
Citation: Hubai, A.; Szabó, S.;

Zaválnij, B. Exploratory Data Analysis

and Searching Cliques in Graphs.

Algorithms 2024, 17, 112. https://

doi.org/10.3390/a17030112

Academic Editor: Qianping Gu

Received: 31 January 2024

Revised: 28 February 2024

Accepted: 5 March 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Exploratory Data Analysis and Searching Cliques in Graphs
András Hubai 1, Sándor Szabó 2 and Bogdán Zaválnij 1,*

1 Rényi Institute of Mathematics, 1053 Budapest, Hungary; hubai.andras@renyi.hu (A.H.);
bogdan@renyi.hu (B.Z.)

2 Institute of Mathematics, University of Pécs, 7622 Pécs, Hungary; sszabo7@hotmail.com
* Correspondence: bogdan@renyi.hu

Abstract: The principal component analysis is a well-known and widely used technique to determine
the essential dimension of a data set. Broadly speaking, it aims to find a low-dimensional linear
manifold that retains a large part of the information contained in the original data set. It may be the
case that one cannot approximate the entirety of the original data set using a single low-dimensional
linear manifold even though large subsets of it are amenable to such approximations. For these cases
we raise the related but different challenge (problem) of locating subsets of a high dimensional data
set that are approximately 1-dimensional. Naturally, we are interested in the largest of such subsets.
We propose a method for finding these 1-dimensional manifolds by finding cliques in a purpose-built
auxiliary graph.

Keywords: dimension of a data set; 1-dimensional linear manifolds; graph representation; cliques

1. Introduction

One way to classify statistical procedures is to divide them into exploratory and
explanatory (or confirmatory) methods. The main purpose of the explanatory methods is
to assess how strongly the data support a particular statistical hypothesis. The arguments
are based on considerations from probability theory (frequentist or Bayesian). On the other
hand, the exploratory methods typically have a more modest aim. They are concerned
only with exploring the given data set. The statistical procedures can also be divided into
multidimensional and one-dimensional methods. The statistical method we deal with in
this work is a multidimensional and exploratory procedure. Further, we are not making any
seriously restrictive assumptions about the parameters of the probability distributions that
may appear in the model. In this sense, the proposed method is a non-parametric method.

Exploratory data analysis (EDA) is often considered to be on par with descriptive
and inferential statistics [1]. Descriptive statistics uses the available data, i.e., usually from
a limited sample of the statistical population, to offer quantitative statements about that
sample. Inferential analyses use the same sample to make conclusions about the population,
for which it requires an a priori model. It provides information on the population in the
form of statements about whether certain hypotheses are supported or not by the available
(sample) data.

But EDA is not a third domain on equal footing; rather, it is called an approach [1–4].
EDA has no models to start with, similarly to descriptive statistics. Also, it aims to

assist in the analysis of the whole population, similarly to inferential statistics, by sug-
gesting suitable hypotheses to test based on the data [2]. But how could it cross the
sample–population divide without a model? It is proposed that it is our human “natural
pattern-recognition capabilities” which cover the gap [1]. Also, one has to avoid “post
hoc theorizing”, i.e., using the same chunk of sample data for generating hypotheses and
testing them [2].

EDA is considered to be a mainly graphical route to understanding the hidden intri-
cacies of data. But it is not a set of graphical techniques, and it is separate from statistical
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graphics and visualization [1]. It is the starting point for statistics [4], but it is not an “initial
data analysis” [5,6]. It is generally model-free, but sometimes it relies on “a minimum of” a
priori knowledge [4], e.g., in the case of exploratory structural equation modeling [7] (and
the like), or assisting model selection. It is generally qualitative, though some consider the
visualization of descriptive statistics to be part of its uses [4]. It shares techniques with
similar fields, e.g., cluster analysis within data mining, which is also model-free.

An important feature of the method we would like to emphasize is that, in our
approach, we not only do not place serious restrictions on the underlying multidimensional
probability distributions but rather we replace them with graph theoretical concepts such as
cliques in a graph. At a suitable juncture we will describe the bare minimum of terminology
we need from graph theory.

The data sets we are considering in this work consist of a number objects, each object
of which possesses a number of attributes. In this way, the data set is identified by an
m-by-n matrix, the so-called data matrix. The rows are labeled with the objects. The
columns are labeled with the attributes. It is a fact from elementary linear algebra that
the dimensions of the row space and the dimensions of the column space in the original
m-by-n data matrix are equal. When we estimate the essential dimension of the data set we
may restrict our attention to the row space. In fact, we will work with the m-by-m matrix
that contains similarity indices between objects. For the sake of definiteness, the reader my
think of the Pearson correlation coefficient of two given objects as a similarity index. In this
case, the m-by-m matrix is filled with the correlation coefficients.

The essential dimension of the row space d is commonly estimated via the spectral
decomposition of the m-by-m correlation matrix of the objects. The entries of the correlation
matrix are real numbers and the matrix is symmetric with respect to the main diagonal. The
associated quadratic form is positive and semi definite. Consequently, the eigenvalues of
the correlation matrix are real and non-negative. We list the eigenvalues in non-increasing
order starting with the largest and ending with the smallest. The last smallest m − d
eigenvalues should be negligible compared to the first largest d eigenvalues. The main
point is that a large part of the information in the original data set can be condensed into
a relatively low-dimensional linear manifold. In other words, the d-dimensional linear
manifold well approximates the original data set [8].

A minute of contemplation will convince the reader that it is possible that the original
data are a union of a few 1-dimensional linear manifolds and at the same time the data
set cannot be globally approximated by a low-dimensional linear manifold because of the
relative position of the 1-dimensional linear manifolds. Putting it differently, it may be the
case that a data set can be decomposed into (not necessarily disjoint) parts that can all be
well approximated by 1-dimensional linear manifolds while the whole data set cannot be
well approximated with a low-dimensional linear manifold.

We propose the following related problems. Given a data set, try to locate a subset of
objects that can be well approximated by a 1-dimensional linear manifold. Or alternatively,
try to decompose the set of objects into parts such that each part can be locally well
approximated with 1-dimensional linear manifolds.

Instead of similarity indices one may use distances between objects. In this situation
an m-by-m matrix will be filled with distances. We refer to this matrix as the distance
matrix of the objects. Multidimensional scaling is a commonly applied technique to find
the essential dimension of the data set. The multidimensional scaling procedure tries to
assign points of a d-dimensional space to each object such that the distances between the
points in the space provide a good approximation of the entries in the distance matrix. If
the agreement between the computed and given distances is satisfactory, then we have
successfully identified the essential dimension of the row space in the data set.

In this paper we will work with graphs with finite nodes and finite edges. We assume
that the graphs do not have multiple edges and do not have loops. It is customary to refer
to this class of graphs as finite simple graphs. Let G = (V, E) be a finite simple graph.
Here, V is the set of vertices in the graph G and E is the set of edges in G. A subset C of
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V is called a clique if two distinct nodes of C are always adjacent in G. The clique C of G
is called a k clique if C has exactly k elements. For each finite simple graph G there is a
uniquely determined integer k, such that G admits a k clique but G does not admit any
(k + 1) cliques. This uniquely determined k is called the clique number of G and is denoted
by ω(G). It is a well-known fact from the complexity theory of algorithms that computing
ω(G) is an NP hard optimization problem (See [9]).

The main result of this work is that locating approximately 1-dimensional linear mani-
folds in a data set can be reduced to locating a clique in a tactically constructed auxiliary
graph. Typically, the more nodes the clique has the more objects the approximately 1-
dimensional linear manifold consists of. At this juncture we have to point out that the
connection between the number of nodes in the clique and the number of objects in the
approximately 1-dimensional linear manifold is more subtle. It may be the case that a
smaller clique helps to locate a larger 1-dimensional manifold. Therefore, the problem of
finding 1-dimensional linear manifolds with an optimal number of objects is computation-
ally more demanding than determining the clique number of the auxiliary graph. As we
have seen, computing the clique number is a computationally demanding task. In practical
computations we do not look for cliques with an optimal size. We will be satisfied with
finding large enough cliques. Decomposing the data set into a (not necessarily disjoint)
union of approximately 1-dimensional linear manifolds reduces to the problem of covering
the nodes of the auxiliary graph by (not necessarily disjoint) cliques.

2. The Auxiliary Graph Based on Distances

In this section we describe how to construct an auxiliary graph G = (V, E) associated
with a given data set. We describe the construction of the auxiliary graph in two stages.
First, we use a straight forward procedure to construct an auxiliary graph. Then, we will
notice some undesired properties of the outcome. In order to sort out this difficulty we act
more tactfully and modify the original construction.

Let O1, . . . , Om be the objects in the given data set and let δ(i, j) be the distance between
Oi and Oj for each i, j, 1 ≤ i < j ≤ m. The numbers δ(i, j) are the entries in an m-by-m
matrix D. This matrix is commonly referred as the distance matrix of the objects. The nodes
of G are the unordered pairs {Oi, Oj} for each i, j, 1 ≤ i < j ≤ m. In notation

V = {{Oi, Oj} : 1 ≤ i < j ≤ m}.

Let Oi, Oj, Ok be three pair-wise distinct objects and let δ(i, j), δ(j, k), δ(k, i) be the
distances between these objects. Using the distances δ(i, j), δ(j, k), δ(k, i) one can compute
the area T of a triangle whose vertices are Oi, Oj, Ok. Next we choose the largest among the
above three distances and denote it with δ. The quotient 2T/δ gives µ the smallest among
the three heights of the triangle. We say that the triangle with vertices Oi, Oj, Ok is flat if µ
is less than or equal to ε, where ε is a given predefined small positive threshold value. We
say that the quadrangle with vertices Op, Oq, Or, Os is flat if each of the triangles

Op, Oq, Or, Op, Oq, Os, Or, Os, Op, Or, Os, Oq

is flat.
Two distinct nodes, {Op, Oq} and {Op, Or}, in the auxiliary graph G will be adjacent

in G if the triangle with vertices Op, Oq, Or is flat. Note that, as the triangle with vertices Op,
Oq, Or is flat it follows that the nodes {Op, Oq} and {Oq, Or} are adjacent in G. Similarly,
the nodes {Op, Or} and {Oq, Or} are adjacent in G.

Two distinct nodes, {Op, Oq} and {Or, Os}, in the auxiliary graph G will be adjacent
in G if the quadrangle with vertices Op, Oq, Or, Os is flat. Note that, as the quadrangle with
vertices Op, Oq, Or, Os is flat it follows that the unordered pairs {Op, Or} and {Oq, Os} are
adjacent in G. Similarly, the unordered pairs {Op, Os} and {Oq, Or} are adjacent in G.
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Lemma 1. One can locate approximately 1-dimensional linear manifolds formed by objects of a
given data set via locating cliques in the distance-based auxiliary graph G.

Proof. Let us consider a clique ∆ in the auxiliary graph G. The nodes of this clique ∆
are unordered pairs of objects. Suppose O′

1, . . . , O′
t are all the objects appearing in the

unordered pairs, which are nodes of ∆.
Let us consider the largest distance appearing among the objects O′

1, . . . , O′
t. We may

assume that this largest distance is between the objects O′
1 and O′

t since this is only a matter
of rearranging the objects O′

1, . . . , O′
t among each other.

Pick an object O′
i , 1 < i < t. There is an object O′

α(i) such that 1 ≤ α(i) ≤ t and the
unordered pair {O′

i , O′
α(i)} is an element of the clique ∆.

If α(i) = 1, then the nodes {O′
1, O′

i} and {O′
1, O′

t} of the auxiliary graph G are adjacent
in the clique ∆ and so the triangle with vertices O′

1, O′
i , O′

t is flat. The object O′
i is close to

the straight line of the objects O′
1, O′

t. We can draw the same conclusion when α(i) = t. For
the remaining part of the proof we may assume that α(i) ̸= 1 and α(i) ̸= t.

In this situation the unordered pairs {O′
1, O′

t} and {O′
i , O′

α(i)} are adjacent nodes in
the clique ∆ and so the quadrangle with nodes O′

1, O′
i , O′

α(i), O′
t is flat. Consequently,

the triangle with vertices O′
1, O′

i , O′
t is flat.

Summarizing our considerations we can say that the objects O′
1, . . . , O′

t form an ap-
proximately 1-dimensional linear manifold. Therefore, one can locate approximately
1-dimensional linear manifolds formed by objects via locating cliques in the auxiliary
graph G.

Using the definition, checking the flatness of the quadrangle with vertices Op, Oq,
Or, Os requires computing the areas of four triangles. We will point out that this task can
be accomplished by computing the areas of two triangles. Set δ to be the maximum of
the distances

δ(p, q), δ(p, r), δ(r, s), δ(s, p), δ(p, r), δ(q, s).

For the sake of definiteness, suppose that the distance of the vertices Op, Or is equal
to δ.

The flatness of the quadrangle with vertices Op, Oq, Or, Os can be checked by checking
the flatness of the triangles with vertices Op, Or, Oq and Op, Os, Or.

Next, we describe a situation in which the auxiliary graph exhibit properties that we
consider undesirable. Let us consider a large square S. As a first thought experiment we
identify the vertices A1, A2, A3, A4 of the square S with the object O1, O2, O3, O4. The
associated auxiliary graph has six nodes and it contains only one clique, that is only isolated
nodes. None of the 15 possible edges appear within it.

In the second thought experiment we use eight objects O1, . . . , O8. The objects O1, O2
are placed very close to the vertex A1. The objects O3, O4 are placed very close to the vertex
A2. The objects O5, O6 are placed very close to the vertex A3. The objects O7, O8 are placed
very close to the vertex A4. The associated auxiliary graph has 28 nodes and it contains
four cliques whose vertices are {O1, O2}, {O3, O4}, {O5, O6}, {O7, O8}. On the other hand,
the eight objects O1, . . . , O8 do not form an approximately 1-dimensional manifold.

Consequently, we modify the definition of the auxiliary graph G. The nodes of G are
the unordered pairs {Oi, Oj} for each i, j, 1 ≤ i < j ≤ m provided that the distance of the
object Oi, Oj exceeds a fixed predefined threshold value θ. In notation

V = {{Oi, Oj} : δ(i, j) ≥ θ, 1 ≤ i < j ≤ m, }.

Using any exact or heuristic method for clique search, one could locate big cliques in
the G or the H graph, thus finding a big (nearly) 1-dimensional subset of the whole data
set. Another approach would be coloring the complement graph. That way the data set can
be clustered into (nearly) 1-dimensional subsets.
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3. The Auxiliary Graph Based on Covariance Coefficients

In this section we describe how to construct an auxiliary graph G = (V, E) associated
with a given data set. Let O1, . . . , Om be the objects in the given data set and let c(i, j) be
the Pearson covariance coefficient between the objects Oi and Oj. Here, 1 ≤ i < j ≤ m. The
numbers c(i, j) are the entries in the m-by-m covariance matrix of the objects. The nodes of
G are the unordered pairs {Oi, Oj} for each i, j, 1 ≤ i < j ≤ m; that is,

V = {{Oi, Oj} : 1 ≤ i < j ≤ m}.

Two distinct nodes {Op, Oq} and {Or, Os} will be adjacent in G if

−ε ≤ det
(

c(p, r) c(p, s)
c(q, r) c(q, s)

)
≤ ε,

where ε is a predefined small positive threshold.

Lemma 2. Locating cliques in the covariance-based auxiliary graph G can be used to locate
approximately 1-dimensional linear manifolds formed by objects in a given data set.

Proof. Suppose for a moment that the rank of the covariance matrix of the objects O′
1, . . . , O′

t
is equal to one. In this situation there are numbers a1, . . . , at and b1, . . . , bs such that the
covariance coefficient c′(i, j) between the objects O′

j and O′
j is equal to the product aibj for

each i, j, 1 ≤ i, j ≤ t. Using this information we obtain

det
(

c′(p, r) c′(p, s)
c′(q, r) c′(q, s)

)
= det

(
apbr apbs
aqbr aqbs

)
= 0.

This means that the two distinct nodes {O′
p, O′

q} and {O′
r, O′

s} are adjacent in G.
Therefore, the nodes {O′

i , O′
j}, 1 ≤ i < j ≤ t are nodes of a [t(t − 1)/2] clique in the

graph G.
Similarly, when the covariance matrix of the objects O′

1, . . . , O′
t can be well approxi-

mated by a rank-one matrix, then the nodes {O′
i , O′

j}, 1 ≤ i < j ≤ t in G are nodes of a
[t(t − 1)/2] clique in the graph G. Finally, if the nodes {O′

i , O′
j}, 1 ≤ i < j ≤ t are nodes of

a [t(t − 1)/2]-clique in the graph G; then, the covariance matrix of the objects O′
1, . . . , O′

t
can be well approximated by a rank-one matrix.

4. Numerical Experiments

We assess our 1-dimensional manifold finding method by applying it to real world
data (i.e., not controlled trials). Sourced from a medical institution, we have access to a large
set of fasting blood sugar test measurements. From this set, we take a sample belonging to
m = 300 patients, such that each patient has l ≥ 50 blood sugar measurements taken over
the span of 2.5 ≤ s < 12.5 years (between 2006 and 2018). There can be many reasons for
someone to be measured this many times (e.g., monthly check-ups, daily monitoring of
inpatients), and accordingly, the time series exhibit wildly different trajectories (Figure 1).

The raw data are in the format of (date–value) pairs. We consider such time series as a
sample of a patient’s blood glucose dynamics, both in terms of its distribution and trajectory.
To moderate the effect of episodes of frequent samplings (e.g., during hospitalization),
we convert the series of (date–value) pairs into a series of (week–weekly average value)
pairs. For comparability across series of vastly different lengths, we keep only the first
5 years of each series. The maximum number of data pairs in a time series T is thus
2.5 × 52 ≤ k ≤ 5 × 52.

We propose using three measures to quantify the distance, δi,j, between the time series
of patients i and j (to be named “distribution”, “balanced”, and “trajectory”). Each option
results in a different m × m distance matrix D of the time series, on which to perform the
clique-finding algorithm.
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Figure 1. Examples of blood glucose time series. Panel (A) shows a patient with healthy blood sugar
levels (i.e., between 4.4 and 6.1 mmol/L when fasting; see dashed lines and green background). Panel
(B) shows a slightly elevated baseline, cf. prediabetes. Panel (C) shows spikes of extremely high
levels (>20 mmol/L), cf. acute hyperglycemia, likely paired with medical emergency and hospital
stay. Panel (D) shows chronic diabetes, possibly untreated, with both high mean and high variation
in blood sugar levels. High values have red and low values have a blue background.

(1) “Distribution” distance. We take the calculated weekly average values, numbering
at most k, and sort them. Thus, all information pertaining to their original order is lost;
what we keep is solely their distribution. We project these values onto a stretch of k weeks,
as evenly spaced as possible, and fill the missing values by linear interpolation. Once all
time series have exactly k elements, we calculate δ by computing the average L1 distance of
the blood glucose values at their respective positions in the time series:

δi,j =
1
k

k

∑
x=1

∣∣Ti(x)− Tj(x)
∣∣

(2) “Balanced” distance. We fill the missing weekly average values by linear inter-
polation, and then sort them; although we eventually lose the information about their
original order, the interpolation step is informed by it. These time series may have less
than k elements, ki ≤ k, where the span of the i time series is si < 5 years; we thus rely on
kmin = min(ki, k j). Otherwise, δ is calculated similarly to above:

δi,j =
1

kmin

kmin

∑
x=1

∣∣Ti(x)− Tj(x)
∣∣

(3) “Trajectory” distance. We align the time series optimally using dynamic time
warping [10–12], which keeps the original order of the blood glucose values. For the
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respective elements of the aligned time series, we calculate L1 distances, and compute the
minimum global distance normalized for path length.

Once we have D, we implement the algorithm to produce the H graph using the
flatness of the rectangle. Then we apply the KaMIS program [13,14] to heuristically find a
big clique.

Clusters of D can be expected to correspond to similar blood glucose dynamics (distri-
butions or trajectories), and thus health perspectives. Cliques of D then correspond to their
1-dimensional spectra: related outcomes that only show the difference in a single (possibly
latent) factor.

We search for maximal cliques in our set of blood glucose time series of 300 pa-
tients, with all three distance calculation options, and with allowed maximum distances of
ε ∈ 0.02, 0.05, 0.1, 0.2, 0.4, and the predefined threshold value θ for the minimum distance
of the objects was 0.5. The sizes of the respective cliques are (1) 16, 21, 40, 96, 168 with
“distribution” distance, (2) 15, 25, 48, 104, 185 with “balanced” distance, and (3) 6, 6, 7, 18, 99
with “trajectory” distance. We then examine the dimensionality of both the whole data
set and that of single cliques (i.e., the data of patients that belong to a clique) using prin-
cipal coordinates analysis (PCoA, aka classical multidimensional scaling) [15–17]. This
technique offers a lower-dimensional representation of the data while preserving much of
the pairwise distances (i.e., D). By measuring the standard variation in the data along each
dimension, we can show that the cliques have arguably fewer dimensions than the whole
data (Figure 2); most cliques (coloured lines) have fewer dimensions that the whole data set
(>50, grey line), and also their standard deviation is smaller along all dimensions. We also
see that both the number of dimensions and the standard deviation along those dimensions
become smaller as ε decreases, especially in the “distribution” and “balanced” cases.

ε

Figure 2. Cont.
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ε

Figure 2. The dimensionality of cliques. We use PCoA to obtain a low-dimensional representation
of the data. With all 3 distance measures, which quantify the similarity of time series according
to different features ((A) “distribution”, (B) “balanced”, (C) “trajectory”), the cliques have fewer
dimensions (coloured lines) than the whole data set (grey line). Also, there is more variation to
explain in the whole data set along every dimension. Left and right panels are the same except for
their vertical axes, which are respectively linear and logarithmic.

An alternative way to show the greatly reduced dimensionality of cliques is to plot
the weekly average blood glucose values of patients along a few dimensions (Figure 3),
both for patients that are not in cliques (grey empty circles), and those belonging to cliques
(coloured full circles). We show this for both the “distribution” and “balanced” distances,
and for both the first vs. last week (left panels), and between two randomly chosen weeks
(right panels). We find that the smaller ε is, the more “in line” the data points of patients
belonging to cliques are. Also, there is autocorrelation in the time series, and thus weeks
closer to each other show smaller variation among the data points, both inside and outside
of the clique.

Finally, we show the original data for the patients in the ε = 0.02 cliques (Figure 4)
in the order they appear on Figure 3, i.e., along the axis defined by those cliques. The left
panels show the time series with their temporality preserved, emphasizing fluctuations;
the right panels show the same series sorted by measured values, highlighting the blood
glucose values’ distribution. Apparent in this figure is the fact that the cliques found
identify meaningful gradients of the blood glucose dynamics of patients.

ε

Figure 3. Cont.
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ε

Figure 3. The spatial arrangement of cliques along the dimensions of the data (preprocessed,
i.e., weekly average). As expected, cliques with smaller ε-s correspond to “narrower” manifolds.
Patients belonging to cliques are marked with coloured dots (full circles); the rest of the patients are
marked with grey empty circles. More detail in text.

5

10

15

time (weeks)

tim
e 

se
rie

s

0 100 200

A. “Distribution distance”

5

10

15

sorted weeks

tim
e 

se
rie

s

0 100 200

2

4

6

8

10

12

14

time (weeks)

tim
e 

se
rie

s

0 100 200

B. “Balanced distance”

2

4

6

8

10

12

14

sorted weeks

tim
e 

se
rie

s

0 100 200

mmol/L

2.1

2.4

2.8

3.3

3.8

4.4

5.2

6.1

7.3

8.7

10.3

12.3

14.6

17.4

20.7

24.7

Figure 4. Gradients of patient data in ε = 0.02 cliques. Arranging the data series of patients side-by-
side, that is, ordering the data series of patients on the vertical axes as they appear along the respective
“lines” of Figure 3, shows gradient patterns consistent with the cliques being 1-dimensional. Left and
right panels are the same except they show each patient’s data in a different order, respectively, in the
temporal order and in the order of the blood sugar values.
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5. Summary

We proposed a procedure to locate approximately 1-dimensional linear manifolds
based on the pair-wise distances between the objects of a given data set. The procedure
requires the construction of an auxiliary graph and finding large cliques in this graph. At
the first glance the auxiliary matrix looks overly large as the number of its nodes is O(m2),
where m is the number of the objects of the original data set. We carried out numerical
experiments to show that the procedure is computationally feasible in practice. The com-
putations also confirmed that the proposed method is capable of locating approximately
1-dimensional linear manifolds in the data set.
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