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Abstract: The diffusion model has made progress in the field of image synthesis, especially in the
area of conditional image synthesis. However, this improvement is highly dependent on large
annotated datasets. To tackle this challenge, we present the Guided Diffusion model for Unlabeled
Images (GDUI) framework in this article. It utilizes the inherent feature similarity and semantic
differences in the data, as well as the downstream transferability of Contrastive Language-Image
Pretraining (CLIP), to guide the diffusion model in generating high-quality images. We design
two semantic-aware algorithms, namely, the pseudo-label-matching algorithm and label-matching
refinement algorithm, to match the clustering results with the true semantic information and provide
more accurate guidance for the diffusion model. First, GDUI encodes the image into a semantically
meaningful latent vector through clustering. Then, pseudo-label matching is used to complete the
matching of the true semantic information of the image. Finally, the label-matching refinement
algorithm is used to adjust the irrelevant semantic information in the data, thereby improving the
quality of the guided diffusion model image generation. Our experiments on labeled datasets show
that GDUI outperforms diffusion models without any guidance and significantly reduces the gap
between it and models guided by ground-truth labels.

Keywords: image synthesis; guided diffusion; semantic aware; pseudo-label matching

1. Introduction

Visual computing is rapidly advancing with the emergence of generative artificial
intelligence (AI). This revolutionary technology enables unprecedented capabilities in
generating, editing, and reconstructing images, videos, and 3D scenes [1]. Diffusion
models, as powerful generative models, have made significant contributions in image
synthesis, 3D reconstruction, and semantic segmentation. The accompanying issue is that
in these fields, especially in image synthesis, a large labeled dataset [2,3] is required to
ensure the diversity and fidelity of the generated images. The fidelity of the diffusion
model can be enhanced by utilizing class labels to guide the reverse denoising process [4,5].
To further improve the image generation process, classifier guidance [5] or classifier-free
guidance [6] can be utilized to provide better guidance. However, these conditions and
guiding methods rely on datasets that require ground-truth annotations, which can be
challenging to obtain in many fields, such as remote sensing [7] and medical imaging [8].
Therefore, the objective of this article is to better align unlabeled images with real class
information and apply them to the guided diffusion model. To further improve the image
generation process, classifier guidance [5] or classifier-free guidance [6] can be utilized to
provide better guidance. However, these conditions and guiding methods rely on datasets
that require ground-truth annotations, which can be challenging to obtain in many fields,
such as remote sensing [7] and medical imaging [8]. Therefore, the objective of this article is
to better align unlabeled images with real class information and apply them to the guided
diffusion model.

Specifically, the requirement for annotated datasets for successful image synthesis
should be reduced or even eliminated. Currently, the use of self-supervised guided diffu-
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sion models [9,10] has shown significant improvements in guiding effectiveness. These
methods do not require any labeled information and solve pretext tasks at the image level.
However, since the guidance information produced by this self-supervision is often dis-
connected from the information of the real categories, we are unable to generate images of
specific real categories during image generation.

Therefore, we propose the GDUI framework, which uses guided diffusion to generate
images of specified real categories without requiring specific labeled datasets. The GDUI
framework can be divided into three stages. In the first stage of GDUI, the image is encoded
into a semantically meaningful latent vector using a self-supervised clustering framework,
and the diffusion pseudo-label-matching algorithm is used to further map the semantic
information. In the second stage, GDUI uses the label-matching refinement algorithm
to filter out irrelevant semantic information. In the third stage, the conditional diffusion
model uses the matched real semantic information of the image as guidance to generate
the image.

We summarize the contributions as follows. (1) We propose GDUI, which achieves the
task of guided image generation based on real categories on unlabeled datasets, through
the similarity of the data itself and the downstream transferability of CLIP [11]. (2) We
design a pseudo-label-matching algorithm that completes the matching of the real semantic
information of the image based on image similarity to help the model better accomplish the
guided generation of specified real categories. (3) We design a label-matching refinement
algorithm to adjust irrelevant semantic information of the data. (4) The experimental results
demonstrate that, on unlabeled datasets, the fidelity and diversity of images generated
by guided generation with specified categories are superior to unconditionally generated
images, and even surpass those generated by using ground-truth labels.

2. Related Work
2.1. Conditional Diffusion Models

In recent years, conditional diffusion models have shown remarkable achievements
in domains such as image synthesis [5,12], text-to-image [3,13], image restoration [14,15],
and more. The conditional diffusion models have been extending their conditional informa-
tion beyond class labels [5] to include other modalities, such as textual descriptions [16,17]
and semantic segmentation [18]. It provides a high degree of controllability through various
guiding mechanisms, including classifier-guided [5,19], CLIP-guided [20], and classifier-
free diffusion [6,12]. DALL-E2 [3] and GLIDE [21] can generate high-quality images based
on large-scale text–image datasets. The aforementioned models have all achieved signifi-
cant results, but they all relied on paired text–image datasets for training. Some models,
such as KNN diffusion [22] and retrieval-augmented diffusion [23], utilized nearest neigh-
bor samples during training to reduce their dependence on labeled datasets. LAFITE [24]
has once again demonstrated the feasibility of using pre-trained CLIP [11] for text-to-image
generation. Compared to these works, we achieve high-quality image generation by better
aligning image and label information.

2.2. Deep Clustering

Deep clustering methods utilize the representation ability of deep neural networks
and have shown superiority over traditional clustering algorithms. Early deep clustering
methods mostly combined stacked auto-encoders (SAE) [25] with traditional clustering
algorithms, such as spectral clustering [26], Gaussian mixture model [27,28], and subspace
clustering [29,30]. However, because the pixel-wise reconstruction loss of SAE tends to
over-emphasize low-level features [31], it leads to a loss of object-level semantic informa-
tion, resulting in poor clustering performance for images with complex content. Recently,
there have been clustering methods [32,33] that combine self-supervised and contrastive
learning. However, these approaches often overlook the semantic differences between
clusters and focus only on the similarity between instances, which can limit the clus-
tering performance [31]. The semantic pseudo-labeling-based image clustering method,
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SPICE [31], was proposed to effectively balance the similarity among instances and the
semantic discrepancies between clusters, thereby improving clustering performance. Our
research leverages the significant potential of self-supervised methods in downstream
tasks [34]. Specifically, we focus on combining self-supervised learning with semantic
pseudo-labeling in an image clustering approach for image generation. By incorporating
this approach, we provide valuable guidance signals to diffusion models, empowering
them to generate high-quality images.

2.3. Vision and Language (VL) Models

In recent years, vision–language models have made significant progress in various
fields, such as visual question answering [35], image–text retrieval [36,37], and more. While
early tasks mainly focused on specific domains, there is an increasing demand for vision–
language models with greater generality in practical applications. Therefore, recent works
such as CLIP [11] and ALIGN [38] were built on a general framework for visual and
language representation. CLIP [11] trained language and image information jointly by
minimizing the distance between corresponding image and text embeddings, achieving
zero-shot performance on downstream tasks. Due to the impressive performance of vision–
language models [39], our research focuses on improving the alignment between images
and semantic information using these models. The objective is to provide diffusion models
with more accurate guidance signals.

3. Methodology

Given an unlabeled image dataset X = {xi}N
i=1 consisting of N images, where xi

represents the i-th unlabeled image, our objective is to associate X with the true labels of
K categories. In other words, our goal is to match each image xi with its corresponding
true label yg

i , where yg
i represents the true label of the i-th image. Subsequently, we employ

diffusion models and classifiers to process the labeled images and generate high-quality
images guided by their respective categories. To accomplish the aforementioned objectives,
we propose the GDUI. The overall flow of the proposed GDUI for unlabeled images
manipulation is illustrated in Figure 1. First, the input unlabeled images X = {xi}N

i=1 are
clustered into K classes. Then, the pseudo-label-matching algorithm is used to transform
the image set with pseudo-labels into a set of images with true labels. Second, we fine-tune
the labels of the images using the label-matching refinement algorithm. Third, we optimize
guided diffusion using labeled images matched by the label-matching refinement algorithm.
In the following subsections, we will first provide a brief background on diffusion models,
followed by a detailed dissection of the individual modules.

3.1. Preliminary

Diffusion probabilistic models [40,41] are a class of latent variable models that involve
both a forward diffusion process and a reverse diffusion process. The forward process of
diffusion model is a Markov chain where data are gradually corrupted with Gaussian noise
based on a variance schedule β1, . . . , βT :

q(x1:T | x0) :=
T

∏
t=1

q(xt | xt−1) (1)

q(xt | xt−1) := N
(

xt;
√

1 − βtxt−1, βt I
)

(2)

where x0, . . . , xT are latent variables of the same dimension, and x0 follows the distribution
q(x0). The inverse process of the diffusion model, denoted as pθ(x0:T), is defined as a
Markov chain with learned Gaussian transitions:

pθ(x0:T) := p(xT)
T

∏
t=1

pθ(xt−1 | xt) (3)
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pθ(xt−1 | xt) := N (xt−1; µθ(xt, t), Σθ(xt, t)I) (4)

where µθ(xt, t) can be represented as a linear combination of xT and a noise predictor
ϵθ(xt, t), the variance Σθ(xt, t) is fixed to a known constant typically.
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Figure 1. Illustration of the GDUI framework. (a) Encode images into semantically meaningful latent
vectors and map semantic information. (b) Filter out irrelevant information. (c) Generate images
based on matched real semantic information.

The quality of samples can be optimized by the following parameterized and simpli-
fied objective:

Lsimple(θ) := Et,x0,ϵ

[∥∥∥ϵ − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, t

)∥∥∥2
]

(5)

Here, t is uniformly distributed between 1 and T. It is defined αt := 1 − βt and
ᾱt := ∏t

s=1 αs.
Compared to unconditional diffusion models, conditional diffusion models can gener-

ate images specified by conditions. The classifier-guided [5,42] sampling method demon-
strates that the gradient ∇xt log pϕ(y | xt) of a classifier can guide conditional diffusion
models to generate higher-quality samples with a specified class y.

3.2. Pseudo-Label Generation

To extend the classifier guidance technique to unlabeled images, here we adopt a deep
clustering approach for the unsupervised learning of visual features [43] to cluster the
samples and generate synthetic labels. We adopt the SPICE [31] framework that divides
network training into three stages. First, there are two branches in which two different
random transformations of the same image are taken as inputs. Each branch includes a
feature model and a projection head. Given two transformations x′ and x′′ of an image x,
the outputs of the two branches are represented as z+ and z, respectively. The parameters
of the feature model F and projection head P are optimized by the following loss function:

L f ea = − log

(
exp

(
zTz+/τ

)
∑

Nq
i=1 exp

(
zTz−i /τ

)
+ exp(zTz+/τ)

)
(6)

where z−i is the negative sample and τ is the temperature. The finally optimized feature
model parameters are denoted as θs

F .
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In the second stage, given the feature model parameters θs
F and the unlabeled images

X, the goal is to separately optimize the parameters θC of the clustering head C in order to
predict cluster labels

{
ys

i
}

. The optimization of parameters θC is performed within the EM
framework, where the cluster labels

{
ys

i
}

are obtained given θC in the expectation (E) step,
and then in the maximization (M) step, the parameters θC are optimized upon obtaining
the cluster labels

{
ys

i
}

.
In the third stage, the feature model F and clustering head C are jointly optimized.

After obtaining the embedding features { fi}N
i=1 and cluster labels

{
ys

i
}

corresponding to
the images X in the first two stages, a subset of reliable samples Xr is selected as:

Xr = {(xi, ys
i ) | ri > σr, ∀i = 1, 2, . . . , N} (7)

where ri is the semantically consistent ratio of the sample xi and σr denotes the confidence
threshold for Xr. The semantically consistent ratio ri of the sample xi is defined as:

ri =
1

Ns
∑

y∈Li

1(y = ys
i ) (8)

where Ns represents the number of samples that are closest to the sample xi based on the
cosine similarity between their embedding features, and Li represents the corresponding
labels of these Ns samples. The jointly trained network optimizes the parameters θF and
θC using the following loss function:

Ljoint =
1
L

L

∑
i=1

Lce(ys
i , C(F (α(xi); θF ); θC)) +

1
U

U

∑
j=1

1

(
yu

j ≥ 0
)
Lce

(
yu

j , C
(
F
(

β
(
xj
)
; θF

)
; θC
))

(9)

where the first part is calculated using L reliable samples
(
xi, ys

i
)

from Xr, and the second
part is calculated using U pseudo-labeled samples

(
xi, yu

i
)

with pseudo-labels yu
j . These

pseudo-labels yu
j are assigned to the classes predicted by the network with the highest

probability and exceeding a certain threshold. α and β respectively denote the operators for
weak and strong transformations on the input image. Lce is the cross-entropy loss function.

After three stages of clustering, the input unlabeled images X = {xi}N
i=1 are divided

into K clusters with clustering labels
{

ys
i
}

. The probability matrix P = [p1, p2, . . . , pN ]
T ∈

RN×K is generated for the image set for each clusters. The probability matrix P represents
the probabilities of each image belonging to specific clusters.

3.3. Diffusion Pseudo-Label Matching

Based on the obtained cluster labels
{

ys
i
}

of X over K clusters, our goal is to match them
with the ground-truth labels to guide target generation in the GDUI model. In unsupervised
situations, we do not have ground truth to match against. To address the challenge of
matching the ground-truth labels with the obtained cluster labels and to ensure a globally
attentive alignment, we adopt the principles of the Stable Marriage Algorithm (SMA) [44]
for the overall matching strategy. This approach emphasizes the importance of considering
global information in the matching process. To address this issue, we propose the pseudo-
label-matching algorithm, which leverages the zero-shot capability of CLIP to achieve
bilateral matching between the clustering labels and the ground truth. Given the clustering
probability matrix P and K clusters with cluster labels

{
ys

i
}

, the top confident samples are
selected as the clustering prototypes for each cluster.

To illustrate the process, we take the m-th cluster as an example. We define the m-th
cluster as:

Xm = {(xi, ys
i ) | ys

i = m, ∀i = 1, 2, . . . , N} (10)

The top samples are selected as:

X
top
m = {(xi, ys

i ) | i ∈ argtopk(Pj,m, Ntop), xj ∈ Xm} (11)
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where the argtopk function argtopk
(
Pj,m, Ntop

)
returns the indices of the top Ntop highest-

scoring samples in the m-th cluster.
Using CLIP, zero-shot classification is performed on the samples in X

top
m with respect

to the provided ground-truth label set Y g =
{

yg
i

}K

i=1
. The classes with the highest classifi-

cation probability are then selected as the labels for the samples. We obtain pc
i as the CLIP

classification probability for the m-th cluster by calculating the proportion of each class
in the Ntop samples. This ensures that the priority of each class in the clustering result is
directly proportional to its probability such that higher probabilities correspond to higher
priorities. Then, based on the previously obtained K clusters, the CLIP priority matrix for
the K clusters, Pc =

[
pc

1, pc
2, . . . , pc

K
]T ∈ RK×K, is constructed.

A cluster, for example, the m-th cluster Xm, is selected from the unmatched clusters
U = {Xi}K

i=1 that have not been matched with the ground-truth label set Y g, and the highest
priority class yg

i , represented as:

yg
i = argmax Pc

m,j, j ∈ Yu
m (12)

where Yu
m represents the ground truth of the m-th cluster that has not been requested for

label matching, and Pc
m,j denotes the element in the m-th row and column j of matrix Pc,

where j is the index of the element in the Yu
m. Then, argmax Pc

m,j returns the index of the
highest priority class among all unmatched ground truths for the m-th cluster. If the class
yg

i has not been assigned, then it is assigned to the current m-th cluster. Otherwise, its
priority is compared with the already assigned clusters. The cluster with a lower priority
is added back to the unmatched clustering set U, while the one with a higher priority is
matched with class yg

i . Until all clusters are matched, we can obtain each cluster and its

corresponding label, denoted by M =
{
(Xi, yg

i )
}K

i=1
, where each label corresponds to the

true class.
The above process for diffusion pseudo-label matching is summarized in Algorithm 1.

Algorithm 1 Pseudo-label matching

Input: Unmatched clusters U = {Xi}K
i=1

Output: Matched clusters M =
{
(Xi, yg

i )
}K

i=1
1: for i = 1, 2, . . . , K do
2: Select i-th cluster Xi from U with Equation (10);
3: Select Ntop top confident samples Xtop

i from Xi with Equation (11);
4: Compute class proportions pc

i based on highest classification probability of each
xi ∈ X

top
i using CLIP;

5: end for
6: Generate priority matrix Pc =

[
pc

1, pc
2, . . . , pc

K
]T;

7: while U ̸= ∅ do
8: Pick a cluster Xm from U;
9: Select the highest priority true label yg

i among unrequested matches with
Equation (12);

10: if yg
i has not been assigned then

11: Assign yg
i to cluster Xm;

12: else
13: yg

i has been assigned to cluster Xk;
14: Assign yg

i to the cluster with higher priority between Xmand Xk;
15: Add lower-priority cluster to unmatched clusters U
16: end if
17: end while
18: return Matched clusters M =

{
(Xi, yg

i )
}K

i=1
;
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3.4. Diffusion Label Matching Refinement

In the SPICE framework, an imperfect feature model can cause similar features to be
assigned to truly different clusters, while imperfect cluster heads can result in dissimilar
samples being assigned the same cluster label. These issues may eventually lead to the
presence of samples from different classes in the same cluster and mismatches between
samples and their true labels. Alternatively, these errors can also be caused by the pseudo-
label-matching algorithm, which can result in mismatches between the cluster labels and
the true labels of the clusters they represent. To overcome these issues, we propose a
diffusion model label-matching refinement algorithm to adjust the matching of labels
within clusters.

Here, we also use the m-th cluster as an example, similar to our previous selection of
X

top
m and the least confident samples Xbtm

m for m-th cluster being selected as:

Xbtm
m = {(xi, ys

i ) | i ∈ arglowk(Pj,m, Nbtm), xj ∈ Xm} (13)

where the arglowk function arglowk
(
Pj,m, Nbtm

)
returns the indices of the least Nbtm confi-

dent samples, selected from the indices belonging to the m-th samples in the m-th column
of matrix P:,m. Similar to X

top
m , zero-shot classification based on true labels for Xbtm

m is also
performed using CLIP.

Furthermore, the semantic matching ratios δ
top
m and δbtm

m for the top and bottom of the
m-th cluster can be represented as:

δ
top
m =

1
Ntop

∑
y∈Xtop

m

1

(
y = yg

i

)
(14)

δbtm
m =

1
Nbtm

∑
y∈Xbtm

m

1

(
y = yg

i

)
(15)

where δ
top
m and δbtm

m reflect the matching status of the top and bottom of the m-th cluster.
To comprehensively reflect the matching status of the m-th cluster, the overall semantic
matching ratio δm is defined as:

δm = δ
top
m ∗ wtop + δbtm

m ∗ wbtm (16)

where wtop and wbtm represent the weights of δ
top
m and δbtm

m , respectively, in the overall
matching ratio δm.

If the overall semantic matching ratio δm > λδ, where λδ is the overall matching
threshold, then a high matching degree for the m-th cluster Xm implies that the cluster label
yg

m for that is trustworthy. In other cases, further examination is required to determine the
matching status of the top and bottom of the m-th cluster. In cases where the matching
status of the top δ

top
m in the m-th cluster is greater than the top matching threshold λtop

but the matching status of the bottom δbtm
m is less than the bottom matching threshold λbtm,

it is necessary to evaluate the semantic consistency ratio rbtm
m of the least confident samples

Xbtm
m , which can be defined as:

rbtm
m =

1
Nbtm

∑
xi∈Xbtm

m

Pi,m (17)

where Pi,m denotes the clustering probability of the element located in the i-th row and
m-th column of matrix P, specifically referring to the probability that xi ∈ Xbtm

m belongs
to the m-th cluster Xm. When rbtm

m exceeds the confidence threshold σbtm, it implies that
even if the matching degree at the bottom level is lower than the threshold, the overall
consistency of the m-th cluster Xm is sufficiently reliable, thus suggesting that the cluster
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label yg
m as a whole can be trusted. Otherwise, samples X

adj
m in the m-th cluster with low

clustering consistency, denoted as:

X
adj
m =

{(
xi, yg

i

)
| Pi,m < σbtm, xi ∈ Xm

}
(18)

need to be reassigned to other clusters using CLIP.
If δ

top
m is less than the top matching threshold λtop, it suggests a mismatch in the

overall clustering. If rbtm
m is also lower than the confidence threshold σbtm, we use CLIP

to reassign the samples X
adj
m in the m-th cluster with low clustering consistency to other

clusters, indicating that their original cluster labels are no longer valid. Furthermore, when
rbtm

m exceeds the confidence threshold σbtm, suggesting overall clustering consistency but a
mismatch in the overall clustering, we will maintain the original matching cluster labels
yg

m. Following the fine-tuning of each cluster, the resulting fine-tuned clusters, along with

their corresponding labels M∗ =
{(

X∗
i , yg

i

)}K

i=1
are obtained; X∗ denotes the cluster that

has undergone fine-tuning.

3.5. Synthesis Guided with Matching Labels

For conditional image synthesis, we use a classifier pϕ(y | x) to enhance the generator

of diffusion models based on clusters M∗ =
{(

X∗
i , yg

i

)}K

i=1
with given matching real

classes, where x is the input image to the classifier and y is the corresponding output
label. The classification network is composed of the feature model F and the clustering
head C from the clustering stage, along with an additional classification head Ccl f . As
demonstrated in previous works [41,42], a pre-trained diffusion model can be conditioned
via the gradients of a classifier. The conditioned reverse denoising process, denoted as
pθ(xt−1 | xt) in Equation (4), can be expressed as pθ,ϕ(xt | xt+1, y). In [41,42], the following
equation:

log pθ,ϕ(xt | xt+1, y) = log
(
(pθ(xt | xt+1)pϕ(y | xt)

)
+ B1

≈ log p(z) + B2, z ∼ N (µ + Σg, Σ)
(19)

where g = ∇xt log pϕ(y | xt)
∣∣
xt=µ

and Σθ(xt, t) = Σ for brevity, have been proven. B1 and

B2 are constants. pϕ(y | xt)
)

is a shorthand for the classifier pϕ(y | xt, t)
)

trained on noisy
images xt.

4. Results and Discussion

In this section, we evaluate GDUI on different benchmarks in terms of various metrics.
First, we describe our benchmark datasets and their evaluation metrics. Second, we describe
the baselines and implementation details used in the experiments. Third, we compare
GDUI with models that use alternative strategies and show the comparative results. Finally,
we conduct ablation experiments and related analyses for the proposed GDUI model.

4.1. Dataset and Evaluation Metrics

We validated the effectiveness of the proposed model on the STL-10 dataset [45].
The STL-10 dataset contains 10 different classes of images, with 500 images per class,
totaling 5000 labeled training images and 8000 unlabeled testing images. These images
have a resolution of 96 × 96 pixels. During training, we combined and trained the STL-10
dataset’s train and test split datasets together. GDUI and its corresponding baselines are
quantitatively evaluated for sample quality using the following metrics. We used the
Fréchet Inception Distance (FID) [46] as the primary metric to measure the overall sample
quality, including both diversity and fidelity, because it is currently the de facto standard
metric for evaluating generative models. FID combines the statistical feature differences
between the samples generated by the image generation model and the distribution of real
images. To ensure more accurate FID calculation, we sampled all 13,000 images from the
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STL-10 dataset as samples of real images. To ensure a fair comparison, the distribution
of real images for calculating all the metrics was based on the 13,000 images from the
STL-10 dataset. In addition, we also used sFID [47], another version of FID that uses spatial
features instead of pooled features to capture spatial relationships, as a standard metric
for evaluating image quality. For sample fidelity, we used Inception Score (IS) [48] as a
supplementary metric, which evaluates the quality of generated images by utilizing a
pre-trained Inception-V3 [49] network on ImageNet [50]. The Improved Precision and
Recall [51] metrics can separately evaluate the fidelity and diversity of generated samples,
where Precision measures the ratio of model samples falling into the data manifold, while
Recall measures the ratio of data samples falling into the sample manifold.

4.2. Baselines and Implementation Details

Regarding the choice of baseline, we compare GDUI against both the unconditional
diffusion model and the diffusion model guided by a classifier trained on ground truth [5].
When comparing with baselines, we use the same backbone and hyperparameters, en-
suring a fair comparison. As the training and sampling steps of diffusion models are
typically positively correlated with the sampling results [13], we keep the training and
sampling steps consistent at 500 steps when comparing. The details of the initial clustering
implementation are as follows. During the representation learning phase of clustering,
we employ MoCo-v2 [52] and use ResNet34 [53] as the backbone for feature learning in
clustering. Additionally, both the clustering head and classification head consist of two
fully connected layers.

4.3. Comparisons

On one hand, we compare GDUI to an unconditional diffusion model and a diffusion
model trained on datasets with ground-truth labels. On the other hand, we also compare
GDUI to other state-of-the-art methods. Due to the potential impact of different compute
budgets on fair comparisons, we utilize the same compute budget for all compared mod-
els. The comparison results on the STL-10 dataset are shown in the Table 1. We observe
significant improvements of GDUI over unconditional diffusion model in evaluation met-
rics, such as 37.9% increase in FID score, 19.3% increase in IS score, and 25.4% increase
in precision. More notably, GDUI outperforms diffusion model trained on ground-truth
labels in all evaluation metrics except for the Recall score, where it performs slightly worse.
Furthermore, GDUI surpasses the comparison models in all evaluation metrics except for
the Recall score. We believe that GDUI achieves this effect by aligning images with similar
features better with label information. We explicitly evaluate changes in sample quality
under different training iterations as shown in Figure 2. The results indicate that GDUI
outperforms the unconditional diffusion model on all evaluation metrics except for Recall,
with a significant margin observed in most cases.

Table 1. Comparison of GDUI on the whole merged STL-10 dataset, combining the train and test
split datasets. The best results are highlighted in bold.

Diffusion Method FID↓ sFID↓ IS↑ Precision↑ Recall↑
Unconditional 26.81 48.74 9.76 0.59 0.45
Ground-truth

guidance 17.20 48.55 11.40 0.72 0.41

IGGAN [54] 21.39 49.53 10.71 0.65 0.39
DDGAN [55] 21.79 49.12 10.34 0.69 0.40

TransGAN [56] 18.28 50.30 11.34 0.64 0.42
GDUI 16.66 48.44 11.64 0.74 0.39
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Figure 2. Changes in sample quality under different iterations. Throughout the entire training
process, GDUI outperforms the diffusion model trained with ground-truth labels in terms of FID,
sFID, IS, and precision metrics in many cases, indicating that the superior performance of GDUI is not
just a coincidence. Moreover, both GDUI and the diffusion model trained with ground-truth labels
outperform the unconditioned diffusion model trained for 400K iterations, which achieved the best
performance throughout the entire training process, in terms of FID, sFID, IS, and precision metrics.
(a) FID at different iterations. (b) sFID at different iterations. (c) IS at different iterations. (d) Precision
at different iterations. (e) Recall at different iterations.

Compared to the diffusion model based on ground-truth labels, GDUI maintains an
advantage in FID, IS, sFID, and precision metrics on most training stages, especially as the
number of iterations increases. However, GDUI still lags behind the diffusion model based
on ground-truth labels by 2% in Recall.

Qualitative results on STL-10 are shown in Figure 3. It can be observed that the
perceptual quality of GDUI-generated samples is higher than those generated by diffusion
models based on unconditional and ground-truth labels. For example, GDUI generates
images with relatively clear structures of cars and better shapes of horses compared to
other diffusion models.

4.4. Ablation Study

In this section, we conduct experiments to investigate the effects of different parame-
ters and components on the GDUI framework.

4.4.1. Component Ablation

To guide the diffusion models to generate high-quality images on unlabeled datasets,
we utilize three key methods: pseudo-label generation (PLG), pseudo-label matching
(PLM), and label-matching refinement (LMR). So, we perform four gradually changing
settings to validate the effectiveness of the three components: (1) We use unconditional
diffusion models as a baseline for ablation experiments, as described in Section 4.2. (2) We
utilize the pseudo-label generation (PLG) method to generate pseudo-labels for unlabeled
datasets, and directly train and generate images on them using the guided diffusion model.
(3) To generate images of specific real categories, we utilize the pseudo-label-matching
(PLM) method to train and generate images. (4) Finally, we employ the label-matching
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refinement (LMR) method to further improve the performance by adjusting irrelevant
semantic information of the images.

GDUI(Ours) Ground-truth guidance Unconditional

Figure 3. Qualitative comparisons on STL-10 dataset. Samples from our diffusion model GDUI (FID
16.66, left) compared to samples from a diffusion model based on ground-truth labels (FID 17.20,
middle) and samples from a diffusion model based on an unlabeled dataset (FID 26.81, right).

We show the results in Table 2. The initial performance of the baseline, i.e., the
unconditional diffusion model, on all metrics except Recall is relatively low. Moreover,
since it is built on an unlabeled dataset, it cannot generate images of specific real categories.
By adopting the pseudo-label generation (PLG) method, the quality of the generated images
improves in terms of FID, sFID, IS, and precision metrics. Particularly, there is a significant
improvement in FID and precision metrics. However, the problem of generating images
of specific real categories is not completely solved since only pseudo-labels are generated.
The aforementioned problem is addressed by utilizing the pseudo-label-matching (PLM)
method. Meanwhile, since the pseudo-label-matching (PLM) method only matches the
clusters with pseudo-labels to the actual classes, without better aligning the images and
labels, the quality of the generated images does not improve. Finally, we utilize the
label-matching refinement (LMR) method to adjust the semantic information within the
clusters with actual class information, in order to better align the images with the semantic
information. It further improves the image quality while maintaining the ability to generate
images of specific real categories.
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Table 2. Ablation studies of GDUI on the whole STL10 dataset. Here, baseline refers to the uncondi-
tional diffusion model trained for 400K iterations on the unlabeled dataset. Qualitative comparisons
are also conducted to evaluate whether the models can generate images of specific real categories.
The best results are highlighted in bold.

Method Real Class FID ↓ sFID↓ IS ↑ Precision↑ Recall↑
Baseline NO 26.81 48.74 9.76 0.59 0.45

+PLG NO 18.74 48.67 10.86 0.69 0.38
+PLM YES 18.73 48.66 10.85 0.69 0.38
+LMR YES 16.66 48.44 11.64 0.74 0.39

4.4.2. Effect of Confidence Threshold

The confidence threshold σbtm is an important hyperparameter of the label-matching
refinement method, which determines whether clustering needs to be fine-tuned and
the range involved in the fine-tuning process. Thus, we investigate how the confidence
threshold σbtm influences the quality of images generated by GDUI, and analyze the results
accordingly. As depicted in Figure 4, for the majority of cases where the confidence thresh-
old σbtm ranges from 0 to 1, GDUI exhibits superior performance over the unconditional
diffusion model across various evaluation metrics. It is worth noting that in the majority
of cases, GDUI also exhibits superior performance over the diffusion model based on
ground-truth datasets in all evaluation metrics except Recall. As can also be observed
from Figure 4, when the confidence threshold σbtm approaches a small value close to 0,
the overall performance of GDUI degrades to be similar to only using the pseudo-label
generation (PLG) method. This phenomenon can be understood as the label-matching
refinement method determining that no fine-tuning is needed for the labels within a cluster
when the confidence threshold σbtm is set to a low value. When σbtm tends to 1 with a large
value, the overall performance of GDUI becomes similar to the diffusion model based on
ground-truth datasets. This can be interpreted as the label-matching refinement method
considering that almost all image labels need to be fine-tuned.
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Figure 4. Ablation results of various σbtm values on the STL10 dataset. As σbtm increases, the general
trend for all metrics is to first improve and then worsen.



Algorithms 2024, 17, 125 13 of 16

5. Limitations and Future Work

In this study, the GDUI significantly improves the fidelity and diversity of generated
images on target unlabeled datasets, and even outperforms the diffusion model based
on ground-truth labels in most cases. However, both the clustering method we used and
existing clustering methods assume prior knowledge of the number of clusters K, and in
order to match with the ground-truth labels, we also need to know the names of the true
classes, which may not always be available in some cases. In the future, our method could
be combined with image-to-text approaches to obtain the true textual information, not just
the class information, for unlabeled datasets. Furthermore, our method can also be applied
to tasks such as graph property prediction [57] and improving the adversarial robustness
in classification tasks [58]. In future personalized photo customization [59], our approach
is poised to produce higher-quality photos more effectively, while also better aligning
with user preferences and specific needs. It provides assistance for the issue of annotating
medical images, which requires domain experts [60,61]. In addition, the diffusion model
in this paper is based on a pixel-wise diffusion model, which incurs high training costs.
However, the GDUI framework is a generic diffusion model framework designed for
unlabeled datasets, and it can be adapted to be compatible with latent-based diffusion
models in the future to achieve the goal of reducing training costs.

6. Conclusions

We have presented GDUI, a generic guided diffusion model framework designed
for unlabeled datasets. The framework consists of three stages: encoding images into
semantically meaningful latent vectors and mapping semantic information, filtering out
irrelevant information, and generating images based on matched real semantic information.
Our experiments have demonstrated that compared to the diffusion model based on
unlabeled datasets, GDUI achieved a 37.9% improvement in FID, a 19.3% improvement
in IS, and a 25.4% improvement in precision. This indicates a significant enhancement in
the quality of generated samples. Additionally, the experiments demonstrate that GDUI
can generate high-quality images of specified categories on unlabeled datasets, and even
outperforms the diffusion model based on ground-truth labels. Our future goal is to achieve
higher-quality image generation on large-scale and multi-category unlabeled datasets.
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