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Abstract: The concept of production stability in hot strip rolling encapsulates the ability of a pro-
duction line to consistently maintain its output levels and uphold the quality of its products, thus
embodying the steady and uninterrupted nature of the production yield. This scholarly paper focuses
on the paramount looper equipment in the finishing rolling area, utilizing it as a case study to investi-
gate approaches for identifying the origins of instabilities, specifically when faced with inadequate
looper performance. Initially, the paper establishes the equipment process accuracy evaluation (EPAE)
model for the looper, grounded in the precision of the looper’s operational process, to accurately
depict the looper’s functioning state. Subsequently, it delves into the interplay between the EPAE
metrics and overall production stability, advocating for the use of EPAE scores as direct indicators of
production stability. The study further introduces a novel algorithm designed to trace the root causes
of issues, categorizing them into material, equipment, and control factors, thereby facilitating on-site
fault rectification. Finally, the practicality and effectiveness of this methodology are substantiated
through its application on the 2250 hot rolling equipment production line. This paper provides a new
approach for fault tracing in the hot rolling process.

Keywords: hot strip rolling; looper; EPAE; production stability; root cause traceability

1. Introduction

In the contemporary industrial, agricultural, and construction sectors, hot-rolled strip
products have become increasingly vital, leading to their production volume representing
a significant portion of total steel output for steel companies. This has positioned the hot-
rolled production line as a foundational element for these companies [1]. Advancements
in traditional production methods, combined with the progression of computer technol-
ogy, have markedly increased automation within the hot continuous rolling process [2],
enhancing both the volume and quality of rolling output. Nevertheless, there has been a
growing demand for higher quality in hot-rolled strip products in recent years. This surge
in demand imposes more rigorous requirements on the hot-rolling production process and
the precision of the equipment used. The challenge of improving the quality of plates and
strips while simultaneously reducing the scrap rate represents a crucial developmental
direction for steel companies and the plate and strip production industry [3].

As shown in Figure 1, the hot rolling process is inherently complex, exhibiting dynamic
and nonlinear attributes. It involves numerous control loops and thousands of process
variables that critically influence product quality, epitomizing a sophisticated industrial
process [4]. When issues arise in any part of the process or equipment, it can significantly
impact the entire production line, ultimately affecting the company’s profitability. Therefore,
promptly identifying and analyzing these problematic links or equipment is essential.
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Figure 1. Hot rolling process.

Modern hot tandem rolling technology is characterized by its complexity, particu-
larly in controlling temperature and rolling force [5], which can lead to fluctuations in
product quality. To improve the stability of hot continuous rolling production, typical
strategies involve focusing on critical stability-affecting factors and exploring enhance-
ments for processes and equipment performance. Various research methodologies have
been employed to address these challenges. For instance, a data-driven dynamic concur-
rent kernel canonical correlation analysis (DCKCCA) method was utilized for diagnosing
CAP-thickness-related faults [6]. Additionally, ref. [7] developed a fault diagnosis method
using two-dimensional time–frequency images and data enhancement, training a convolu-
tional neural network (CNN)-based model for this purpose. A combination of continuous
wavelet transform and a deep convolutional generative adversarial network (DCGAN)
was proposed for tackling uneven data distribution in rolling bearing fault diagnosis [8].
Modified independent component analysis (MICA) was used to construct a multivariate
statistical process monitoring model for detecting and analyzing chatter in hot strip mill
processes [9]. Furthermore, a data-driven key performance indicator (KPI) prediction and
diagnosis scheme was developed [10], offering a simplified alternative to the standard
partial least squares (PLS) method.

However, most existing methods primarily focus on surface data characteristics, infer-
ring the superficial causes of faults based on data traits. Consequently, while these methods
can locate the faulty link or equipment, they often fail to identify the underlying root cause.
This paper seeks to address this limitation by analyzing the problem from the perspectives
of production continuity, product quality stability, and extreme specification production
capacity. By examining the issue from exterior to interior layers, this study aims to identify
the fundamental cause of faults. Specifically, the finishing rolling area of the hot tandem
rolling production line is used as a case study, categorizing production stability factors into
material, equipment, and control aspects in Table 1.

Table 1. Factors related to production stability in finishing rolling area.

Object Name

Control factors
Final temperature hit

Plate type
Mechanical equipment

Material factors
Roll gap setting accuracy

Surface quality
Electrical equipment

Equipment factors
Roll force setting accuracy

Width, thickness
Water, gas, and thermal equipment

There is much related equipment involved in the finishing rolling area, and the looper
can ensure the stability of the strip during the rolling process, control the shape and size
of the strip, and reduce surface defects of the strip, etc. [11]; so, here we take the looper
as a case study to trace its root cause. When identifying a low EPAE score for the looper
during production, as Figure 2 shows, instead of examining surface-level faults and errors
such as looper angle and looper tension, the focus shifts towards investigating the more
profound issues depicted in the figure below. Based on the EPAE model, this paper designs
a root-cause-traceability algorithm to analyze material factors, equipment factors, and
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control factors, to ensure that the root cause of the problem can be quickly located after an
abnormality occurs.
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Figure 2. Root cause tracing.

This paper considers the problem of root cause traceability in looper equipment under
the framework of production stability in the hot rolling area, inspired by the [12–14]. First,
this paper elucidates the physical structure and operational principles of the looper. Subse-
quently, it delineates the precision indices for controlling the looper in each operational
process and establishes the EPAE model for the looper. Then, an analysis is conducted to
explore the relationship between the EPAE model of the looper and production stability.
Based on this, a root-cause-traceability algorithm is proposed. In addition, actual data
pertaining to loopers within the 2250 hot rolling equipment production line were used to
trace the root cause, identifying the primary factors most likely contributing to a low looper
score. The main contributions of the paper can be summarized as the following points.

• This paper initiates its approach from the foundational layer of production stability
and analyzes problems that may arise in the production process, which is different
from most existing work on fault diagnosis.

• An EPAE model based on the actual working process of the looper is proposed. This
model aims to improve the interpretability of subsequent causal relationship modeling.

• A root-cause-tracing algorithm is proposed and its viability is assessed by using
available actual production data.

The root-cause-tracing algorithm is a brand-new diagnostic algorithm proposed by
this paper for industrial processes. It consists of data processing, building neural networks,
and calculating weights. Different from previous fault diagnosis algorithms, this algorithm
is committed to finding deeper problems, rather than just locating the device where the fault
occurred. The calculation of weights is the highlight of this algorithm, this part converts the
problem of fault location into a problem of solving a system of equations, and converts the
possibility of fault occurrence into the weight of each eigenvalue. And when constructing
the system of equations, both new data and past data are used to construct the system of
equations. With past data as a reference, the solution is more reliable.

The remainder of the paper is structured as follows: Section 2 starts from the control
accuracy of the looper and then constructs the EPAE model of the looper; Section 3 analyzes
the relationship between the EPAE score and production stability and proposes a root-
cause-traceability algorithm; Section 4 uses existing data to verify the root-cause-tracing
algorithm and analyze its feasibility; Section 5 summarizes the findings of this paper and
suggests some potential future directions.

2. EPAE Model of Looper
2.1. Physical Structure of the Looper

In the rolling process of hot-rolled plate and strip, the looper plays an important
role. It stabilizes the tension between the stands, adjusts the flow rate between the stands,
and ensures a constant set amount. Precisely controlling the tension and sleeve volume
of the finishing rolling loop contributes to enhanced production stability, reduces the
risk of accidents, and reduces the shear loss caused by the reduction in strip width [15].
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Especially when rolling thin strips, precise control of the looper is crucial. Figure 3 illustrates
its structure.
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Figure 3. Schematic diagram of looper structure.

The end of the looper rod is connected to the looper arm on the transmission side,
keeping a certain distance from the hinge point [16]. The looper shaft is installed on the exit
side of the previous stand, below the rolling line. When the looper moves to the highest
position, there is a moderate movement space between the inlet and outlet of the rolling
mill to ensure that the looper is reliably in place.

2.2. Working Principle of the Looper

In the finishing rolling unit, the rolling process is usually carried out in the order
of steel biting, continuous rolling formation, continuous rolling tension establishment,
stable continuous rolling, and steel throwing. The looper control can be divided into three
main stages: from looping to strip tension formation (entry process), looper small tension
continuous rolling (steady-state process), and exit process [17].

The entry process mainly refers to the short period of time from the head of the strip
being bitten by the roller until the strip establishes tension between the frames, which
is about 1 s [18]. In the entire continuous rolling process, this period of time is very
short. As shown in Figure 4, there are two important positions in the process: mechanical
zero position α0 and working zero position αre f , which directly affect the quality and
performance of the product during the rolling process.
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Figure 4. Starting process of the looper.

The steady-state process refers to maintaining a slight tension during the rolling
process, so that the rolled piece can maintain a stable shape and movement between the
rollers without deformation or other problems caused by excessive tension [19]. This is
usually achieved through a highly closed loop control system to ensure that the force and
tension exerted on the rolled piece during the rolling process are effectively controlled.
The existence of this stage helps improve the stability of the rolling and the quality of the
finished product.
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The exit process is a key step in the finishing rolling process. It refers to adjusting the
position of the rolling mill roll sleeve so that it gradually decreases to the minimum value
and finally ends the rolling process [20]. At this stage, the rolling mill gradually lowers
the position of the roller sleeve and reduces the tension, finally achieving a smooth end of
rolling. This process requires careful control to ensure that the shape and size of the final
rolled piece meet product specifications.

2.3. Control Accuracy of the Looper

The EPAE model of the looper calculates various control indicators of the looper to
obtain the control accuracy of each looper in each rolling process. As a standard to measure
the operating status of the looper, the detailed control indicators are shown in Table 2.

Table 2. Evaluation index of process accuracy of the looper.

Object Name Symbol

Entry process
Starting angle ∆α

Rising time t
Steady-state time tn

Steady-state process
Oscillation amplitude a
Number of oscillations fs

Looper tension Tf

Exit process

Falling time dt
Steel-throwing tension Tt

Small set time ts
Small set angle as

The looper equipment process accuracy evaluation system mainly focuses on various
control indicators related to the looper angle and looper tension during the three processes
of looper operation. The looper control system mainly includes the looper volume calcula-
tion model, looper torque calculation model, looper height control, looper tension control,
etc. The above contents will be described in detail below.

2.3.1. Entry Process

The starting process mainly focuses on three indicators, the starting angle, the rising
time and the time to enter the steady state.

(1) Starting angle
This is the average value of the looper within 3–8 m of the head of the strip. The

maximum value of the difference between the measured angle of the loop and the set value
within the range of 3–8 m from the head of the rolling plate strip on the lower frame of the
loop is calculated. The calculation process is as follows.

The defined length of the strip head is 3–8 m. The starting and ending points of the
head are calculated according to the rolling speed and sampling period:

N3

∑
t=0

[vi[t]T = 3]

N8

∑
t=0

[vi[t]T = 8]

(1)

where vi is the rolling speed of the finishing rolling Fi stand, T is the data sampling interval,
N3 is the head 3 m data point, N8 is the head 8 m data point. When the rolling section
reaches the 3 m data point and the 8 m data point, the lifting angles at both positions as αi
and α

′
i, respectively, are recorded.
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The starting angle is calculated based on the obtained h3 and h8:

∆αi = max(|αi − α
′
i|) (2)

where αi is a vector composed of measured angles of the looper LPi, α
′
i is a vector composed

of set angles of the looper LPi, and ∆α is the starting angle of the looper.
(2) Rising time
The time it takes for the looper to rise during the set-up phase. The time it takes for

the actual measured value of the looper angle to go from the set value 10% to the set value
90% is calculated. The calculation method is as follows:

αi−set × 10% = αi[t1]
αi−set × 90% = αi[t2]
ti = t2 − t1

(3)

where αi−set is the set value of the looper angle, ti is the rise time of the looper LPi, t1 is the
data point reaching the 10% set value, and t2 is the time to reach 90% of the data points for
the set values.

(3) Steady-state time
The time it takes for the looper to reach steady state. The time it takes for the looper to

bite the steel from the lower frame until the actual measured value of the looper enters the
±2° error band of the looper set value is calculated.

All points where the upper and lower error bands of the measured value of the looper
angle intersect with the set value of the looper are calculated:

αi[Ξ[i]] = (α
′
i + 2)||(α′

i − 2) (4)

where Ξ is the set of all points where the upper and lower error bands of the measured value
of the looper angle intersect with the set value of the looper, and “||” is the “OR” operation.

The two points with the largest distance in the set, which are the steady-state start
time and steady-state end time is calculated:

Ξ[k + 1]− Ξ[k] = max(Ξ[i + 1]− Ξ[i])
du = Ξ[k]
de = Ξ[k + 1]

(5)

where du is the start data point of steady state, and de is the end data point of steady state.
The time it takes to reach steady state is calculated:

tn,i = du − tb (6)

where tn is the time it takes to enter the steady state, and tb is the moment when the looper
starts the signal.

2.3.2. Steady State Process

Since the most important thing for a looper in the steady-state process is stability,
the steady-state process mainly focuses on three indicators: oscillation amplitude, number
of oscillations, and looper tension. These three indicators can well reflect the stability of the
looper during the steady-state process.

(1) Oscillation amplitude
The maximum amplitude of the oscillation within the steady-state range. The max-

imum difference between the actual measured value of the loop and the set value of the
loop during the time interval from when the looper enters steady state to when the small
loop signal turns ON is calculated.

ai = max (αi − α
′
i)[du : ds

s] (7)
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where ai is the oscillation amplitude of the looper, du is the time it takes to enter steady
state, ds

s is a small set of signal ON data points, αi is the measured angle of the looper LPi,
and α

′
i is the set angle of the looper LPi.

(2) Number of oscillations
The number of oscillations of the looper within the steady state interval. The number

of times the oscillation amplitude of the actual measured value of the loop exceeds the set
value ±1° in the time interval from when the looper enters the steady state to when the
small loop signal turns ON is calculated.

αi[Ξs[i]] =
(
α′i + 1

)
||
(
α′i − 1

)
, i ∈ [du : ds

s]
fs,i = ⌊len(αi[Ξs[i]])/2⌋ (8)

where fs,i is the number of oscillations of the looper, Ξs is the set of data points where the
actual measured value of the looper exceeds the set value ±1°, and len(Ξs) is the number
of data, the number of oscillations fs is the number of data in Ξs divisible by 2, and ⌊·⌋
represents rounding down.

(3) Looper tension
The maximum amplitude of loop tension oscillation within the steady-state range.

The maximum difference between the actual measured value of the looper tension and the
set value of the looper tension in the time interval from when the looper enters steady state
to when the small looper signal turns ON is calculated.

Tf ,i = max{(Ti − T
′
i )} (9)

where Tf ,i is the looper tension, Ti is the measured tension of the i-th frame, and T
′
i is the

set tension of the i-th frame.

2.3.3. Exit Process

During the setting process, we mainly focus on the relevant indicators of small setting
control, setting time, steel throwing tension, small setting time, and small setting angle.

(1) Falling time
The time it takes for the looper to actually fall into place. The time it takes from the

small set of signals OFF to the upstream rack load OFF is calculated:

dt,i = dt,i−1 − de
s,i (10)

where dt,i is the falling time , dt,i−1 is the steel throwing data point of the corresponding
upstream rack, and de

s,i is the data point of the small set of signal OFF.
(2) Steel throwing tension
The tension at the moment when the looper starts to fall. The measured tension of the

looper at the moment when the small set signal is ON and OFF is calculated:

Tt,i = Ti[de
s] (11)

where Tt,i is the steel throwing tension, and Ti is the measured tension of the i-th frame.
(3) Small set of time
The time when the looper performs the control of the small loop. The duration of the

small set of signals ON is calculated:

ts,i = de
s,i − ds

s,i (12)

where ts,i is the small set of time, and ds
s,i is a small set of signal ON data points.
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(4) Small set of angle
The angle of the looper when performing small set control. The looper angle at the

moment when the small set signal turns ON and OFF is calculated:

as,i = αi[de
s] (13)

where as,i is the small set of the angle.
The looper equipment process accuracy evaluation system represents the precision of

the looper within the real production process, influenced by the collective impact of relevant
equipment and control models. The looper equipment process accuracy evaluation system
evaluates the operating status of the looper in real time. If the evaluation result is low,
which can reflect an abnormality in the current looper operation status, then fault diagnosis
is conducted.

2.4. EPAE Model Construction of Looper

The division and distribution of functional areas of the hot rolling production lines
have multi-level characteristics. Therefore, we considered designing a multi-level ana-
lytic hierarchy process based on the level division, to recursively deduce the global index
weights. Then, the entropy weight method is used to adjust the weights, aiming to obtain
subjective and objective comprehensive weights. Finally, the fuzzy comprehensive evalua-
tion method and the membership gravity center defuzzification method are used to achieve
an accurate evaluation of the equipment process accuracy. Still taking the looper area as an
example, its level can be divided into: finishing rolling area, finishing rolling unit, looper,
equipment process accuracy, and evaluation index (starting angle, rising time, etc.).

Firstly, a hierarchical structure model of an analytic hierarchy process (AHP) is con-
structed [21], stipulating that t is the specific functional index under the looper component.
The hierarchical structure can be divided upward into component-level, equipment-level,
regional-level, and factory-level. The EPAE results are represented by the symbols e, m,
g, P, and then a judgment matrix is constructed according to the relative importance of
the indicators at each level. The subjective weight of each level of indicators is obtained
by AHP: 

e =A1(t)⊗ E1(t)
m =A2(e)⊗ E2(e)
g =A3(m)⊗ E3(m)

P =A4(g)⊗ E4(g)

(14)

where An is the index weight of the current level, En is the evaluation index of the current
level, and ⊗ is the hierarchical analysis operation process of weights and evaluation indicators.

Secondly, the entropy weight method [22] is used to assist in the indicator weight
assignment of the AHP model. Information entropy is an important indicator that reflects
the degree of order and chaos of the system. According to information entropy theory,
the entropy value H(x) can be expressed as

H(x) = −
k

∑
i=1

[p(xi) ln p(xi)] (15)

where k is the number of source messages, and p(xi) is the probability of occurrence of
event xi. The entropy weight method essentially uses the entropy value to judge the degree
of dispersion of its indicators.

Afterwards, the results obtained by multi-layer AHP need to be combined with the
entropy weight method. AHP mainly determines the evaluation scheme based on expert
experience, which makes the judgment of the relative importance of each indicator highly
subjective, so entropy becomes necessary. The weight method assists in achieving objective
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assignment of indicator weights. The weight values of each indicator, derived through the
multi-layer AHP and entropy weight method, are brought into the following formula to
calculate the comprehensive weight of the evaluation indicator βi.

βi = µωi + (1 − µ)ϵi (16)

where µ represents the preference factor, determined by expert experience according to
the importance of subjective and objective factors; ωi is the subjective weight of various
indicators obtained by multi-layer AHP; and ϵi is the various items obtained by the entropy
weight method. The indicators are objectively weighted.

Finally, the fuzzy relationship matrix R is established based on the equipment process
evaluation index and the evaluation set. Subsequently, utilizing a combined evaluation
method integrating AHP and entropy weight methods, the weight vector of the evaluation
factors W = (β1, β2, . . . , βn) is determined, resulting in the ultimate evaluation outcome.

result = f uzzy(W, R) (17)

The membership centroid method is applied to defuzzify the above results [23], and the
multiple evaluation indicators of the looper are weighted and summed to obtain the final
evaluation score.

3. Root-Cause-Tracing Algorithm

Due to the large scale and complexity of the hot rolling, when the system crashes it
is difficult for operation and maintenance personnel to find the root cause of the faults in
a short time, so the system will be in an unstable state, even causing irreversible losses.
Therefore, the process of finding the root cause of large-scale system faults becomes par-
ticularly important. To solve this problem, there are some automated fault diagnosis and
root-cause-analysis technologies, such as data mining and model-based fault prediction,
which can find the cause of the fault, but the speed and efficiency of fault repair are low.
Therefore, this section proposes a root-cause-traceability analysis algorithm to analyze the
production stability of the finishing rolling area.

3.1. Correlation Analysis between EPAE and Production Stability

Taking the finishing rolling area as an example, the EPAE score in this area includes
five aspects: side guides, loopers, AGC, bending rolls, and shifting rolls. Simultaneously,
abnormal conditions in the finishing rolling area include the head of the finishing rolling
area abnormalities, body abnormalities in the finishing rolling area, and tail abnormalities
in the finishing rolling area.

The strip production process is complex and involves many parameters, so the same
anomaly in the finishing rolling area may occur multiple times. In this section, the total
number of abnormalities in the finishing rolling area of each strip is used as an indicator of
production stability, and the correlation between the total number of abnormalities and the
EPAE score is analyzed.

The Pearson correlation coefficient, also known as the Pearson product–moment
correlation coefficient, is used to measure the linear correlation between two sets of data X
and Y, and its value ranges from −1 to 1 [24]. The calculation formula is

r = ∑n
i=1(Xi − X̄)(Yi − Ȳ)√

∑n
i=1(Xi − X̄)2

√
∑n

i=1(Yi − Ȳ)2
(18)

where X̄ and Ȳ are the average values of data X and data Y. The closer the absolute value
of r is to 1, the stronger the correlation between the two sets of data. In this section, the
two sets of data X and Y are, respectively, the EPAE score and the number of anomalies
appearing in the finishing rolling area.
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In order to facilitate the data analysis, consider representing the score as follows:{
[x], |x − [x]| < 0.5

[x] + 1, |x − [x]| ≥ 0.5
(19)

where x is the EPAE score and [x] is the rounding function. This equation aims to classify
data into different categories as much as possible, such as number 1.1, which are classified
as 1, since |1.1 − [1.1]| = |1.1 − 1| < 0.5, 1.1 is classified as number 1, and so on, 1.6, 1.7 are
represented as 2. After the above operations, the same score may correspond to multiple
abnormal times, so these abnormal times need to be averaged.

The EPAE score and the number of abnormal occurrences of production stability in
the finishing rolling area of a 2250 mm hot strip production line in a certain month are
collected and used in Equation (19) to calculate the Pearson correlation between each EPAE
score and the number of abnormal occurrences in the finishing rolling area.

From Table 3, it is not difficult to see that the factors of the finishing rolling side guide
plate, looper, automatic gauge control (AGC), finishing rolling bending roll, and shifting
roll are negatively correlated with the number of abnormalities in the finishing rolling area.
In particular, the absolute value of the correlation coefficient between the finishing rolling
side guide plate and the finishing rolling bending roll is large, and the significance level
p-value is also much less than 0.05. This shows that the higher the EPAE score, the fewer
the number of abnormalities and the higher the production stability. Therefore, the EPAE
score will be applied subsequently to reflect the production stability.

Table 3. Process accuracy evaluation and finish rolling stability.

Equipment Correlation Coefficient p-Value

Side Guide −0.768 4.087 × 10−5

Looper −0.113 0.382

Automatic Gauge Control −0.458 0.009

Bending Roller −0.855 6.627 × 10−16

Shifting Roller −0.356 0.024

3.2. Construction of Root-Cause-Tracing Algorithm

During the rolling process, if the EPAE score for the looper is observed to be low,
a root-cause-tracing algorithm is designed based on the EPAE model to find the reason
from material factors, equipment factors, control factors, etc., enabling swift identification
of issues after an abnormality occurs. When an abnormality occurs in the looper, since there
are many factors involved and their proportions are different, it is necessary to construct a
suitable equation set, calculate the weight of each factor, and give the most likely reason for
the low looper score.

Most of the previous classification algorithms used existing data as a reference system,
selected appropriate classifiers to fully explore the intrinsic relationships between the data,
and established prediction functions. When a new sample comes in, the fault location is
determined through the previously established function. The root-cause-tracing algorithm
proposed in this paper selects old samples similar to a new sample when entering it into the
database and combines the two phases to construct a system of equations to find the source
of the fault. This method does not use all the previous data, but selects it selectively, so it
has the characteristics of being “lazy” [25]. And this root-cause-tracing algorithm not only
refers to past experience, but also fully combines the current situation, so can effectively
deal with new sudden failures.
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Algorithm Construction Technology

(1) Data preprocessing
The steel coil and its corresponding LP_SCOREALL (average score of 6 loopers) is

extracted from the original data set, as well as factors related to loopers such as FORCER-
ATE_BODY, FORCERATE_ HEAD. Afterwards, missing values and outliers in the data are
eliminated or supplemented to improve data quality and facilitate subsequent analysis.

(2) Calculate the average
There are many factors involved in the looper during the hot strip rolling process,

and each factor has multiple measured values. Therefore, in order to reduce data redun-
dancy and simplify calculation complexity, the average values of these data are subse-
quently used as the factor eigenvalues.

x =
∑n

i=1 si

n
(20)

where s is the score corresponding to different aspects of a certain factor, and x is the
average value, which is the characteristic value.

(3) Mean deviation
In order to indicate the quality of the sample, it needs to be compared with the

standard value, and the deviation between the two ∆x = x − xstd is calculated as the
basis for judgment. In the absence of an exact standard value, the looper group with
a higher score is identified and its characteristic value is substituted with the empirical
standard value.

(4) Data normalization
The measurement units and magnitudes of the corresponding characteristic values

of the loopers are different, making the indicators incomparable. Therefore, before data
analysis, it is necessary to eliminate the influence of dimensions between eigenvalues. All
features are unified into approximately the same numerical range so that indicators of
different magnitudes can be weighted and compared. The normalization method is used to
linearly map the original feature data to the interval [0, 1].

x
′
=

x − xmin

xmax − xmin
(21)

where xmax, xmin, respectively, correspond to the maximum value and minimum value of a
certain influencing factor of the looper.

(5) Neural Network
In this paper, due to the unclear functional relationship between the characteristic

values of each factor of the looper and its score, a back-propagation (BP) neural network
is employed [26]. The characteristic values of each factor of the looper are used as inputs,
while the looper score is the output; an appropriate activation function is selected to fit the
unknown function to facilitate subsequent analysis.

It can be seen from Figure 2 that material factors, equipment factors, and control
factors directly affect the parameters of the looper itself: looper angle and looper tension.
Therefore, the above three types of factors are used as the input of the first neural network,
and the looper angle and looper tension are used as outputs. Then the second neural
network is constructed by utilizing the looper angle and looper tension as inputs and the
looper score as the output.

By combining the above two neural networks and using the output of the first neural
network as the input of the second neural network, the relationship between each factor of
the looper and the looper score can be obtained.

(6) Calculate weight
The state of the looper involves many factors. In order to facilitate subsequent analysis,

we express the dimensionless eigenvalues and scores as x1. . . xn and y, respectively. These
factors directly act on the state of the looper, that is, the looper angle angle = f1(x1. . . xn)
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and the looper tension f orce = f2(x1. . . xn). The status of the looper directly affects the
evaluation score of the looper, that is, y = u(angle, f orce). Therefore, the relationship
between the looper score and the eigenvalue can be directly expressed as

y = f (x1. . . xn) (22)

Then, a one-stage Taylor expansion of f is performed:

f (x1. . . xn) = p1x1 + p2x2 + . . . + pnxn + o(x1. . . xn) (23)

where o(x1. . . xn) is the higher-order term of each eigenvalue. Since each eigenvalue has
been dimensionally processed, pi can represent the weight of each eigenvalue. A larger pi
means the factor has a greater impact on the looper score. In the actual production process,
f is a nonlinear function, and it is difficult to explain its specific expression form. Therefore,
it is necessary to use existing data and use the BP neural network [27] to fit f .

The dimensionless characteristic deviation and fractional deviation are put into the
above formula to obtain

∆y = f (∆x1 · · ·∆xn) (24)

f (∆x1 · · ·∆xn) =
n

∑
i=1

pi∆xi + o(∆xi) (25)

In order to fully consider the contingency of the new sample data, it is necessary to
select a value for ∆ym that is not much different from the score deviation ∆y in the existing
database as the reference data, that is, ∆ym = f (∆xm1. . . ∆xmn). Since ∆y and ∆ym are not
much different, the form of each characteristic deviation is basically similar, so it can be
used as a reference to establish the following system of equations:

f (∆x11. . . ∆x1n) =
n

∑
i=1

pi∆x1i + o(∆x1i)

f (∆xm1. . . ∆x1n) =
n

∑
i=1

pi∆xmi + o(∆xmi)

(26)

Since ∆x ∈ [−1, 1], o(∆xm1. . . ∆xmn) is a bounded minimum quantity, which can be
specified based on the lower limit of the actual data. Think of pi as the weight of each
factor, 0 ≤ pi ≤ 1 . At the same time, new samples exert a more significant influence on the
results, so their proportion in the solution process should be appropriately increased.

(7) Particle Swarm Optimization Algorithm
Since each eigenvalue has been dimensionally processed, the coefficient pi in front of

each factor can represent the weight of each factor. In this way, we only need to solve each
coefficient pi in the system of equations to determine the contribution of each influencing
factor. Since each equation is nonlinear and cannot be directly solved, the equation-solving
problem of the above equations is transformed into an optimization problem.

min
m

∑
k=1

| f (∆xk1 . . . ∆xkn)−
n

∑
i=1

pi∆xki + o(∆xki)|

s.t. 0 ≤ pi ≤ 1, i = 0, 1. . . n

(27)

Then, the particle swarm optimization (PSO) algorithm is used [28] to solve each pi.
Finally, the weight coefficients are sorted to find the final cause.

We end up with Algorithm 1. The idea of the algorithm is as follows: first preprocess
the data, turn it into manageable data. Then, use the BP neural network to fit the functional
relationship between the various looper factors and the score; afterwards, construct a
system of equations and convert it into an optimization problem with constraints, and solve
it using PSO. Finally, the root-cause-tracing results are given.
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Algorithm 1 Root-cause-tracing algorithm

1: Give the data processing formula: x = g(s) calculate the feature average, ∆x = h(x)
calculate the feature deviation, ∆x

′
= s(∆x) to perform data normalization. Specify the

standard score of the looper ystd = 80.
2: Based on the database, give the number of data that needs to be processed L.
3: for λ = 0 : L do
4: Loop x = g(s) → ∆x = h(x) → ∆x

′
= s(x), ∆y = y − ystd.

5: end for
6: Take the ∆y as the output, ∆x

′
as the input, and use the BP neural network to fit the

function f .
7: Load new data and get the looper’s EPAE score y

′
. When y

′
< ystd, do the following.

8: Search for historical steel coils with scores similar to the new sample.
9: Use new sample data and historical steel coil data to construct a system of equations,

and utilize the PSO algorithm to solve the weight parameters.
10: Sort the factors by weight and give the final result.

At present, most steel industries have mature detection systems, and various variables
during the hot rolling process can be measured in real time. Therefore, it is only necessary
to train the BP neural network using previous data and input the measured fault data to
calculate the result. Therefore, the EPAE score of each product can be calculated in real time,
and these data can be used for training the BP neural network. Therefore, the root-cause-
traceability algorithm can be seamlessly integrated with existing control and monitoring
systems in industrial environments without the need for additional equipment. In addition,
there is no need to consider the compatibility of different data sources or architectures,
as this algorithm only uses the basic data measured by sensors, and even if the data source
changes, it does not affect the basic characteristics of the data.

This algorithm can adapt to dynamic production environments: when there are
local changes in operating conditions or the equipment configuration in the production
environment, such as replacement of some data collection equipment, the neural network
only needs to be retrained with new data. If there are significant structural changes, such as
changes in the hot rolling process, it is necessary to modify the corresponding EPAE model
and retrain the neural network. Due to the fact that each part of the root-cause-tracing
algorithm can be designed and trained separately, the low coupling of the algorithm ensures
its effectiveness in constantly changing scenarios.

4. Experimental Results and Analysis

Taking the monthly production data of finishing rolling loopers of the 2250 mm hot
tandem rolling production line as the experimental data. In fact, we used 19,418 training
data, which is the monthly output of the steel plant, each datum is further divided into
21 aspects. Therefore, we firmly consider the root-cause-tracing algorithm can handle large
datasets or more complex production scenarios. And when scalability challenges arise,
such as the addition of sensors in industrial sites, the dimensionality of measurement data
increases. Only slight changes are needed to some parameters of the neural network and
PSO, and the basic theory of the algorithm will not change.

Using the relevant factors of the loopers (material factors, equipment factors, con-
trol factors) as model inputs, the data were first analyzed by preprocessing operation,
after which the average value of each factor was calculated as the feature value. Some
groups with better looper scores are selected as standards for comparison, the deviations be-
tween the characteristic values of each sample and the standard values are calculated, and
a dimensionless operation is performed on the deviations. The relationship between the
eigenvalues and the looper EPAE score f is fitted through the BP neural network. Finally,
a system of equations is established and solved using the PSO algorithm. The contribution
of each factor to the low looper EPAE score is obtained based on the weight. Finally,
by sorting each factor according to its contribution, root cause tracing can be achieved.
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In this experiment, the factors in Table 4 were selected as the relevant factors of the
looper, and they were numbered to facilitate subsequent processing.

Table 4. Looper corresponding factor table.

Serial Number Looper Corresponding Factors

1 LP_L2FORCEERS

2 LP_MODECE

3 LP_MORETIME

4 LP_MOSTEACC

5 LP_SEFOPER

6 LP_SEOVHOOT

7 LP_SERITIME

8 LP_SESTEERS

9 LP_SESTTIME

10 FORCERATE_HEAD

11 FORCERATE_BODY

12 FORCERATE_TAIL

13 FORCERATE_WHOLE

14 FURNACE_TEM

15 MIDSTEEL_BIG_LEN

16 MIDSTEEL_BIG_MAXVALUE

17 MIDSTEEL_SMALL_LEN

18 MIDSTEEL_SMALL_MAXVALUE

19 WATERBEAM_INFO_LOCATION

20 WATERBEAM_INFO_VALUE

21 WATERBEAM_MAXVALUE

Two BP neural networks are constructed to represent the relationship between incom-
ing material factors, equipment factors, control factors, and looper scores, as shown in
Figures 5 and 6. Their parameters are shown in Table 5.
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Figure 5. Looper factors and self-parameters.
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Figure 6. Self-parameters and looper scoring.

Table 5. Neural network parameter settings.

Parameter Value

Input layer node 21

Middle layer node 7

Output layer node 2

Activation function Sigmoid function

Error back-propagation Derivative of sigmoid function

Threshold 0

Loss function Mean square error function

As an intelligent search algorithm, the particle swarm optimization algorithm has
the advantages of fast convergence speed and simple parameters in solving nonlinear
problems. The particles in the algorithm adjust their search direction by memorizing the
optimal position, as shown in Figure 7.
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Figure 7. PSO algorithm.

The particle’s velocity vd
i and position xd

i are updated through the following formula
to find the optimal solution to the objective function:

vd
i (k + 1) =w × vd

i (k) + c1 × randd
1 ×

(
pBestd

i −xd
i (k)

)
+ c2 × randd

2 ×
(

gBestd
i −xd

i (k)
) (28)

xd
i (k + 1) = xd

i (k) + vd
i (k + 1) (29)
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where i is the particle number, d is the particle dimension, k is the iterations, w is the weight
inertia, c1 and c2 are the acceleration coefficients (also called learning factors), randd

1 and
randd

2 are random numbers on two [0, 1], and pBestd
i and gBestd

i represent the optimal
positions for individuals and groups, respectively. The various parameter settings of the
particle swarm algorithm are as shown in Table 6.

Table 6. PSO parameters.

Parameter Setting Value

ω 0.8

c1 0.5

c2 0.5

Upper bound 1

Lower bound 0

Number of particles 50

Number of iterations 1000

Tensor 21

Several groups of question samples are selected with similar looper EPAE scores, and
a series of operations is performed on the data of related factors, such as feature extraction,
feature deviation calculation, and dimensionality reduction. The results are shown in
Figure 8. The characteristic deviation of Figure 8 is processed by Equations (20) and (21) in
the root-cause-tracing algorithm. The larger the value, the greater the impact of this factor
on the looper failure.
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Figure 8. Looper factor characteristics of different steel coils.

Using several similar loop data of EPAE in Figure 8, an equation system is established,
like Equation (26), and iteratively solved using the PSO algorithm. After multiple solutions,
the results are shown in Table 7 and Figure 9. It can be seen that the results obtained from
each solution are roughly similar, and the factor with the highest proportion is also basically
the same. Except for a few small changes in factors, the rest are consistent. The higher the
proportion, the greater the contribution of this factor to the failure of the looper, and the
more likely it is to be the first object for maintenance.
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Figure 9. The proportion of each factor under multiple experiments.

Table 7. The iterative process of using PSO to solve the system of equations.

Test Serial Number Largest Proportion Second Proportion Third Proportion

1 LP_SERITIME 0.1926 LP_SESTTIME 0.1670 LP_MOSTEACC 0.1156

2 LP_SERITIME 0.1912 LP_SESTTIME 0.1678 LP_MOSTEACC 0.1144

3 LP_SERITIME 0.1896 LP_SESTTIME 0.1668 LP_MOSTEACC 0.1107

4 LP_SERITIME 0.1870 LP_SESTTIME 0.1681 LP_MOSTEACC 0.1116

The final result are shown in Figure 10. The factors in the figure are sorted according
to their contribution and the factors most likely to cause the looper score to be too low are
obtained: LP_SERITIME, LP_SESTTIME, LP_MOSTEACC. . . .
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Figure 10. Result of root-cause-tracing algorithm.
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It can be seen from Figures 8 and 10 that in Figure 8 the value of LP_SERITIME
(loop servo valve adjustment rising time) is the largest, and in Figure 10 the contribution
corresponding to LP_SERITIME is also the highest, and the relationship between the other
factors is also very similar, so the algorithm can obtain the correct result. It is not difficult to
see that the top three factors with the largest contribution are LP_SERITIME, LP_SESTTIME
(loop servo valve adjustment steady-state time), and LP_MOSTEACC (rolling mill speed
steady-state error). The above factors have the greatest impact on the low EPAE score of
the looper, so these aspects should be prioritized for inspection and maintenance.

We use data from different hot rolling production environments and production lines
to verify that the algorithm has excellent generalization ability in different manufacturing
environments. When the environment changes, the algorithm can still locate the most likely
fault problem. At the same time, even when the algorithm deviates from the initial research
conditions, PSO can still obtain the optimal solution for weight calculation through its
powerful search ability.

5. Discussion and Conclusions

This paper takes the looper equipment in hot rolling as the starting point, and estab-
lishes the EPAE model of the looper based on the control accuracy of the three processes of
looping, steady state, and dropping during looper operation. Then, the Pearson correlation
coefficient is used to measure the degree of correlation between the EPAE model and
specific scenarios of production stability, and a root-cause-tracing algorithm is proposed
to locate factor faults. Finally, the data from the 2250 production line is used for testing.
The experimental results show that the influencing factors analyzed by this algorithm were
consistent with the actual fault factors on site.

The EPAE model proposed in this paper has been applied in many production lines.
In addition, the algorithm has been tested in other industrial processes or systems outside
the hot rolling production line, such as the chemical industry, to find the reasons for the
decrease in chemical production, and has received good results. During the application
process, the EPAE model and BP neural network were reconstructed based on the chemical
industry’s own process flow and industrial equipment. The final weight calculation method
is consistent with this article.

We have received excellent feedback from the Engineering Research Center, when
a fault occurs during the hot rolling process this algorithm can accurately identify the
underlying issues. In addition, as production continues, the algorithm requires a fixed
amount of time to retrain the network, so the feedback has led the iteration of the algorithm
towards performing incremental training based on existing data. And the evaluation
indicators mainly rely on expert experience to extract and construct. In the future, it can be
expanded to other types of production lines and unified index evaluation standards can
be established.
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