
Citation: González Laffitte, M.E.;

Stadler, P.F. Progressive Multiple

Alignment of Graphs. Algorithms 2024,

17, 116. https://doi.org/10.3390/

a17030116

Academic Editor: Frank Werner

Received: 19 January 2024

Revised: 21 February 2024

Accepted: 7 March 2024

Published: 11 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Progressive Multiple Alignment of Graphs
Marcos E. González Laffitte 1,2,* and Peter F. Stadler 1,2,3,4,5,6,7,*

1 Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics,
Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany

2 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University,
D-04103 Leipzig, Germany

3 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
4 Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
5 Center for Non-Coding RNA in Technology and Health, University of Copenhagen,

DK-1870 Fredriksberg, Denmark
6 Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Bogotá CO-111321, Colombia
7 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
* Correspondence: marcos@bioinf.uni-leipzig.de (M.E.G.L.); studla@bioinf.uni-leipzig.de (P.F.S.)

Abstract: The comparison of multiple (labeled) graphs with unrelated vertex sets is an important
task in diverse areas of applications. Conceptually, it is often closely related to multiple sequence
alignments since one aims to determine a correspondence, or more precisely, a multipartite matching
between the vertex sets. There, the goal is to match vertices that are similar in terms of labels and
local neighborhoods. Alignments of sequences and ordered forests, however, have a second aspect
that does not seem to be considered for graph comparison, namely the idea that an alignment is
a superobject from which the constituent input objects can be recovered faithfully as well-defined
projections. Progressive alignment algorithms are based on the idea of computing multiple align-
ments as a pairwise alignment of the alignments of two disjoint subsets of the input objects. Our
formal framework guarantees that alignments have compositional properties that make alignments
of alignments well-defined. The various similarity-based graph matching constructions do not share
this property and solve substantially different optimization problems. We demonstrate that optimal
multiple graph alignments can be approximated well by means of progressive alignment schemes.
The solution of the pairwise alignment problem is reduced formally to computing maximal common
induced subgraphs. Similar to the ambiguities arising from consecutive indels, pairwise alignments
of graph alignments require the consideration of ambiguous edges that may appear between align-
ment columns with complementary gap patterns. We report a simple reference implementation in
Python/NetworkX intended to serve as starting point for further developments. The computational
feasibility of our approach is demonstrated on test sets of small graphs that mimimc in particular
applications to molecular graphs.

Keywords: multiple alignment; common induced subgraphs; combinatorial optimization; labeled
graphs; applications of graph kernels; VF2 algorithm; data analysis

1. Introduction

The notion of alignments was introduced as a means of sequence comparison in com-
putational biology [1]. Pairwise sequence alignments can be understood as representations
of solutions to the string-editing problem, in which one string is converted into another
one by a minimal sequence of insertions, deletions, and substitutions. Letters missing in
a sequence are denoted by a special gap character “-”. The notion easily generalizes to
alignments of more than two sequences, resulting in a matrix whose rows correspond to the
input sequences (padded by gap characters) and whose columns designate corresponding
letters, i.e., homologous characters in applications to biological sequences; see [2] for a
detailed review. The concept of alignments was later extended to rooted ordered trees [3]

Algorithms 2024, 17, 116. https://doi.org/10.3390/a17030116 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17030116
https://doi.org/10.3390/a17030116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0008-2307-595X
https://orcid.org/0000-0002-5016-5191
https://doi.org/10.3390/a17030116
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17030116?type=check_update&version=1

Algorithms 2024, 17, 116 2 of 23

as a means of comparing RNA secondary structures [4]. More recently, a formal framework
was developed to define alignments in a much more general setting [5], which we will
review in the Theory section below (Section 2) in some detail. In this general setting, align-
ments are considered as super-objects containing the contributing input objects (sequences,
trees, graphs, etc.) such that these are recovered by means of well-defined projections.
Specializing this framework to graphs yields a notion of multiple graph alignment (MGA)
that pertains to both directed and undirected graphs and also accommodates labeled
graphs. The key property of an MGA is that the constituent input graphs appear as induced
subgraphs of the alignment graph.

The term “graph alignment” is frequently used in the literature to refer to match-
ings between the vertex sets of graphs that maximize some similarity measure [6–8]. The
construction considered in [9] uses “alignment” columns allowing “dummy nodes” cor-
responding to gap symbols, but does not endow the “alignment” with a graph structure.
Similarly, IsoRank in its 1-1 mapping mode [10] computes a maximum weighted multipar-
tite matching between the vertices of input networks Gi constrained in such a way that
the connected components of its transitive closure (i.e., the alignment columns) contain
at most one vertex from each of the Gi. The weights are application-specific similarity
scores computed for all pairs of vertices from different Gi and typically combine similarities
of vertex attributes with neighborhood similarities, as in FINAL [11] or HashAlign [12].
Different algorithmic approaches have been employed to solve this optimization problem.
While [10] uses a greedy heuristic, integer quadratic programming is proposed in [13].
Moreover, a wide variety of learning approaches have been used in recent years for this
type of graph comparison, see, e.g., [14] and the references therein.

In summary, all these graph matching methodologies differ in two important aspects
from the concept of alignments used here: (1) they do not require the strict preservation
of the local structure inherent in alignments and (2) they do not consider the alignment
again as a graph. Furthermore, in [15], a “graph alignment” was defined by means of
injective embeddings of the input graphs Gi into an “entity graph” H such that vertices
adjacent in Gi are mapped to adjacent vertices in H. In contrast to our framework, however,
non-adjacent vertices in Gi may be mapped to adjacent vertices in H. The constituent
graph Gi thus appears as subgraphs of H but not induced subgraphs of H and thus is not
recoverable from H as a projection.

The compositional properties of alignments [5] require both the projective property and
the fact that the alignment is again a graph. As a consequence “alignments of graph
alignments” are well defined, preserve the projections of the constituent input graphs, and
thus are again graph alignments of the same constituent graphs. This is a prerequisite
for introducing the notion of a progressive graph alignment guided by a similarity tree
(Section 3.1), in analogy to the progressive methodologies employed for multiple sequence
alignment [16]; for an overview of our methodology, see Figure 1. Graph matchings, in
contrast, have much weaker compositional properties. As noted in [9], pairwise graph
matchings (Gi, G0) with a common “reference graph” G0 can be combined to a matching of
multiple graphs. On the other hand, in our setting, alignments of graph alignments can
be combined arbitrarily. The compositional properties of the construction in [15], which
lacks the projective property, have not been studied to our knowledge. Graph matching
approaches, including [15], thus address combinatorial optimization problems that are
clearly distinct from the formal graph alignments studied here.

The multiple alignment problem is NP-complete already for sequences [17–19]; hence,
in practice, one has to resort to heuristics. A simple but efficient approach are progressive
alignments [16], which reduce the problem to computing pairwise alignments of alignments
of subsets of input objects. Progressive multiple alignments of rooted ordered forests have
been considered in [4] as means of comparing multiple RNA structures. Star alignments,
comprising the pairwise alignments of all input objects to common reference objects, are re-
lated to progressive alignments. This strategy has been explored in [9] for graph matchings.

Algorithms 2024, 17, 116 3 of 23

For large networks, an evolutionary algorithm [20] and an ant-colony algorithm [21] have
been explored.

Here, we describe a progressive alignment procedure that is based on exact pairwise
graph alignments. As we shall see, these can be computed from maximum common
induced subgraphs (MCISs). To this end, we first introduce the formal theory of multiple
alignments of graphs that properly generalizes sequence alignments. We then demonstrate
that MGAs can be computed with a progressive framework in practice and show that this
approach yields accurate results. Since we consider here an optimization problem that is
significantly different from graph matching approaches considered in the literature, we
refrain from comparing MGAs with graph matching methods.

(a) (b) (c) (d)

Figure 1. Overview of the ProGrAlign to compute a multiple graph alignment of a collection of input
graphs (a). A fast heuristic, here using a graph kernel, is used to determined pairwise similarities
between the input graphs. The similarity matrix (b) is used to construct a guide tree (c) using a
clustering method such as WPGMA [22]. This guide tree dictates the order in which one is to compute
pairwise alignments. Alignments of graphs, e.g., of G1 and G3, are again graphs. Thus, alignments of
alignments with other input graphs, here G2, or graph alignments, are well defined and reduced to
computing pairwise graph alignments. The final result is obtained as the alignment corresponding to
the root of the guide tree. (d) Every input graph is contained in the multiple alignment graph as an
induced subgraph, emphasized here with darker vertices and edges.

Our contribution is organized as follows: In Section 2.1, we derive MGAs as a special-
ization of the abstract framework of alignments as super-objects, thereby streamlining some
key ideas of [5]. Section 2.2 introduces the new concept of ambiguous edges, which leads us
in Section 2.3 to a complete characterization of pairwise graph alignments. Moreover, we
clarify the relationship of the alignment supergraphs with the maximum common induced
subgraphs playing the role of matches. On this basis, we formally introduce progressive
MGAs in Section 2.4. The remaining two theory subsections are dedicated to the alignments
of labeled graphs and show that for monotone scoring functions, pairwise graph align-
ments can be computed exactly from maximum common induced subgraphs. Section 3
is concerned with a practical implementation of progressive MGAs. Section 3.1 describes
the construction of a guide tree. In Section 3.2, we describe the adaptation of VF2-like
algorithms [23,24] for our purposes. In more detail, we describe the proper incorporation of
ambiguous edges in Section 3.3. The implementation of a proof-of-concept software tool is
described in Section 4. In addition to studying the influence of algorithmic parameters, we
describe the influence of the diversity of the input dataset. Additional details are described
in Appendix A. We introduce consensus graphs as a specific application in Section 4.3. We
conclude with a short discussion of our contributions and open questions.

Algorithms 2024, 17, 116 4 of 23

2. Theory
2.1. Abstract Graph Alignments

Following [5], we consider a class of finite hereditary set systems (X, S), where X is
a finite set and S is some subset of 2X ∪ 22X ∪ . . . such that for every subset Y ⊆ X the
restriction SY of S to Y is well defined and satisfies the following consistency property
SY = (SZ)Y for all Y ⊆ Z ⊆ X. In the following, we will refer to (X, S) as an object.
For Y ⊆ X, (Y, SY) =: (X, S)[Y] will be called the subobject of X induced by Y. Two set
systems (X, S) and (X′, S ′) are isomorphic if there is a bijection φ : X → X′ such that
S ′ = φ(S ′), where we use the convention that the application of a function to a set is
defined point-wise, i.e., φ(Z) := {φ(x)|x ∈ Z}. In this case, φ is an isomorphism and we
write (X, S) ≃ (X′, S ′).

A very simple example of an object is the set X of positions in an DNA or protein
sequence endowed with the total order ≤ since these linear biomolecules have a specified
orientation. The subobjects of (X,≤) are obtained as subsets of that preserve the order.
To see that this indeed conforms to the abstract set systems introduced in the previous
paragraph, we note that order relations can be encoded by sets: Setting Sx := {y ∈ X|y ≤ x}
we see that x ≤ y if and only if Sx ⊆ Sy. Thus the order ≤ is encoded by the subset relation
in the set system S := {Sx|x ∈ X}. The subobjects (Y, SY) induced by Y thus are the set
systems SY = {Sx ∩ Y|x ∈ X}. Similarly, we may consider the class of rooted ordered
trees [3]. As noted, for example, in [5], these correspond to finite sets with an orthogonal
pair of partial orders: two vertices are either equal, comparable w.r.t. to the ancestor order,
or w.r.t. to sibling order. In the present contribution, the objects of interest are graphs.
Here, X denotes the vertices and S corresponds to the edges of a graph, i.e., S is a set of
unordered pairs of distinct vertices. The sub-objects are the induced subgraphs defined by
a subset of vertices.

Abstractly, an alignment of a set of “input” objects (Xi, Si) consists of an object (X, S)
of the same class that contains each of the (Xi, Si). More precisely, Xi is contained in X in
the sense that there is an injective function φi : Xi → X such that the subobject (X, S)[Yi]
where Yi = φi(Xi) is isomorphic to (Xi, Si) with φi : Xi → Yi being an isomorphism.

It will be convenient to think of the (Xi, Si) as the rows of the alignment in analogy
to multiple sequence alignments. Correspondingly, each x ∈ X specifies a column. Thus,
the alignment can be encoded by a pair (X, f) where f : X → {0, 1}n and each component
fi : X → {0, 1} determines a subset Yi := {x ∈ X| fi(x) = 1} such that

(X, S)[Yi] ≃ (Xi, Si) . (1)

To avoid trivial cases, we forbid “all-gap columns”, i.e., we insist that fi(x) = 1 for
at least one i. Since we assume that the induced subobjects are unique, f defines the
embeddings φi : Xi → X up to isomorphism.

We say that a point x in an alignment corresponds to a match column of fi(x) = 1 for
all i. Writing XM = {x ∈ X| fi(x) = 1, 1 ≤ i ≤ n} for the set of matches, we observe that
the restriction (XM, SXM) of (X, S) to XM ⊆ X is a common sub-object of all (Xi, Si).
The converse is not always true; however, it is not always possible to extend a common
sub-object to an alignment that contains a common sub-object such as the set of matches.
Probably the most well-known example is the distinction between the editing and alignment
of two rooted ordered forests, see (e.g., [25] Figure 1).

In the case of graphs, however, the situation is simple. Let G and H be two graphs
with a common induced subgraph K with embeddings φG : V(K) → V(G) and φH :
V(K) → V(H). Identifying the vertices φG(x) and φH(x) for all x ∈ V(K) amounts to
gluing together G and H at the vertices of K. This results in a graph A that contains K as
an induced subgraph. All other vertices belong to either V(G) or V(H). By construction,
A contains only edges that are present in at least one of G and H, and both G and H are
contained in A as induced subgraphs. In particular, therefore, A is an alignment of G and

Algorithms 2024, 17, 116 5 of 23

H. It is, in fact, the unique edge-minimal alignment of G and H given the common induced
subgraph K.

2.2. Ambiguous Edges

The alignment A of G and H is, however, not the only possible alignment of the two
graphs G and H. While every common induced subgraph defines a unique edge-minimal
alignment, it is possible to find alternative graphs that are also valid alignments of G and
H. To see this, let G be an alignment of G1, G2, . . . , Gk. An edge {x, y} of G is present in the
projection Gi if and only if fi(x) = 1 and fi(y) = 1. An edge in G thus never appears in
any of the input graphs if and only if fi(x) fi(y) = 0 for all i, i.e., if its two incident vertices
never appear together in the same input graph. We call such edges ambiguous edges.

It is not difficult to identify the ambiguous edges in a pairwise graph alignment: an
ambiguous edge exists between all pairs of vertices from different input graphs that are not part
of a common induced subgraph. More formally, the set of ambiguous edges EA comprises all
(unordered) pairs xy with x ∈ φG(V(G)) \ φH(V(H)) and y ∈ φH(V(H)) \ φG(V(G)). Given
a common induced subgraph K of G and H, a graph A′ is an alignment of G and H with match
columns defined by K if and only if its edge set E(A′) satisfies E(A) ⊆ E(A′) ⊆ E(A)∪ EA.

2.3. Characterization of Pairwise Graph Alignments

An immediate consequence of the theory outlined above is the following characteriza-
tion of the set of pairwise alignments of two input graphs G and H:

A graph A, is a graph underlying an alignment of two graphs G and H, if and only if, A is
is obtained by “gluing together” G and H along a subgraph-isomorphism embedding a common
induced subgraph K into G and H, and adding an arbitrary subset of ambigous edges, i.e, with one
endpoint in V(G) \V(K) and the endpoint in V(H) \V(K).

This characterization extends the one given in [26] by accommodating ambiguous
edges. Hence, for every common induced subgraph K, there is a unique edge-minimal
pairwise alignment, characterized by the absence of ambiguous edges. Similarly, for a given
K, the edge maximal alignment is uniquely defined by inserting all ambiguous edges. Two
alignments are distinct if K or the embedding of K into G and H differs. This observation
provides, in principle, a means of enumerating all possible alignments of two input graphs.

It is worth noting, finally, that there does not seem to be a simple generalization of
this statement to multiple alignments of graphs. The reason is that the matches between
multiple graphs need to satisfy consistency conditions that arrange them into alignment
columns. Apart from order preservation, which is replaced by adjacency preservation in
our case, these conditions are the same as for sequence alignments [27].

2.4. Progressive Alignments

Consider an alignment (X, S) and let {S1, S2} be a bipartition of the set S of rows,
i.e., S1 ∩ S2 = ∅, S1, S2 ̸= ∅, and S1 ∪ S2 = S. Furthermore, let Y1 = {x ∈ X|∃i ∈ S1 :
fi(x) = 1} and Y2 = {x ∈ X|∃i ∈ S2 : fi(x) = 1}. Consider the restriction (Yk, Sk) of the
sub-object (X, S)[Yk] to the rows i ∈ Sk for k = 1, 2. Then (Yk, Sk), is an alignment of
the input objects (Xi, Si) with i ∈ Sk and (X, S) can be seen as a pairwise alignment of
(Y1, S1) and (Y2, S2). For the full formal details, we refer to [5]. As a consequence, every
alignment can be recursively subdivided into alignments of bipartitions of its rows. Since
every input object is itself a (trivial) alignment, this decomposition yields a rooted tree T
whose leaves are input objects (Xi, Si), whose root is the alignment (X, S), and whose
interior nodes correspond to alignments of certain subsets of input alignments.

The idea of progressive alignment algorithms is to construct an alignment (X, S) from
the input objects (Xi, Si) along a binary guide tree T such that at each inner node, a pairwise
alignment of the alignments associated with its children are computed (Figure 2). The
compositionality properties ensure this is always possible, irrespective of how the tree
T is chosen and how the pairwise alignments are computed in practice [5]. Here, we
construct a progressive alignment algorithm for graphs. Clearly, for each interior node of

Algorithms 2024, 17, 116 6 of 23

an arbitrary binary guide tree, it suffices to find a maximum common induced graph and
use it to determine how to glue the two child-graphs together. Note that at this point, we
make no statement on the optimality of the either (X, S) or any of the intermediates. We
merely state that every graph alignment (X, S) can be obtained by reverting the process
of its decomposition along any binary tree T. Ambiguous edges only provide a moderate
complication in progressive alignments, which we will consider below in conjunction of
the scoring model. In fact, when extending a set of matches, one can choose whether an
ambiguous edge is considered to be present or absent.

−x

xx

xx xx

xx

x−

x−

−x −x

x−

xxx

−xx

xx−

x−x

x−

x−

x−

xx

x−x

−−x −−x

xxx x−x

x−−

xxxx−x

xxxx−x

−xx−xx

Figure 2. Progressive graph alignment of three graphs (bottom) along a guide tree (fat red edges).
The matching of vertices is shown by vertical lines. Two of the ambiguous edges in the pairwise
alignment, which are inserted due to the matches with the third graph, are shown in green.

2.5. Labels

Usually, the input objects Yi are endowed with a labeling function ℓi : Yi → L, where
L is a finite set of labels. For biological sequence alignments, ℓi(x) denotes the nucleotide
or amino acid at sequence position x ∈ Yi. Similarly, if the graphs designate structural
formulae of organic molecules, then ℓi(x) is the chemical element of atom x in molecule
Yi. Often, alignments are specified directly in terms of these labels. Thus, we may set
ℓ̃ : X → (L ∪ {-})n such that ℓ̃i(x) = ℓi(x) if fi(x) = 1 and ℓ̃i(x) = - if fi(x) = 0. The
gap symbols - therefore correspond exactly to the points (i.e., alignment columns) in X
that are deleted in Yi. Since we have fi(x) = 1 if ℓ̃i(x) ∈ L and fi(x) = 0 if ℓ̃i(x) = -, we
can equivalently specify the alignment by (X, ℓ̃). The labeled input objects (Yi, ℓi) are thus
obtained from (X, ℓ̃) by deleting from X all vertices with ℓ̃i(x) = - and retaining, on the
i-th label, ℓ̃i(x) for all other points.

The labels can be used to impose additional constraints on the common sub-objects.
For instance, one may want to restrict matches to vertices with same labels, in which case
ℓi(x) ̸= - and ℓj(x) ̸= - implies ℓi(x) = ℓj(x). This is useful, e.g., to preserve atom labels.
In principle, arbitrary rules for the (in)compatibility of labels in a column can be defined.

2.6. Labels and Scores for Graph Alignments

Labels are in particular used to introduce scoring functions, such as the BLOSSUM
scores for (mis)matches of amino-acids. Most commonly, these are defined for pairwise
alignments. Since all our practical computations also will involve only pairwise alignments,
it suffices to consider the issue of scoring also for the pairwise case only.

In this case, a common subobject is specified by a set of matches M whose elements
are pairs x1x2 with x1 ∈ X1 and x2 ∈ X2. Since the restriction of a set of matches to a subset

Algorithms 2024, 17, 116 7 of 23

is again a set of matches and thus defines again a common sub-object, the setM of all sets
of matches forms an independence system, i.e., M ∈ M and M′ ⊆ M implies M ∈ M′. We
shall consider here only scoring functions that are defined on sets of matches, i.e., the score
of a pairwise alignment is given by σ(M) where M is the set of matches corresponding to
match columns XM.

We say that a scoring function σ : M → R is strictly monotone if M′ ⊊ M implies
σ(M′) < σ(M). For strictly monotone scoring function, the maximum score can be attained
only for sets of matches that are maximal, i.e., that cannot be augmented by an additional
match. In the case of graphs, furthermore, every set of matches defines an alignment (which
is unique up to ambiguous edges), and thus an optimal alignment is determined by a MCIS
that in addition maximizes the scoring function σ. The score may also depend on edge
labels within the common induced subgraphs as long as the strict monotonicity property
is preserved.

A convenient special case is an additive scoring scheme in which every vertex-match
and every edge-match yield a non-negative contribution. The inclusion of additive edge-
dependent scores is unproblematic from an algorithmic point of view because any proce-
dure that adds or removes a match xx′ also adds or removes the incident edges {xx′, yy′}
connecting xx′ to the vertices yy′ in the rest of the common induced subgraph. Thus, every
edge in the common induced subgraph is associated with a unique vertex operation, ensur-
ing that adding/removing of single vertices affects the total score in a consistent manner.

Assuming a strictly monotone scoring model, ambiguous edges are easy to handle.
Suppose we attempt to add a match x1x2 to a set M of matches. Then, the edge {x1x2, y1y2}
to some match y1y2 is added if either both x1y1 and x2y2 are ambiguous edges, or one of
the two edges is unambiguous and the other is ambiguous. No edge is inserted if there
is a non-edge between x1 and y1 or x2 and y2. Note that if both the edges x1y1 and x2y2
are ambiguous, then {x1x2, y1y2} is again ambiguous. In either case, the extension of M
by x1x2 by assumption incurs a positive score increment and thus yields a better score
than leaving x1 and x2 as two unmatched vertices. Finally, we note that since ambiguous
edges are removed in all branches at some lower-down node of the guide tree, they do not
convey information on the input graphs. Thus, an edge {x1x2, y1y2} where x1y1 or y1y2 is
ambiguous naturally does not yield a positive score even when otherwise edge-matches
are associated with score contributions.

The most natural scoring function for alignments of alignments is the sum-of-pairs
scoring model, in which the contributions of all pairwise alignments are simply added. In
our setting, this is particularly appealing since gap characters (-) simply do not contribute
to the scoring at all. Note that the sum-of-pair scoring also preserves strict monotonicity,
since each extending match by construction yields non-zero contributions for at least one
row in each of the aligned alignments.

3. Algorithmic Considerations
3.1. Construction of the Guide Tree Based on Graph Kernels

Every binary tree T with leaves that are in a one-to-one correspondence with the
input graphs may serve as guide tree for a progressive alignment. It is well known for
multiple alignments of sequences, however, that the guide tree influences the quality of the
alignment [28,29]. In the case of graph alignments, the computational effort for computing
MCIS, and thus for the pairwise alignment problems, also depends on the similarity of the
input graphs. It is desirable, therefore, to use a guide tree along which for each inner node,
the two children correspond to graphs that are as similar as possible. The most useful guide
trees thus correspond to a parsimonious hierarchical clustering of the input graphs [16]. In
the case alignments of homologous genetic sequences, a good approximation of the correct
phylogeny is ideal. In practice, good guide trees are obtained by hierarchical clustering of
the input objects.

The progressive computation of the multiple alignment requires O(N) pairwise align-
ments. In contrast, all O(N2) pairwise comparisons are required for hierarchical clustering

Algorithms 2024, 17, 116 8 of 23

to estimate the guide tree. However, pairwise alignments can be used to compute the
distances or similarities of all pairs of input objects. It is therefore desirable to replace
the alignment-based similarities by a computationally less expensive approximation for
the computation of the guide tree. Comparisons of two graphs based on MCIS [30], i.e.,
dMCIS(G, H) := |V(G)|+ |V(H)| − 2|MCIS(G, H)|, as well as other forms of graph editing
distance [31] are NP-complete.

Among the heuristic alternatives are distance measures based on semi-definite graph
kernels [32], i.e., bilinear functions κ : G × G → R on a non-empty set G satisfying
∑n

i=1 ∑n
j=1 cicjκ(Gi, Gj) ≥ 0 for all G1, . . . , Gn ∈ G and any c1, . . . , cn ∈ R. The kernel

function κ in essence provides a similarity measure between graphs.
Furthermore, as shown in [33,34], due to its relation with inner products in vector

spaces, the similarities κ(Gi, Gj) can be transformed into a distance measure d(Gi, Gj) by
taking the square root of the value κ(Gi, Gi) + κ(Gj, Gj)− 2κ(Gi, Gj). Both the similarities
and its associated distances can be used as inputs for a simple agglomerative hierarchical
clustering procedure, here simply WPGMA [22], to infer a guide tree T.

Originally conceived in cheminformatics, a wide array of graph kernels has been stud-
ied depending on different properties and features of graphs, including paths, walks, cycles,
spanning trees, matchings, local subgraphs, etc.; see [35] for a survey. Implementations of
kernel functions for graphs (including labeled, weighted, and directed graphs) are available
as widely used software packages such as graphkit-learn [36]. Here, we made use of
the Structural_Shortest_Path kernel implementation of the graphkit-learn library in
order to produce our kernel-based guide trees. As shown in Appendix A.1, the kernel-based
distance and the MCIS-based distance are well correlated.

3.2. Computing Optimal Common Induced Subgraphs

As discussed in Section 2.6, optimal pairwise alignments are based on score-optimal
common induced subgraphs, which in turn are maximal common induced subgraphs.
Computing MCIS is known to be computationally hard. The corresponding decision
problem is NP-complete [37] and hard to approximate [38]. For small graphs with limited
degree and non-trivial labels, such as in particular molecule graphs, it is nevertheless
feasible to solve MCIS exactly. Probably the best known algorithmic approach is to compute
the modular product of G ⊛ H using the fact that an MCIS of G and H corresponds to a
maximum clique in G ⊛ H [39]. It is not obvious, however, how ambiguous edges can be
handled efficiently in this setting.

The main alternative is a class of search procedures based on the step-wise extension
of a matching M ⊆ V(G)×V(H) by candidate matches xy with x ∈ V(G) and y ∈ V(H).
These algorithms are designed for the subgraph isomorphism problem, i.e., to recognize
whether the smaller of the two input graphs, G2, is isomorphic to an induced subgraph
of the larger one, G1, [23,24]. Starting from the empty set of matches, this yields a search
tree whose leaves are the maximal induced common subgraphs. A positive answer to the
subgraph isomorphism problem corresponds to a leaf in which V(G2) is matched in its
entirety. McSplit and similar algorithms combine the extension of M with bounds on the
number of possible extending matches in order to obtain a full-fledged branch-and-bound
approache [40–42]. It is not clear, however, how good bounds can be obtained in the
presence of ambiguous edges and arbitrary compatibility rules for the labels of vertices
and edges. Our implementations thus focus on the enumeration of maximal common
induced subgraphs.

In order to accommodate prior knowledge, it is sometimes of interest to compute
alignments that incorporate an anchor, i.e., set of matches M∗ that are given as part of the
input. For sequence alignments, this idea has been explored, e.g., in CONREAL [43] and an
anchored version of dialign, both with applications of phylogenetic footprinting [44]. The
idea of anchors generalizes to graph alignments in a straightforward manner. Instead of
starting from an empty set of matches M = ∅, we can insist that any valid set of matches
M contains the anchor matches, M∗ ⊆ M. This is trivially enforced in VF2-like approaches,

Algorithms 2024, 17, 116 9 of 23

where anchors lead to a drastic reduction in the search space since only the subtree rooted
at the anchor matches M∗ needs to be processed.

If the MCIS is expected to be small compared to both G1 and G2, then a direct, VF2-like
expansion of the matches set M appears to be the most promising strategy. If the solution
is expected to cover most of G2, a viable alternative is to “trim” G2 by removing some of its
vertices; see Algorithm 1. An optimized subgraph isomorphism test, denoted by VF2_sgi()
in Algorithm 1, can then be used to decide whether the trimmed induced subgraph G′2 of
G2 appears as a subgraph in G1. This allows us to use many of the optimizations in VF2 that
are not applicable if all maximal common subgraphs need to be enumerated. The iteration
over the sets S of removed vertices can be restricted to terminate at the cardinality |S| at
which the first match M is encountered as in our current implementation. While a recursive
version of such a trimming algorithm could also be implemented, it seems difficult to make
use of latter bound in such a setting. Alternatively, it may exclude S if a non-empty set of
matches was returned already for one of its subsets. We note that for arbitrary monotone
scores, the latter strategy must be employed since there is no guarantee that the MCIS with
the maximum score is also maximum in cardinality.

Algorithm 1: Iterative_Trimming(G1, G2, M∗)
Data: Graphs G1 and G2 with |V(G1)| ≥ |V(G2)|, anchor matching M∗

Result: SetM of maximal common induced subgraphs
M← ∅; R← vertices of G2 not part of M∗;
for all subsets S of R in order of increasing cardinality do

// the iteration over S can be restricted, see text
G′ ← G2[V(G2) \ S];
M ←M∪VF2_sgi(G1, G′, M);
// VF2_sgi(G1, G′, M∗) returns all embeddings M of G′ in G with

M∗ ⊆ M, if any
end
returnM

The basic step of the VF2-like approach is formalized in Algorithm 2. To compute
the MCIS of G1 and G2 with a possibly empty set M∗ of anchor matches, one calls
VF2_step(G1, G2, M∗). The end result is the set M of all maximal matchings contain-
ing M∗ that correspond to a maximal common induced subgraph. During the recursive
traversal of the search tree, a set of extension candidates P is computed for a the current
matching M. If M cannot be extended, i.e., if there is no compatible match (x, y) ∈ P for M,
then M forms a leaf in the search tree and is added to result setM. Assuming a strictly
monotone scoring function, the set of matches of a score-maximal pairwise alignment is
necessarily maximal w.r.t. cardinality [30,45]. It therefore suffices to evaluate the scores of
the matchings M at the leaves of the search tree constructed by VF2_step().

The computation of the candidate matches, Algorithm 3, depends on a fixed total
order of the vertices of the smaller graph G2. In order to avoid the duplication of branches
in the search tree, only matches of vertices in G2 following all vertices in matches of M,
except those of a possible anchor, are considered. It is convenient to choose the order such
that the vertices in G2 that are part of the anchor are numbered 1, 2, . . . , |M∗|.

The routine VF2_sgi() in Iterative_Trimming() is similar to VF2_step(), except for
further heuristic optimizations to speed up the decision of whether G2 is isomorphic
to a subgraph of G1 or not. The implementation of both routines is adapted to handle
ambiguous edges and comparing vertex and edge labels when requested by the user, and
can be set to optimize a monotone scoring function instead of the number of vertices in the
MCIS as well.

Algorithms 2024, 17, 116 10 of 23

Algorithm 2: VF2_step(G1, G2, M)

Data: Graphs G1 and G2, with total order ≤ over V(G2), a matching
M ∈ V(G1)×V(G2)

Result: SetM of all matchings between G1 and G2.
Mleaf ← true;
P← candidate_matches(G1, G2, M);
for (x, y) ∈ P do

if compatible(M, (x, y)) then
M← M ∪ {(x, y)} ;
Mleaf ← false ;
VF2_step(G1, G2, M) ;

end
end
if Mleaf then
M←M∪{M}

end

Algorithm 3: candidate_matches(G1, G2, M)

Data: Graphs G1, G2 and a matching M ⊂ V(G1)×V(G2)
Result: Set P of match candidates for extending M
N1 ← set of unmatched vertices in V(G1);
N2 ← set of unmatched vertices in V(G2);
// the anchor M∗ is contained in M and would be excluded from the

candidates
n2 ← max(0, max{y|(x, y) ∈ M});
P← {(x, y)|x ∈ N1, y ∈ N2, y > n2, };
return P

The original formulation of the VF2 algorithm differs from our adaptation VF2_step()
for MCIS-search by using a different algorithm candidate_matches() for proposing can-
didates for matches that extend M. The version used in VF2 is optimized to determine
whether H is isomorphic to a subgraph of G by restricting the candidates to combinations
of unmatched neighbors y1 of x1 and y2 of x2 for every match x1x2, provided such vertices
exist. This restriction, however, makes the assumption that it is possible to extend the
matching M as long as there are still unmatched vertices in connected components that
contain vertices in M. This is true if H is isomorphic to a subgraph of G (or vice versa), but
fails for the MCIS search. A detailed example showing that the standard implementation
of VF2 can fail to find an MCIS is given in Appendix A.2. The candidate search used by
VF2_sgi() inside Iterative_Trimming() is the same in the original VF2 approach.

3.3. Syntactic and Semantic Compatibility

The compatibility test compatible(M, (x1, x2)) operates in two stages:
Syntactic compatibility requires, for each (y1, y2) ∈ M, that x1, y1 and x2, y′2 preserve

adjacency. For the pairwise alignment of graphs, syntactic compatibility is straightforward
because there are no ambiguous edges: (x1, x2) is syntactically compatible with M if
and only if, for every (y1, y2) ∈ M, either both x1, y1 and x2, y2 are not adjacent or both
(x1, y1) ∈ E(G) and (x2, y2) ∈ E(H). At this stage, ambiguous edges need to be handled.

Semantic compatibility requires that vertex labels are allowed to be aligned according
the user-defined evaluation scheme. We denote by λ(x) and λ(x, y) the labels of vertices
and edges. In general, the labels of vertices and edges in an alignment graph, i.e., λ(x)
and λ(x, y) for alignment columns x and y, are multisets of “elementary” labels defined
on the input graphs, i.e., rows of the alignment. In general, the labels λ(x) and λ(x, y)
are multisets of “elementary” labels defined on the input graphs. Moreover, we assume

Algorithms 2024, 17, 116 11 of 23

a relation that defines when two elementary vertex labels or two elementary edge labels
are compatible. This pairwise compatibility rule can be chosen arbitrarily by the user. For
alignments of alignments, label sets are compatible if and only if all pairs of labels are
compatible, where gaps - are assumed to be compatible with all labels.

In order to keep track of ambiguous edges, it is useful to consider a tri-partitions of
V(G) × V(H) into unambiguous edges E, unambiguous non-edges Q, and ambiguous
edges A. For simplicity, we write x1x2 for the matching edges.

Since semantic consistency in our setting is defined exclusively in terms of vertex and
edge labels, the semantic filter can, in principle, be integrated with the syntactic consistency
check. The discussion in the theory section immediately implies that a matching M is
consistent if and only if:

(a) the two vertex labels λ(x1), λ(x2) and the two vertex labels λ(y1), λ(y2) are compatible
and

(b) for all x1x2, y1y2 ∈ M one of the following conditions is satisfied:

(i) {x1, y1} ∈ E(G) and {x2, y2} ∈ E(H) and the two edge labels λ(x1, y1) and
λ(x2, y2) are are compatible, or

(ii) {x1, y1} ∈ Q(G) and {x2, y2} ∈ Q(H), or
(iii) {x1, y1} ∈ A(G) or {x1, y1} ∈ A(H).

Clearly, the three conditions (i), (ii), and (iii) are mutually exclusive. Moreover, if M is
consistently matching and x1x2 is a candidate for extension, then M ∪ {x1x2} is consistent
if and only if the λ(x1) and λ(x2) are compatible and for every y1y2 ∈ M, one of the
conditions (i), (ii), or (iii) is satisfied. Since each of the three conditions can be checked in
constant time, testing whether M can be extended by x1x2 requires O(|M|) time.

These relationships immediately generalize to directed graphs: compatibility condition
(i) then requires that also the direction of the edges matches, i.e.,

(i’) If x1, y1 and x2, y2 are connected by directed edges, then (x1, y1) ∈ E(G) iff (x2, y2)
and the labels of these directed edges, λ(x1, y1) and λ(x2, y2), are compatible.

Ambiguous edges, on the other hand, are consistent with all edge directions and edge
labels, as well as the absence of an edge. For a consistent matching M, the corresponding
graph K(M) and its ambiguous edges are uniquely defined by M as follows: In case (i), we
have {x1x2, y1, y2} ∈ E(K(M)). In case (ii), we have {x1x2, y1, y2} ∈ Q(K(M)). In case (iii),
we have to distinguish the following cases:

(1) If {x1, y1} ∈ A(G) and {x2, y2} ∈ E(H), or {x1, y1} ∈ E(G) and {x2, y2} ∈ A(H),
then {x1x2, y1, y2} ∈ E(K(M));

(2) If {x1, y1} ∈ A(G) and {x2, y2} ∈ Q(H), or {x1, y1} ∈ Q(G) and {x2, y2} ∈ A(H),
then {x1x2, y1, y2} ∈ Q(K(M));

(3) If {x1, y1} ∈ A(G) and {x2, y2} ∈ A(H), then {x1x2, y1, y2} ∈ A(K(M)).

Again, K(M∪ {x1x2}) can be constructed from K(M) is given with O(|M|) effort. The
generalization to directed graphs is straightforward: In cases (2) and (3), the direction of
the edge(s) in the alignment is defined by the edges in either E(G) or E(H), respectively.

Since we store the binary vector f (x) for each alignment column x, it is not necessary
to explicitly store the sets E, Q, and H. Instead, it suffices to store the unambiguous edges
E and to use (x, y) ∈ A if and only if f (x)⊙ f (y) = 0, where ⊙ denotes component-wise
binary multiplication.

3.4. Visualization of Alignment Objects

Sequence alignments can be visualized as a rectangular matrix, with rows correspond-
ing to the input sequences. In the case of graph alignments, the matrix representation,
shown in Figure 3, is also suitable to show the correspondence of vertices.

It should be noted, however, that the order of the vertices is arbitrary unless one
considers graphs with a fixed vertex order as in the case of contact graphs for RNA or

Algorithms 2024, 17, 116 12 of 23

protein structures [26]. Moreover, this kind of matrix representation contains no information
of the graph structure.

Figure 3. Visualization of a graph alignment of three input graphs. Top: matrix representation
highlighting presence/absence of input graphs in the alignment columns (rows). Vertex-labels may
be represented by colors. Middle: each of the three input graphs is shown embedded in the alignment
graph. Matched vertices are shown in corresponding positions and with corresponding colors.
Bottom: graph of the multiple graph alignment.

Alternatively, one starts from a planar layout of the alignment graph G. Since every
input graph Gi is an induced subgraph of G, an embedding of Gi can be obtained by
retaining only vertices and edges of Gi. As shown in Figure 3, spatial correspondence of
the layouts emphasizes the embedding of Gi in G.

Still, this representation is not always easy to read. An improvement is obtained by
superimposing the embeddings of the input graphs Gi in stacked planes above the embed-
ding of G such that each set of aligned vertices lies on a common vertical line (Figure 4).
Coloring the vertices depending on their position in G further improves readability.

Algorithms 2024, 17, 116 13 of 23

Figure 4. Example of the 3D visualization of an alignment by stacking planar embeddings of the
graphs. Vertex colors again encode the arbitrary vertex-labels that can be assigned to the input graphs.
The bottom graph with grey vertices is the embedding of the final alignment, which, in principle, may
be computed with or without the preservation of vertex-labels and/or edge-weights and edge-labels.

4. Computational Results
4.1. Implementation

As a proof of concept, we developed the Progressive Graph Alignment toolkit
ProGrAlign in Python language, making extensive use of the NetworkX [46], a library that is
widely used for graph analysis. ProGrAlign is publicly available in a Github repository [47].
It consists of three software tools: ProGrAlign_Analysis computes the progressive graph
alignment using a list of graphs built as NetworkX objects. The graphs can be undirected,
directed, labeled or weighted, and may have loops. It is necessary that either all input
graphs are undirected or all input graphs are directed. Functions to convert undirected
graphs into symmetric directed graphs, or directed graphs into their underlying undirected
graphs, are readily available in NetworkX. Input and output use the binary files produced
with the Pickle [48] standard package for the serialization of Python objects. Additionally,
two visualization tools are provided, ProGrAlign_Vis2D and ProGrAlign_Vis3D, which
make use of the Matplotlib [49] library to display the alignment graph.

4.2. Generation of Test Sets

Alignments of graphs are useful, in particular if one expects them to be derived from
a common source by means of a process that introduces small or moderate variations. This
is, in particular, the case for evolutionary processes in a biological setting, but also in the
case of repeated noisy measurements of interactions or in a setting such as social networks
that change over time. In order to demonstrate and benchmark our implementation, we
therefore also developed a simple random-graph model that produces “mutant graphs”
along an evolutionary tree.

The tool first generates an initial graph G0 with the gnm_random_graph generator
provided by NetworkX [46], a Python library for graph analysis. This model produces a
graph having n vertices and exactly m edges chosen uniformly at random from all the
possible edges between these vertices. To avoid trivial cases, we require, in addition, that
G0 is connected, which can also be iteratively verified and enforced with the functionalities
included in NetworkX. Labels are then assigned independently to vertices, and edges drawn
form a uniform distribution over finite label sets. For the example below, we choose
five distinct labels for both vertices and edges.

Algorithms 2024, 17, 116 14 of 23

The mutation operator acting over a connected graph G first deletes one or two vertices,
such that G remains connected, and then adds one or two vertices and inserts, where for
each of them, a number of edges is chosen uniformly from the degree sequence of G. If two
vertices are added, one may be chosen as a neighbor of the other during edge addition. The
creation of loops is not allowed. Random labels are then associated with the new vertices
and new edges.

The set of test graphs is produced by applying the mutation operator along a planted
rooted binary tree rooted by G0. The single child G1 of G0 has two children G2 and G3,
and four grandchildren G4 to G7. Again, we exclude trivial examples by requiring con-
nectedness and removing graphs that by chance are isomorphic to a previously generated
one. Standard functions provided by NetworkX are used for this purpose. Starting with
16 vertices at G0, the graphs Gi, 1 ≤ i ≤ 7 have between 13 and 19 vertices. All tests are
preformed with 50 independent sets of test graphs.

4.3. Consensus Graphs

An important motivation for graph alignments is consensus graphs generalizing the
idea of consensus sequences [50] and consensus forests [4]. Given an alignment graph
(G, f), a consensus graph Ĝ is obtained as an induced subgraph of G[W] with a vertex
set W obtained from the gap pattern function f : V(G) → {0, 1}N by means of a voting
procedure. In the simplest case, the vertex set W = Wα := {x|∑n

i=1 fi(x) ≥ αN} comprises
all alignment columns with a sufficient fraction α of non-gap entries. Vertex and edge labels
for W and E(G[W]), resp., can also be obtained with the help of suitable voting procedure.
A key property of consensus sequences is that they approximate the ancestral state or
the master sequence of viral quasi-species. Consensus sequences also are of use, e.g., to
determine an accurate genome or transcript sequence from a set of noisy sequencing reads.
In the setting of graphs, suppose we have a set G1, . . . , GN of noisy empirical estimates of a
graph G. Then, we expect that, for a “reasonable” range of α, the graph G[Wα] will be a
very good approximation of the source graph G.

The consensus graph allows one to evaluate the accuracy of the reconstruction por-
trayed by the alignment graph. A comparison of the consensus graphs obtained from the
alignments with different thresholds shows that retaining the columns that contain more
gap than non-gap entries yields a very good approximation of the initial graph G0.

The residual distance roughly matches the differences shared between G0 and all
its offspring, namely those changes that separate G0 and G1. This matches the behavior
of sequence alignments. In particular, it shows that graph alignments can be used as a
noise-reduction method. We also compared the alignment of the mutant-scenarios, which
were obtained using a kernel-based guide tree, against alignments obtained through a
randomly generated guide tree. Note that random guide trees can also be produced through
the WPGMA clustering by providing this with a random array of positive numbers as a
distance matrix instead of the kernel-derived distances.

Figure 5b shows a slightly better performance of the kernel-based guide trees: on
average, the MCIS-distance between the initial graph G0 and the consensus graphs is
systematically larger than for random trees. Similarly, the distance between G0 and the
consensus is slightly smaller for the similarity-based guide trees. In addition, the implemen-
tation of ambiguous edges reduces the distance between graphs, thereby improving the
alignment. Although alignments obtained with a kernel-based guide tree are systematically
better than the ones obtained from random guide guide trees, these differences are small,
amounting to typically less than 10%. This is observed consistently for MCIS computed
with both VF2_step and with the Iterative_Trimming approach.

Algorithms 2024, 17, 116 15 of 23

1/7 2/7 3/7 4/7 5/7 6/7 7/7
10

15

20

25

1/7 2/7 3/7 4/7 5/7 6/7 7/7
Voting threshold

10

15

20

25

VF2_step
Iterative_Trim

m
ing

Av
er

ag
e

or
de

r

1/7 2/7 3/7 4/7 5/7 6/7 7/7
8

10

12

14

1/7 2/7 3/7 4/7 5/7 6/7 7/7

8

10

12

14

Av
er

ag
e

or
de

r

1/7 2/7 3/7 4/7 5/7 6/7 7/7

4

6

8

10

12

14

1/7 2/7 3/7 4/7 5/7 6/7 7/7

4

6

8

10

12

14

M
CI

S-
Di

st
an

ce

(a) (b) (c)

Figure 5. Consensus graphs as function of the voting threshold α. (a) The size of the consensus, as
expected, decreases monotonously with increasing fraction α of non-gaps in the retained alignment
columns. (b) Correspondingly, the fraction of the vertices of the input graphs that are retained in
the consensus decreases. (c) The distance between the reference graph G0 and the alignment of its
noisy offspring G1 through G7, however, reaches a minimum when only the columns that contain
less then 50% gaps are used to form the consensus. In each panel, we compare guide trees computed
with kernel-based similarity (full lines), random guide trees without considering ambiguous edges
(dashed lines), and random guide trees taking ambiguous edges into account (dotted lines). The
latter are nearly indistinguishable form the kernel-based guide trees. Here line colors are a visual aid
to distiguish the methodologies and their variations outlined before.

4.4. Ambiguous Edges

Ambiguous edges in intermediate alignments are a concept that arises in graph align-
ments and more specifically in the step-wise construction of MGAs as super-objects. It
has no counterpart in approaches that solely focus on the maximal common sub-objects.
Since ambiguous edges arise from alignment columns with disjoint representation of input
graphs, their number is expected to increase with the number of gaps. This aspect can be
empirically verified as well. Figure 6 exhibits the perfect correlation (Pearson correlation
coefficient 0.99) found between said variables over our constructed test set.

In general, random guide trees tends to introduce more gaps and thus more ambiguous
edges; see Appendix A.3 for details. As shown in the right panels of Figure 5, there is
slight improvement from the ambiguous edges when random guide trees are used. In this
case, it appears that ambiguous edges can compensate for the larger differences in-between
input graphs. At least for the samples of small and fairly similar graphs considered here,
ambiguous edges seem to play no significant role when the alignment follows a similarity-
based guide tree. We suspect that ambiguous edges may gain more practical importance
for large graphs with more pairwise differences.

50 60 70 80 90 100 110
Number of gaps

20

40

60

80

100

120

140

Nu
m

be
r o

f a
m

bi
gu

ou
s e

dg
es

Pearson correlation
 = 0.99

Figure 6. Correlation of the number of ambiguous edges with the number of gaps. The values here
correspond to the 400 alignments resulting from running the 8 experiments, described in Figure 7,
over our set of 50 scenarios.

Algorithms 2024, 17, 116 16 of 23

Tk Tk Tr Tr Sk Sk Sr Sr

Experiments

0

1

2

3

4

Lo
g 1

0 o
f r

un
ni

ng
 ti

m
e

[s
]

Figure 7. Comparison of running times [s] of the eight experiments carried each over the 50 scenarios:
T and S refer to the use of Iterative_Trimming and VF2_step, respectively. Kernel-based (k) or
random (r) guide trees show a moderate but systematic advantage of a kernel-based similarity. The
exclusion (⃝) or inclusion (■) of ambiguous edges is also compared.

4.5. Running Times

We investigated the effect of three independent factors on the running time of the graph
aligner: (1) the choice of the MCIS algorithm for pairwise alignments (Iterative_Trimming
or VF2_step), (2) the choice of similarity-based or a random guide tree, and (3) the inclusion
or exclusion of ambiguous edges when computing pairwise alignments. All computational
experiments were conducted on an Intel Core i7 2.80 GHz Lenovo ThinkPad machine with
16 GB RAM.

We first used the same 50 mutation-based sets of input graphs that were also used for
the computation of consensus graphs. We observed, in general, that Iterative_Trimming
significantly reduced the running time (avg. 13.95 s) compared to VF2_step (avg. 38.49 s).
Furthermore, a few outlying cases were found differing in one or more orders of magnitude,
as shown in Figure 7. The complete distributions of the running times attained by these
algorithms over the 50 scenarios in our data set can be found in Appendix A.4.

This difference is likely a consequence of significant similarity of the mutated graphs,
typically leading to comparably large MCIS, having between 10 and 16 vertices; see
Appendix A.1. In line with this interpretation, VF2_step is faster if independently gener-
ated random graphs, which typically have small pairwise MCIS, are used as an input. See
Appendix A.3 for a comparative analysis of these algorithms over random graphs.

Moreover, the inclusion of ambiguous edges increases the running time of VF2_step,
presumably because ambiguous edges increase the set of possible match candidates and
thus enlarge the search tree. Interestingly, Iterative_Trimming is much less sensitive to
the inclusion of ambiguous edges. Similarly, the choice of the guide tree does not seem to
have a large effect on the running times for Iterative_Trimming as it does for VF2_step.

5. Concluding Remarks

Progressive alignments of seven graphs with 16–19 vertices can be computed in about
10 s using the prototype implementation ProGrAlign. On our test sets, consensus graphs,
defined to contain alignment columns in which at least half of the input graphs are included,
are a very good approximations of the reference graph G0. A difference as low as 3.5 is
comparable to the smallest differences (2–4, see Figure A1 in Appendix A.1) between G0
and its variations Gi, 1 ≤ i ≤ 7, in each of the 50 scenarios. Discrepancies between methods
are small, suggesting that solutions are close to optimal.

Algorithms 2024, 17, 116 17 of 23

The graph alignments considered here differ from related concepts by explicitly consid-
ering alignments as super-graphs. In contrast, related work considers only correspondences
of vertices, and, i.e., “alignment columns”, without specifying edges and without strictly
enforcing the conservation of adjacency. The main advantage of considering alignments as
graphs is the resulting “compositionality”, which makes it possible to build up multiple
alignments in a step-wise fashion. The property that every input graph is recovered through
a well-defined projection operation, furthermore, makes MGAs a proper generalization of
multiple sequence alignments and the ordered forest alignments used for comparing RNA
structures. Vertex matching procedures do not share these properties.

An important concept that arises from the idea that alignments of graphs are again
graphs are the ambiguous edges in the alignment, i.e., edges in an alignment graph that
never appear in the projection of any of the input graphs. Note, however, that ambiguous
edges may be unambiguously preserved in the restriction of an alignment graph to a
subset S of rows: this is the case if neither of its incident vertices is reduced to an all-
gap column in the restriction to S. Ambiguous edges are analogs of the ambiguity in
the relative order of insertions and deletions between two consecutive match columns in
sequence alignments. Sequence alignments can be improved by realigning such regions
with the aim of “harmonizing” indel patterns [51]. From a theoretical point of view, such
ambiguities have been studied with regard to their handling in dynamic programming
algorithms [52]. In the case of (progressive) graph alignments, the analogous ambiguities
are at least alleviated by considering ambiguous edges.

We emphasize that MGAs are not intended as a replacement for vertex-matching
procedures. In applications that require only local similarities of subgraphs, the stringent
definition of MGAs is usually not necessary and arguably computationally too expen-
sive. Well-defined consensus graphs, on the other hand, require that the MGA itself is
well-defined graph. We expect that the framework will prove useful in particular in appli-
cations to evolutionary biology, where alignments are used because they not only represent
similarity but also convey a notion of evolutionary relatedness.

The implementation of the MGA described here is intended as a proof-of-concept,
showing the feasibility and potential usefulness of the concept, which has been introduced
from a purely theoretical perspective in [5]. Alignments of moderate-size and small graphs
are, in particular, appealing for applications to molecular graphs. For these, atom labels and
bond orders impose strong semantic constraints on the matches, which limit the computa-
tional efforts. For larger-scale applications, however, further algorithmic improvements
will be necessary.

In principle, it is possible to endow VF2_step() with a bound on the number of
possible extending matches that reduce the number of branches of the search tree akin to the
McSplit [40] algorithm. However, the evaluation of such bounds must be computationally
cost-effective because it is estimated in every state of the search space. While this seems
possible provided the compatibility tests set by the user allow only the match of vertices
(and edges) having the same label, this does not seem to be an easy task when optimizing
more general scoring schemes or broader compatibility rules. Moreover, ambiguous edges
may lead to very loose bounds that are of little practical use. A simple implementation
of the bound used in McSplit did not lead to the speeding-up of our program. It remains
to be determined if this is a consequence of the extensive candidate set of candidates for
extending the match set M, or whether this an issue arising from inadequate data structures.
An effective branch-and-bound algorithm for graph alignments thus remains a topic for
ongoing research.

Although MGAs provide consensus graphs that do not grow in size, the alignment
graph itself may grow linearly in size with the number of input graphs, in particular for
pairwise dissimilar input graphs. It seems possible to speed up alignments by restricting
the early match sets M to columns with few gaps and thus large scores. Subgraph-based
kernels might also be used to find matches between vertices that are likely contained in
maximal common induced subgraphs with large scores.

Algorithms 2024, 17, 116 18 of 23

The progressive alignment approach described here can be extended to alignments
of contact maps, i.e., graphs with totally ordered vertices [26]. In fact, the only necessary
modification is to modify the rules for consistent matches to also enforce order preservation.
More precisely, an extending match (x1, x2) must satisfy either y1 < x1 and y2 < x2, or
y1 > x1 and y2 > x2 for all matches (y1, y2) ∈ M.

The general approach of progressive alignments extends beyond the setting of graphs
and binary relations and constitutes a heuristic approach to compute “good” multiple
alignments of very general finite hereditary set systems. The abstract theory developed
in [5] guarantees, for every alignment (X, S), the existence of a decomposition tree whose
inner vertices correspond to sub-alignments and whose leaves are the input objects. It
will be of interest, therefore, to investigate to what extent, e.g., methods for the iterative
improvement [53] or consistency-based methods [54] also generalize from sequences to
general discrete structures.

Moreover, it will be interesting to investigate algorithms for pairwise and multiple
vertex matchings as heuristic approximations to computing MGAs. More formally, given a
set of graphs and vertex-matching between them, one may ask for a minimal refinement
of the individual “columns”, i.e., sets of matched vertices, such that one obtains a well-
defined MGA. From a mathematical point of view, finally, it would be interesting to
investigate the compositional properties of graph matching approaches and the alignment-
like construction proposed in [15].

Author Contributions: M.E.G.L. developed the algorithms, implemented the software, and per-
formed the computational analysis. P.F.S. designed the study. Both authors contributed to the
theoretical results and the writing of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors acknowledge financial support by the Federal Ministry of Education and Re-
search of Germany and by the Sächsische Staatsministerium für Wissenschaft Kultur und Tourismus
in the program Center of Excellence for AI-research “Center for Scalable Data Analytics and Artificial
Intelligence Dresden/Leipzig”, project identification number: ScaDS.AI. PFS acknowledges support
by the German Federal Ministry of Education and Research BMBF through DAAD project 57616814
(SECAI, School of Embedded Composite AI). Publication costs were covered by the Open Access
Publishing Fund of Leipzig University supported by the German Research Foundation within the
program Open Access Publication Funding.

Data Availability Statement: The software package as well as scripts to re-run the validation
experiments are available on a Github repository [47].

Acknowledgments: We thank Maria Waldl and Jakob Lykke Andersen for their valuable comments
on the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MCIS maximum common induced subgraph
MGA multiple graph alignment

Appendix A

Appendix A.1. Additional Information on Graph Similarities

The mutation test graphs were used to investigate the correlation kernel-based and
MCIS-based distance measures. Empirically, we find a good correlation indicating that
the kernel-based distance, which can be evaluated much more efficiently, is a decent
approximation for the purpose of constructing the guide tree (Figure A1).

Algorithms 2024, 17, 116 19 of 23

In order to better characterize the set of test graphs, we show the distribution of
MCIS-sizes for pairs of graphs. Typically, the MCIS covers more than half of both graphs,
explaining why Iterative_Trimming() is more efficient than VF2_step() on this data set.

G0 vs Gi :

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Kernel-based Distance

2

4

6

8

10

12

14

M
CI

S-
ba

se
d

Di
st

an
ce

Linear Regression: Distance between G0 and its Mutants
Pearson correlation
 = 0.76998

8 9 10 11 12 13 14 15 16
Order of MCIS between G0 and mutants

0

20

40

60

80

100

Nu
m

be
r o

f p
ai

rw
ise

 c
om

pa
ris

on
s

mean: 12.78 vertices

Gi vs Gj:

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Kernel-based Distance

2

4

6

8

10

12

14

M
CI

S-
ba

se
d

Di
st

an
ce

Linear Regression: Distance between Pairs of Mutants
Pearson correlation
 = 0.75946

8 9 10 11 12 13 14 15 16
Order of MCIS between pairs of mutants

0

50

100

150

200

250

Nu
m

be
r o

f p
ai

rw
ise

 c
om

pa
ris

on
s

mean: 13.13 vertices

Figure A1. Left: correlation between kernel distance and MCIS-based distance. Right: distribution of
|MCIS|. The panels on the top compare the initial graph to its mutants. The panels below compare
pairs of mutants over each of the 50 scenarios.

Appendix A.2. Insufficiency of the Standard Version of VF2

The standard version of VF2 uses an optimized routine for proposing candidate
matches that might extend M (see Algorithm A1). Here, ⪯ denotes an arbitrary total
order assigned by the VF2 to the vertices of G2, used to optimize the selection of these
vertices.

Algorithm A1: candidate_matches_original(G1, G2, M,⪯)
Data: Graphs G1, G2 and a matching M ⊂ V(G1)×V(G2)
Result: Set P of match candidates for extending M
// initialize P0
P0 ← ∅;
// candidates are neighbors of match but not in the match
for (n1, n2) ∈ M do

N1 ← neighbors of n1 in G1 not matched by M;
N2 ← neighbors of n2 in G2 not matched by M;
P0 ← P0 ∪ N1 × N2;

end
// alternatively candidates are all unpaired vertices
if P0 = ∅ then

N1 ← set of unmatched vertices in V(G1);
N2 ← set of unmatched vertices in V(G2);
P0 ← N1 × N2;

end
// get only the ⪯-minimum of such vertices
m← min⪯{y : (x, y) ∈ P0};
P← {(x, y) ∈ P0 : y = m};
return P

Algorithms 2024, 17, 116 20 of 23

The example in Figure A2 illustrates why the standard implementation cannot be
used for an MCIS search. With the given total order ⪯, every branch of the search space
produced by the VF2 will start with a pair of the form (•, 1). Then, one branch will be
associated to the match {(e, 1), (c, 2), (g, 3), (f , 4)}. Now, candidate_matches_original()
has to chose from pairs (•, m) with m = 5, 6, 7 as candidates. But, from these, the valid
candidate will be (h, 5) given the condition on the minimum second entry. Since this pair
does not satisfy the syntactic compatibility, see Section 3.3, this pair would not extend the
match and the algorithm would backtrack. Thus, the MCIS enclosed in red dotted lines
cannot be found by such implementation.

(G1) a

b

c

d

ef

g

h

(G2) 7

8

2

6

14

3

5

Figure A2. Examples of a graph with given vertex order for which the standard choice of candidates,
i.e., candidate_matches_original, does not result in the correct MCIS.

Similar examples show that other strategies such as “taking the feasible pair from the
minimum” instead of the “minimum pair from the feasible” also fail for certain inputs. In
general, the difference lies in that the VF2 assumes that there should be at least one match
mapping every vertex in these graphs if they are indeed isomorphic, a condition that is not
compatible with the MCIS search.

Appendix A.3. Additional Information on Ambiguous Edges

Figure A3 shows that the number of ambiguous edges increases substantially when a
random guide tree is used instead of a similarity-based one.

(a)

20 40 60 80 100 120 140
Number of Ambiguous Edges in Alignments

 obtained with kernel-based GT

0

1

2

3

4

5

6

7

Nu
m

be
r o

f s
ce

na
rio

s

mean: 47.52 ambiguous edges

(b)

20 40 60 80 100 120 140
Number of Ambiguous Edges in Alignments

 obtained with random-based GT

0

1

2

3

4

5

6

7

Nu
m

be
r o

f s
ce

na
rio

s

mean: 70.98 ambiguous edges

Figure A3. Distribution of ambiguous edges present in (a) alignments obtained when using the
kernel-based guide trees, and (b) when using the random guide trees.

Appendix A.4. Running Times

Figure A4 shows the distribution of the running times corresponding to the experi-
ments Tk◦ and Sk◦ from Figure 7.

(a)

0 20 40 60 80 100 120 140
Running time of Iterative_Trimming [s],

 with kernel-based GT and without ambiguous edges

0

2

4

6

8

10

12

14

16

18

20

Nu
m

be
r o

f s
ce

na
rio

s

mean: 13.95 s

(b)

0 20 40 60 80 100 120 140
Running time of VF2_step [s],

 with kernel-based GT and without ambiguous edges

0

2

4

6

8

10

12

Nu
m

be
r o

f s
ce

na
rio

s

mean: 38.49 s

Figure A4. Running times of both algorithms, (a) Iterative_Trimming and (b) VF2_Step, tested
together with kernel-based guide trees but ignoring ambiguous edges.

Algorithms 2024, 17, 116 21 of 23

In order to further explore the behavior of different algorithmic variants, we produced
another set of random graphs comprising connected graphs chosen uniformly, having
between 8 and 16 vertices, and a number of edges in prescribed intervals. These graphs
were assigned vertex and edge labels uniformly at random using five possible vertex and
edge labels, respectively. For each parameter combination, a sample of 10 graphs was
selected. Each subset with a given size and proportion of edges corresponds to a square in
Figure A5b. We ran an MCIS search with our algorithms over these 10 graphs. The orders
of the pairwise MCISs between these graphs are summarized in Figure A5a, with respect
to the values of order and proportion of edges of the random graphs, and the average of
the order of these MCIS’s is shown in Figure A5b over each pair of values.

(a)
8 9 10 11 12 13 14 15 16

Order

2

4

6

8

Or
de

r o
f M

CI
S

(25, 30) (30, 35) (35, 40) (40, 45) (45, 50) (50, 55) (55, 60) (60, 65) (65, 70)

Intervals of proportion of edges

2

4

6

8

Or
de

r o
f M

CI
S

Order of MCIS between subsets of random graphs

(b)

8 9 10 11 12 13 14 15 16

Order of MCIS between subsets of random graphs

25

30

35

40

45

50

55

60

65

70

In
te

rv
al

s o
f p

ro
po

rti
on

 o
f e

dg
es

Order

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Average order of M
CIS

Figure A5. Order of MCIS between random graphs generated by pairs of order and proportion of
edges, chosen uniformly and labeled uniformly at random. (a) Shows average variations against each
variable, while (b) shows the variations against the combination of these parameters.

In Figure A6, we show the running time taken for each algorithm to complete the
MCIS-search in this data set. Specifically, Figure A6(a1,a2) show the running time of
Iterative_Trimming, while Figure A6(b1,b2) show the one of VF2_step. The running time
of the algorithms grows according to the order of the MCIS. However, VF2_step appears to
grow inversely to the proportion of edges. Since the running time of the VF2_step must
increase according to the number edges of a graph, this behavior can be better explained by
the correlation between the running time taken by this routine with the order of the MCIS
it has to uncover, shown in Figure A5b. This suggests that VF2_step is better suited for
detecting MCISs that are comparatively smaller than the graphs containing them.

(a1)
8 9 10 11 12 13 14 15 16

Order

0

20

40

Ru
nn

in
g

tim
e

[s
]

(25, 30) (30, 35) (35, 40) (40, 45) (45, 50) (50, 55) (55, 60) (60, 65) (65, 70)

Intervals of proportion of edges

0

20

40

Ru
nn

in
g

tim
e

[s
]

Running Time over Random Graphs - Iterative_Trimming

(a2)

8 9 10 11 12 13 14 15 16

Iterative_Trimming

25

30

35

40

45

50

55

60

65

70

In
te

rv
al

s o
f p

ro
po

rti
on

 o
f e

dg
es

Order

0

5

10

15

20

25

30

35

Average running tim
e [s]

(b1)
8 9 10 11 12 13 14 15 16

Order

0.0

0.5

1.0

Ru
nn

in
g

tim
e

[s
]

(25, 30) (30, 35) (35, 40) (40, 45) (45, 50) (50, 55) (55, 60) (60, 65) (65, 70)

Intervals of proportion of edges

0.0

0.5

1.0

Ru
nn

in
g

tim
e

[s
]

Running Time over Random Graphs - VF2_step

(b2)

8 9 10 11 12 13 14 15 16

VF2_step

25

30

35

40

45

50

55

60

65

70

In
te

rv
al

s o
f p

ro
po

rti
on

 o
f e

dg
es

Order

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average running tim
e [s]

Figure A6. Running time of MCIS-search over connected random graphs. Top corresponds to
Iterative_Trimming and bottom to VF2_step. Again (a1,b1) show average variations against each
variable, while (a2,b2) show the variations against pairs of order and proportion of edges.

Algorithms 2024, 17, 116 22 of 23

References
1. Rosenberg, M.S. (Ed.) Sequence alignment: Concepts and history. In Sequence Alignment: Methods, Models, Concepts, and Strategies;

University of California Press: Oakland, CA, USA, 2009; pp. 1–22. [CrossRef]
2. Chatzou, M.; Magis, C.; Chang, J.M.; Kemena, C.; Bussotti, G.; Erb, I.; Notredame, C. Multiple sequence alignment modeling:

Methods and applications. Brief. Bioinform. 2015, 17, 1009–1023. [CrossRef]
3. Jiang, T.; Wang, L.; Zhang, K. Alignment of trees—An alternative to tree edit. Theor. Comput. Sci. 1995, 143, 137–148. [CrossRef]
4. Höchsmann, M.; Voss, B.; Giegerich, R. Pure multiple RNA secondary structure alignments: A progressive profile approach.

Trans. Comput. Biol. Bioinform. 2004, 1, 53–62. [CrossRef]
5. Berkemer, S.; Höner zu Siederdissen, C.; Stadler, P.F. Compositional properties of alignments. Math. Comput. Sci. 2021, 15, 609–630.

[CrossRef]
6. Berg, J.; Lässig, M. Local graph alignment and motif search in biological networks. Proc. Natl. Acad. Sci. USA 2004,

101, 14689–14694. [CrossRef]
7. Kuchaiev, O.; Milenković, T.; Memisević, V.; Hayes, W.; Pržulj, N. Topological network alignment uncovers biological function

and phylogeny. J. R. Soc. Interface 2010, 7, 1341–1354. [CrossRef]
8. Mernberger, M.; Klebe, G.; Hüllermeier, E. SEGA: Semiglobal graph alignment for structure-based protein comparison. IEEE/ACM

Trans. Comput. Biol. Bioinform. 2011, 8, 1330–1343. [CrossRef] [PubMed]
9. Weskamp, N.; Hüllermeier, E.; Kuhn, D.; Klebe, G. Multiple graph alignment for the structural analysis of protein active sites.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2007, 4, 310–320. [CrossRef] [PubMed]
10. Singh, R.; Xu, J.X.; Berger, B. Global alignment of multiple protein interaction networks with application to functional orthology

detection. Proc. Natl. Acad. Sci. USA 2008, 105, 12763–12768. [CrossRef]
11. Zhang, S.; Tong, H. FINAL: Fast attributed network alignment. In Proceedings of the KDD ’16: Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016;
Krishnapuram, B., Shah, M., Smola, A., Aggarwal, C., Shen, D., Eds.; Association for Computing Machinery: New York, NY, USA,
2016; pp. 1345–1354. [CrossRef]

12. Heimann, M.; Lee, W.; Pan, S.; Chen, K.Y.; Koutra, D. HashAlign: Hash-based alignment of multiple graphs. In Proceedings of
the Advances in Knowledge Discovery and Data Mining, PAKDD 2018, Melbourne, VIC, Australia, 3–6 June 2018; Phung, D.,
Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018;
Volume 10939, pp. 726–739. [CrossRef]

13. Bayati, M.; Gleich, D.F.; Saberi, A.; Wang, Y. Message-passing algorithms for sparse network alignment. ACM Trans. Knowl.
Discov. Data 2013, 7, 3. [CrossRef]

14. Tang, J.; Zhang, W.; Li, J.; Zhao, K.; Tsung, F.; Li, J. Robust attributed graph alignment via joint structure learning and optimal
transport. In Proceedings of the IEEE 39th International Conference on Data Engineering (ICDE), Los Alamitos, CA, USA, 3–7
April 2023; pp. 1638–1651. [CrossRef]

15. Malmi, E.; Chawla, S.; Gionis, A. Lagrangian relaxations for multiple network alignment. Data Min. Knowl. Discov. 2017,
31, 1331–1358. [CrossRef]

16. Feng, D.F.; Doolittle, R.F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 1987,
25, 351–360. [CrossRef]

17. Wang, L.; Jiang, T. On the complexity of multiple sequence alignment. J. Comput. Biol. 1994, 1, 337–348. [CrossRef]
18. Just, W. Computational complexity of multiple sequence alignment with SP-score. J. Comput. Biol. 2001, 8, 615–623. [CrossRef]
19. Elias, I. Settling the intractability of multiple alignment. J. Comput. Biol. 2006, 13, 1323–1339. [CrossRef]
20. Fober, T.; Mernberger, M.; Klebe, G.; Hüllermeier, E. Evolutionary construction of multiple graph alignments for the structural

analysis of biomolecules. Bioinformatics 2009, 25, 2110–2117. [CrossRef]
21. Ngoc, H.T.; Duc, D.D.; Xuan, H.H. A novel ant based algorithm for multiple graph alignment. In Proceedings of the International

Conference on Advanced Technologies for Communications (ATC 2014), Hanoi, Vietnam, 15–17 October 2014; Heath, R.W.,
Quynh, N.X., Lap, L.H., Eds.; IEEE Press: Piscataway, NJ, USA, 2014; pp. 181–186. [CrossRef]

22. Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 1958, 38, 1409–1438.
23. Cordella, L.P.; Foggia, P.; Sansone, C.; Vento, M. A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans.

Pattern Anal. Mach. Intell. 2004, 26, 1367–1372. [CrossRef] [PubMed]
24. Alpár Jüttner, A.; Madarasi, P. VF2++—An improved subgraph isomorphism algorithm. Discret. Appl. Math. 2018, 242, 69–81.

[CrossRef]
25. Touzet, H. Comparing similar ordered trees in linear-time. J. Discret. Algorithms 2007, 5, 696–705. [CrossRef]
26. Stadler, P.F. Alignments of biomolecular contact maps. Interface Focus 2021, 11, 20200066. [CrossRef] [PubMed]
27. Morgenstern, B.; Stoye, J.; Dress, A.W.M. Consistent Equivalence Relations: A Set-Theoretical Framework for Multiple Sequence

Alignments; Technical Report; University of Bielefeld, FSPM: Bielefeld, Germany, 1999. [CrossRef]
28. Nelesen, S.; Liu, K.; Zhao, D.; Linder, C.R.; Warnow, T. The effect of the guide tree on multiple sequence alignments and

subsequent phylogenetic analyses. In Pacific Sympomsium on Biocomputing PSB’08; Altman, R.B., Dunker, A.K., Hunter, L., Klein,
T.E., Eds.; Stanford Univ.: Stanford, CA, USA, 2008; pp. 25–36. [CrossRef]

29. Zhan, Q.; Ye, Y.; Lam, T.W.; Yiu, S.M.; Wang, Y.; Ting, H.F. Improving multiple sequence alignment by using better guide trees.
BMC Bioinform. 2015, 16, S4. [CrossRef] [PubMed]

http://doi.org/10.1525/california/9780520256972.003.0001
http://dx.doi.org/10.1093/bib/bbv099
http://dx.doi.org/10.1016/0304-3975(95)80029-9
http://dx.doi.org/10.1109/TCBB.2004.11
http://dx.doi.org/10.1007/s11786-020-00496-8
http://dx.doi.org/10.1073/pnas.0305199101
http://dx.doi.org/10.1098/rsif.2010.0063
http://dx.doi.org/10.1109/TCBB.2011.35
http://www.ncbi.nlm.nih.gov/pubmed/21339532
http://dx.doi.org/10.1109/TCBB.2007.1024
http://www.ncbi.nlm.nih.gov/pubmed/17473323
http://dx.doi.org/10.1073/pnas.0806627105
http://dx.doi.org/10.1145/2939672.2939766
http://dx.doi.org/10.1007/978-3-319-93040-4_57
http://dx.doi.org/10.1145/2435209.2435212
http://dx.doi.org/10.1109/ICDE55515.2023.00129
http://dx.doi.org/10.1007/s10618-017-0505-2
http://dx.doi.org/10.1007/BF02603120
http://dx.doi.org/10.1089/cmb.1994.1.337
http://dx.doi.org/10.1089/106652701753307511
http://dx.doi.org/10.1089/cmb.2006.13.1323
http://dx.doi.org/10.1093/bioinformatics/btp144
http://dx.doi.org/10.1109/ATC.2014.7043380
http://dx.doi.org/10.1109/TPAMI.2004.75
http://www.ncbi.nlm.nih.gov/pubmed/15641723
http://dx.doi.org/10.1016/j.dam.2018.02.018
http://dx.doi.org/10.1016/j.jda.2006.07.002
http://dx.doi.org/10.1098/rsfs.2020.0066
http://www.ncbi.nlm.nih.gov/pubmed/34123355
http://dx.doi.org/10.1.1.37.7862
http://dx.doi.org/10.1142/9789812776136_0004
http://dx.doi.org/10.1186/1471-2105-16-S5-S4
http://www.ncbi.nlm.nih.gov/pubmed/25859903

Algorithms 2024, 17, 116 23 of 23

30. Bunke, H. On a relation between graph edit distance and maximum common subgraph. Pattern Recognit. Lett. 1997, 18, 689–694.
[CrossRef]

31. Zeng, Z.; Tung, A.K.H.; Wang, J.; Feng, J.; Zhou, L. Comparing stars: On approximating graph edit distance. Proc. VLDB Endow.
2009, 2, 25–36. [CrossRef]

32. Jia, L.; Gaüzère, B.; Honeine, P. Graph kernels based on linear patterns: Theoretical and experimental comparisons. Expert Syst.
Appl. 2022, 189, 116095. [CrossRef]

33. Schölkopf, B. The kernel trick for distances. In Proceedings of the NIPS’00: Proceedings of the 13th International Conference on
Neural Information Processing Systems, Denver, CO, USA, 1 January 2000; Leen, T., Dietterich, T., Tresp, V., Eds.; MIT Press:
Cambridge, MA, USA, 2000; pp. 283–289. [CrossRef]

34. Phillips, J.M.; Venkatasubramanian, S. A gentle introduction to the kernel distance. arXiv 2011, arXiv:1103.1625.
35. Kriege, N.M.; Johansson, F.D.; Morris, C. A survey on graph kernels. Appl. Netw. Sci. 2020, 5, 6. [CrossRef]
36. Jia, L.; Gaüzère, B.; Honeine, P. Graphkit-learn: A python library for graph kernels based on linear patterns. Pattern Recognit. Lett.

2021, 143, 113–121. [CrossRef]
37. Garey, M.R.; Johnson, D.S. Computers and Intractability. A Guide to the Theory of NP Completeness; Freeman: San Francisco, CA,

USA, 1979.
38. Kann, V. On the approximability of the maximum common subgraph problem. In Proceedings of the 9th Annual Symposium on

Theoretical Aspects of Computer Science; Cachan, France, 13–15 February 1992; Finkel, A., Jantzen, M., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 1992; Volume 577, pp. 375–388. [CrossRef]

39. Barrow, H.; Burstall, R. Subgraph isomorphism, matching relational structures and maximal cliques. Inf. Process. Lett. 1976,
4, 83–84. [CrossRef]

40. McCreesh, C.; Prosser, P.; Trimble, J. A partitioning algorithm for maximum common subgraph problems. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia, 19–25 August 2017; Sierra,
C., Ed.; AAAI Press: Palo Alto, CA, USA, 2017; pp. 712–719. [CrossRef]

41. Hoffmann, R.; McCreesh, C.; Reilly, C. Between subgraph isomorphism and maximum common subgraph. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Markovitch, S., Singh, S.,
Eds.; AAAI Press: Palo Alto, CA, USA, 2017; Volume 1, pp. 3907–3914. [CrossRef]

42. Liu, Y.; Zhao, J.; Li, C.M.; Jiang, H.; He, K. Hybrid learning with new value function for the maximum common induced subgraph
problem. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-37), Washington, DC, USA,
7–14 February 2023; Williams, B., Chen, Y., Neville, J., Eds.; AAAI Press: Palo Alto, CA, USA, 2023; Volume 4, pp. 4044–4051.

43. Berezikov, E.; Guryev, V.; Plasterk, R.H.A.; Edwin, C. CONREAL: Conserved regulatory elements anchored alignment algorithm
for identification of transcription factor binding sites by phylogenetic footprinting. Genome Res. 2004, 14, 170–178. [CrossRef]

44. Morgenstern, B.; Prohaska, S.J.; Pohler, D.; Stadler, P.F. Multiple sequence alignment with user-defined anchor points. Algorithms
Mol. Biol. 2006, 1, 6. [CrossRef]

45. Brun, L.; Gaüzère, B.; Fourey, S. Relationships between Graph Edit Distance and Maximal Common Unlabeled Subgraph; Technical
Report hal-00714879; HAL: Bangalore, India, 2012.

46. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of
the 7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; Varoquaux, G., Vaught, T., Millman, J., Eds.; 2008;
pp. 11–15.

47. González-Laffitte, M.E.; Stadler, P.F. Github Repository of the Progressive Graph Alignment Software ProGrAlign. 2024. Available
online: https://github.com/MarcosLaffitte/Progralign (accessed on 23 February 2024).

48. Documentation on the Pickle Python Package. Available online: https://docs.python.org/3/library/pickle.html (accessed on 1
March 2024).

49. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
50. Schneider, T.D. Consensus sequence zen. Appl. Bioinform. 2002, 1, 111–119.
51. Hagiwara, K.; Edmonson, M.N.; Wheeler, D.A.; Zhang, J. indelPost: Harmonizing ambiguities in simple and complex indel

alignments. Bioinformatics 2022, 38, 549–551. [CrossRef] [PubMed]
52. Giegerich, R. Explaining and controlling ambiguity in dynamic programming. In Proceedings of the Combinatorial Pattern

Matching. CPM’00, Montreal, QC, Canada, 21–23 June 2000; Giancarlo, R., Sankoff, D., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2000; Volume 1848. [CrossRef]

53. Wallace, I.M.; Orla, O.; Higgins, D.G. Evaluation of iterative alignment algorithms for multiple alignment. Bioinformatics 2005,
21, 1408–1414. [CrossRef] [PubMed]

54. Sze, S.H.; Lu, Y.; Wang, Q.W. A polynomial time solvable formulation of multiple sequence alignment. J. Comput. Biol. 2006,
13, 309–319. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0167-8655(97)00060-3
http://dx.doi.org/10.14778/1687627.1687631
http://dx.doi.org/10.1016/j.eswa.2021.116095
http://dx.doi.org/10.5555/3008751.3008793
http://dx.doi.org/10.1007/s41109-019-0195-3
http://dx.doi.org/10.1016/j.patrec.2021.01.003
http://dx.doi.org/10.1007/3-540-55210-3_198
http://dx.doi.org/10.1016/0020-0190(76)90049-1
http://dx.doi.org/10.24963/ijcai.2017/99
http://dx.doi.org/10.1609/aaai.v31i1.11137
http://dx.doi.org/10.1101/gr.1642804
http://dx.doi.org/10.1186/1748-7188-1-6
https://github.com/MarcosLaffitte/Progralign
https://docs.python.org/3/library/pickle.html
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/bioinformatics/btab601
http://www.ncbi.nlm.nih.gov/pubmed/34431982
http://dx.doi.org/10.1007/3-540-45123-4_6
http://dx.doi.org/10.1093/bioinformatics/bti159
http://www.ncbi.nlm.nih.gov/pubmed/15564300
http://dx.doi.org/10.1089/cmb.2006.13.309

	Introduction
	Theory
	Abstract Graph Alignments
	Ambiguous Edges
	Characterization of Pairwise Graph Alignments
	Progressive Alignments
	Labels
	Labels and Scores for Graph Alignments

	Algorithmic Considerations
	Construction of the Guide Tree Based on Graph Kernels
	Computing Optimal Common Induced Subgraphs
	Syntactic and Semantic Compatibility
	Visualization of Alignment Objects

	Computational Results
	Implementation
	Generation of Test Sets
	Consensus Graphs
	Ambiguous Edges
	Running Times

	Concluding Remarks
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4

	References

