
Citation: Lalapura, V.S.;

Bhimavarapu, V.R.; Amudha, J.;

Satheesh, H.S. A Systematic

Evaluation of Recurrent Neural

Network Models for Edge Intelligence

and Human Activity Recognition

Applications. Algorithms 2024, 17, 104.

https://doi.org/10.3390/a17030104

Academic Editor: Frank Werner

Received: 5 January 2024

Revised: 30 January 2024

Accepted: 12 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Systematic Evaluation of Recurrent Neural Network Models
for Edge Intelligence and Human Activity
Recognition Applications
Varsha S. Lalapura 1,* , Veerender Reddy Bhimavarapu 1 , J. Amudha 2 and Hariram Selvamurugan Satheesh 3

1 Department of Electronics and Communication Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Bengaluru 560035, Karnataka, India; b_veerender@blr.amrita.edu

2 Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa
Vidyapeetham, Bengaluru 560035, Karnataka, India; j_amudha@blr.amrita.edu

3 ABB Global Industries and Services Private Limited, Bengaluru 560048, Karnataka, India;
hariram.satheesh@in.abb.com

* Correspondence: s_varshalalapura@blr.amrita.edu

Abstract: The Recurrent Neural Networks (RNNs) are an essential class of supervised learning
algorithms. Complex tasks like speech recognition, machine translation, sentiment classification,
weather prediction, etc., are now performed by well-trained RNNs. Local or cloud-based GPU
machines are used to train them. However, inference is now shifting to miniature, mobile, IoT devices
and even micro-controllers. Due to their colossal memory and computing requirements, mapping
RNNs directly onto resource-constrained platforms is arcane and challenging. The efficacy of edge-
intelligent RNNs (EI-RNNs) must satisfy both performance and memory-fitting requirements at the
same time without compromising one for the other. This study’s aim was to provide an empirical
evaluation and optimization of historic as well as recent RNN architectures for high-performance
and low-memory footprint goals. We focused on Human Activity Recognition (HAR) tasks based
on wearable sensor data for embedded healthcare applications. We evaluated and optimized six
different recurrent units, namely Vanilla RNNs, Long Short-Term Memory (LSTM) units, Gated
Recurrent Units (GRUs), Fast Gated Recurrent Neural Networks (FGRNNs), Fast Recurrent Neural
Networks (FRNNs), and Unitary Gated Recurrent Neural Networks (UGRNNs) on eight publicly
available time-series HAR datasets. We used the hold-out and cross-validation protocols for training
the RNNs. We used low-rank parameterization, iterative hard thresholding, and spare retraining
compression for RNNs. We found that efficient training (i.e., dataset handling and preprocessing
procedures, hyperparameter tuning, and so on, and suitable compression methods (like low-rank
parameterization and iterative pruning) are critical in optimizing RNNs for performance and memory
efficiency. We implemented the inference of the optimized models on Raspberry Pi.

Keywords: Recurrent Neural Networks; hyperparameter tuning; compression; weights and biases
(wandb); sparsity; low rank

1. Introduction

Nowadays, data-dominated technologies like Deep Learning (DL) are thriving and
profoundly crossing technological barriers in the era of Artificial Intelligence (AI). Their
application domains are large (speech processing, natural language processing, creative and
art, AI for Earth, healthcare, human–computer interaction) and so are their architectural
complexities and following training and inference procedures [1–4].

Sequence modeling is an important subclass of machine learning problem. Sequence
data involve a notion of time, and the learning of models such as RNNs that incorporate
this aspect are far more complex than feed-forward, parallelizable, and spatial counterparts
like Convolutional Neural Networks (CNNs) [5–7]. RNNs can process input data one at a

Algorithms 2024, 17, 104. https://doi.org/10.3390/a17030104 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17030104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7475-9322
https://orcid.org/0000-0002-1987-1071
https://orcid.org/0000-0001-6736-2573
https://orcid.org/0009-0000-4497-6564
https://doi.org/10.3390/a17030104
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17030104?type=check_update&version=1


Algorithms 2024, 17, 104 2 of 28

time and remember information through their structure and hidden activations [8]. They
have massive computation and memory budgets and are difficult to train [9]. There are
four significant challenges in RNN training that must be addressed to meet performance
needs [4]. They are (1) vanishing gradients problem, (2) exploding gradients problem,
(3) handling long-range dependencies, and (4) model fitting and generalization issues.
Though there are a wide range of solutions [10,11] available to combat their training
challenges in the RNN literature, so they are still a problematic choice [4,12].

1.1. Motivation and Challenges

Deep learning is penetrating the Internet of Things (IoT) paradigm, and interest in
mapping trained models to edge devices has recently surged. Microcontrollers (MCUs)
have even found applications in keyword spotting or even video applications [13]. Of the
RNNs, Long Short-Term Memory (LSTM) networks are one of the most popular variants
of RNNs. LSTM networks are known for their long-term memory capability, and they
also overcome the most common RNN training challenges, the vanishing and exploding
gradients problems. However, they are not readily deployable models for the edge. LSTM
networks are memory and compute-intensive. As an illustration, LSTM for a speech
recognition system may consist of an input vector of length 153, an output vector of length
512, 1024 hidden units, and 2 layers. From the example shown in Tables 1 and 2, numbers
marked in red show that the computation and memory needs are huge for the LSTM chosen.
To cater to such hardware needs [14] and be capable of accurately performing the trained
task, RNNS have to be simplified or compressed.

Table 1. Memory requirements of Long Short-Term Memory-based speech model.

Computation
Recurrent

Weights

Recurrent

Nodes

Nonrecurrent

Weights

Nonrecurrent

Nodes

Peep-Hole

Diagonal

Weights

Peep-Hole

Nodes
Bias

ft = [W f h.rt−1 + W f x.xt + W f c.ct−1 + b f ] W f r rt−1 W f x xt W f c ct−1 b f

Weight Matrix Dimensions [1024,512] [512,1] [1024,153] [153,1] [1024,1] [1024,1] [1024,1]

it = [Wih.rt−1 + Wix.xt + Wic.ct−1 + b f ] [1024,512] [512,1] [1024,153] [153,1] [1024,1] [1024,1] [1024,1]

gt = [Wch.rt−1 + Wcx.xt + bc] [1024,512] [512,1] [1024,153] [153,1] - - [1024,1]

ct = ft
⊙

ct−1 + gt
⊙

it − 1 No weights, only element-wise multiplications, element-wise additions

ot = [Woh.rt−1 + Wox.xt + Woc.ct−1 + bo] [1024,512] [512,1] [1024,153] [153,1] [1024,1] [1024,1] [1024,1]

ht = ot
⊙

h(ct) No weights, only element-wise multiplications

rt = Wrh.ht [512,1024] -

Number of parameters stored in memory 3248128

In practice, there has been a fundamental understanding of how the Recurrent Neural
Networks like the LSTM networks [15,16], GRUs [17–19], Unitary RNNs [20] and so on
show outstanding performance, but their portability on edge devices remains insufficient.
The exact training procedures, compression, and evaluation methods to host RNN models
on edge devices need to be created and benchmarked.

From an implementation standpoint, we are in the transition period of ML. The
transition is clear in four important frontiers: data, models, frameworks, and devices. We have
mant DL tools available for training (TensorFlow, Theano, PyTorch, Caffe, and so on) and
RNN-based source code repositories. However, the core component or “labeled data” is
still proprietary. Furthermore, we have interpreter-based frameworks (Google TensorFlow
Lite Micro [21]) and compiler-based frameworks (Microsoft ELL library [22]) as inference
frameworks on which to run DL models on embedded System-on-Chip (SoC) devices and
MCUs. Conversely, there has been no unified framework that particularly caters edge



Algorithms 2024, 17, 104 3 of 28

ML models or applications in products. Ref. [21] provides a list of various issues with
existing frameworks for edge mapping. For an RNN, SRAM is related to the activation size
(read and write), whereas Flash is related to the model size (read only) [23]. If the device’s
external memory is also chosen, memory accesses have adverse implications on inference
speed and power consumption.

Table 2. Computations involved in one Long Short-Term Memory cell for speech recognition.

Computation MACs
Muls

(Elem. Wise)

Adds

(Adder Tree)

ft 680960 1024 3072

it 680960 1024 3072

gt 680960 0 2048

ct 0 2048 1024

ot 680960 1024 3072

ht 0 1024 0

rt 524288 0 0

1 LSTM cell computation 3248128 6144 12,288

This study aimed to evaluate and optimize RNNs to target edge platforms. We chose
HAR since wearable-sensors-based systems are essential in many healthcare monitoring
applications like elderly care support, fitness tracking, sleep quality assessment, predictive
health, etc. Edge-based and adept HAR systems can replace expensive healthcare mon-
itors if the solutions are accurate, reliable, low-powered, and small. However, the lacks
of standard workflows and differences in evaluation protocols, evaluation metrics [24],
data generation methods, and their quality make comparison of different approaches a
challenging task and do not allow fair comparison of results [25,26].

1.2. Contributions and Key Features

1. We present a comprehensive application of device mapping research workflow that
can be commonly adapted for optimizing RNN models onto a resource-constrained
edge (see Section 3). This will help with reducing the research time required for
methodical workflows in this context.

2. We focused on the HAR-based EI-RNN evaluation and optimization of five different
RNN units sandboxed apart from the classic LSTM structures (see Sections 2.1–2.6).

3. We used eight different HAR datasets (see Tables 3 and 4, Section 4.2.9 for important de-
tails) and two evaluation methods, namely, the hold-out method and cross-validation
method.

4. We conducted an in-depth performance analysis of both training and compression
techniques applied to RNNs (see Sections 5.1 and 5.2). To the best of our knowledge,
the exact details of both these critical aspects have rarely been presented with clarity
from an implementation point of view.

5. The key takeaways based on this empirical evaluation study will be important for
practitioners and researchers in this problem domain.

We describe the background and related work with respect to RNNs, their train-
ing challenges, and compression schemes for edge mapping studies in Section 2. We
then present our research workflow that captured the essential steps to be carried out for
mapping any application to a device via RNN modeling and evaluation in Section 3. Fur-
thermoere, we present the experimental details covering the dataset description, evaluation
methods and metrics used in Section 4. We then discuss EI-RNN modeling and provide an
analysis in Section 5, which includes training, compression and inference. Next, we discuss



Algorithms 2024, 17, 104 4 of 28

the results obtained and present the key takeaways in Section 6. Finally, we present the
conclusions drawn in Section 7 including the future scope of the research problem.

2. Background and Related Work

RNNs are neural networks that allow information from both the past and present to
be processed while having hidden states. Mathematically, the fundamental RNN equations
take different forms based on the structure of the gates, residual connections, and memory
components. In this study, we focused on six different RNN units, namely, Vanilla Recurrent
Neural Networks (RNNs) [27], Long Short-Term Memory (LSTM) units [15,16], Gated
Recurrent Units (GRUs) [17–19], Fast Recurrent Neural Networks (FRNNs) [28], Fast
Gated Recurrent Neural Networks (FGRNNs) [28], and (Unitary Gated Recurrent Neural
Networks (UGRNNs) [20]. Structurally, these RNN units can be stacked, peep-holed,
have residual connections or projections, can be bidirectional, and can be attention-based
depending on the complexity of the task they intend to learn. The following are the RNNs
we used in our study.

2.1. Vanilla RNN

This is the very basic form of a Recurrent Neural Network. Figure 1 shows the in-
ternal structure of the Vanilla RNN. Mathematically, Equations (1) and (2) represent its
time sequencing behavior. The input feature vector xt is associated with the nonrecur-
rent weight matrix Whx, and the activations from previous time step ht−1 are associated
with recurrent weight matrix Uhh. The output vector yt is the associated weight matrix
Wyh. f 1 is a nonlinear function like a tanh or sigmoid nonlinearity. f 2 can be a softmax
output nonlinearity.

ht = f1 [Uhhht−1 + Whxxt + bh] (1)

yt = f2 [Wyhht + by] (2)

Figure 1. Internal structure of a Vanilla Recurrent Neural Network Unit.

2.2. LSTM RNN

In an LSTM RNN, the recurrent cell is modified into the reset gate for Equation (3),
forget gate for Equation (4), candidate memory cell for Equation (6), and output gate
Equation (7). The internal diagram of an LSTM cell is shown in Figure 2.



Algorithms 2024, 17, 104 5 of 28

Figure 2. Internal structure of Long Short-Term Memory Recurrent Neural Network Unit.

input gate, it = σ [Ul
ih hl

t−1 + W l
ix xl

t + diag[pl
i ] ct−1 + bi] (3)

forget gate, ft = σ [Ul
f h hl

t−1 + W l
f x xl

t + diag[pl
f ] ct−1 + b f ] (4)

gt = tanh [Ul
c hl

t−1 + W l
cx xl

t + bl
c] (5)

memory cell, ct = f l
t
⊙

cl
t−1 + il

t
⊙

gl
t (6)

output gate, ot = σ [Ul
oh hl

t−1 + W l
ox xl

t + diag[pl
o] ct−1 + bl

o] (7)

recurrent hidden state, ht = ol
t
⊙

tanh cl
t (8)

where, xl
t =

{
hl−1

t (hidden temporal f eatures), l > 1
input f eatures, l = 1

(9)

and final output at the last layer will be yt = ϕ[Wyhht + by] (10)

ϕ represents the output activation function, for example, a softmax activation.
⊙

represents
element-wise multiplication. Peep-hole connections (diag[p]) are optional for each of the
gates. In all our experiments, we used single-layer structures without any peep-hole
connections. The recurrent weight matrix Uhh of an LSTM is obtained by vertically stacking
the four-gate, recurrent weight matrices as [Uih, Uoh, U f h, Uch]

T ; likewise, the nonrecurrent
weight matrix Whx is obtained by vertically stacking the four-gate, nonrecurrent weight
matrices as [Wix, Wox, W f x, Wcx]T .

2.3. GRU

In a Gated Recurrent Unit, the recurrent cell is modified as input and update gates
to control what information to allow from the current input (via update gate) and what
information to reset from the previous state (via the reset gate). The reset and update gates
are described by Equation (11) and Equation (12), respectively. Unlike LSTM, however, it
has no cell memory passed to the next time step separately from the output hidden state.
The internal diagram of a GRU cell is shown in Figure 3.



Algorithms 2024, 17, 104 6 of 28

Figure 3. Internal structure of Gated Recurrent Unit.

reset gate, rt = σ [Urh ht−1 + Wrx xt + br] (11)

update gate, zt = σ [Uzh ht−1 + Wzx xt + bz] (12)

h̃t = tanh [Uhh(rt
⊙

ht−1) + Whx xt + bh] (13)

ht = zt
⊙

ht−1 + (1 − zt)
⊙

h̃t (14)

2.4. FGRNN

LSTM and GRU address the vanishing and exploding gradient problems. However,
they are intense in terms of computation and memory complexities. Reference [28] describes
a tiny yet efficient RNN unit that is simple in both computation and memory spaces and
addresses the vanishing and exploding gradient problems. The RNN was named FGRNN
since it is a gated version of the Vanilla RNN and is faster to train. The internal diagram of
an FGRNN cell is shown in Figure 4. There are just two additional scalar hyperparameters,
namely, ζ and ν, in the RNN cell structure, as shown in Equation (17).

Figure 4. Internal structure of Fast Gated Recurrent Neural Network Unit.

zt = σ [Uzh ht−1 + Wzx xt + bz] (15)

h̃t = tanh [Uhh ht−1 + Whx xt + bh] (16)

ht = zt
⊙

ht−1 + (ζ(1 − zt) + ν)
⊙

h̃t (17)



Algorithms 2024, 17, 104 7 of 28

2.5. FRNN

Reference [28] proposes another RNN unit called Fast RNN (FRNN) with two addi-
tional scalar hyperparameters called α and β, as shown in Equation (19). Like the FGRNN,
this RNN also provides stable training and is simple in its gating structure. The details of
the architecture are shown in Figure 5.

Figure 5. Internal structure of Fast Recurrent Neural Network Unit.

h̃t = tanh [Uhh ht−1 + Whx xt + bh] (18)

ht = α
⊙

h̃t + β
⊙

ht−1 (19)

2.6. UGRNN

Unitary Gated RNNs or UGRNNs provide stable training and address the vanishing
and exploding gradient problems by limiting the range of the singular values of the
hidden state transition matrix. This structure leads to higher RNN prediction accuracy
but has impacted the model size compared to FGRNNs and FRNNs. However, they are
simpler than LSTM and GRU, as shown in Figure 6. The internal gating structure follows
Equations (20)–(22).

zt = σ [Uzh ht−1 + Wzx xt + bz] (20)

h̃t = tanh [Uhh ht−1 + Whx xt + bh] (21)

ht = zt
⊙

ht−1 + (1 − zt)
⊙

h̃t (22)

Porting dense and architecturally complex RNNs on resource-constrained edge devices
is not directly feasible. Memory and computation spaces on edge devices are far smaller
than those of CPU, GPU, or cloud-based machines. Compressing neural networks is one of
the solutions to this problem.

The existing studies have employed Neural Architecture Search (NAS), pruning [29,30],
and quantization [14] for edge-based DL deployment. TinyNAS and TinyEngine [13] as
CNN models’ MCUs have been recent and popular advancements. Pruning is a common
and efficient strategy used for model compression. Pruning refers to removing redundant
connections in a network [31] while retaining the accuracy level of the task defined. This
results in sparse [32] and irregular data flow computations from a hardware perspective [33].
Techniques that shrink the network without such side effects have been beneficial [34,35].
Therefore, the weight matrices become structured (blocked) [36,37] or unstructured [14]
based on the pruning technique.

Low-Rank Matrix Factorization (LMF) expresses a base matrix A of dimension m × n
as a product of two smaller matrices U and V of dimensions m × d and d × n, respectively.



Algorithms 2024, 17, 104 8 of 28

Parameter d controls the compression factor [38]. The low-rank parameterization of weight
matrices has resulted in smaller models while producing mixed results in maintaining
model accuracy. A novel optimization algorithm via low-rank constraint and sparsity
projection is discussed in Ref. [39]. The low-rank and diagonalization of weight matrices
were adopted in Ref [40]. Ref. [41] studied mechanisms for learning compact RNNs and
LSTMs via low-rank factorizations and parameter-sharing schemes. Ref. [42] employed
the Singular Value Decomposition (SVD) technique on a recurrent projection matrix of a
speech model to map onto an embedded platform. Ref. [41] applied low-rank factorization
and projection compression technique on large-scale vocabulary speech signal modeling at
a small cost of 0.3% increase in Word Error Rate (WER) but a significant 75% decrease in
model parameters.

Figure 6. Internal structure of Unitary Gated Recurrent Neural Network Unit.

Quantization refers to tuning the precision of the weights and activations of a network
to lower levels while retaining accuracy. It is a very common step in memory optimization
for RNNs. Ref. [29] employed quantization of weights using the k-means clustering mecha-
nism. Ref. [43] compared floating to fixed point behavior of neural network parameters
and their impact on speedup for a speech recognition task. The details of various RNN
algorithmic optimizations for edge-based inference are discussed in Section V of Ref. [4].
Quantization, pruning, and tensor decomposition methods are some of the common meth-
ods used for compressing RNNS and CNNs [44].

3. Research Workflow

The lack of consensus over methodical data handling procedures, training mechanisms,
and rapidly evolving tools are the main reasons that have hindered the adaptation of RNN-
based HAR models and have sometimes led to incorrect results. To be able to run the
newest, best models on the most commonly used frameworks that have constantly changing
landscapes requires paramount effort and skill [21,45]. Figure 7 gives an overview of the
steps involved in mapping a HAR-based RNN model onto a resource-constrained edge.
This workflow is agnostic of the application, architecture, and DL framework. This is an
iterative procedure used to fetch light model solutions for an edge device. Reference [26,46]
also used workflow designs similar to ours, but we used RNNs for training, and we did not
evaluate power as a performance metric. In the context of HAR, or any other application,
data collection and preprocessing are the most crucial components in the workflow and the
most time consuming. Even though we represent it as a single block in the workflow, many
details must be carefully addressed. We provide as many details as possible regarding the



Algorithms 2024, 17, 104 9 of 28

finer details of the datasets (see Section 4.2.9). We applied the hold-out and k-fold cross-
validation protocols to the datasets as per Reference [24,25]. We also found that architecture
selection and hyperparameter choices have become the key steps in Automated Machine
Learning (AutoML) frameworks. We incorporated these key features into our research
workflow, as shown in Figure 7.

Figure 7. Recurrent Neural Network-based application-to-device edge-mapping workflow.

4. Experiments

In this section, we discuss the details of the experimental setup, training hardware,
training framework and experiment tracking tool, application and datasets used, evaluation
methods, and metrics used in our study.

4.1. Experimental Settings

All experiments were conducted on Google Colab leveraging an NVidia Tesla T4
Tensor Core GPU (with a clock of 1.59 GHz, 14.27 GB memory, and 7.5 compute capability)
on the Compute Unified Device Architecture, Version 11.2, platform. We first mounted the
program files and folders of our experiments from Google Drive. Next, we performed a
pip install of the requirements.txt file for all the libraries and package installations on
Colab. These steps were much easier and quicker apriori to Colab, where we struggled
to set up the coding environment and manage them. Training was carried out using
TensorFlow Deep Learning Library (v1.15) with a Python programming environment.
Hyperparameter tuning was carried out using a deep learning experiment tracking tool
called Weights And Biases (wandb) [47]. Its important feature, hyperparameter sweeps,
helps find the best model for various hyperparameter choices. The tool is also useful in
terms of visualization and debugging DL errors. We set specific seed values in TensorFlow
during the initialization of weight matrices.

4.2. Application and Datasets

For the Human Activity Recognition (HAR) tasks using EI-RNNs, we used eight static
time-series datasets for our experiments. The datasets are captured from accelerometers,
gyroscopes, temperature sensors, smartphones with sensors, and magnetometers. The
details of the dataset are given in Tables 3 and 4. In the tables, input features represent the
total input dimension, which is equal to the total time steps times the number of features
from the sensors. We applied the hold-out protocol to the datasets described in Table 3,
where they underwent train–validation–test splits for RNN training (see Figure 8a). We
applied the k-fold cross-validation protocol to the datasets described in Table 4.



Algorithms 2024, 17, 104 10 of 28

There are a few challenges in the datasets retrieved. Few datasets are balanced, and
categories are definite, while a few are unbalanced (see Figure 8b) and have the null class
problem (Opportunity dataset). Imbalances occur when few activities take place for a
longer duration (and so are recorded several times), and few activities take place rarely
(and so are recorded fewer times). Typically, only a few parts of the data are relevant, and
irrelevant information constitute the null class [48].

(a) (b)

Figure 8. (a) Train–val–test split ratios are uneven across datasets; (b) an example for imbalanced
classes in Opportunity dataset.

Next, there can be large number of sensor modalities, and the number of participants
and trial records may differ in each dataset. Both these factors influence the performance
of the model under study. (Ref. [49], Figure 1 shows how the accelerometer dataset is
annotated for the HAR task).

Table 3. Details of the datasets where train, validation, and test samples were generated. The
semi non-overlapping windowing technique was used for generation of Opportunity and Pamap2.
A = accelerometer, G = gyroscope, M = magnetometer, B = balanced dataset, N = null categories
present.

SI No. Dataset
Input

Sensor
Train

Samples
Val

Samples
Test

Samples
Time
Steps

Input
Features

Output
Labels

Freq.
(Hz)

1 DSA [49] (B) A, M 6976 1232 912 125 5625 19 25

2 SPHAR [50] (B) A, G 7878 1391 1030 128 1152 6 50

3 Opportunity [51] (N) A, G, M 54,246 9894 2684 24 1896 18 30

4 Pamap2 [52] (B) A, G, M 39,452 7566 6946 24 1248 12 100

Table 4. Details of the datasets under k-fold cross validation protocol. A = accelerometer,
G = gyroscope, M = magnetometer.

SI No. Dataset
Input

Sensor
No. of

Samples (SNOW)
No. of

Samples (FNOW)
No. of
Classes

Sampling
Frequency (Hz)

No. of
Features

Balanced

1 MHEALTH [53] A, G, M 2555 1335 12 50 5750 True

2 USCHAD [54] A, G 9824 5038 12 100 3000 False

3 WHARF [55] A 3880 2146 12 32 480 False

4 WISDM [56] A 20,846 10,516 6 20 300 False



Algorithms 2024, 17, 104 11 of 28

4.2.1. Daily and Sports Activities Dataset

DSA comprises data from nine sensors placed at five different body parts of eight users
for 5 min per activity. The 5 min signals are divided into 5 s segments so that 480 (=60 × 8)
signal segments were obtained for each activity. A total of 45 signals with 25 features
extracted every 5 s yield a 5625-dimensional feature vector. Some of the activities include
sitting, standing, lying on the back and right side, ascending and descending stairs, cycling
on an exercise bike in horizontal and vertical positions, rowing, and so on. It is a 19-category
and well-balanced dataset.

4.2.2. Smart Phone Human Activity Recognition Dataset

The UCI HAR from the smartphone dataset consists of data from 30 users performing
daily activities from a waist-mounted smartphone with embedded inertial sensors. The
sensor signals (accelerometer and gyroscope) were preprocessed by applying noise filters
and then sampled in fixed-width sliding windows of 2.56 s and 50% overlap (128 read-
ings/window). Some of the activities include sitting, standing, walking, lying, and so on.
It is a six-category and well-balanced dataset.

4.2.3. Opportunity Dataset

This dataset consists of data from a rich sensor environment where subjects performed
daily activities in the kitchen and living area. It comprises recordings of 12 subjects
using 15 networked sensor systems, with 72 sensors of 10 modalities integrated into the
environment, in objects, and on the body. Some of the activities included open door,
close door, open fridge, close fridge, open drawer, close drawer, clean table, etc. It is an
18-category dataset with null cases also included. The dataset is not well-balanced with the
null class problem (see Section 4.2 for null class description).

4.2.4. Physical Activity Monitoring for Aging People Dataset

This PAMAP2 dataset consists of recordings from nine users using three different types
of sensors (accelerometer, gyroscope, and magnetometer) and a heart rate monitor. The
sensors were placed at three different body positions, and data from these were sampled at
100 Hz. The heart rate monitor was set to a 9 Hz sampling frequency. Some of the activities
included lying, sitting, standing, walking, running, cycling, and so on. It is a 12-class and
balanced dataset.

4.2.5. Mobile Health Dataset

This MHealth dataset was collected from 10 users with four different types of sen-
sors, i.e., three-axis accelerometer sensors, three-axis gyroscope sensors, three-axis magne-
tometer sensors, and two-lead electrocardiogram sensors, to record 12 different activities
at a 50 Hz sampling frequency. Some of the activities included standing still, sitting and
relaxing, lying down, walking, climbing stairs, waist bend forward, the frontal elevation of
arms, etc. It is a 12-category, well-balanced dataset.

4.2.6. University of Southern California Human Activity Dataset

This USCHAD dataset was collected from 14 subjects from accelerometers and gyro-
scopes recording 12 activities. Some of the activities included walking forward, walking
left, walking right, walking upstairs, walking downstairs, running forward, and so on. It is
a 12-category and unbalanced dataset.

4.2.7. Wearable Human Activity Recognition Folder Dataset

This WHARF dataset was collected from 17 subjects through a single wrist-worn
triaxial accelerometer recording 12 activities. Some activities included getting up from bed,
sitting down on a chair, drinking from a glass, eating with a fork and knife, eating with a
spoon, pouring water, etc. The dataset is a 12-category and unbalanced dataset.



Algorithms 2024, 17, 104 12 of 28

4.2.8. Wireless Sensor Data Mining Dataset

The WISDM dataset was collected from the WIreless Sensor Data Mining laboratory
using a pocket-placed mobile device with an accelerometer. Six activities were recorded
at a 20 Hz sampling frequency. Some of the activities included walking, jogging, sitting,
standing, and so on. It is a six-category dataset, unbalanced dataset.

4.2.9. Finer Details of the Datasets

The datasets were normalized and preprocessed before pipelining them to the RNNs
for training. NaNs were replaced with zeros. The output labels were one-hot-encoded.
An important point to note here is that the original dataset reference article (citations
in the second columns of Tables 3 and 4) gives details of the dataset as per their data
acquisition and processing steps. These datasets can be downloaded, processed, and
formatted to a certain file type for better usability by other researchers in the community
(see Appendix A). There may be a few variations between the two, for example, combining
two labels (standing up and standing) into one (standing up). To the best of our knowledge,
we cross-checked the details of the base dataset paper and the source of download. The
reader may also find that the training, validation, and testing split across these datasets
were not perfectly uniform (see Figure 8a). This is because a few datasets were already split
into training, validation, and testing groups (Opportunity and Pamap2). We retained them
as they were. DSA and SPHAR had only train and test splits. We further split the training
into training and validation groups. More data handling procedures and preprocessing
details can be obtained from Reference [26].

As a data generation procedure, Opportunity and Pamap2 datasets fall into the semi
nonoverlapping windowing (SNOW) methods, where the actual dataset is transformed
using the sliding window technique with a sliding window length of 24 and window
stride of 12. Figure 9 shows the sliding window technique used for dataset transforma-
tion. The datasets in Table 4 were downloaded after applying windowing methods like
SNOW and Fully Nonoverlapping Window (FNOW). Since they were not normalized, we
normalized them before usage. More details regarding these methods can be obtained from
Reference [25].

Figure 9. Semi non-overlapping windowing data generation technique. The red box indicates an
input sequence with ten features. With a window stride of fived, the green box indicates the next ten
input features.

4.3. Evaluation Protocols and Metrics

In this study, we adopted two evaluation protocols (items 1 and 2 below) and two
evaluation metrics to assess model performance (items 3 and 4 below).

1. Holdout method: In this method, datasets are split into three sets, i.e, training set,
validation/holdout set, and testing set. Here, the training set is the subset of data used
to learn the temporal pattern in the time-series data. The error associated with this
is called training error. Validation or hold-out set is the subset of data used to guide
the selection of hyperparameters. The error associated with this is called validation
error. The test set is the subset of data used to measure the model’s performance on a
new unseen sample. The error associated with this is called testi error. The split ratio
affects the model’s performance.

2. Cross-validation method: In this method, datasets are split into k nonoverlapping
subsets. In each trial, one of them is chosen as a test set and the rest is used as the
training set. Test error is estimated by taking the average test error across k trials.



Algorithms 2024, 17, 104 13 of 28

3. Accuracy: This metric denotes the total number of correct predictions of classes against
their actual labels.

4. F1 score: This metric is the weighted average of precision and recall. Precision is
the ratio of correctly classified positive observations to the total classified positive
observations. Recall is the ratio of correctly classified positive observations to all
observations in actual class.

5. EI-RNN Optimization and Analysis

Optimizing recurrent architectures for the edge comprises three steps:

1. EI-RNN training on host/cloud GPU;
2. EI-RNN compression on host/cloud GPU;
3. EI-RNN inference on the edge (RPi).

5.1. EI-RNN Training

Any learning process is a combination of representation, evaluation, and optimiza-
tion [57]. Representations of datasets and neural architectures are covered in Section 4.2
and Section 2, respectively. In this section, we describe the optimization techniques for
EI-RNN modeling. We also describe the initial training setup and how we examined the fit
issues and choice of hyperparameters affecting model performance. The base source code
is Reference [58], which underwent several significant changes, including hyperparameter
tuning, experiment tracking, and visualization using wandb, and experiments covering
hold-out and k-fold cross-validation methods of RNN training.

5.1.1. Initial Settings

From a set of cleaned and structured datasets and architectures, we initiated a training
procedure with a simple set of hyperparameters: a number of hidden units of the RNN cell
of 8, a number of layers of 1, and the number of input features to be processed at every time
step t. The time steps of the RNN cell (125 for the DSA dataset) was given by the dimension
of the input features (5625)/number of features to be processed (45). Furthermore, we set
the number of epochs (300), batch size (128), optimizer (Adam/RMS Prop), and learning
rate (0.01) based on references. The activation functions of each RNN are given in Section 2.
We used the random normal initialization of the RNN weight matrices. We adopted the
cross-entropy loss function since the problem was a classification problem and the output
function was a softmax nonlinearity function.

5.1.2. Train–Debug Cycle

We chose a total of 8 datasets, which were grouped into 2 to experiment with two
methods, namely, the train–val–test split method and the cross-validation method. Usually
cross-validation is applied. To the four datasets in Table 3, we applied the train–val–test split
hold out method, whereas to the four datasets in Table 4, we applied the cross-validation
method (see Section 5.1). In the train–debug cycle phase of modeling, we observed the
loss and accuracy plots across the training and validation datasets. We used six different
recurrent units, namely, Vanilla RNN, LSTM, GRU, FGRNN, FRNN, and UGRNN. We
addressed the under-fitting case (see Figure 10a) to improve the model performance on
the training set by increasing the number of hidden units of the RNN. We addressed the
over-fitting case (see Figure 10b) to improve model performance on the validation set
using regularization methods. The implementation included the adaptive learning rate
during training with the help of TensorFlow placeholders (tf.compat.v1.placeholder (‘float’,
name = ‘lr’)). Dropout regularization (by setting input_keep_prob and output_keep_prob
hyperparameters) and regularization through early stopping criteria were incorporated.
The RNN underwent unstacking (with the help of tf.unstack (x, timeSteps, 1) Application
Programming Interface (API)), and the Dropout wrapper (available in the TensorFlow
library) was applied whenever we encountered over-fitting. A compute graph was built



Algorithms 2024, 17, 104 14 of 28

in TensorFlow v1.15 to find the final hidden states, logits (output of the classifier), and
softmax predictions.

(a) (b)
Figure 10. (a) High bias problem where training error is far from expected, an under-fitting case, and
(b) high variance problem where training error is close to expected, but there is a large gap between
training and validation error, an over-fitting case.

5.1.3. Hyperparameter Tuning and Generalization

After model creation with initial settings and train–debug cycles, we performed a
hyperparameter search via the wandb tool. We chose the grid search method and observed
the impact of the hyperparameter hidden units, batch size(for example, see Figure 11),
and optimizer in various sweeps (for example, see. Figure 12a). We found the best batch
size and best number of hidden units for each RNN and each dataset. Table 5 shows
the variation in the hidden units for the UGRNN architecture on the SPHAR dataset.
Increases in the number of hidden units improved performance but adversely affected
the model size. An optimal choice had to be made. We chose 16 as the number of hidden
units considering both performance and model size. Next, we found the best optimizer
without any regularization. This was conducted for each of the RNN architectures for
each dataset individually. Figure 11 corresponds to variations in batch size with the
FastRNN architecture for the DSA19 dataset. We chose a batch size of 32 for this RNN
and dataset. The optimizer hyperparameter check was conducted for each dataset. The
choice of optimization technique significantly influenced the efficiency of the learning
algorithm, as shown in Figure 12a. Figure 12b corresponds to the performance of the
EI-RNNs on the DSA19 dataset with RMS Prop as the optimizer, with each of them having
16 hidden units. The approximate sensitivity of the hyperparameters under study is
given in Table 6. Table 7 gives the list of optimizers corresponding to each dataset. Once
we found the best set of hyperparameters, we observed the test error or generalization
error. The ability of a model to perform well on previously unobserved data is called
generalization [59,60]. Regularization methods reduce this error. In our study, we found
that dropout regularization reduced the generalization error significantly. Dropout is a
regularization technique applied to only nonrecurrent matrices of an RNN [61].



Algorithms 2024, 17, 104 15 of 28

Table 5. Impact of variation in hidden units on performance and model size of UGRNN on SPHAR
dataset.

Hidden Units Test Accuracy F1 Model_SIZE (KB)

128 0.94 0.94 14.16

64 0.95 0.95 7.16

32 0.94 0.95 3.66

16 0.94 0.94 1.91

8 0.91 0.91 1.04

Figure 11. Impact of batch size variation on Fast RNN architecture using DSA19 dataset.

(a) (b)

Figure 12. (a) Validation accuracy variations for different optimizers on DSA19 dataset on GRU,
and (b) performance of 6 different RNN architectures on the DSA19 dataset using the RMS prop
optimizer.



Algorithms 2024, 17, 104 16 of 28

Table 6. Hyperparameters used during training (T), compression (C). Parameters with double arrow
represents they are more sensitive than the ones with single arrow.

SI No. Hyperparameter App. Sensitivity

1 Activation Function (T) ↑
2 Hidden Size (T, C) ↑ ↑
3 Epochs (T) ↑ ↑
4 Batch Size (T) ↑ ↑
5 Learning Rate (T, C) ↑ ↑
6 Ranks of weight matrices (C) ↑ ↑
7 Sparsity index (C) ↑ ↑
8 Dropout probability (T, C) ↑ ↑
9 Optimizer (T) ↑ ↑

10 Weight matrix initialization (T) ↑
11 Decay rate (T) ↑

Table 7. Choice of optimizers for datasets under study.

SI No. Dataset Optimizer

1 DSA Adam
2 SPHAR RMS Prop
3 Opportunity Adam
4 Pamap2 Momentum Nesterov
5 MHEALTH RMS Prop
6 USCHAD RMS Prop
7 WHARF Adam
8 WISDM Adam

5.2. EI-RNN Compression

The details of the various RNN algorithmic optimizations for edge-based inference are
discussed in Section V of Reference [4]. In this section, we briefly present the compression
scheme we adopted for edge-mapping studies. As per Reference [28], we carried out train–
compress cycles in 3 segments. Training was carried out in the first segment. In the second
segment, compression procedures, i.e., hard thresholding, was carried out with low-rank
matrix parameterization. Sparse retraining is carried out in the third segment. This process
can be formulated in 4 quarters with higher compress and retrain cycles, and the epochs can
be increased for finer tuning. The combined list of hyperparameters that affect both training
and compression is given in Table 6 with their approximate sensitivity (last column) while
performing training (T)–compression (C) cycles. The choice of regularization methods
impacts compression. We chose drop out regularization for our experiments, indicated by
sparsity indices of matrices W and U. For the 1st trian–test split method, with four datasets
and six architectures of RNN, 24 tables of hyperparameter sets were generated. For the 2nd
method of k-fold cross validation, with four datasets and six RNNs, we had another set of
24 tables of hyperparameters. We present 2 of them from method one in Tables 8 and 9.

5.3. EI-RNN Inference

The inference was carried on an edge device, the Raspberry Pi. The inference model
on the Raspberry Pi was expressed in terms of the respective model weights and biases, as
shown in Table 10, using the numpy library. The model and test data were saved on the
Pi along with the inference code for each of the 6 RNN architectures. The inference code
accounted for the no-rank and low-rank paramterized schemes. Inference was executed
using the model, test data, and the inference code; finally, the inference times and memory
sizes were reported on the Raspberry Pi.



Algorithms 2024, 17, 104 17 of 28

Table 8. Compression techniques and hyperparameter checks for Fast Gated Recurrent Neural
Network or FastGRNN (with 16 hidden units, 32 batch size, 300 epochs, Adam optimizer) on Daily
and Sports Activity Recognition (DSA19) dataset for performance and memory optimization. uRank
and wRank are ranks of the associated weight matrice; sU and sW are their sparsity indices. Here, 0.9
indicates 10% sparse, 90% dense. Text in blue represents the best hyperparameter choices.

Compression Hyperparameters Evaluation Metrics

Description

uRank wRank sU sW
Model_SIZE

(KB)
train_acc val_acc Test_acc F1 Score

- - 1 1 5.20 0.99 0.97 0.98 0.98 Baseline

8 8 1 1 4.30 0.99 0.97 0.96 0.96 Low-Rank Parameterization (LRP)

- - 0.9 0.9 5.00 0.99 0.98 0.98 0.98 Hard thresholding and sparse retraining (HTSR)

16 16 0.5 0.5 7.20 0.99 0.98 0.97 0.97 Combination of both LRP and HTSR

8 8 0.8 0.8 4.3 0.99 0.98 0.97 0.9732 Memory efficient

12 12 0.6 0.6 5.75 0.99 0.98 0.97 0.97 Performance efficient

5 5 0.9 0.9 3.2 0.98 0.97 0.96 0.96 Our choice for performance and memory savings

10 10 0.5 0.5 5.02 0.97 0.97 0.96 0.962 Other trials

7 7 0.9 0.9 3.93 0.98 0.97 0.95 0.95 Other trails

Table 9. Compression techniques and hyperparameter checks for Fast Recurrent Neural Network or
FastRNN (with 16 hidden units, 32 batch size, 300 epochs, root mean square (or RMS Prop optimizer)
on SPHAR dataset for performance and memory optimization.

Compression Hyperparameters Evaluation Metrics
Description

uRank wRank sU sW
Model_Size

(KB)
train_acc val_acc test_acc F1 Score

- - 1 1 2.03 0.95 0.95 0.94 0.94 Baseline

8 8 1 1 2.25 0.93 0.93 0.935 0.93 Low rank parameterization (LRP)

- - 0.9 0.9 2.03 0.94 0.94 0.93 0.94 Hard thresholding and sparse retraining (HTSR)

12 12 0.8 0.8 3.20 0.94 0.95 0.932 0.9346 Combination of both LRP and HTSR

8 8 0.9 0.9 1.88 0.93 0.93 0.92 0.92 Our choice for performance and memory savings

16 16 0.5 0.5 4.03 0.94 0.94 0.92 0.94 Performance-efficient

4 4 0.8 0.8 1.3 0.91 0.91 0.91 0.91 Memory-efficient

10 10 0.5 0.5 2.76 0.92 0.91 0.91 0.919 Other trials

12 12 0.4 0.4 2.61 0.93 0.94 0.92 0.93 Other trails

Table 10. Inference model parameters of Edge-Intelligent Recurrent Neural Network (EI-RNN) on a
Raspberry Pi edge device.

SI No. RNN Unit Inference Model Weights
and Biases with No Rank

Inference Model Weights
and Biases with Low-Rank Parameterization

1 Basic RNN W, U, Bh W1, W2, U1, U2, Bh

2 FastGRNN W, U, Bg, Bh, zeta, nu W1, W2, U1, U2, Bg, Bh, zeta, nu

3 FastRNN W, U, B, alpha, beta W1, W2, U1, U2, B, alpha, beta



Algorithms 2024, 17, 104 18 of 28

Table 10. Cont.

SI No. RNN Unit Inference Model Weights
and Biases with No Rank

Inference Model Weights
and Biases with Low-Rank Parameterization

4 UGRNN W1, W2, U1, U2, Bg, Bh W, W1, W2, U, U1, U2, Bg, Bh

5 LSTM W1, W2, W3, W4, U1, U2, U3, U4, Bf, Bi, Bo, Bc
W, W1, W2, W3, W4, U, U1, U2, U3, U4, Bf, Bi, Bo,

Bc

6 GRU W1, W2, W3, U1, U2, Br, Bg W, W1, W2, W3, U, U1, U2, Br, Bg

6. Results and Discussion

In this section, we discuss the best-performing architectures and smallest models for
each dataset as observed from the results in Tables 11–16. We observed that in most of the
cases, the fast gate architectures and the basic RNN architecture required the least memory.
So, we found memory savings via these fast gates over the best performers. We noticed
that fast gates deviated from the best performers. We report the performance deviation (F1
score deviation) when the fast gates were chosen for inference on the edge. All the metrics
are reported after training and compression was carried out on Tensorflow 1.15.

The hyperparameters that suit one RNN cell type mostly suit all other types as well.
The same set of choices is not applicable to a different dataset. For example, Figure 11 shows
the impact of validation accuracy for different batch sizes on the FastRNN architecture
on the DSA19 dataset. Table 7 shows the choice of optimizers for the datasets used. The
number of hidden units has a direct impact on model size. This is shown inTable 14. Other
hyperparameters must be tuned for each dataset separately. Table 8 shows this analysis
for the FastGRNN architecture with 16 hidden units on the DSA19 dataset. Also, the
regularization and compression techniques are closely related. For example, with respect
to the DSA19 dataset, with 16 hidden units per RNN cell, regularization and compression
techniques adversely affected both performance and model size. Only hard thresholding
and spare retraining did not prove efficient. Only Low-Rank Parameterization showed
slightly improved performance and memory savings. A combination of hard thresholding,
low-rank parameterization, and sparse retraining showed memory-optimized models
and performance improvement. Furthermore, we observed that whenever there were
imbalances in the class distribution (Opportunity dataset), increasing the rank of the weight
matrices improved performance but adversely affected model size.

6.1. Performance Evaluation Using Hold-Out Method of Training and Subsequent Compression

Here, we present the performance evaluation of the six RNN architectures on four
datasets, namely, DSA, SPHAR, Opportunity, and Pamap2, using the hold-out method
of training and the subsequent methods of compression discussed in Section 5.2. The
hyperparameters for training and compression were tuned as discussed in Sections 5.1
and 5.2. Tables 11 and 12 show the analysis of the six RNN units with different numbers
of hidden states: 8, 16, and 32. We report the test accuracy and F1 score (normalized %),
training time (minutes), and model size (kilobytes).

From Table 11, we can observe that for the DSA19 dataset, GRU and FastRNN with
32 hidden units were the best performers. FastRNN was the smallest model, followed by
UGRNN with 16 hidden units. GRU32 (GRU with 32 hidden units) was 6.27× heavier than
the fast gate FastRNN8 and GRU16 (GRU with 16 hidden units) is 3.55× heavier than the
fast gate FastRNN8. The performance deviation of FastRNN8 was about 4%, which had a
small model capacity of 1.79 KB. On the SPHAR dataset, UGRNN32 proved to perform
better than the other architectures. FastRNN and LSTM also performed well but at the
cost model size when LSTM was concerned. Regarding model size, LSTM32 was 6.35×
bulkier than FastGRNN8, and UGRNN32 was 3.93× bulkier than FastGRNN8. But, the
performance deviation of FastGRNN8 was around 6–7% with respect to that of LSTM32
and UGRNN32.



Algorithms 2024, 17, 104 19 of 28

The Opportunity dataset is unbalanced and has more null cases, which resulted in
lower F1 scores compared to those of the others. For the Opportunity dataset, GRU16,
GRU32, and LSTM16 performed well. Although FastGRNN8 was the smallest, at 3.92 KBytes,
its F1 score was very low (0.29) (see figures in red in Table 12). Therefore, we took the next
one, i.e., FastGRNN32, as the best model size of 8.05 KBytes. LSTM16 was 1.26× bulkier
and GRU32 was 2.09× bulkier than FastGRNN8. Performance deviation was about 5%
when we considered fast gates. GRU’s F1 score was the highest for this dataset. On the
Pamap2 dataset, UGRNN16 provided the highest performance of 81% but an F1 score of
0.77 and was heavier than FastGRNN by 2.03×. The F1 score of GRU32 was the highest on
this dataset. UGRNN16 was 2.03× bulkier than FastGRNN8, and GRU32 was 3.86× bulkier
than FastGRNN8. FastGRNN deviated from the best performers by around 13 to 16%.

Table 11. Performance of Recurrent Neural Networks across Daily and Sports Activity (DSA) dataset
and Smart Phone Human Activity Recognition (SPHAR) dataset with 8, 16, and 32 hidden units.
Numbers in bold font represent the best results under each column, and numbers in blue font
represent figures that deviated from the best results in each column.

DSA SPHAR
RNN Cell Hidden Units

Test Acc. (%) F1 Score Train Time (min) Model Size (KB) Test Acc. (%) F1 Score Train Time (min) Model Size (KB)

BasicRNN 8 0.75 0.73 4.48 2.86 0.74 0.72 2.61 1.02

16 0.84 0.83 4.93 4.23 0.84 0.83 2.51 1.80

32 0.90 0.90 4.75 6.98 0.86 0.85 1.71 3.36

FastGRNN 8 0.92 0.91 10.98 2.09 0.88 0.88 7.15 0.93

16 0.96 0.96 11.65 3.21 0.91 0.91 7.04 1.64

32 0.97 0.97 8.98 5.46 0.94 0.93 5.62 3.08

FastRNN 8 0.95 0.94 6.76 1.79 0.91 0.91 7.73 1.28

16 0.97 0.97 7.95 2.79 0.94 0.94 7.97 2.25

32 0.98 0.98 6.54 4.79 0.94 0.94 7.95 4.19

UGRNN 8 0.95 0.94 7.02 2.72 0.92 0.92 11.35 1.23

16 0.97 0.97 7.18 4.32 0.92 0.92 12.24 1.91

32 0.98 0.98 10.49 7.50 0.94 0.95 12.66 3.66

GRU 8 0.95 0.94 14.63 3.92 0.93 0.93 18.07 1.57

16 0.98 0.98 6.19 6.36 0.93 0.94 11.19 2.95

32 0.99 0.98 10.30 11.23 0.93 0.93 9.18 5.70

LSTM 8 0.90 0.90 12.33 6.28 0.91 0.91 13.13 1.60

16 0.98 0.98 9.52 10.37 0.94 0.94 13.60 3.04

32 0.98 0.97 13.08 18.56 0.94 0.94 21.41 5.91

Best Performance GRU with 32 hidden units UGRNN with 32 hidden units

Least Model Size FRNN, FGRNN FRNN, FGRNN, BasicRNN

Memory savings via Fast Gates 3.55× with respect to GRU16, 6.27× with respect to GRU32 6.35× with respect to LSTM32, 3.93× with respect to UGRNN32

Performance deviation via Fast Gates up to 4% up to 7%



Algorithms 2024, 17, 104 20 of 28

Table 12. Performance of Recurrent Neural Networks across Opportunity and PAMAP2 datasets
with 8, 16, and 32 hidden units. Numbers in bold font represent the best results under each column,
numbers in blue font represent figures that deviate from the best results under each column. F1 scores
are low for the Opportunity dataset as it is highly unbalanced. Since Fast Gated Recurrent Neural
Network8 (FastGRNN8) had a very low F1 score(in red), we took FastGRNN32 as the best model size
under opportunity dataset. Likewise, FastGNN8 was considered best for model size since BasicRNN
showed a poor F1 score(in red) on the PAMAP2 dataset.

Opportunity Pamap2
RNN Cell Hidden Units

Test Acc. (%) F1 Score Train Time (min) Model Size (KB) Test Acc. (%) F1 Score Train Time (min) Model Size (KB)

Basic RNN 8 0.84 0.25 12.14 6.70 0.45 0.39 6.46 2.83

16 0.86 0.34 4.19 8.70 0.60 0.52 8.91 3.98

32 0.87 0.38 9.27 12.70 0.59 0.54 6.31 6.30

FastGRNN 8 0.85 0.29 13.25 3.92 0.71 0.64 8.69 2.99

16 0.86 0.34 21.71 5.30 0.73 0.65 7.48 4.59

32 0.86 0.42 14.89 8.05 0.73 0.67 8.05 6.93

FastRNN 8 0.86 0.33 15.99 4.70 0.57 0.63 7.72 4.96

16 0.85 0.39 15.77 6.23 0.62 0.65 9.21 5.55

32.00 0.87 0.44 18.66 9.29 0.69 0.67 8.49 8.62

UGRNN 8 0.85 0.34 23.32 4.41 0.75 0.69 12.65 4.08

16 0.86 0.38 14.36 6.29 0.81 0.77 9.48 6.08

32 0.86 0.44 26.49 8.77 0.69 0.66 8.49 8.62

GRU 8 0.86 0.37 19.45 7.05 0.69 0.63 10.24 4.73

16 0.87 0.42 31.89 10.34 0.78 0.72 12.02 7.39

32 0.87 0.47 30.15 16.90 0.80 0.80 22.82 11.55

LSTM 8 0.86 0.39 20.72 5.48 0.67 0.59 19.78 4.42

16 0.87 0.46 16.37 10.16 0.57 0.50 16.51 7.17

32 0.86 0.46 26.24 17.16 0.59 0.53 19.28 12.67

Best Performance GRU, LSTM with 1632 hidden units GRU with 32 hidden units

Smallest Model FGRNN FRNN, FGRNN, BasicRNN

Memory Savings via Fast Gates 2.09× with respect to GRU32, 1.26× with respect to LSTM16 2.03× with respect to UGRNN16, 3.86× with respect to GRU32

Performance Deviation via Fast Gates up to 5% around 13–16%

6.2. Performance Evaluation Using K-Fold Cross-Validation Training and Subsequent Compression

Next, we present the performance analysis of the six architectures on four datasets,
namely, MHEALTH (Table 13), USCHAD (Table 14), WHARF (Table 15), and WISDM
(Table 16), using cross-validation training with the subsequent methods of compression
discussed in Section 5.2. The hyperparameters for training and compression were tuned
as discussed in Sections 5.1 and 5.2. We used the scikit learn library, which has kfold.split
method, to perform the five-fold validations to obtain the training and validation sets
for each fold in an iterative manner. We report the mean train accuracy, mean validation
accuracy across five folds, test accuracy, F1 score (normalized %), and model size (kilobytes)
for this set of experiments. We chose 16 hidden units for this set of training experiments
since 8 was small and 32 was large for running a five-fold training. For this method, two
kinds of data generation methods were employed, namely FNOW and SNOW. Model sizes
were the same for both data generation schemes and are thus reflected as a common column
(Col. 6) in the next four tables (Tables 13–16).



Algorithms 2024, 17, 104 21 of 28

Table 13. Performance analysis of RNNs for Mobile HEALTH (MHEALTH) Fully Nonoverlapping
Window (FNOW) and Semi Nonoverlapping Window (SNOW) based Human Activity Recognition
(HAR) task. Mean training accuracy, mean validation accuracy, test accuracy, and F1 score are
expressed as normalized %, and model size is expressed in kilobytes. Text in red is the highest in
each category, except those under model size, where text in red represents the smallest model.

MHEALTH-FNOW MHEALTH-SNOW
RNN Type

Mean Train Acc. Mean Val Acc. Test Acc. F1 Score Model Size Mean Train Acc. Mean Val Acc. Test Acc. F1 Score

Basic RNN 0.77 0.76 0.83 0.78 3.30 0.86 0.85 0.85 0.81

FastGRNN 0.86 0.85 0.93 0.92 3.37 0.97 0.97 0.98 0.98

FastRNN 0.99 0.99 0.99 0.99 3.30 0.99 0.99 0.99 0.99

UGRNN 0.85 0.82 0.90 0.87 5.42 0.96 0.96 0.96 0.96

GRU 1.00 0.98 0.99 0.99 8.30 0.99 0.98 0.99 0.99

LSTM 0.96 0.94 0.96 0.95 10.80 0.99 0.99 0.99 0.99

Best Performance FRNN and GRU FRNN, GRU and LSTM

Smallest Model FRNN and BasicRNN FRNN, BasicRNN

Memory Savings via Fast Gates 2.52× with respect to GRU , 3.27× with respect to LSTM

Performance Deviation via Fast Gates Nil

Table 14. Performance analysis of RNNs on University of Southern California Human Activity
dataset or USCHAD Fully Nonoverlapping Window (FNOW)- and Semi Nonoverlapping Window
(SNOW)-based Human Activity Recognition (HAR) task. Mean train accuracy, mean validation
accuracy, test accurac,y and F1 score are expressed in normalized %, and model size is expressed in
KB. Text in red is the highest in each category, except those for model size, where text in red represents
the smallest model.

USCHAD-FNOW USCHAD-SNOW
RNN Type

Mean Train Acc. Mean Val Acc. Test Acc. F1 Score Model Size Mean Train Acc. Mean Val Acc. Test Acc. F1 Score

Basic RNN 0.51 0.51 0.53 0.44 2.23 0.51 0.51 0.49 0.29

FastGRNN 0.70 0.70 0.73 0.64 2.30 0.71 0.71 0.73 0.73

FastRNN 0.77 0.76 0.79 0.73 2.24 0.87 0.87 0.90 0.86

UGRNN 0.85 0.85 0.87 0.83 3.67 0.85 0.86 0.90 0.87

GRU 0.84 0.83 0.84 0.80 5.11 0.86 0.84 0.88 0.84

LSTM 0.75 0.75 0.70 0.64 6.55 0.79 0.76 0.74 0.67

Best Performance UGRNN FastRNN

Smallest Model FRNN, FGRNN, BasicRNN FRNN, FGRNN, BasicRNN

Memory Savings via Fast Gates 1.63× with respect to UGRNN

Performance Deviation via Fast Gates up to 10% up to 1%

Table 15. Performance analysis of RNNs for WHARF Fully Nonoverlapping Window (FNOW)- and
Semi Nonpverlapping Window (SNOW)-based HAR task. Mean train accuracy, mean validation
accuracy, test accuracy, and F1 score are expressed as normalized %, and model size is expressed
in KB. Text in red is the highest in each category, except those under model size, where text in red
represents the smallest model.

WHARF-FNOW WHARF-SNOW
RNN Type

Mean Train Acc. Mean Val Acc. Test Acc. F1 Score Model Size Mean Train Acc. Mean Val Acc. Test Acc. F1 Score

Basic RNN 0.49 0.49 0.44 0.27 2.05 0.51 0.51 0.50 0.30

FastGRNN 0.49 0.50 0.45 0.27 2.12 0.59 0.59 0.55 0.36

FastRNN 0.57 0.59 0.55 0.43 2.05 0.63 0.63 0.61 0.43

UGRNN 0.58 0.57 0.53 0.34 3.30 0.66 0.67 0.67 0.49

GRU 0.57 0.56 0.50 0.34 4.55 0.58 0.56 0.53 0.36

LSTM 0.53 0.52 0.48 0.31 5.80 0.59 0.59 0.57 0.37

Best Performance FRNN UGRNN

Smallest Model FRNN and BasicRNN FRNN, BasicRNN

Memory Savings via Fast Gates 1.6× with respect to UGRNN

Performance Deviation via Fast Gates Nil up to 6%



Algorithms 2024, 17, 104 22 of 28

Table 16. Performance analysis of RNNs for WISDM Fully Nonoverlapping Window (FNOW)- and
Semi Nonoverlapping Window (SNOW)-based HAR task. Mean training accuracy, mean validation
accuracy, test accuracy, and F1 score are expressed as normalized %, and model size is expressed in
KBy. Text in red is the highest in each category, except those under model size, where text in red
represents the smallest model.

WISDM-FNOW WISDM-SNOW
RNN Type

Mean Train Acc. Mean Val Acc. Test Acc. F1 Score Model Size Mean Train Acc. Mean Val Acc. Test Acc. F1 Score

Basic RNN 0.82 0.80 0.81 0.69 1.27 0.80 0.79 0.82 0.67

FastGRNN 0.81 0.81 0.81 0.69 1.72 0.83 0.83 0.84 0.72

FastRNN 0.82 0.82 0.82 0.72 1.66 0.84 0.84 0.85 0.76

UGRNN 0.93 0.92 0.93 0.89 2.90 0.87 0.88 0.89 0.82

GRU 0.88 0.87 0.88 0.82 4.15 0.97 0.96 0.97 0.95

LSTM 0.85 0.84 0.75 0.84 5.40 0.79 0.79 0.79 0.62

Best Performance UGRNN GRU

Smallest Model FRNN and BasicRNN FRNN, and BasicRNN

Memory Savings via Fast Gates 1.81× with respect to UGRNN 2.5× with respect to GRU

Performance Deviation via Fast Gates up to 17% up to 19%

For MHEALTH-FNOW, GRU and FastRNN were the best performers, and FastGate
and Vanilla RNN were the smallest. For MHEALTH-SNOW, FastRNN, GRU, and LSTM
were the best performers. For USCHAD-FNOW, UGRNN obtained a normalized F1 score
of 0.883, and FastGate and Vanilla RNN were the smallest at around 2.3KB. For USCHAD-
SNOW, FastRNN performed best. For WHARF-FNOW, UGRNN had the best training
accuracy, and FastRNN had the best test accuracy and F1 score. For USCHAD-SNOW,
UGRNN had the best performance and was the smallest. For WISDM-FNOW, UGRNN
performed best with a 0.89 normalized F1 score, and, for WISDM-SNOW, GRU performed
best with a 0.95 normalized F1 score.

6.3. Inference Evaluation on Raspberry Pi

Finally, we present the RNNs that were port-mapped onto the Raspberry Pi. We
recorded the inference time and model size for each RNN and for each dataset. Figure 13
shows the model sizes of the RNN architectures for the eight datasets and Figure 14 show
the inference time of the models on the eight datasets when port-mapped to the edge
device. FastRNN and FastGRNN occupied the least space, whereas LSTM and GRU were
bulky. A similar observation was made when we recorded the inference time of the models
on the Pi. FastRNN, FastGRNN, BasicRNN, and UGRNN were faster than the GRU and
LSTM models.

The following are the key takeaways after the training and compression of the six
Recurrent Neural Network architectures:

1. Apart from LSTM, the other RNNS like fast gates like FastGRNN, FastRNN, UGRNN,
and GRU are potential candidates for application in device-mapping edge-based RNN
modeling studies. Similar studies were conducted in Ref. [28]. The Table 17 from
Ref. [28] shows the performance of the RNNs but with different hyperparameters
used for the RNN architecture.

2. LSTM and GRU require significantly longer training and inference time compared to
the other RNN units that we studied.

3. LSTM and GRU are bulkier on the edge device than FastRNN, FastGatedRNN, and
UGRNN.

4. Fast gates like FastGRNN and FastRNN are memory-efficient for edge devices, but
they show performance deviation compared to the other RNNs of around 0 to 19%
across all considered datasets.

5. UGRNN are also potential candidates for edge-based RNN model mapping, showing
good performance and smaller memory sizes compared to LSTM and GRU.



Algorithms 2024, 17, 104 23 of 28

6. Data collection and preprocessing play important roles in training the RNNs and
consume significant time.

7. If the class distribution of the dataset is unbalanced, we saw a drop in the F1 score of
the RNN model.

8. A hidden state size of 16 and a single layer are optimal for edge mapping for HAR
applications. Increasing the hidden size or layer size improves performance but
adversely affects the model size.

9. Regularization methods like dropout improve model performance after any degrada-
tion due to the compression applied on the dense RNN models.

10. A combination of compression techniques is better than singleton methods.
11. For Low-Rank Parameterization, the decomposition rank affects the model size and

performance of RNNs. Higher ranks improve performance but increase the model
size proportionally.

12. The inference time on a Raspberry Pi was directly dependent on the time steps, the
input feature size the RNN was processing, and the complexity of the RNN cell and
architecture.

13. The complex workflows for application to device mapping have forced developers
to be inventive. Dealing with frameworks and third-party packages and libraries
is complex.

Table 17. Conclusions for SPHAR and DSA from [28].

SPHAR DSA

SI No. RNN Unit Accuracy (%) Model Size (KB) Accuracy (%) Model Size (KB)

1 Basic RNN 91.31 29 71 20

2 FastRNN 94.50 29 84.14 97

3 FastGRNN 95.59 3 83.73 3.25

4 UGRNN 94.53 37 84.74 399

5 LSTM 93.62 71 84.84 270

6 GRU 93.65 74 84.84 526

(a) (b)

Figure 13. Recurrent Neural Network (RNN) model sizes for different 8 datasets on Raspberry Pi
(RPi). (a) RNN model size on RPi for Daily and Sports Activity Recognition (DSA-19), Smart Phone
Human Activity Recognition (SPHAR), Opportunity, and Physical Activity Monitoring for Aging
People (PAMAP2) datasets. (b) RNN model size on RPi for Mobile Health (MHEALTH), University
of Southern California Human Activity Dataset (USCHAD), Wearable Human Activity Recognition
Folder (WHARF), and Wireless Sensor Data Mining (WISDM) dataset.



Algorithms 2024, 17, 104 24 of 28

(a) (b)

Figure 14. Recurrent Neural Network or RNN inference time for 8 different datasets on Raspberry P
(RPi). (a) Inference time of RNN models on RPi for Daily and Sports Activity Recognition (DSA-19),
Smart Phone Human Activity Recognition (SPHAR), Opportunity, and Physical Activity Monitoring
for Aging People (PAMAP2) datasets. (b) Inference time of RNN models on RPi for Mobile Health
(MHEALTH), University of Southern California Human Activity Dataset (USCHAD), Wearable
Human Activity Recognition Folder (WHARF), and Wireless Sensor Data Mining (WISDM) datasets.

7. Conclusions and Future Scope

This study involved the comprehensive empirical evaluation and optimization of an
RNN-based HAR application in device mapping. We covered six RNN units, namely, the
Vanilla RNN, Fast Gated RNN, Fast RNN, GRU, UGRNN, and LSTM. We used hold-out
and cross-validation methods on eight datasets, namely, DSA19, SPHAR, Opportunity,
PAMAP2, MHealth, USCHAD, WHARF, and WISDM. We trained and compressed the
RNNs. We addressed over-fitting issues while training using dropout regularization. For
compression, we used low-rank parameterization, iterative hard thresholding, and spare
retraining methods. We found that efficient training and suitable compression methods
are critical in optimizing RNNs for performance and memory efficiency. We performed
inference on a Raspberry Pi.

For finding the right set of hyperparameters for a model, NAS can be explored.
Other compression techniques like the Kronecker Products can be explored, which, in the
literature, have proved efficient in edge modeling studies.

Author Contributions: Conceptualization, V.S.L. and V.R.B.; methodology, V.S.L.; validation, V.S.L.,
V.R.B. and J.A.; formal analysis, V.S.L. and H.S.S.; investigation, V.S.L., V.R.B., J.A. and H.S.S.;
writing—original draft preparation, V.S.L.; writing—review and editing, V.S.L. and J.A.; visualization,
V.R.B. and H.S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The instance data and solutions will be made available upon request.

Acknowledgments: We would like to thank the anonymous reviewers for providing valuable
feedback for improving the technical quality and segmentation of this journal.

Conflicts of Interest: Author Hariram Selvamurugan Satheesh was employed by the company
ABB GISPL. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RNN Recurrent Neural Network
HAR Human Activity Recognition



Algorithms 2024, 17, 104 25 of 28

GPU Graphics Processing Unit
EI-RNN Edge-Intelligent RNN
IoT Internet of Things
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
FRNN Fast Recurrent Neural Network
FGRNN Fast Gated Recurrent Neural Network
UGRNN Unitary Gated Recurrent Neural Network
RPi Raspberry Pi
DL Deep Learning
AI Artificial Intelligence
CNN Convolutional Neural Network
MCU Microcontroller Unit
ELL Embedded Learning Library
SoC System on Chip
LMF Low-Rank Matrix Factorization
SVD Singular Value Decomposition
DSA Daily and Sports Activities
SPHAR Smart Phone Human Activity Recognition
Oppo Opportunity
PAMAP Physical Activity Monitoring for Aging People
MHEALTH Mobile HEALTH
USC-HAD University of Southern California Human Activity Dataset
WHARF Wearable Human Activity Recognition Folder
WISDM Wireless Sensor Data Mining
NaN Not a Number
API Application Programming Interface
wandb Weights and Biases Tool
RMS Prop Root Mean Squared Propagation

Appendix A

Table A1. Datasets and their URL. All of them were accessed on 30 June 2022.

Dataset URL

DSA https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities
SPHAR https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
Oppo https://universityofadelaide.app.box.com/s/ag10ugotoqmbw3sw6q74s0pd7b7gkznj

PAMAP2 https://universityofadelaide.app.box.com/s/ag10ugotoqmbw3sw6q74s0pd7b7gkznj
MHealth https://github.com/colebryant/mhealth-classification
USCHAD http://sipi.usc.edu/HAD/
WHARF https://github.com/centaurresearchgroup/WHARF
WISDM https://www.cis.fordham.edu/wisdm/dataset.php

References
1. Kolen, J.; Kremer, S. Gradient flow in recurrent nets: The difficulty of learning longterm dependencies. In A Field Guide to

Dynamical Recurrent Network; IEEE: Piscataway, NJ, USA, 2010.
2. Martens, J.; Sutskever, I. Learning recurrent neural networks with hessian-free optimization. In Proceedings of the 28th

International Conference on Machine Learning, Washington, DC, USA, 28 June–2 July 2011.
3. Collins, J.; Sohl-Dickstein, J.; Sussillo, D. Capacity and trainability in recurrent neural networks. arXiv 2016, arXiv:1611.09913.
4. Lalapura, V.S.; Amudha, J.; Satheesh, H.S. Recurrent neural networks for edge intelligence: A survey. ACM Comput. Surv. 2021,

54, 1–38. [CrossRef]
5. Amudha, J.; Thakur, M.S.; Shrivastava, A.; Gupta, S.; Gupta, D.; Sharma, K. Wild OCR: Deep Learning Architecture for Text

Recognition in Images. In Proceedings of the International Conference on Computing and Communication Networks, Manchester,
UK, 19–20 November 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 499–506.

6. Vanishree, K.; George, A.; Gunisetty, S.; Subramanian, S.; Kashyap, S.; Purnaprajna, M. CoIn: Accelerated CNN Co-Inference
through data partitioning on heterogeneous devices. In Proceedings of the 2020 6th International Conference on Advanced
Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 90–95.

https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://universityofadelaide.app.box.com/s/ag10ugotoqmbw3sw6q74s0pd7b7gkznj
https://universityofadelaide.app.box.com/s/ag10ugotoqmbw3sw6q74s0pd7b7gkznj
https://github.com/colebryant/mhealth-classification
http://sipi.usc.edu/HAD/
https://github.com/centaurresearchgroup/WHARF
https://www.cis.fordham.edu/wisdm/dataset.php
http://doi.org/10.1145/3448974


Algorithms 2024, 17, 104 26 of 28

7. Sujadevi, V.G.; Soman, K.P. Towards identifying most important leads for ECG classification. A Data driven approach employing
Deep Learning. Procedia Comput. Sci. 2020, 171, 602–608. [CrossRef]

8. Madsen, A. Visualizing memorization in RNNs. Distill 2019, 4, e16. [CrossRef]
9. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef] [PubMed]
10. Asmitha, U.; Roshan Tushar, S.; Sowmya, V.; Soman, K.P. Ensemble Deep Learning Models for Vehicle Classification in Motorized

Traffic Analysis. In Proceedings of the International Conference on Innovative Computing and Communications, Delhi, India,
17–18 February 2023; Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.; Spinger: Singapore,
2023; pp. 185–192.

11. Ramakrishnan, R.; Vadakedath, A.; Bhaskar, A.; Sachin Kumar, S.; Soman, K.P. Data-Driven Volatile Cryptocurrency Price
Forecasting via Variational Mode Decomposition and BiLSTM. In Proceedings of the International Conference on Innovative
Computing and Communications, Delhi, India, 17–18 February 2023; Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E.,
Anand, S., Jaiswal, A., Eds.; Spinger: Singapore, 2023; pp. 651–663.

12. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1310–1318.

13. Lin, J. Efficient Algorithms and Systems for Tiny Deep Learning. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2021.

14. Han, S.; Kang, J.; Mao, H.; Hu, Y.; Li, X.; Li, Y.; Xie, D.; Luo, H.; Yao, S.; Wang, Y.; et al. Ese: Efficient speech recognition engine
with sparse lstm on fpga. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 75–84.

15. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
16. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
17. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
18. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014, arXiv:1409.1259.
19. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
20. Arjovsky, M.; Shah, A.; Bengio, Y. Unitary evolution recurrent neural networks. In Proceedings of the International Conference

on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 1120–1128.
21. David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. TensorFlow lite

micro: Embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811.
22. Microsoft-v2019 ; ELL: Embedded Learning Library; Microsoft Corporation: Redmond, WA, USA, 2018.
23. Banbury, C.; Zhou, C.; Fedorov, I.; Matas, R.; Thakker, U.; Gope, D.; Janapa Reddi, V.; Mattina, M.; Whatmough, P. Micronets:

Neural network architectures for deploying tinyml applications on commodity microcontrollers. Proc. Mach. Learn. Syst. 2021,
3, 517–532.

24. Gu, F.; Chung, M.H.; Chignell, M.; Valaee, S.; Zhou, B.; Liu, X. A survey on deep learning for human activity recognition. ACM
Comput. Surv. 2021, 54, 1–34. [CrossRef]

25. Jordao, A.; Nazare, A.C., Jr.; Sena, J.; Schwartz, W.R. Human activity recognition based on wearable sensor data: A standardization
of the state-of-the-art. arXiv 2018, arXiv:1806.05226.

26. Demrozi, F.; Turetta, C.; Pravadelli, G. B-HAR: An open-source baseline framework for in depth study of human activity
recognition datasets and workflows. arXiv 2021, arXiv:2101.10870.

27. Olah, C. Understanding LSTM Networks. 2015. Available online: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
(accessed on 22 May 2022).

28. Kusupati, A.; Singh, M.; Bhatia, K.; Kumar, A.; Jain, P.; Varma, M. Fastgrnn: A fast, accurate, stable and tiny kilobyte sized
gated recurrent neural network. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018;
Volume 31.

29. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

30. Castellano, G.; Fanelli, A.M.; Pelillo, M. An iterative pruning algorithm for feedforward neural networks. IEEE Trans. Neural
Netw. 1997, 8, 519–531. [CrossRef] [PubMed]

31. Reed, R. Pruning algorithms-a survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef] [PubMed]
32. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient dnns. In Advances in Neural Information Processing Systems; MIT

Press: Cambridge, MA, USA, 2016; Volume 29.
33. Gao, C.; Neil, D.; Ceolini, E.; Liu, S.C.; Delbruck, T. DeltaRNN: A power-efficient recurrent neural network accelerator. In

Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 25–27
February 2018; pp. 21–30.

http://dx.doi.org/10.1016/j.procs.2020.04.065
http://dx.doi.org/10.23915/distill.00016
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1145/3472290
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.1109/72.572092
http://www.ncbi.nlm.nih.gov/pubmed/18255656
http://dx.doi.org/10.1109/72.248452
http://www.ncbi.nlm.nih.gov/pubmed/18276504


Algorithms 2024, 17, 104 27 of 28

34. Yao, S.; Zhao, Y.; Zhang, A.; Su, L.; Abdelzaher, T. Deepiot: Compressing deep neural network structures for sensing systems
with a compressor-critic framework. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft,
The Netherlands, 6–8 November 2017; pp. 1–14.

35. Wang, S.; Li, Z.; Ding, C.; Yuan, B.; Qiu, Q.; Wang, Y.; Liang, Y. C-LSTM: Enabling efficient LSTM using structured compression
techniques on FPGAs. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Delft, The Netherlands, 6–8 November 2018; pp. 11–20.

36. Anwar, S.; Hwang, K.; Sung, W. Structured pruning of deep convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst.
(JETC) 2017, 13, 1–18. [CrossRef]

37. Wen, L.; Zhang, X.; Bai, H.; Xu, Z. Structured pruning of recurrent neural networks through neuron selection. Neural Netw. 2020,
123, 134–141. [CrossRef]

38. Thakker, U.; Beu, J.; Gope, D.; Dasika, G.; Mattina, M. Run-time efficient RNN compression for inference on edge devices.
In Proceedings of the 2019 2nd Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded
Applications (EMC2), Washington, DC, USA, 17 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 26–30.

39. Shan, D.; Luo, Y.; Zhang, X.; Zhang, C. DRRNets: Dynamic Recurrent Routing via Low-Rank Regularization in Recurrent Neural
Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 2057–2067. [CrossRef]

40. Zhao, Y.; Li, J.; Kumar, K.; Gong, Y. Extended Low-Rank Plus Diagonal Adaptation for Deep and Recurrent Neural Networks; IEEE Press:
Piscataway, NJ, USA, 2017. [CrossRef]

41. Lu, Z.; Sindhwani, V.; Sainath, T.N. Learning compact recurrent neural networks. In Proceedings of the 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 5960–5964.

42. Prabhavalkar, R.; Alsharif, O.; Bruguier, A.; McGraw, L. On the compression of recurrent neural networks with an application
to LVCSR acoustic modeling for embedded speech recognition. In Proceedings of the 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 5970–5974.

43. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the Speed of Neural Networks on CPUs. 2011. Available online: https:
//research.google/pubs/improving-the-speed-of-neural-networks-on-cpus/ (accessed on 10 February 2024).

44. Ramakrishnan, R.; Dev, A.K.; Darshik, A.; Chinchwadkar, R.; Purnaprajna, M. Demystifying Compression Techniques in CNNs:
CPU, GPU and FPGA cross-platform analysis. In Proceedings of the 2021 34th International Conference on VLSI Design and 2021
20th International Conference on Embedded Systems (VLSID), Virtual, 20–24 February 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 240–245.

45. Warden, P.; Situnayake, D. TinyML. 2019. Available online: https://www.oreilly.com/library/view/tinyml/9781492052036/
(accessed on 10 February 2024).

46. Wang, X.; Magno, M.; Cavigelli, L.; Benini, L. FANN-on-MCU: An open-source toolkit for energy-efficient neural network
inference at the edge of the Internet of Things. IEEE Internet Things J. 2020, 7, 4403–4417. [CrossRef]

47. Biewald, L. Experiment Tracking with Weights and Biases. 2020. Available online: https://www.wandb.com (accessed on 30
June 2022).

48. Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv.
(CSUR) 2014, 46, 1–33. [CrossRef]

49. Altun, K.; Barshan, B. Human activity recognition using inertial/magnetic sensor units. In Proceedings of the International
Workshop on Human Behavior Understanding, Istanbul, Turkey, 22 August 2010; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 38–51.

50. Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A public domain dataset for human activity recognition using
smartphones. In Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013; pp. 437–442.

51. Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.T.; Tröster, G.; Millán, J.d.R.; Roggen, D. The Opportunity challenge: A
benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013, 34, 2033–2042. [CrossRef]

52. Reiss, A.; Stricker, D. Creating and benchmarking a new dataset for physical activity monitoring. In Proceedings of the 5th
International Conference on PErvasive Technologies Related to Assistive Environments, Crete, Greece, 6–9 June 2012; pp. 1–8.

53. Banos, O.; Garcia, R.; Holgado-Terriza, J.A.; Damas, M.; Pomares, H.; Rojas, I.; Saez, A.; Villalonga, C. mHealthDroid: A novel
framework for agile development of mobile health applications. In Proceedings of the International Workshop on Ambient
Assisted Living, Belfast, UK, 2–5 December 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 91–98.

54. Zhang, M.; Sawchuk, A.A. USC-HAD: A daily activity dataset for ubiquitous activity recognition using wearable sensors. In
Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1036–1043.

55. Bruno, B.; Mastrogiovanni, F.; Sgorbissa, A. Wearable inertial sensors: Applications, challenges, and public test benches. IEEE
Robot. Autom. Mag. 2015, 22, 116–124. [CrossRef]

56. Lockhart, J.W.; Weiss, G.M.; Xue, J.C.; Gallagher, S.T.; Grosner, A.B.; Pulickal, T.T. Design considerations for the WISDM smart
phone-based sensor mining architecture. In Proceedings of the Fifth International Workshop on Knowledge Discovery from
Sensor Data, San Diego, CA, USA, 21 August 2011; pp. 25–33.

57. Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [CrossRef]

http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1016/j.neunet.2019.11.018
http://dx.doi.org/10.1109/TNNLS.2021.3105818
http://dx.doi.org/10.1109/ICASSP.2017.7953116
https://research.google/pubs/improving-the-speed-of-neural-networks-on-cpus/
https://research.google/pubs/improving-the-speed-of-neural-networks-on-cpus/
https://www.oreilly.com/library/view/tinyml/9781492052036/
http://dx.doi.org/10.1109/JIOT.2020.2976702
https://www.wandb.com
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1109/MRA.2015.2448279
http://dx.doi.org/10.1145/2347736.2347755


Algorithms 2024, 17, 104 28 of 28

58. Dennis, D.K.; Gaurkar, Y.; Gopinath, S.; Goyal, S.; Gupta, C.; Jain, M.; Jaiswal, S.; Kumar, A.; Kusupati, A.; Lovett, C.; et al. EdgeML:
Machine Learning for Resource-Constrained Edge Devices. 2019. Available online: https://github.com/Microsoft/EdgeML
(accessed on 30 June 2022).

59. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:
//www.deeplearningbook.org (accessed on 20 May 2022).

60. LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 9–48.

61. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github. com/Microsoft/EdgeML
http://www.deeplearningbook.org
http://www.deeplearningbook.org

	Introduction
	Motivation and Challenges
	Contributions and Key Features

	Background and Related Work
	Vanilla RNN
	LSTM RNN
	GRU
	FGRNN
	FRNN
	UGRNN

	Research Workflow
	Experiments
	Experimental Settings
	Application and Datasets
	Daily and Sports Activities Dataset
	Smart Phone Human Activity Recognition Dataset
	Opportunity Dataset
	Physical Activity Monitoring for Aging People Dataset
	Mobile Health Dataset
	University of Southern California Human Activity Dataset
	Wearable Human Activity Recognition Folder Dataset
	Wireless Sensor Data Mining Dataset
	Finer Details of the Datasets

	Evaluation Protocols and Metrics

	EI-RNN Optimization and Analysis
	EI-RNN Training
	Initial Settings
	 Train–Debug Cycle
	Hyperparameter Tuning and Generalization

	EI-RNN Compression
	EI-RNN Inference

	Results and Discussion
	Performance Evaluation Using Hold-Out Method of Training and Subsequent Compression
	Performance Evaluation Using K-Fold Cross-Validation Training and Subsequent Compression
	Inference Evaluation on Raspberry Pi

	Conclusions and Future Scope
	Appendix A
	References

