Matlab [8]).

• It has no restrictions on which points define the polygons (or the generically shaped
region) nor on the testing points that can be over the border, or being themselves the
very vertices, and no particular post processing or operations are required.

• It accepts the geometry of boundary segments to be other than straight lines and is
applicable virtually to any type of curve that can be expressed parametrically.

• The parametric formulation of the boundary makes it straightforward to define the
curve segments and their extremes (anchor points).

• The parametric definition is intrinsically associated with the concept of sense or
circulation, which allows the detection of the sense of axis intersection, and not only
the fact that there are intersections; and the sense of intersection is crucial to obtaining
the global winding number.

• The parametric description allows a separation of coordinates, making algebraic oper-
ations independent, and allows us to overcome limitations in degenerate situations
that would occur in two coordinate point representations but do not occur in separate
coordinate representations.

Although the formal and analytic procedures for point location in generic planar
domains have been fully established and demonstrated in this paper, the future may hold
improvements in the computational component of the algorithms for specific curves. This
can be true, namely for some curves of very high complexity, as well as for the detection of
specific situations of point location relative to those more complex boundaries, in order to
accelerate the calculation operations.

Funding: An early part of this work was developed under the Ph.D. Grant BD-1657/91_IA from
JNICT, Programa CIENCIA, Portugal.

Data Availability Statement: Algorithms and data to support the results of this paper are available
at a GitHub repository: https://github.com/vitoruapt/PointInclusion.

https://github.com/vitoruapt/PointInclusion

Algorithms 2024, 17, 444 34 of 34

Acknowledgments: The author acknowledges the EC Joint Research Center of Ispra, Italy, for hosting
him as a Ph.D. student in the early 1990s’ where the basic idea that lead to this research started.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Alciatori, D.; Miranda, R. A Winding Number and Point-in-Polygon Algorithm; Technical Report; Department of Mechanical

Engineering, Colorado State University: Fort Collins, CO, USA, 1995.
2. Shimrat, M. Algorithm 112: Position of Point Relative to Polygon. Commun. ACM 1962, 5, 434. [CrossRef]
3. Hacker, R. Certification of Algorithm 112: Position of Point Relative to Polygon. Commun. ACM 1962, 5, 606. [CrossRef]
4. Franklin, W.R. PNPOLY-Point Inclusion in Polygon Test. 1994–2006. Available online: https://wrfranklin.org/Research/Short_

Notes/pnpoly.html (accessed on 4 October 2024).
5. Preparata, F.P.; Shamos, M.I. Computational Geometry: An Introduction; Springer: New York, NY, USA, 1985.
6. Sedgewick, R. Algorithms in C; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1990.
7. Haines, E. Point in Polygon Strategies. In Graphics Gems IV; Heckbert, P.S., Ed.; Academic Press Professional, Inc.: San Diego, CA,

USA, 1994; pp. 24–46.
8. Hormann, K.; Agathos, A. The point in polygon problem for arbitrary polygons. Comput. Geom. Theory Appl. 2001, 20, 131–144.

[CrossRef]
9. Aurenhammer, F. Voronoi diagrams—A survey of a fundamental geometric data structure. ACM Comput. Surv. 1991, 23, 345–405.

[CrossRef]
10. Devillers, O. The Delaunay Hierarchy. Int. J. Found. Comput. Sci. 2002, 13, 163–180. [CrossRef]
11. Devroye, L.; Mücke, E.P.; Zhu, B. A Note on Point Location in Delaunay Triangulations of Random Points. Algorithmica 1998,

22, 477–482. [CrossRef]
12. Mücke, E.P.; Saias, I.; Zhu, B. Fast randomized point location without preprocessing in two- and three-dimensional Delaunay

triangulations. Comput. Geom. 1999, 12, 63–83. [CrossRef]
13. O’Rourke, J. How Do I Find If a Point Lies within a Polygon. 2003. Available online: http://www.faqs.org/faqs/graphics/

algorithms-faq/ (accessed on 4 October 2024).
14. Sunday, D. Inclusion of a Point in a Polygon. 2012. Available online: https://web.archive.org/web/20130126163405/http:

//geomalgorithms.com/a03-_inclusion.html (accessed on 4 October 2024).
15. Foley, J.D.; van Dam, A.; Feiner, S.K.; Hughes, J.F. Computer Graphics: Principles and Practice, 2nd ed.; Addison-Wesley Longman

Publishing Co., Inc.: Boston, MA, USA, 1990.
16. O’Rourke, J. Computational Geometry in C; Cambridge University Press: Cambridge, CA, USA, 1998.
17. Needham, T. Visual Complex Analysis; Oxford University Press: Oxford, UK, 1998.
18. Schirra, S. How Reliable Are Practical Point-In-Polygon Strategies? In Proceedings of the 16th Annual European Symposium on

Algorithms (ESA ’08), Karlsruhe Germany, 15–17 September 2008; pp. 744–755. [CrossRef]
19. Gatilov, S. Efficient Angle Summation Algorithm for Point Inclusion Test and Its Robustness. J. Reliab. Comput. 2013, 19, 1–25.
20. Ross, F.; Ross, W.T. The Jordan curve theorem is non-trivial. J. Math. Arts 2011, 5, 213–219. [CrossRef]
21. Edelsbrunner, H.; Maurer, H.A. A space-optimal solution of general region location. Theor. Comput. Sci. 1981, 16, 329–336.

[CrossRef]
22. Kirkpatrick, D. Optimal search in planar subdivisions. SIAM J. Comput. 1983, 12, 28–35. [CrossRef]
23. Guibas, L.; Ramshaw, L.; Stolfi, J. A kinetic framework for computational geometry. In Proceedings of the 24th Annual

Symposium on Foundations of Computer Science (1983), Washington, DC, USA, 7–9 November 1983; pp. 100–111. [CrossRef]
24. Jackowski, B. Computing the area and winding number for a Bézier curve. In TUGboat; Tex Users Group: Portland, OR, USA,

2012; Volume 33. Available online: https://tug.org/TUGboat/tb33-1/tb103jackowski.pdf (accessed on 4 October 2024).
25. Santos, V. Robot Autonomous Navigation: Sensorial Data Interpretation and Local Navigation. Ph.D. Thesis, Universidade de

Aveiro, Aveiro, Portugal, 1995. Available online: http://hdl.handle.net/10773/17931 (accessed on 4 October 2024).
26. Wylie, C.; Barrett, L. Advanced Engineering Mathematics; McGraw-Hill: New York, NY, USA, 1982.
27. Kanwal, R. Linear Integral Equations; Birkhäuser Boston: Boston, MA, USA, 1996.
28. OGC. OpenGIS Simple Features Specification for SQL, Revision 1.1; Technical Report; Open Geospatial Consortium, Inc.: Arlington,

VA, USA, 1999.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/368637.368653
http://dx.doi.org/10.1145/355580.369118
https://wrfranklin.org/Research/Short_Notes/pnpoly.html
https://wrfranklin.org/Research/Short_Notes/pnpoly.html
http://dx.doi.org/10.1016/S0925-7721(01)00012-8
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1142/S0129054102001035
http://dx.doi.org/10.1007/PL00009234
http://dx.doi.org/10.1016/S0925-7721(98)00035-2
http://www.faqs.org/faqs/graphics/algorithms-faq/
http://www.faqs.org/faqs/graphics/algorithms-faq/
https://web.archive.org/web/20130126163405/http://geomalgorithms.com/a03-_inclusion.html
https://web.archive.org/web/20130126163405/http://geomalgorithms.com/a03-_inclusion.html
http://dx.doi.org/10.1007/978-3-540-87744-8_62
http://dx.doi.org/10.1080/17513472.2011.634320
http://dx.doi.org/10.1016/0304-3975(81)90103-1
http://dx.doi.org/10.1137/0212002
http://dx.doi.org/10.1109/SFCS.1983.1
https://tug.org/TUGboat/tb33-1/tb103jackowski.pdf
http://hdl.handle.net/10773/17931

	Introduction
	Related Work
	Ray-Crossing Approaches
	Winding Number Based Approaches
	Generalization to Generic Shapes
	Background and Scope of This Paper

	Base Approach and Related Theorems
	Calculation of the Contour Integral
	The Complex Logarithm
	Line Integral for Linear Segments
	Concerns When Calculating the Line Integral
	Simplifying the Calculation of the Contour Integral
	Points on the Boundary of Polygons with Undefined Orientation

	Parametric Definition of the Integration Path

	NRA Crossing in Parametric Paths
	NRA Crossings and Their Sense for Linear Segments
	The Case of Points on the Border, Again!
	Universal Algorithm for Arbitrary Polygons
	Multi-Ring Polygons and Multi-Polygons
	Optimizing Algorithm 3
	Vectorization of Algorithm 4
	Comparison to the State-of-the-Art Algorithm

	NRA Crossing and Sense for Circular Arcs
	Parametric Expression for Circular Arcs
	Sense of NRA Crossing for Circular Arcs

	Application to Bézier Curves
	Algorithm for Arbitrary Planar Domains
	Discussion and Conclusions
	References

