
Citation: Xin, T.; Yuan, M. PDEC:

A Framework for Improving

Knowledge Graph Reasoning

Performance through Predicate

Decomposition. Algorithms 2024, 17,

129. https://doi.org/10.3390/

a17030129

Academic Editors: Krzysztof Ejsmont,

Aamer Bilal Asghar, Yong Wang and

Rodolfo Haber

Received: 17 February 2024

Revised: 14 March 2024

Accepted: 14 March 2024

Published: 21 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

PDEC: A Framework for Improving Knowledge Graph
Reasoning Performance through Predicate Decomposition
Xin Tian 1,* and Yuan Meng 2

1 School of Computer Science, National University of Defense Technology, Changsha 410073, China
2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;

yuanmeng@tsinghua.edu.cn
* Correspondence: tianxin07@nudt.edu.cn

Abstract: The judicious configuration of predicates is a crucial but often overlooked aspect in the field
of knowledge graphs. While previous research has primarily focused on the precision of triples in
assessing knowledge graph quality, the rationality of predicates has been largely ignored. This paper
introduces an innovative approach aimed at enhancing knowledge graph reasoning by addressing
the issue of predicate polysemy. Predicate polysemy refers to instances where a predicate possesses
multiple meanings, introducing ambiguity into the knowledge graph. We present an adaptable
optimization framework that effectively addresses predicate polysemy, thereby enhancing reasoning
capabilities within knowledge graphs. Our approach serves as a versatile and generalized framework
applicable to any reasoning model, offering a scalable and flexible solution to enhance performance
across various domains and applications. Through rigorous experimental evaluations, we demon-
strate the effectiveness and adaptability of our methodology, showing significant improvements in
knowledge graph reasoning accuracy. Our findings underscore that discerning predicate polysemy
is a crucial step towards achieving a more dependable and efficient knowledge graph reasoning
process. Even in the age of large language models, the optimization and induction of predicates
remain relevant in ensuring interpretable reasoning.

Keywords: knowledge graph; reasoning; predicates; embedding

1. Introduction

Predicates play a pivotal role in knowledge management and interpretable reasoning.
Formulating a reasonable and precise set of predicates is a fundamental step in building
a knowledge graph (KG). Despite the widespread use of large language models (LLMs),
a well-configured predicate set remains crucial for achieving interpretable reasoning.

Traditional KG-based reasoning research typically operates in a transductive setting,
where the triples to predict involve only entities and predicates that have occurred in
the embedding training triples [1–4]. This is known as transductive knowledge graph
completion (transductive KGC). Conversely, inductive KGC aims to complete triples involving
unseen entities without retraining the KG embeddings from scratch [5,6]. However, most
inductive KGC studies focus on introducing new entities in the test set, rather than new
predicates [7,8]. This assumes that the predicate set configuration is reasonable, which is
often not the case.

Predicates in a KG may possess multiple semantics, reflected in the local structure as-
sociated with the predicate in the graph [9]. When a predicate exhibits multiple patterns in
its local structure, it may have multiple semantics. For example, in Freebase [10], the predi-
cate Person-Language represents the relationship between persons and the language they
speak. This relationship can be further subcategorized into predicate relationships between
persons and their mother tongue (Person-NativeLanguage) and between persons and
the foreign language they master (Person-ForeignLanguage). The former exhibits local

Algorithms 2024, 17, 129. https://doi.org/10.3390/a17030129 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17030129
https://doi.org/10.3390/a17030129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a17030129
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17030129?type=check_update&version=1

Algorithms 2024, 17, 129 2 of 17

structural features closely associated with predicates like Person-Nationality. Predicates
with multiple semantics can be termed as polysemous predicates.

Additionally, there may be issues of synonymous predicates, where multiple distinct
predicates share identical semantic features, leading to confusion in distinguishing between
them. Conversely, there may be issues of predicates missing in KGs, where a particular local
structural pattern between entities is not captured by a single predicate (e.g., a KG has the
predicate husbandOf but lacks the predicate coupleOf; the latter could assist KGC tasks
related to marital relationships on the KG).

These issues of predicate set configuration can significantly impact the ability of KGs
to represent knowledge and the performance of reasoning models. Therefore, it is crucial
to address these issues to enhance the quality of KGs and improve the performance of
reasoning models.

Recently, some research has been dedicated to implementing predicate inductive KGC,
which involves introducing predicates that have never existed in the training set into
the test set of KGC tasks [11]. However, these efforts either rely on additional ontology
information and textual information for assistance in induction or focus solely on feasibility
studies, often sacrificing the performance of reasoning models [12]. Furthermore, they have
primarily considered the issue of missing predicates and have not delved into issues of
polysemy and synonymy of predicates.

In contrast, our work focuses on addressing the problem of polysemous predicates
and proposes a simple yet effective method, PDEC (predicates decomposition), to enhance
reasoning model performance without introducing any external information. PDEC opti-
mizes the quality of KGs by decomposing polysemous predicates into more specific ones,
thereby improving the accuracy and interpretability of reasoning.

Our approach is based on representation learning, where we obtain entity and predi-
cate embeddings by calculating edge vectors for each triplet in the training set. These vectors
are then clustered to identify polysemy in predicates and determine an optimal split for
the polysemous predicates. This refined KG, achieved through predicate decomposition, can
be seamlessly integrated into any reasoning model. Moreover, the original predicates can
be reconstructed from the split predicates, enabling the model to operate on the original
KG. In addition, we explore other challenges related to predicate set configuration, such as
synonymous predicates. We focus on optimizing predicates that do not involve merging
and comparing their performance to demonstrate the effectiveness of our approach.

We experimentally compare the performances of the same reasoning model on the
original KG and the optimized version obtained through predicate decomposition. We
utilize clustering quality metrics to adaptively search for the optimal cluster that leads to
optimal predicate decomposition, further enhancing the reasoning model’s performance
on KGs.

Overall, our work addresses crucial issues in predicate set configuration and provides a
practical solution to enhance the quality of KGs and improve the performance of reasoning
models. We introduce a versatile and practical method for improving KG reasoning
performance through predicate decomposition. This approach is applicable to various KGs
and reasoning models. We pioneer the implementation of predicate inductive reasoning
that does not rely on external information and enables authentic KG completion tasks even
when the original predicate set varies. This method also serves as a tool to enhance KG
quality. We have optimized common KG benchmarks using this method and made the
optimized versions publicly available.

The structure of this article is as follows: Section 2 mainly describes related works, such
as KGC, inductive KGC, and predicate inductive KGC. Section 3 formalizes the methodol-
ogy of the PDEC framework and provides preliminary theoretical proof. Section 4 describes
the experimental datasets, baselines, and experimental setup details, and presents the exper-
imental results. Section 5 discusses and analyzes the experimental results. Section 6 sum-
marizes the work of the paper and analyzes the current limitations and future work plans.

Algorithms 2024, 17, 129 3 of 17

2. Related Work

The work related to this article encompasses three primary facets: transductive KGC,
inductive KGC, and predicate inductive KGC. Transductive KGC represents a conventional
reasoning task, with trained KGC models unable to engage in reasoning related to novel
entities absent from the training set. By contrast, inductive KGC allows the reasoning
model to handle new entities not seen during training, but falls short when dealing with
novel predicates. Predicate inductive KGC demands that the reasoning model possess the
capability to reason over both new entities and predicates. Our PDEC framework executes
the predicate inductive KGC task, which involves decomposing polysemous predicates
within the original predicate set to yield new, more rational predicates.

As these three KGC tasks are progressively related and strongly correlated with
PDEC, it becomes imperative for us to examine their associated literature. Compared with
transductive KGC and inductive KGC, PDEC has performance advantages and unique
capabilities in handling new predicates. Unlike existing models in the predicate inductive
KGC realm, PDEC does not necessitate external information, instead solely relying on the
analysis of the polysemy in the original predicate set to acquire reasoning capabilities for
novel predicates. This approach, which is rooted in predicate decomposition, offers a more
rational predicate set, thereby effectively enhancing the reasoning models’ performance.
Transductive KGC via KG embeddings. A number of works are proposed for KGC
tasks using learnable embeddings for KG relations and entities. For example, in [1–4,13],
they learn to map KG relations into vector space and predict links with scoring functions.
NTN [14], on the other hand, parameterizes each relation into a neural network. In [15],
the authors present a theoretical framework that highlights the capabilities of graph neural
networks (GNNs) in embedding entities and relations within KGs and executing link
prediction tasks. The paper [16] proposes a divide–search–combine algorithm, RelEns-DSC,
to efficiently search relation-aware ensemble weights for KG embedding. Because these
algorithms need to learn embeddings of entities and relations in the test set during the training
process, they are generally only suitable for transductive KGC tasks and cannot be applied to
scenarios where there are new predicates in the test set such as predicate decomposition.
Inductive KGC. In recent years, inductive KG reasoning has gained increasing attention.
This approach enables reasoning tasks to be performed in a bottom–up manner, focusing on
the emergence of new entities. Methods such as ([17,18]) have emphasized the importance
of modeling emerging entities, while ([19]) has introduced rule-based attention weights
and ([20]) has extended RotatE ([4]) to enhance inductive reasoning. Alternatively, some
research has focused on conducting inductive KGC tasks through rule mining. Neural LP [7]
and DRUM [8] have reduced the rule learning problem to algebraic operations on neural-
embedding-based representations of a given KG. LogCo [21] combines logical reasoning
with contrastive representations and extracts subgraphs and relational paths to achieve entity
independence and addresses supervision deficiencies, achieving superior performance on
inductive KG reasoning. The paper [22] proposes an adaptive propagation path learning
method for GNN-based inductive KG reasoning, addressing the limitations of hand-designed
paths and explosive growth of entities. Compared with these methods, we tackle a more
challenging problem where predicates can be new instead of only some entities being new.
Predicate inductive KGC. Predicate induction KGC is the latest development of inductive
KGC (also known as entity induction KGC), which aims to enable KG reasoning models to
perform KGC tasks on new predicate sets that do not exist in the training set. INGRAM [11]
exhibits remarkable reasoning capabilities for novel predicates, enabling it to handle any
new predicates. However, novel predicates are not generated via polysemy splitting
and synonymy merging; furthermore, a message-passing step on the graph containing
novel predicates is still required prior to reasoning. This makes it incapable of effectively
detecting missing predicates. Although RMPI [11] exhibits some ability to discover new
predicates, it relies on additional ontology information. These characteristics hinder efforts
to optimize the quality of the original graph and the performance of reasoning models
built upon it, facing challenges in enhancing reasoning abilities. In contrast, PDEC excels at

Algorithms 2024, 17, 129 4 of 17

discovering new predicates by decomposing polysemous predicates and enhancing the
reasoning performance of the original KGs.

3. Materials and Methods

To address the issue of determining the granularity of predicate decomposition,
the PDEC framework is based on iterative optimization. A key feature of this frame-
work is an automated predicate decomposition algorithm that identifies the predicates
that require decomposition and determines their appropriate decomposition granularity
without requiring human intervention.

In each iteration of the decomposition algorithm, entity representations are utilized to
decompose predicates, as shown in Figure 1. This process updates the KG and then updates
the entity representations using any representation learning algorithm. The updated entity
representations serve as input for the next round of predicate decomposition.

Additionally, we present an optimization framework that allows control over the number
of iterative optimization rounds with only a limited set of hyperparameters. Algorithm 1
provides a pseudocode overview of the PDEC algorithm.

(a) Example of decomposing for predicate is_CoupleOf . (b) Example of decomposing for predicate Person-Language.

Figure 1. The figure is a visual representation of the predicate decomposition framework. The
left (a) is an example of the predicate is_CoupleOf. The circles and triangles represent entities,
and the vectors between them represent predicates. Bob and Ella, John and Monica, Jim and Susan,
and Rachel and Peter are all couple pairs; however, the relationship between Rachel and Peter is
distinctly different from those of the other three pairs. This difference is emphasized by the orange
lines in the figure. After predicate decomposition, the predicates can be divided into two separate
predicates: is_husbandOf and is_wifeOf. This division is clearly demonstrated in the right figure.
On the right (b) is another example of the predicate Person-Language. Please refer to the introduction
for relevant explanations.

3.1. Preliminaries

KGs. A KG is a collection of the triples K = {(h, r, t)|h, t ∈ E , r ∈ R} ⊆ E ×R× E , where
E and R represent the sets of entities and predicates in the KG, respectively. In a triple
(h, r, t), entities h and t are referred to as the head entity and tail entity, respectively.
KG embedding and notations. Within the context of a KG K = {(h, r, t)}, KG embedding
aims to represent each entity h, t ∈ E and relation r ∈ R using continuous vectors, denoted
as h, t, and r, respectively. These vectors serve as dense representations that capture the
meaning and relationships encoded in the KG.
KGC tasks. KGC, or knowledge graph completion, involves inferring missing facts from
the known facts within KGs. The objective of a KG reasoning model is to effectively rank
positive triplets higher than negative triplets, thereby accurately identifying potential
positive triplets that may have been overlooked in the current graph.

Algorithms 2024, 17, 129 5 of 17

Formally speaking, KGC is often cast as a tail prediction task, where the model aims
to prioritize the tail entity t ∈ E of an incomplete triplet x = (h, r, ?) over a set of negative
entities. This set of negative entities is defined as Nt = {e ∈ E : (h, r, e) /∈ K}, where K
represents the known facts in the KG. The model, denoted as F(x), computes a score vector
s for each entity e ∈ {t} ∪ Nt. These scores indicate the likelihood of the triplet (h, r, e)
being true. Analogously, the head prediction task strives to complete incomplete triplets like
x = (?, r, t).

3.2. Predicate Decomposition

In this step, we aim to decompose the predicates in order to better represent contex-
tual information. In existing representation learning frameworks, the same predicate is
associated with the same representation vector, which cannot be further decomposed.

To discriminate polysemous predicates, we obtain the necessary contextual informa-
tion for each predicate through its corresponding edge vectors. Edge vectors of ri can be
formalized as follows:

ei = fedge(hi, ti), ∀(hi, ri, ti) ∈ Ktrain ∪Kvalid (1)

For the sake of computational efficiency, we first employ efficient algorithms such as
transE to learn the embeddings of entities and predicates in KGs. This allows us to obtain
an initial model Ψ. We then utilize this initial model Ψ to calculate edge vectors:

t⃗ra,i,j = edge(⃗tj, h⃗i) ∀(hi, ra, tj) ∈ Ktrain ∪Kvalid (2)

where h⃗ and t⃗ represent the embedding vectors of h and t obtained by the representation
learning model, while edge is a function that utilizes the mechanism of the model Ψ to
estimate the embedding of ra based on h⃗ and t⃗.

For instance, in TransE, Equation (3) specifies how this estimation is achieved:

t⃗ra,i,j = t⃗j − h⃗i, ∀(hi, ra, tj) ∈ Ktrain ∪Kvalid (3)

Let ∇ = {t⃗r ∈ Rd|∀(h, r, t) ∈ Ktrain ∪ Kvalid} represent the set of edge vectors.
For each predicate ra ∈ R, its edge vector subset is∇a = {t⃗ra,i,j ∈ Rd|∀(hi, ra, tj) ∈ Ktrain ∪
Kvalid}. We perform a clustering on the vector set ∇a and use the Calinski–Harabasz
index [23] as the clustering quality evaluation method. The clustering result is denoted
as CLa,θ = {∇a, 0,∇a, 1, . . .∇a, K−1 ⊂ ∇a}, where θ is the parameter of the clustering
algorithm, and K is the number of clusters.

The optimal clustering result is determined according to the following equation:

arg max
θ

c_h(CLa,θ) (4)

where c_h(CLa, θ) represents the Calinski–Harabasz index of the clustering result CLa,θ .
Let the lower threshold of clustering quality be η. For every ra ∈ R, if c_h(CLa,θ) > η,

we believe that the predicate ra is a polysemous predicate and can be split into K new
predicates ra,0, . . . , ra,K−1; i.e., we perform the following predicate splitting:

(hi, ra, tj)→ (hi, ra,x, tj), i f t⃗ra,i,j ∈ ∇a,x&&c_h(CLa,θ) > η (5)

where x ∈ N, x < K. Let splita = {ra,0, . . . , ra,K−1} be the set of predicates formed by
splitting the predicate ra. We denote the set of polysemous predicates asRP.

Given that the Calinski–Harabasz index often reaches its maximum when the number
of clusters is 2 or 3, and that the semantic diversity of polysemous predicates typically does
not exceed 3, to simplify the computational complexity, we utilize clustering algorithms
that allow for the specification of the number of clusters, such as K-means, with K = 2, 3.

Algorithms 2024, 17, 129 6 of 17

3.3. KG Reasoning Based on Predicate Decomposition

We perform the splitting of polysemous predicates through Equation (5), and obtain
new datasets K′train,K′valid, which have N

′
predicates. It is easy to know that N

′
= |R|+

∑ra∈RP
(|splita| − 1).

We use K′train and K′valid as training and validation sets to train the KG reasoning
model. We adopt the same training method as the original paper of the baseline model
to verify the effectiveness of the PDEC framework. For example, for the TransE model,
minimize the following hinge loss:

L = ∑
(h,r,t)∈K′train

∑
(h′ ,r,t′)∈K̄′train

[
γ + Dist(⃗h + r⃗, t⃗)− Dist(h⃗′ + r⃗, t⃗′)

]
+ (6)

where Dist(⃗h + r⃗, t⃗) denotes the dissimilarity measure, which we take to be either the L1
or the L2-norm; [x]+ denotes the positive part of x; γ > 0 is a margin hyperparameter;
and K̄′train is the negative sample training set generated from K′train in a 3:1 ratio as follows:

K̄′train =
{
(h′, r, t′)|(h, r, t) ∈ K′train,(
h′, r, t′) /∈ K′train, h′ ̸= h ∨ t′ ̸= t

} (7)

Let the trained model be Θ. When using the model Θ to perform KGC tasks on the
test set Ktest, follow the rules:

Θk(hi, ra, tj) =
∨

ra,x∈splita Θk(hi, ra,x, tj) (8)

where Θk(hi, ra, tj) is a logical function, representing the judgment of the model Θ on
whether triplets tj is the top k prediction of the query (hi, ra, ?), or whether triplets hi is the
top k prediction of the query (?, ra, tj).

We continue to use the example of the predicate Person-Language to explain the
reason for this approach. Assume that PDEC decomposes Person-Language into two
predicates, Person-NativeLanguage and Person-ForeignLanguage, representing the rela-
tionships between persons and their native languages and other languages, respectively.
If the model θ determines that (A, Person-NativeLanguage, English) is reasonable
(indicating that the native language of person A is English), then in all cases, English
must be the language spoken by A. Therefore, (A, Person-Language, English) is rea-
sonable. Similarly, if (A, Person-ForeignLanguage, English) is reasonable, then (A,
Person-Language, English) is also reasonable. In essence, the new predicates induced
by PDEC are subordinate to the original predicate. This design enables PDEC to achieve
performance improvement in predicting links on KGs.

3.4. The Adaptive Optimization Mechanism of PDEC

We use the entity embeddings obtained from the model Θ to update the edge vector
set ∇ using Equation (2), and then regeneralize the polysemous predicates according to
Equation (5), thereby achieving iterative optimization.

To adaptively determine η, for each iteration round, we order the Calinski–Harabasz
index of the clustering results CLθ , and determine the clustering quality threshold η
according to the following rule:

∑c_h(CLa,θ)>η,ra∈R(1)

∑c_h(CLa,θ)<=η,ra∈R(1)
< 0.8 (9)

That is, we perform predicate decomposition on the predicates that have an index size
in the top 80%. An empirical optimal hyperparameter of 0.8 is obtained from experiments,
and the relevant experimental results are presented in Figures 7–9.

Algorithms 2024, 17, 129 7 of 17

Subsequently, we use K′train and K′valid to retrain Θ and complete an iteration round.
After each round, we assess the changes in mean reciprocal rank (MRR). If the increase in
MRR is less than the early-stopping threshold, we terminate the iteration.

The algorithm process is outlined in Algorithm 1.

Algorithm 1 KG reasoning based on polysemous predicate induction.

Require: Training set Ktrain, validation set Kvalid, test set Ktest, threshold of clustering
quality η, threshold of early stopping λ

Ensure: The reasoning model Θ, trained using K′train and K′valid based on polysemous
predicate induction. MRR and other indicators obtained from testing on Ktest.

1: Train the initial model Ψ based on the original KG K.
2: Using Ψ, calculate the entity embedding set E⃗ = {⃗e|e ∈ E} and predicate embedding

set R⃗ = {⃗r|r ∈ R}.
3: for t← 1 to T do
4: Based on E⃗, update the edge vector set ∇ using Equation (2);
5: for a← 0 to |R| do
6: Perform clustering on the edge vector set ∇a according to Equation (4);
7: if c_h(CLa,θ) > η then
8: update splita using Equation (5);
9: end if

10: end for
11: end for
12: Construct/update K′train and K′valid according to splita, a ∈ R;
13: Train the reasoning model Θ based on K′train and K′valid;
14: Based on Ktest, use Equation (8) to calculate the performance of the model Θ and record

the results as Mt = MRRt, HIT1t, . . .
15: udpate E⃗
16: if t == 0||MRRt −MRRt−1 > λ then
17: Continue
18: end if

3.5. Synonymous Predicate Merging

To further investigate the impact of predicate semantics on KG reasoning tasks, we
also conducted experiments on synonymous predicate merging. We clustered the predicate
embeddings generated by the initial model Ψ. By adjusting the number of clusters, we
could control the degree of synonymous predicate merging. For example, on the FB15K-237
dataset, if we set the number of predicate clusters to 200, a maximum of 37 predicates are
considered synonymous. When the number of clusters is 230, the maximum number of
synonymous predicates is 7.

After merging synonymous predicates, the trained model focuses on the hypernyms
of the original predicates, making it impossible to perform KG completion tasks related to
the predicates involved in the merging process. However, it is still possible to perform KG
completion tasks related to predicates that were not merged. Please refer to Section 4.2 for
detailed experimental results.

3.6. Theoretical Proof of PDEC

We conducted a theoretical analysis to demonstrate the effectiveness of PDEC in the
TransE model. Consider the toy KG Kt ⊆ Et ×Rt × Et represented in Figure 2. If we use
TransE for learning entity embeddings, the optimization objective would be as follows:

arg maxθ∥x + r0 − a∥+ ∥x + r0 − b∥+ ∥x + r0 − c∥+ ∥x + r0 − d∥ (10)

where x, a, b, c, d ∈ Et are entities in the KG, and (x, r0, a), (x, r0, b), (x, r0, c), (x, r0, d) ∈ Kt.
The predicate r0 is represented by an orange line in Figure 2.

Algorithms 2024, 17, 129 8 of 17

Figure 2. Schematic diagram of the predicate decomposition principle. The theoretical error of TransE
algorithm optimization can be approximately estimated using the length of dashed lines.

It is easy to observe that after optimization, the representation of the predicate r0
approaches the vector from x to the Fermat point F of the quadrilateral formed by a, b, c,
and d. The deviation dev0 is equivalent to the sum of distances from F to a, b, c, and d, that
is, dev0 = |Fa|+ |Fb|+ |Fc|+ |Fd|.

After PDEC processing, the edge vectors t⃗r0,x,a and t⃗r0,x,b form one cluster, while t⃗r0,x,c
and t⃗r0,x,d form another cluster, thus decomposing the predicate r0 into r1 and r2. This
means that the triples (x, r1, a), (x, r1, b), (x, r2, c), (x, r2, d) ∈ Kt. Consequently, the opti-
mization objective transforms to the following:

arg maxθ∥x + r1 − a∥+ ∥x + r1 − b∥∥x + r2 − c∥+ ∥x + r2 − d∥ (11)

where the final optimized predicate r1 is actually approaching the vector from x to the
Fermat point F1 of the line formed by a, b, and F1 must be on the line a⃗b. Therefore, the
loss is equivalent to the sum of the distances from F1 to a and b, i.e., dev1 = |F1a|+ |F1b|.
Similarly, the deviation of embedding learning for r2 is dev2 = |F2c|+ |F2d|, and F2 must
be on the line c⃗d. As shown in Figure 3, according to the geometric properties of triangles,
it can be seen as follows:

dev1 + dev2 = |F1a|+ |F1b|+ |F2c|+ |F2d|
< |Fa|+ |Fb|+ |Fc|+ |Fd| = dev0

(12)

The theoretical analysis of the toy KG reveals that in the case where the head entity
of the triplet associated with the predicate r in KG is unique, TransE’s optimization pro-
cess aims to find the Fermat points F for all tail entities. The obtained embedding of r
corresponds to the vector between the head entity and the Fermat point F, with the error
measured as the distance between F and all tail entities.

Figure 3. Advantages of predicate decomposition. Based on the geometric characteristics of triangles,
PDEC reduces the theoretical error of TransE algorithm optimization (represented by dashed lines).

Algorithms 2024, 17, 129 9 of 17

By clustering edge vectors, predicate decomposition transforms the task of finding
Fermat points for all global tail entities into finding local Fermat points for several clusters.
The error is now the sum of distances from the Fermat points of each cluster to their
corresponding tail entities. This approach inevitably reduces the total error and improves
TransE’s performance.

When there are multiple head entities for the predicate r, the analysis can be applied to
each individual head entity. In this case, the embedding of the original predicate obtained
by TransE corresponds to the vector between Fermat points of clusters formed by head
entities and Fermat points of clusters formed by tail entities. This observation further
supports the claim that PDEC reduces the error in the TransE model even when dealing
with multiple head entities.

4. Results

We experimentally verified that PDEC can reasonably judge polysemous predicates
and significantly improve the performance of reasoning models on the KG. Usually, we
test the reasoning ability of a model by performing KGC tasks.

4.1. Experimental Setup

Datasets. Open-world KGC tasks are commonly evaluated on Word-Net and Freebase
subsets, such as YAGO3 [24] and FB15K-237 [25]. In order to verify the effectiveness of
predicate decomposition, we focus on the KG benchmark with many predicates and high
difficulty to verify the effectiveness of our method. Therefore, we selected FB15K-237,
YAGO3-10, and NELL-995 [26] as the benchmark dataset.

• FB15K-237 is a subset of the Freebase knowledge base [10] containing general knowl-
edge facts.

• The YAGO3-10 dataset is a subset of YAGO3 that only contains entities with at
least 10 relations. In total, YAGO3-10 has 123,182 entities and 37 relations and
1,179,040 triples, and most of the triples describe attributes of persons such as citizen-
ship, gender, and profession.

• The NELL-995 dataset is a subset of NELL [27] created from the 995th iteration of the
construction. NELL-995 includes 75,492 entities, 200 relations, and 154,208 triples.

To verify the efficacy of this method for knowledge extraction and logical reasoning
on large-scale datasets, we also conducted drug rediscovery experiments on the open-
source biochemical knowledge graph RTX-KG2c [28]. RTX-KG2c integrates data from
70 public knowledge sources into a comprehensive graph where all biological entities (e.g.,
“ibuprofen”) are represented as nodes and all concept–predicate–concept relationships (e.g.,
“ibuprofen increases activity of GP1BA gene”) are encoded as edges. This dataset comprises
approximately 6.4 M entities across 56 distinct categories, with 39.3 M relationship edges
described by 77 distinct relations. The objective of this experiment is to employ the KGC
model to learn the interactions between diseases and drugs from RTX-KG2c, aiming to
predict potential therapeutic relationships between drugs and diseases.
Baselines. In order to test the effectiveness and universality of PDEC, we have extensively
selected some mature KG inference models. We use the KG inference model running on
the original dataset as the baseline. For each baseline, we use them in conjunction with
PDEC to conduct performance testing and record their performance improvement. The
baseline model we have chosen includes TransE, TransH [29], TransR [30], TransD [31],
ComplEX [32], DistMult [2], TuckER [13], RotatE, CompGCN [33], RelEns-DSC [16], etc.
Experiment setting details. We implement the baseline model and its corresponding PDEC
framework based on the OPENKE project [34]. We set the entity and relation embedding
size to 200 for experiments. We use Adam optimization [35] and search the learning rate
(0.001–0.005) and minibatch size (64–256). We apply dropout to the entity and relation
embeddings and all feed-forward layers, and search the dropout rates within 0.6.

In line with the common practices described in [5,7], we compute standard evaluation
metrics for the KGC reasoning task, Hit@k, which counts the number of correctly predicted

Algorithms 2024, 17, 129 10 of 17

head terms among the top k predictions, and the mean reciprocal rank (MRR), calculated
as the mean of the reciprocal rank of the correct answer in the list of predictions. These
ranking-based metrics are defined as follows:

MPR =
1
R ∑

r∈R
r−1 Hit@k =

1
R ∑

r∈R
|r ≤ k| (13)

where R is a list of ranks of all true-positive triples in the test dataset.
For drug rediscovery experiments, we excluded all existing edges connecting potential

drug nodes (nodes labeled “Drug” or “SmallMolecule”) with potential disease nodes (nodes
labeled “Disease”, “PhenotypicFeature”, “BehavioralFeature”, or “DiseaseOrPhenotyp-
icFeature”) in RTX-KG2c to prevent information leakage during training. We then added
drug–disease pairs that were confirmed true positives (pairs with the relation “indica-
tion” from MyChem datasets [36] or the predicate “treats” from SemMedDB datasets [37]).
A new predicate treat was introduced to represent this therapeutic relationship in the
experimental KG. We generated new triples based on these positive drug–disease pairs and
added them to the KG, dividing them into training, validation, and testing sets in a 7:2:1
ratio. In the experiment, we only performed KGC tasks on the triples related to the newly
added predicate treat in the test set to verify the drug rediscovery ability of the model.

To implement our approach, we utilized the PyTorch library in Python. All experiments
were conducted on a machine equipped with 6 Nvidia Tesla V100 GPUs and 32 GB RAM.

4.2. Experiment Results

The experimental results demonstrate that PDEC possesses the capability to perform
predicate inductive KGC tasks through predicate decomposition, and the original predicate
set can be effectively restored using Equation (8), leading to an enhancement in the reason-
ing performance for the original transductive KGC task. In the subsequent sections, we will
present comprehensive experimental results showcasing PDEC’s impact on improving the
reasoning performance of the original KGC task. These results cover various benchmarks
and large datasets, i.e., drug rediscovery. Furthermore, we will demonstrate the correlation
between the granularity of predicate decomposition and the corresponding performance
improvements. Lastly, we will evaluate the influence of synonymous predicate merging on
the overall performance of the KGC task.
The KGC performance improvement on benchmarks brought by PDEC. We tested the
performance of the baseline reasoning model on FB15K-237, YAGO3-10, and NELL-995,
as well as the performance improvement of PDEC, as shown in the Table 1. The initial edge
vectors are generated using TransE. We performed PDEC using Algorithm 1, resulting in
datasets with new predicates. All tests ensure that the reasoning model keeps hyperpa-
rameters unchanged during the testing of the original benchmark and the benchmark after
PDEC to ensure a fair comparison. The results indicate that PDEC can effectively promote
the performance of KG reasoning models.

Table 1. The performance gain of PDEC on baseline models in benchmark experiments. Hits@k is in %.

FB15K-237 YAGO3-10 NELL-995
Method PDEC

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

é 0.289 19.3 32.6 47.9 0.330 21.5 38.8 54.9 0.252 9.64 38.5 47.2TransE
Ë 0.349 24.2 39.9 55.8 0.395 28.0 46.0 60.3 0.287 11.7 43.0 52.7
é 0.187 10.3 20.7 36.1 0.073 2.93 6.87 16.7 0.163 7.10 19.1 33.9DistMult
Ë 0.224 13.3 25.4 40.9 0.112 3.93 12.0 28.5 0.186 9.0 21.6 35.4
é 0.286 18.4 32.9 48.4 0.332 22.1 38.9 54.4 0.255 10.0 39.6 48.8TransH
Ë 0.314 20.6 36.1 52.2 0.385 26.6 43.7 62.2 0.278 13.5 40.7 51.6
é 0.321 22.8 35.6 50.6 0.270 17.9 30.3 44.6 0.368 31.4 40.5 45.6RotatE
Ë 0.360 26.4 40.2 54.7 0.355 25.6 39.8 54.3 0.374 32.1 41.1 46.0
é 0.305 20.8 34.4 49.6 0.321 11.6 48.6 63.7 0.261 10.8 39.4 49.0TransR
Ë 0.334 23.5 37.8 53.3 0.496 39.2 56.0 68.3 0.276 11.7 41.0 53.3
é 0.284 18.1 32.7 48.6 0.323 21.5 35.9 53.8 0.263 10.5 39.9 50.1TransD
Ë 0.310 20.0 36.1 51.9 0.377 25.1 42.6 61.7 0.280 12.1 40.4 50.8

Algorithms 2024, 17, 129 11 of 17

Table 1. Cont.

FB15K-237 YAGO3-10 NELL-995
Method PDEC

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

é 0.238 15.2 26.5 41.0 0.106 2.96 11.4 26.6 0.222 8.9 32.1 40.6CompIEX
Ë 0.280 18.9 31.5 46.0 0.196 9.35 22.8 41.4 0.248 9.9 37.9 45.0
é 0.323 0.238 0.353 0.494 0.332 26.8 34.3 47.9 0.293 21.6 32.5 41.7TuckER
Ë 0.327 25.5 34.8 46.8 0.344 27.5 35.1 49.0 0.298 23.1 33.9 41.9
é 0.355 26.4 39.0 53.5 0.411 37.9 48.3 57.4 0.461 38.0 49.1 58.9CompGCN
Ë 0.363 26.9 40.3 54.6 0.428 38.3 49.9 58.8 0.481 39.2 51.1 60.1
é 0.368 27.4 40.5 55.6 0.342 27.9 36.1 49.1 0.548 48.2 59.0 66.7RelEns-DSC
Ë 0.377 28.6 43.1 56.9 0.349 27.8 35.7 49.6 0.562 50.0 61.2 67.5

We have drawn a bar chart to visually demonstrate the improvement of PDEC’s KG
reasoning ability through PDEC, as shown in Figures 4–6.

Figure 4. Performance improvement brought by PDEC to baseline on FB15K-237.

Figure 5. Performance improvement brought by PDEC to baseline on YAGO3-10.

The KGC performance improvement brought by PDEC on a large-scale dataset (i.e., drug
rediscovery). We conducted KGC experiments on the large-scale biochemical knowledge
graph RTX-KG2c and compared the performances of the baseline model before and after
applying the PDEC framework. During the testing of both the original benchmark and the
benchmark after PDEC, all tests guarantee that the reasoning model maintains consistent
hyperparameters to ensure a fair comparison. The relevant results are shown in Table 2.

Algorithms 2024, 17, 129 12 of 17

The results indicate that PDEC can effectively improve the ability of KG reasoning models
on drug rediscovery.

Figure 6. Performance improvement brought by PDEC to baseline on NELL-995.

Table 2. The performance gain of PDEC on baseline models in drug rediscovery experiments. Hits@k
is in %.

FB15K-237
Method PDEC

MRR Hits@1 Hits@3 Hits@10

é 0.232 17.3 45.0 58.1TransE
Ë 0.269 20.3 48.1 61.1
é 0.164 16.0 30.3 34.8DistMult
Ë 0.177 17.1 33.4 35.9
é 0.296 22.8 49.1 57.9RotatE
Ë 0.302 23.4 49.2 57.7
é 0.291 22.3 48.6 58.1CompGCN
Ë 0.306 23.9 49.3 59.6

The correlation between the granularity of predicate decomposition and KGC performance.
In order to investigate the impact of clustering result quality on PDEC performance, we
tested the difference in PDEC’s improvement to TransE’s performance when the proportion of
predicates applied for splitting was different. Thus, an experimental conclusion was obtained
on the correlation between predicate decomposition granularity and KGC performance.

We adjust η to split more predicates based on the clustering results. The experimental
results indicate that when η is greater than a certain degree, the size of η is inversely
proportional to the effect of PDEC, as shown in Figures 7–9. Usually, the optimal number
of predicates after decomposition is around 180% of the original number of predicates. This
indicates that when η values are reasonable, the more clustering results are adopted for
predicate splitting, the better is the PDEC effect.
The impact of synonymous predicate merging on KGC performance. We trained the
dataset after predicate merging based on TransE and performed KGC tasks on the original
predicates that did not participate in the merging. The maximum number of synonymous
predicates was set to 0, 7, and 37. The results obtained are shown in Table 3.

Table 3. KGC results of TransE with predicates merging on the FB15K-237 dataset.

Number of Predicates Merging MRR of Predicate Merging Model
on Unmerged Predicates

MRR of Original Model on
Unmerged Predicates

�0 0.289 0.289
7 0.286 0.286
37 0.246 0.245

Algorithms 2024, 17, 129 13 of 17

Figure 7. The correlation between granularity of predicate decomposition and KGC performance
(FB15K-237).

Figure 8. The correlation between granularity of predicate decomposition and KGC performance
(NELL-995).

Figure 9. The correlation between granularity of predicate decomposition and KGC performance
(YAGO3-10).

5. Discussion
5.1. The Performance Improvement of the Baseline Model after Applying the PDEC Framework

In Figure 4, it is evident that PDEC exhibits a notable enhancement in performance
compared with traditional baseline methods on the FB15K-237 dataset. Notably, the TransE
and DistMult methods achieve the most significant improvements, both achieving approxi-
mately 20% improvement.

Algorithms 2024, 17, 129 14 of 17

As Figure 5 illustrates, PDEC demonstrates the most significant performance enhance-
ment on the YAGO3-10 dataset when compared with traditional methods. Among the
various methods, the CompIEX approach demonstrates the most remarkable improve-
ment, achieving approximately 85% improvement, closely followed by DistMult with
approximately 53% improvement.

On the NELL-995 dataset, Figure 6 reveals that PDEC demonstrates the least improve-
ment over traditional methods. Nevertheless, the TransE and DistMult methods still exhibit
the most notable improvements, achieving 13.5% and 14%, respectively.

As shown in Table 2, drug rediscovery experiments have shown that the PDEC
framework can improve KG reasoning performance on larger datasets. Among them,
TransE achieved the most significant performance improvement after adopting the PDEC
framework, reaching 13.8%. In addition, PDEC achieved performance improvements of
7.9%, 2.0%, and 5.2% for DistMult, RotatE, and CompGCN, respectively.

5.2. The Characteristics of PDEC Framework in Performance Improvement

Based on the above experimental results, our experimental results lead to several
key observations:

• PDEC generally enhances the reasoning performance of KGC’s baseline model. When
compared with the baseline methods, PDEC demonstrates consistent improvements
across different datasets. This observation aligns with our objective of developing a
more effective approach for KGC tasks.

• The performance improvement of PDEC is more significant on larger datasets. When
examining the performance improvement of PDEC on different datasets, we observe
that the larger the dataset, the more significant the improvement. This trend suggests
that PDEC is particularly effective in capturing relationships and patterns present in
larger KGs. It further supports our hypothesis that PDEC’s ability to model polyse-
mous predicates effectively enables it to handle the complexity and diversity found in
larger datasets.

• The performance improvement of PDEC is more significant for old-fashioned methods.
Our experiments also reveal that the performance improvement of PDEC is more
significant for older methods like TransE and DistMult. These methods are known
to be more susceptible to polysemous predicates, which are common in KGs. This
observation aligns with our theoretical analysis presented in Section 3.6, where we
discuss how PDEC addresses the limitations of traditional methods by effectively
modeling polysemous predicates.

5.3. The Impact of Granularity of Predicate Decomposition on KGC Performance

As seen in Figures 7–9, we found that when the granularity of predicate decompo-
sition is low, there is a roughly positive correlation between the granularity of predicate
decomposition and the performance improvement of PDEC. When the clustering quality
threshold η is set high enough, the lower the parameter η is set, the more new predicates
are generated by decomposition, and the performance of PDEC improves accordingly.

We can also observe that PDEC performance reaches its optimal level when the number
of new predicates generated by decomposition approaches the number of original predi-
cates. However, as the number of new predicates generated by decomposition increases,
the computational efficiency of PDEC will decrease, which needs to be balanced.

5.4. The Performance Impact of Synonymous Predicate Merging

The new predicate-related triples generated by synonymous predicate merging cannot
correspond one-to-one to the triples in the original dataset, preventing direct KGC perfor-
mance comparisons on these new triples. KGC performance improvement tests can only
be conducted on the dataset corresponding to unmerged predicates.

According to the experimental results presented in Table 3, it can be seen that syn-
onymous predicate merging has minimal performance improvement for triples that do

Algorithms 2024, 17, 129 15 of 17

not involve merged predicates. Only a 0.001 improvement is observed when merging
37 predicates. This is because KGC is performed only on the dataset corresponding to
unmerged predicates, leading to an indirect impact.

6. Conclusions

This article delves into the impact of predicate settings in KGs, aiming to enhance
reasoning performance through predicate decomposition. We present PDEC, a technique
that improves the performance of reasoning methods on KGs. This method is unique in
that it implements predicate-inductive reasoning without introducing external information.
When the original predicate set changes, PDEC can still perform KGC tasks effectively.
Furthermore, this approach enhances the quality of KGs.

To validate the efficacy of PDEC, we conducted rigorous experiments. We analyzed
the correlation between the granularity of predicate decomposition and the improvement in
PDEC performance, as well as the impact of synonymous predicate merging. Our findings
demonstrate the effectiveness of PDEC in enhancing reasoning performance on KGs.
Limitations. The limitations of this method mainly lie in the following: First, the auto-
matic optimization of clustering threshold hyperparameters in Equation (9) has not been
achieved yet. In fact, according to the discussion in Section 3.6, this hyperparameter can be
estimated based on the low dimensional manifold distribution of the dataset. The current
algorithm version’s clustering threshold parameters are based on empirical values obtained
from a large number of experiments, which affects the efficiency and practicality of the
algorithm. We have conducted relevant research and exploration, but have not yet reached
a clear conclusion. Second, PDEC’s clustering-based predicate decomposition cannot fully
correspond to the hypernyms and hyponyms of predicates in the ontology, which reduces
the interpretability of the new predicate set after predicate decomposition. This is also the
cost that PDEC attempts to avoid introducing external information. Third, it has not yet
been possible to synchronize and optimize the decomposition of polysemous predicates
with the merging of synonymous predicates.

Moving forward, our focus will be on automating the optimization of clustering thresh-
old parameters for PDEC and combining ontology information to obtain new predicates
that are more interpretable. We will also explore more effective optimization methods that
balance polysemous predicate decomposition and synonymous predicate merging. These
future directions aim to further improve the performance and quality of KGs.

Author Contributions: Conceptualization, X.T. and Y.M.; methodology, X.T. and Y.M.; software,
X.T.; validation, X.T.; formal analysis, X.T.; investigation, X.T. and Y.M.; resources, X.T. and Y.M.;
data curation, X.T.; writing—original draft preparation, X.T.; writing—review and editing, X.T.;
visualization, X.T.; supervision, Y.M.; project administration, Y.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The FB15K-237 Knowledge Base Completion dataset is available
at https://www.microsoft.com/en-us/download/details.aspx?id=52312 (accessed on 15 February
2024). The YAGO3-10 dataset can be downloaded at https://web.informatik.uni-mannheim.de/
pi1/kge-datasets/yago3-10.tar.qz (accessed on 15 February 2024). The NELL-995 dataset can be
downloaded at https://github.com/wenhuchen/KB-Reasoning-Data (accessed on 15 February 2024).

Acknowledgments: The work and writing of this thesis have received strong support and assistance
from Xin Wang from the Department of Computer Science at Tsinghua University.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.microsoft.com/en-us/download/details.aspx?id=52312
https://web.informatik.uni-mannheim.de/pi1/kge-datasets/yago3-10.tar.qz
https://web.informatik.uni-mannheim.de/pi1/kge-datasets/yago3-10.tar.qz
https://github.com/wenhuchen/KB-Reasoning-Data

Algorithms 2024, 17, 129 16 of 17

Abbreviations
The following abbreviations are used in this manuscript:

KG knowledge graph
KGC knowledge graph completion
LLMs large language models
GNNs graph neural networks

References
1. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data.

Adv. Neural Inf. Process. Syst. 2013, 26, 2787–2795.
2. Yang, B.; Tau Yih, W.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases.

In Proceedings of the ICLR (Poster), San Diego, CA, USA, 7–9 May 2015.
3. Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the

AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.
4. Sun, Z.; Deng, Z.H.; Nie, J.Y.; Tang, J. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. arXiv

2019, arXiv:1902.10197.
5. Meilicke, C.; Chekol, M.W.; Ruffinelli, D.; Stuckenschmidt, H. Anytime Bottom-Up Rule Learning for Knowledge Graph

Completion. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 3137–3143.
6. Qu, M.; Chen, J.; Xhonneux, L.P.; Bengio, Y.; Tang, J. RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. In

Proceedings of the International Conference on Learning Representations, Virtual, 3–7 May 2021.
7. Yang, F.; Yang, Z.; Cohen, W.W. Differentiable learning of logical rules for knowledge base reasoning. Adv. Neural Inf. Process.

Syst. 2017, 30, 1–10.
8. Sadeghian, A.; Armandpour, M.; Ding, P.; Wang, D.Z. Drum: End-to-end differentiable rule mining on knowledge graphs. Adv.

Neural Inf. Process. Syst. 2019, 32, 1–11.
9. Cohen, W.W. TensorLog: A Differentiable Deductive Database. arXiv 2016, arXiv:1605.06523.
10. Toutanova, K.; Chen, D.; Pantel, P.; Poon, H.; Choudhury, P.; Gamon, M. Representing Text for Joint Embedding of Text and

Knowledge Bases. In Proceedings of the EMNLP, Lisbon, Portugal, 17–21 September 2015; Màrquez, L., Callison-Burch, C., Su, J.,
Pighin, D., Marton, Y., Eds.; Association for Computational Linguistics: Toronto, ON, Canada, 2015; pp. 1499–1509.

11. Lee, J.; Chung, C.; Whang, J.J. InGram: Inductive Knowledge Graph Embedding via Relation Graphs. arXiv 2023, arXiv:2305.19987.
12. Geng, Y.; Chen, J.; Pan, J.Z.; Chen, M.; Jiang, S.; Zhang, W.; Chen, H. Relational Message Passing for Fully Inductive Knowledge

Graph Completion. In Proceedings of the 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA,
USA, 3–7 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1221–1233. [CrossRef]

13. Balažević, I.; Allen, C.; Hospedales, T.M. Tucker: Tensor factorization for knowledge graph completion. arXiv 2019,
arXiv:1901.09590.

14. Socher, R.; Chen, D.; Manning, C.D.; Ng, A.Y. Reasoning With Neural Tensor Networks for Knowledge Base Completion. In
Proceedings of the NIPS, Lake Tahoe, Nevada, 5–10 December 2013; pp. 926–934.

15. Nathani, D.; Chauhan, J.; Sharma, C.; Kaul, M. Learning Attention-based Embeddings for Relation Prediction in Knowledge
Graphs. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, 28 July–2 August 2019.

16. Yue, L.; Zhang, Y.; Yao, Q.; Li, Y.; Wu, X.; Zhang, Z.; Lin, Z.; Zheng, Y. Relation-aware Ensemble Learning for Knowledge Graph
Embedding. arXiv 2023, arXiv:2310.08917.

17. Hamaguchi, T.; Oiwa, H.; Shimbo, M.; Matsumoto, Y. Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural
Network Approach. arXiv 2017, arXiv:1706.05674.

18. Wang, C.; Zhou, X.; Pan, S.; Dong, L.; Song, Z.; Sha, Y. Exploring Relational Semantics for Inductive Knowledge Graph
Completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36,
pp. 4184–4192.

19. Wang, P.; Han, J.; Li, C.; Pan, R. Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 7152–7159.

20. Dai, D.; Zheng, H.; Luo, F.; Yang, P.; Chang, B.; Sui, Z. Inductively representing out-of-knowledge-graph entities by optimal
estimation under translational assumptions. arXiv 2020, arXiv:2009.12765.

21. Pan, Y.; Liu, J.; Zhang, L.; Zhao, T.; Lin, Q.; Hu, X.; Wang, Q. Inductive Relation Prediction with Logical Reasoning Using
Contrastive Representations. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu
Dhabi, United Arab Emirates, 7–11 December 2022; Goldberg, Y., Kozareva, Z., Zhang, Y., Eds.; Association for Computational
Linguistics: Dublin, Ireland, 2022; pp. 4261–4274. [CrossRef]

22. Zhang, Y.; Zhou, Z.; Yao, Q.; Chu, X.; Han, B. Adaprop: Learning adaptive propagation for graph neural network based
knowledge graph reasoning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Long Beach, CA, USA, 6–10 August 2023; pp. 3446–3457.

23. Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [CrossRef]

http://doi.org/10.1109/ICDE55515.2023.00098
http://dx.doi.org/10.18653/v1/2022.emnlp-main.286
http://dx.doi.org/10.1080/03610927408827101

Algorithms 2024, 17, 129 17 of 17

24. Mahdisoltani, F.; Biega, J.; Suchanek, F.M. YAGO3: A Knowledge Base from Multilingual Wikipedias. In Proceedings of the
Conference on Innovative Data Systems Research, Asilomar, CA, USA, 19 August 2014.

25. Toutanova, K.; Chen, D. Observed Versus Latent Features for Knowledge Base and Text Inference. In Proceedings of the 3rd
Workshop on Continuous Vector Space Models and their Compositionality, Beijing, China, 31 July 2015.

26. Xiong, W.; Hoang, T.; Wang, W.Y. DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning. arXiv 2017,
arXiv:1707.06690.

27. Mitchell, T.; Cohen, W.; Hruschka, E.; Talukdar, P.; Yang, B.; Betteridge, J.; Carlson, A.; Dalvi, B.; Gardner, M.; Kisiel, B.; et al.
Never-ending learning. Commun. ACM 2018, 61, 103–115. [CrossRef]

28. Wood, E.C.; Glen, A.K.; Kvarfordt, L.G.; Womack, F.; Acevedo, L.; Yoon, T.S.; Ma, C.; Flores, V.; Sinha, M.; Chodpathumwan, Y.A.
RTX-KG2: A system for building a semantically standardized knowledge graph for translational biomedicine. BMC Bioinform.
2022, 23, 400. [CrossRef] [PubMed]

29. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; AAAI Press: Washington, DC, USA, 2014.

30. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Proceedings
of the AAAI conference on artificial intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29.

31. Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge graph embedding via dynamic mapping matrix. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers); Association for Computational Linguistics: Beijing, China, 2015; pp. 687–696.

32. Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex embeddings for simple link prediction. In Proceedings of
the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 2071–2080.

33. Vashishth, S.; Sanyal, S.; Nitin, V.; Talukdar, P. Composition-based multi-relational graph convolutional networks. arXiv 2019,
arXiv:1911.03082.

34. Han, X.; Cao, S.; Xin, L.; Lin, Y.; Liu, Z.; Sun, M.; Li, J. OpenKE: An Open Toolkit for Knowledge Embedding. In Proceedings of
the EMNLP, Brussels, Belgium, 31 October–4 November 2018.

35. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
36. Xin, J.; Afrasiabi, C.; Lelong, S.; Adesara, J.; Tsueng, G.; Su, A.I.; Wu, C. Cross-linking BioThings APIs through JSON-LD to

facilitate knowledge exploration. BMC Bioinform. 2018, 19, 30. [CrossRef] [PubMed]
37. Kilicoglu, H.; Shin, D.; Fiszman, M.; Rosemblat, G.; Rindflesch, T.C. SemMedDB: A PubMed-scale repository of biomedical

semantic predications. Bioinformatics 2012, 28, 3158–3160. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3191513
http://dx.doi.org/10.1186/s12859-022-04932-3
http://www.ncbi.nlm.nih.gov/pubmed/36175836
http://dx.doi.org/10.1186/s12859-018-2041-5
http://www.ncbi.nlm.nih.gov/pubmed/29390967
http://dx.doi.org/10.1093/bioinformatics/bts591
http://www.ncbi.nlm.nih.gov/pubmed/23044550

	Introduction
	Related Work
	Materials and Methods
	Preliminaries
	Predicate Decomposition
	KG Reasoning Based on Predicate Decomposition
	The Adaptive Optimization Mechanism of PDEC
	 Synonymous Predicate Merging
	Theoretical Proof of PDEC

	Results
	Experimental Setup
	Experiment Results

	Discussion
	The Performance Improvement of the Baseline Model after Applying the PDEC Framework
	The Characteristics of PDEC Framework in Performance Improvement
	The Impact of Granularity of Predicate Decomposition on KGC Performance
	The Performance Impact of Synonymous Predicate Merging

	Conclusions
	References

