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Abstract: The optimal placement of healthcare facilities, including the placement of diagnostic test
centers, plays a pivotal role in ensuring efficient and equitable access to healthcare services. However,
the emergence of unique complexities in the context of a pandemic, exemplified by the COVID-19
crisis, has necessitated the development of customized solutions. This paper introduces a bi-objective
integer linear programming model designed to achieve two key objectives: minimizing average
travel time for individuals visiting testing centers and maximizing an equitable workload distribution
among testing centers. This problem is NP-hard and we propose a customized local search algorithm
based on the Voronoi diagram. Additionally, we employ an ϵ-constraint approach, which leverages
the Gurobi solver. We rigorously examine the effectiveness of the model and the algorithms through
numerical experiments and demonstrate their capability to identify Pareto-optimal solutions. We
show that while the Gurobi performs efficiently in small-size instances, our proposed algorithm
outperforms it in large-size instances of the problem.

Keywords: testing center; facility location; k-balance; k-median; bi-objective optimization; heuristics

1. Introduction

The purposeful allocation of facilities, which includes the selection of examination
centers, has undergone thorough scrutiny spanning various fields, including operations
research, geography, and transportation planning. In particular, facility location (FL)
problems within the context of healthcare systems have garnered significant attention
due to their practical implications in enhancing healthcare delivery. These problems
involve determining strategic locations for healthcare facilities such as hospitals, clinics,
and medical centers to serve a given population while considering various factors, including
geographical distribution of population, patient demand, resource constraints, and cost
considerations. One of the recent challenges in this area was finding optimal locations for
testing centers during the COVID-19 pandemic.

As observed by many people worldwide in recent times, crowded conditions not
only prolong waiting times in testing queues for individuals but also lead to increased
chances of viral transmission. Hence, when increasing the number of test centers is not
possible (e.g., due to resource constraints), the strategic organization and placement of
these facilities assume paramount importance. This problem entails a delicate trade-off
between two essential objectives. Firstly, it is imperative to minimize the traveling distance
between individuals seeking testing and their nearest testing center, thereby reducing
their associated travel time costs. On the other hand, in order to mitigate the risk of
infection and ensure efficient service delivery, it is equally crucial to achieve an equitable
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workload distribution across these centers. Striking this balance should significantly
contribute to the effective management of these facilities, fostering a fair distribution
of responsibilities among them. In light of two fundamental real-world considerations,
namely, the tendency of individuals to select the closest available center and the constraints
imposed by a limited number of such testing centers, the overarching objective became
clear. The goal is to strategically deploy a limited (say k centers) set of test centers with the
dual purpose of minimizing the distance between individuals and their closest test center,
while concurrently minimizing the differences in workload among the test centers.

In this paper, we consider clusters of individuals as weighted demand points, analo-
gous to the population residing in an apartment complex, in conjunction with a predefined
set of potential locations for establishing test centers. Consequently, the problem at hand
entails the selection of k potential center locations, wherein two key objectives are pursued:
(i) the attainment of maximum balance among the workloads of the centers, specifically
minimizing the disparity between the highest and lowest workloads, and (ii) the mini-
mization of the average traveling time for the demand points. We name this particular FL
problem the test center location problem and denote it by TCLP.

It is pertinent to note that solving either of the objectives in the TCLP is an NP-hard
problem. The first objective, often referred to as the ‘k-balanced’ objective, has been studied
recently, while the second objective aligns with the well-established ‘k-median’ problem,
which has received substantial research focus over time. In this study, we undertake a
comprehensive approach to address this bi-objective optimization challenge. Initially, we for-
mulate the problem as an integer linear program, providing a solid foundation for subsequent
analysis. We then proceed to propose two distinct approaches for obtaining Pareto-optimal so-
lutions. The first approach involves leveraging the ϵ-constraint approach in conjunction with
the commercial solver Gurobi. This approach demonstrates efficacy, particularly for smaller
problem instances; however, it exhibits notable computational demands for larger-scale sce-
narios. Consequently, as a second approach, we introduce a custom-designed bi-objective
hill-climbing strategy that leverages geometric information such as the Voronoi diagram. Our
implementation and comparative evaluation of these two approaches encompass a variety of
problem instances, considering criteria such as runtime efficiency and the ability to identify
Pareto-optimal solutions. The simulation results highlight the superior performance of the
proposed heuristic approach, underscoring its potential as a valuable tool for addressing the
intricate challenges inherent in this bi-objective FL problem.

This paper consists of six sections. Section 2 reviews prior research in FL, with a
specific focus on healthcare facilities. Section 3 formulates the TCLP and presents the
integer linear program. Section 4 proposes the ϵ-constraint method using the Gurobi solver
as well as a bi-objective hill-climbing approach for solving the TCLP. Section 5 discusses
simulation results and provides a comparative analysis. Finally, Section 6 concludes the
paper and outlines future research directions.

2. Related Work

The FL problem requires the determination of appropriate locations (centers or hubs) of
a set of facilities among a set of demand points (customers or clients) [1]. This problem has
numerous real-world applications and has been widely studied in the literature of operations
research, industrial engineering, applied mathematics, and computer science [1–3]. There are
several parameters, constraints, and objectives in the FL problem, and consequently, many
variations of it have been studied [1,2]. For example, the demand set may be discrete or
continuous, weighted or unweighted, static or dynamic, certain or uncertain. The potential
facility set can be discrete or continuous, and capacitated or incapacitated. Furthermore,
several definitions for the objective function have been considered [1,2,4].

The objective function in FL problems, which is usually determined with regard to the
type of application, is very important in the complexity class of the problems [1–3]. For example,
k-median and k-center are two well-known types of FL problems for public FL and emergency
FL with the objectives min-sum and min-max, respectively. The NP-completeness of both of the



Algorithms 2024, 17, 135 3 of 19

problems (and some variations of them) has been proved [4], and many approximations and
heuristic approaches have been proposed for solving them (e.g., see [5–8]).

In both k-median and k-center problems, the goal is optimizing the process for the client
side, e.g., minimizing the average and maximum distance of each client from its closest
center, which is useful for both public and emergency facilities. Both of these objectives
belong to the client side, that is, objectives to emphasize the service quality that the clients
receive. However, there are objectives such as the recently proposed k-balanced objective
that enhance the quality or eligibility in the center side [9]. The k-balanced objective focuses
on the fair distribution of accessibility among the clients [10]. For example, consider the
problem of placing some congruent antennas in a wireless network [11]. For some technical
reasons, and to have a good connection quality, usually each client is assigned to its closest
antenna(s). Thus, to manage the traffic in the network, it is necessary for the antennas to
have almost the same network load. As another example, assume locating k voting stations
under the assumption that each person goes to their closest voting station. So to balance the
crowding in the stations, the stations’ workloads need to be balanced. These considerations
may also apply in placing banks, stores, educational, cultural, and sports centers, and are
very important in Territory Design [12]. Note that in the k-balanced problem, each client is
served by the closest center; consequently, it is not an assignment problem [10].

Similar to the FL problems, there are many parameters and constraints in the k-
balance problem, and different variations of it can be presented. In addition to the discrete
or continuous potential facility centers and different metrics, the definition of the term
“maximum balance” is not unique and can be determined by the type of application.
Marín [13] originally proposed the k-balance problem in 2011. He studied the discrete
version of the problem and constructed integer programming formulations of a variation
of the problem and proposed a branch-and-cut algorithm for solving them [13]. Finally,
he evaluated the algorithm by some simulations that used computational time as the
efficiency factor [13]. He noted that the number of valid inequalities in the formulations
of the problem is exponential. Filipović et al. [14] proposed a combined heuristic method
consisting of a genetic algorithm with an interchange heuristic for the balanced allocation
problem [14]. This combined method was a variable neighborhood search heuristic that
utilizes a technique called shaking neighborhood in order to avoid becoming stuck in
local optima, which has subsequently been improved by Kratica et al. [15]. Davoodi [16]
originally discussed the complexity of the k-balance problem with two different objectives:
(i) minimizing the maximum number of allocated clients to any center, and (ii) minimizing
the difference between the maximum and the minimum number of clients allocated to the
center. He showed NP-hardness of the k-balance problem for both objectives in the plane
under both Manhattan and Euclidean metrics.

FL in the context of healthcare is a multifaceted challenge that involves optimizing
accessibility, resource allocation, and patient outcomes. The related work in this field en-
compasses various modeling techniques, GIS applications, and patient-centric approaches
to address the complex task of facility placement [17,18]. Flores et al. [19] focused on
healthcare FL in low and middle-income countries, particularly the Philippines. They
introduced a novel cooperative covering maximal model to optimize primary care facility
placement using open-source data, considering equity and efficiency parameters. The
approach holds promise for evidence-based healthcare facility decisions in resource-limited
settings and can be adapted to other sectors.

Liu et al. [20] aimed to explore the principles and factors impacting the choice of locations
for emergency medical facilities during public health crises. They delved into the process
of identifying optimal facilities and introduced a logistic regression model to establish a site
selection framework tailored for emergency medical facilities in megacities during public
health emergencies. Karmel et al. [21] addressed equity in stochastic healthcare FL models,
examining how uncertainty affects disparities. They focused on modeling uncertainty, equity,
and FL, encompassing aspects and outcomes like tractability, fairness, and access metrics.
Wang et al. [22] studied the FL problem in China’s evolving healthcare landscape, particularly,
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location-allocation challenges in growing cities. They introduced a hierarchical model balancing
social, economic, and environmental factors, using a bi-level multi-objective particle swarm
optimization algorithm for complex decisions. Fathollahi et al. [23] addressed the global
challenge of an aging population, whereby healthcare decision-makers face the complexities of
optimizing home healthcare for the elderly and ensuring its sustainability. They introduced
a robust multi-objective optimization model for home healthcare, considering factors like
caregiver scheduling, care continuity, patient availability, service times, and quality standards.
Finally, they presented a metaheuristic to tackle the problem.

Tang et al. [24] studied a multi-period vaccination planning problem, optimizing vac-
cination recipients’ travel distance and operational costs. The problem involves deciding
when to open vaccination sites, how many stations to launch, recipient assignments, and
site replenishment. Initially framed as a bi-objective mixed integer linear program, they
introduced a weighted-sum, ϵ-constraint and used genetic algorithms to solve the problem.
Alhothali et al. [25] discussed the COVID-19 vaccination center location problem with the
objectives of enhancing accessibility and minimizing costs. They employed maximal coverage
models with a focus on minimizing transportation time and travel distance. Maliki et al. [26]
studied multi-period FL decisions in scenarios emphasizing pandemics with volatile demand,
and including opening, relocating, closing, and utilizing mobile facilities. They employed
NSGA-II to balance economic costs and CO2 emissions. Lai et al. [27] presented a vaccination
station location model, incorporating multi-period planning for medical professionals, vac-
cine procurement, and inventory decisions amidst demand uncertainties. Formulated as a
complex two-stage stochastic problem, they utilized a Benders decomposition-based heuristic
for effective resolution.

3. Test Center Location Problem

The test center location problem (TCLP) seeks to determine the optimal arrangement
of a set of k test centers in a manner that simultaneously minimizes the travel cost for
individuals (who are typically tested by their closest center, reflecting real-world conditions)
and maximizes the equitable distribution of workload among these centers. Given that we are
examining identical test centers, we define a center’s workload as the count of individuals it
serves. Additionally, we take into account the average travel time between an individual and
their closest center. We define the objective of workload balance as the minimization of the
disparity between the most heavily populated center and the least heavily populated one. Since
individuals are tested in the nearest center, there exists a trade-off between travel time and the
balance of workload among the centers. Solving such a problem provides a set of Pareto-optimal
solutions, i.e., those that cannot be enhanced in one objective without compromising the other
objective. Within this section, we formulate the TCLP formally, and subsequently, we articulate
an integer linear programming model tailored to address the problem.

3.1. Test Center Location Problem Formulation

To establish a comprehensive model test center location problem, we introduce the
concept of assigning weights to each demand point, with each weight corresponding to
the population count residing at that particular demand point. This weighted approach
significantly enhances the problem’s applicability to real-world scenarios. For instance, all
individuals residing in an apartment complex can be represented as a single demand point,
with its weight equal to the number of residents within it. In larger-scale instances of the
problem, such as those involving extensive urban areas, it becomes feasible to preprocess
the data by clustering residents who are in proximity. The center of each cluster is then
assigned a weight equivalent to the size of that cluster. This preprocessing step leads to a
substantial reduction in the problem’s dimensionality, ultimately facilitating the proposal
of an efficient solution. We now define the notation and problem formulation precisely.

Given a weighted set of demand points, denoted as P = {(p1, w1), (p2, w2), . . . , (pn, wn)},
a set of potential facility centers Q = {q1, q2, . . . , qm}, the travel distance dij for any pair
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(pi, qj), and an integer k, the goal is to select (or open) k centers from the available m
potential locations such that achieves the following objectives:

The first objective function, workload balance, is defined as follows

Workload balance : Minimize F1(C) = u − l, (1)

where u and l are the maximum and minimum number of individuals (demand points)
allocated to any opened center, respectively. The second objective function is k-median
objective, that is

Weighted min sum : Minimize F2(C) =
1

Σn
i=1wi

Σn
i=1widiδ(pi)

, (2)

where diδ(pi)
denotes the traveling distance between demand point pi and its closest opened

center, δ(pi). We assume δ(pi) is unique. Therefore, this objective aims to minimize the
average (weighted) travel distance for all individuals. It’s important to note that there
are no stringent constraints other than the requirement to precisely open k centers from
the initial set of m potential centers, a choice usually influenced by financial or expertise
limitations, such as constraints on available nurses or doctors.

3.2. Integer Linear Programming Model for the Test Center Problem

In the following sections, we provide a bi-objective Integer Linear Programming (ILP)
model. The model is based on the formulation presented by Marín [13], which we extend
for the weighted demand points and the two contrasting objectives. To this end, we define
the following binary variables:

xij =

{
1 , if demand point pi is served by center cj (or if pi ∈ ∆(cj))
0 , otherwise

(3)

yj =

{
1 , if center cj is selected to be opened (or if cj ∈ C)
0 , otherwise

(4)

By having these m(n + 1) binary variables, the ILP for the test center location problem
can be formulated as below:

Minimize F1 = u − l

Minimize F2 =
1

Σn
i=1wi

Σn
i=1wi(Σm

j=1xijdij)

Subject to :
m

∑
j=1

yj = k

xij ≤ yj, ∀i ∈ {1, 2, ..., n}, ∀j ∈ {1, 2, ..., m}
m

∑
j=1

xij = 1 ∀i ∈ {1, 2, ..., n}

u ≥
n

∑
i=1

wixij, ∀j ∈ {1, 2, ..., m}

l ≤
n

∑
i=1

wixij + (1 − yj)
m

∑
j=1

wi, ∀j ∈ {1, 2, ..., m}

m

∑
j′=1

dij′xij′ + (M − dij)yj ≤ M, ∀i ∈ {1, 2, ..., n}, ∀j ∈ {1, 2, ..., m}

xij, yj ∈ {0, 1}, ∀i ∈ {1, 2, ..., n}, ∀j ∈ {1, 2, ..., m}

(5)
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The formulation is similar to the k − median problem formulation, except the last
constraint of the model, ∑m

j′=1 dij′xij′ + (M − dij)yj ≤ M, where M is a sufficiently large
number (e.g., M = max

1≤i≤n, 1≤j≤m
dij). This constraint guarantees each demand point is

allocated to its closest center. We call this bi-objective ILP problem the test center location
problem, and denote it by TCLP.

To address the TCLP, an ideal algorithm should aim to yield a set of Pareto optimal
solutions that exhibit diversity across the objective space. While the number of Pareto
optimal solutions in the TCLP is finite, it can potentially be exponential in the worst case. To
facilitate effective decision-making, the focus is to find a limited number of Pareto optimal
solutions that cover all Pareto regions. This concept is commonly referred to as providing
a “handful” of diverse Pareto optimal solutions [28,29]. Typically, this would encompass
approximately 10 solutions, including not only extreme solutions for objectives F1 and
F2 but also covering a broad spectrum of the objective space. Then, the decision-maker
can choose one of the provided Pareto-optimal solutions based on high-level information
or any preferences that have not been integrated into the model. It is notable, that there
are studies that suggest picking one Pareto-optimal solution like knee point or other Nash
solutions [30,31]. In the next section, we propose two approaches to find the Pareto optimal
solutions of the TCLP.

4. Solution Approach for Test Center Location Problem

The test center location problem entails the concurrent minimization of two distinct
objectives. Existing literature delineates the NP-hardness of each of the objectives, k-
median and k-balance problems (see [4] and [16] respectively). The identification of Pareto-
optimal solutions, comprising two extreme solutions that represent optimal outcomes for
each objective, intimates the intrinsic difficulty of solving the bi-objective optimization
problem. Consequently, we contend that solving the bi-objective problem is commensurate
in complexity to addressing either the k-median or k-balance problem in isolation. It follows
that any algorithm capable of discerning at least the extreme Pareto-optimal solutions of
the bi-objective problem would inherently resolve the optimal solution for both k-median
and k-balance. Consequently, the exploration of approximation and heuristic methods
becomes invaluable. In this section, we first introduce an ϵ-constraint approach capable
of yielding a single Pareto optimal solution per execution. Furthermore, we propose a
finely-tailored, efficient bi-objective hill-climbing approach designed to discover a set of
non-dominated solutions. Given the local-search nature of this approach, it is important to
note that these non-dominated solutions may or may not represent the real Pareto optimal
solutions. However, through extensive simulations and comparisons with the Pareto
optimal solutions obtained via the ϵ-constraint approach, we affirm that the majority of
the non-dominated solutions either belong to the Pareto-optimal set or exhibit remarkable
proximity to the Pareto-optimal fronts.

4.1. An ϵ-Constraint Method for the TCLP

The ϵ-constraint method is a popular, simple and flexible method for multi-objective
optimization, but it typically has limited ability to provide in-depth insights into Pareto-
optimal solutions [28,32]. In fact, the ϵ-constraint method requires the designation of one
objective as primary and the others as constraints. This categorization of primary and
secondary of course can be subjective and may lead to biased results. So, the decision
maker needs to have extra knowledge and perform additional analyses. One significant
challenge of ϵ-constraint lies in determining the optimal value of ϵ, as selecting values that
are either too small or too large can lead to narrow or overly expansive sets of feasible
solutions, respectively. Additionally, the method’s sensitivity to changes in ϵ can result in
instability and inconsistency in the obtained Pareto front. Furthermore, the approach may
fail to adequately explore complex or non-convex solution spaces, potentially overlooking
valuable solutions lying outside the ϵ-defined range. While the ϵ-constraint method can
identify non-dominated solutions, it may struggle to capture the trade-offs between con-
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flicting objectives, leading to suboptimal or incomplete representations of decision-maker
preferences. Finally, computational complexity can pose a significant challenge, particularly
for large or complex problems, where the computational burden associated with generating
and evaluating candidate solutions may become prohibitive. Despite these limitations, the
ϵ-constraint method remains a useful, easy and popular approach, especially in cases where
computational resources are limited or where simplicity and interpretability are prioritized.

In the implementation of the ϵ-constraint method, we select F2 and represent it as a con-
straint within the TCLP model, Equation (5). To facilitate decision-maker comprehension
and practicality, we establish both a lower and an upper bound for ϵ values. This ensures
that F2 objectives remain within this predefined range. Specifically, for this purpose, we
set k = m and compute F2 values represented as 1

Σn
i=1wi

Σn
i=1(wi min

1≤j≤m
dij). This corresponds

to solutions where each demand point is allocated to its closest potential facility center.
Conversely, by configuring k = 1, where all the demand points are allocated to the same
center and F1 is no longer important, the upper bound for the F2 value can be established
within polynomial time. Finally, the decision maker’s preferences for the number of desired
Pareto optimal solutions sets the number of ϵ values, which are then uniformly selected
from this defined range and set in the following constraint.

1
Σn

i=1wi
Σn

i=1wi(Σm
j=1xijdij) ≤ ϵ, (6)

Upon relocating the previously mentioned equation to the constraint section, we
transform the problem into a single-objective optimization model, i.e., as an ILP. This
model can be efficiently solved using widely available commercial solvers like Gurobi [33],
yielding a single Pareto-optimal solution in each run. By introducing variations in the ϵ
values and iteratively executing the process, we can systematically generate a diverse set of
Pareto-optimal solutions.

4.2. A Local Search Approach for the TCLP

One of the key factors in the success of heuristic and local search algorithms is the
way that they generate a new solution using the obtained solutions in each iteration. The
other factor is striking a balance between exploration and exploitation power. Considering
these two factors, in this section, we propose a customized local search algorithm for the
TCLP. We call this algorithm the Test Center Location Algorithm and denote it by TCLA.
This algorithm is a population-based heuristic algorithm that regenerates solutions by
leveraging Voronoi neighbors. This regeneration method is called the Voronoi exchange
operator and ensures the gradual reproduction of new generations through an exchange
operator, avoiding abrupt changes akin to the “mutation” process in genetic algorithms.
Instead, it explores the search space in multiple directions facilitated by Voronoi analysis.
In terms of exploitation, the population is updated using a “non-domination” comparison
criterion. This entails retaining solutions that are non-dominated concerning the current
population. In a bi-objective problem, a solution C is said to dominate a solution C′ if it
is better in at least one objective and not worse in the other objective. In cases where the
number of such non-dominated solutions exceeds the population’s capacity, a crowding
operator such as a basic clustering technique is employed to select the most diverse non-
dominated subset. The following sections will delve into the specifics of this process.

In a preprocess, we first compute Voronoi neighbors of each potential facility center,
set Q. This can be performed in O(mlogm) time [34]. Likewise, the nearest center to a given
demand point can be determined in O(log m)time. Let Vor(q) denote Voronoi neighbors
of each center q ∈ Q in the Voronoi diagram. For a solution C = {c1, c2, . . . , ck} ⊂ Q
for the TCLP, a random solution C′ can be generated by the following Voronoi exchange
operator. We choose a center c ∈ C and replace it with a random center c′ ∈ Vor(c).
This Voronoi exchange operator can be applied for all centers, generating k new random
solutions. Since the evaluation process, which involves computing F1(C) and F2(C), is
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computationally expensive, we identify and remove repeated solutions before computing
the objective values.

Now, let’s elucidate the functioning of the entire local search algorithm. We commence
with the assumption of a population denoted as Popt (i.e., for t = 0 in the beginning),
possessing a size of N, and initialize it with random solutions like C = c1, c2, . . . , ck. Subse-
quently, we conduct an evaluation of these solutions, calculating their respective objective
values, F1 and F2. This evaluation process demands O(k log k + n log k) time for an individ-
ual solution C by leveraging the Voronoi diagram of C and identifying the closest center
for each demand point. In the next step, we employ the previously described Voronoi
exchange operator to generate k random solutions for every solution within the population,
totaling kN solutions in entirety. Following the removal of duplicated solutions and the
computation of objective values for these generated solutions, we execute a non-dominated
sorting, which identifies all non-dominated solutions within O(kN log(kN)) time [35].

In the final phase, we select non-dominated solutions from the union of Popt and the
newly generated solutions and construct Popt+1 with N solutions. Two cases may happen,
if the number of non-dominated solutions is less than N, we fill Popt+1 with the second
level of non-dominated solutions. That is the non-dominated solutions after removing the
first level. We repeat this process to fill Popt+1 with N solutions. The second case happens
if the number of non-dominated solutions exceeds N. In this case, we employ a crowding
operator to select a diverse ensemble of non-dominated solutions. Various approaches exist
for reaching diversity among the solutions [28,29]. As an example, we first normalize the
objective values and initiate by selecting two extreme solutions, those with the minimum
F1 and minimum F2 values, incorporating them into Popt+1. Following this, we proceed
to determine the largest axis-aligned bounding box that encompasses each solution while
ensuring that no other solution is contained within it. We select the N − 2 solutions that
have the largest bounding boxes and incorporate them into Popt+1. This approach can be
easily implemented by sorting the solutions based on their objectives. Consequently, it
requires a time complexity of O(Nk log(kN)).

Therefore, TCLA initiates its process with an initial random population and then
proceeds to generate a new population through the utilization of the Voronoi exchange
operator. From these populations, it selects the non-dominated solutions to be carried
forward into the subsequent generation. These steps are reiterated for a specified number of
iterations to accomplish its optimization objective. The pseudocode for TCLA is presented
in Algorithm 1. The time complexity of this algorithm for one iteration is O(Nkn log k) for
evaluating the solutions using their corresponding Voronoi diagram, plus O(Nk log(Nk))
if the crowding operator is needed.

It is worth noting that, we utilize the Voronoi diagram for a dual purpose: to ascer-
tain the neighbors of a given solution and to expediently calculate the objective values
associated with a solution. The number of Voronoi neighbors pertaining to a solution may
exhibit variability, ranging from 2 to (k − 1). Nevertheless, the average number of Voronoi
neighbors is constant. Additionally, the overall number of neighbors remains linear (≤3k).
The assessment of a solution can be achieved through a brute-force algorithm in O(nk)
time; however, by employing the Voronoi diagram and performing the nearest point query,
this process can be improved to O(n log k) time complexity [34].

TCLA, like all population-based heuristics, requires two predefined parameters: the
size of the population (N) and the number of iterations. Remarkably, TCLA stands out by
not requiring any additional parameters. In contrast, many heuristic algorithms necessitate
a multitude of parameters, including crossover rate, mutation probability, and learning
weights, among others [29]. We firmly believe that in FL problems, particularly in the
case of large instances, the Voronoi diagram plays a crucial role in efficiently achieving
a balance between exploration and exploitation concepts within the search space. The
Voronoi partition of the space serves as a valuable tool for distributing the combinatorial
complexity of the problem into localized complexities.
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Algorithm 1 Test Center Location Algorithm (TCLA)
Input: Sets P and Q, distance function (or matrix dij) and the integer number k
Output: Set of non-dominated solutions for the TCLP

1: Set the size of population to N, and number of generations to T
2: Initialize population Pop0 with N random solutions like C = {c1, c2, ..., ck}
3: For any solutions C ∈ Pop0, compute Voronoi diagram of C, denoted by VD(C), and

then evaluate their objective values, F1(C) and F2(C)
4: for t = 0 to T − 1 do
5: For any solutions C ∈ Popt, apply VD(C) and the Voronoi exchange operator and

reproduce k neighbor solutions. Put the new generated Nk solutions in temp a
population TPop

6: Remove the duplicated solutions in TPop
7: For any solution C′ ∈ TPop, compute VD(C′), F1(C′) and F2(C′).
8: Add solutions in Popt to TPop
9: Create an empty population Popt+1

10: Find all non-dominated solutions in TPop and pop them into Popt+1
11: if size of Popt+1 > N then
12: Apply the crowding operator and choose N most diverse non-dominated solutions.
13: else
14: while size of Popt+1 < N do
15: Pop the non-dominated solutions from TPop and add them to Popt+1 if there

exist some free slots, otherwise, put a random number of them to fill Popt+1
with N solutions.

16: end while
17: end if
18: end for
19: Return PopT

5. Simulation Results

This section is structured into two segments, presenting the outcomes of our proposed
model and algorithms for identifying Pareto optimal solutions in the context of the TCLP. In
the initial part, we employ the suggested TCLA on various problem instances with varying
configurations. We present the outcomes both in the variable space and the objective
space. In the subsequent part, we conduct a comparative analysis between TCLA and the
ϵ-constraint method, solved using the Gurobi solver. This comparison is made with regard
to execution time and their respective capacities for identifying Pareto optimal solutions.

5.1. Results on TCLA

We run TCLA on the model presented in Equation (5) to find Pareto optimal solutions.
The code of the algorithm is implemented in the programming language Python 3.7 and
runs on a standard PC (Intel(R) Core(TM) i7 (Santa Clara, CA, USA) and 32G RAM). To
this end, we consider a rectangular environment with a size of 1500 × 1000 and generate
instances with random locations for the demand points, P, and potential centers, Q. Also,
we assign random weights for the demand points in [10, 100]. Figure 1 shows the random
instance with n = 100 weighted demand points and m = 25 locations at which test centers
will be opened.

We denote each random instance of the TCLP with a triplet (n, m, k), where k is the
number of opened centers. We run TCLA for (100, 25, k), where k ∈ {5, 8, 12, 15}. The
combinatorial complexity of the search space of the TCLP is related to m and k such that
the number of possible solutions is (m

k ). This implies that the worst case happens for k = m
2 .

On the other hand, the complexity of TCLA, like all the population-based heuristics, is
directly related to the size of the population, N, and the number of generations, T. We set
the size of the population in TCLA to N = 2 cm and the number of generations to T = cN,
where c = min{k, m − k}. We choose these values because they achieve an optimal balance
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between processing time and the quality of the obtained non-dominated solutions. This
choice is informed by our analysis of the simulation results.

Figure 1. A random instance of the TCLP with n = 100 weighted demand points (black circles) and
m = 25 potential test center locations (blue squares).

Figures 2–5 show the results for the instance illustrated in Figure 1 for k = 5, k = 8,
k = 12 and k = 15, respectively. In each figure, we select three solutions from the obtained
non-dominated set, two extreme solutions and one middle solution. Indeed, we sort the
obtained non-dominated solutions according to one of the objectives, i.e., F1, and choose
the first (Figures 2–5a), last (Figures 2–5b) and middle (Figures 2–5c) solutions. Also, we
depict all the obtained non-dominated solutions in the objective space (Figures 2–5a). The
solid blue squares show the selected (opened) test center location in each solution, and for
simplicity, we draw the Voronoi edges of them (the green lines). Consequently, the Voronoi
region of each selected test center and the demand points that are allocated to each center
can be recognized easily. Note that the demand points are weighted (see Figure 1).

The running times of TCLA for k = 5, k = 8, k = 12, and k = 15 are approximately 7,
24, 41, and 33 s, respectively. TCLA finds 9, 13, 8, and 11 non-dominated solutions for k = 5,
k = 8, k = 12, and k = 15, respectively. For k = 5, the range of F1 values spans from 127 to
829, and their corresponding F2 values vary between 23.1 and 21. The resulting solution set
exhibits a good distribution pattern along the F1 axis. However, there exists a noticeable
gap in the F2 values, from 23.1 to 26.6, where no solutions are found. In the cases of k = 8
and k = 12, the solution sets exhibit a well-distributed spread in both objective spaces. For
k = 8, the F1 values range from 189 to 701, while the F2 values lie in the interval of (16.5,
18.6). Conversely, for k = 12, the F1 values span from 308 to 578, and the F2 values range
from 14.3 to 13.5. Lastly, for k = 15, the obtained solution set covers a range of F1 values
from 284 to 523 and F2 values between 12.3 and 14.3.

Pareto-optimal solutions play a significant role in aiding decision-makers when select-
ing an efficient trade-off solution. It is essential to recognize that enhancing one objective
often necessitates a trade-off with another objective. The degree of improvement and
the associated trade-offs require careful examination. For instance, within the set of non-
dominated solutions obtained for the case k = 5, the third solution with the objective values
F1 = 212 and F2 = 21.6 (refer to Figure 2d), stands out as a superior solution, akin to a knee
point, in comparison to the other solutions within the set.

The parameter k typically stems from budget constraints and the test center’s expert
limits. Consequently, in addition to comparing sets of Pareto-optimal solutions for a fixed
value of k, decision-makers can gain insights by observing how the objective values evolve
when k is altered. For example, the minimum values of the objective F2, the average
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traveling distance between the individuals and their closest test center, is improved from
21 to 12.3 when k increases from 5 to 15.

As we have demonstrated, TCLA successfully identifies a diverse range of non-
dominated solutions. However, to comprehensively assess its effectiveness in achieving
Pareto optimality, we require comparison results with known Pareto-optimal solutions,
which will be discussed in the subsequent section.

(a) (b)

(c) (d)
Figure 2. Obtained non-dominated solutions for an instance (100,25,5) by TCLA. (a) The obtained
solution with minimum F1. (b) The obtained solution with minimum F2. (c) The middle solution
among the obtained non-dominated solutions. (d) Visualization of all obtained non-dominated
solutions in the objective space.

(a) (b)

(c) (d)
Figure 3. Obtained non-dominated solutions for an instance (100,25,8) by TCLA. (a) The obtained
solution with minimum F1. (b) The obtained solution with minimum F2. (c) The middle solution
among the obtained non-dominated solutions. (d) Visualization of all obtained non-dominated
solutions in the objective space.
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(a) (b)

(c) (d)
Figure 4. Obtained non-dominated solutions for an instance (100,25,12) by TCLA. (a) The obtained
solution with minimum F1. (b) The obtained solution with minimum F2. (c) The middle solution
among the obtained non-dominated solutions. (d) Visualization of all obtained non-dominated
solutions in the objective space.

(a) (b)

(c) (d)
Figure 5. Obtained non-dominated solutions for an instance (100,25,15) by TCLA. (a) The obtained
solution with minimum F1. (b) The obtained solution with minimum F2. (c) The middle solution
among the obtained non-dominated solutions. (d) Visualization of all obtained non-dominated
solutions in the objective space.
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5.2. Comparison Results

We employ the Set Coverage Metric (SCM) to assess the Pareto-optimality of the ultimate
solutions acquired [36]. In the context of two solution sets denoted as A and B, the SCM
(denoted as scm(A, B)) is defined as follows.

scm(A, B) =
|{b ∈ B|∃ a ∈ A : a dominates b}|

|B| . (7)

Here, we utilize the notation |.| to represent the cardinality (size) of a set. The metric
value scm(A, B) = 1 signifies that any solutions within set B are dominated by at least
one solution in set A. Conversely, when scm(A, B) = 0, it implies that no solution in B
is dominated by any solutions in A. Consequently, when scm(A, B) approaches 1 while
scm(B, A) approaches 0, it indicates that solution set A outperforms solution set B in terms
of Pareto optimality. In the scenario where the set A comprises Pareto-optimal solutions, it
is evident that scm(B, A) = 0 holds true for any set B; however, scm(A, B) serves as a gauge
of set B’s effectiveness in achieving Pareto optimality, measuring its efficiency in this regard.
In this part, we employ the Gurobi 5.6.3 optimization solver [33] with a specified parameter
of MIPGap = 1 × 10−3 . Our goal is to identify a collection of solutions that are either
Pareto-optimal or very close to being Pareto-optimal. These solutions will subsequently
be used as one of the sets in the calculation of scm(A, B). Similarly, we employ TCLA
and identify the resulting non-dominated solutions, which will serve as the other set in
the calculation of scm(A, B). It is important to note that the solutions obtained through
Gurobi may not necessarily be Pareto-optimal due to the presence of an optimality gap.
This gap signifies the difference between the best-known integer solution and the current
best solution discovered during Gurobi’s branch-and-bound process. The optimality gap
is expressed as a percentage of the objective function value and plays a crucial role in
balancing the trade-off between solution quality and solution computation time.

The metric scm(A, B) calculates the number of solutions within a set B that are domi-
nated by at least one solution in set A. However, it lacks the ability to quantify “to what
extent” a solution b ∈ B may be dominated by a solution a ∈ A. To address this concern,
we extend the concept of the approximation factor from single-objective optimization to
bi-objective optimization as follows: If we represent the objective values of a solution b
from the set B as F1(b) and F2(b), when solution a dominates solution b, we have

[F1(a) < F1(b) and F2(a) ≤ F2(b)] or [F1(a) ≤ F1(b) and F2(a) < F2(b)] (8)

Now, let α and β be the smallest values that satisfy the following equations.

F1(a) ≥ (1 − α)F1(b) and F2(a) ≥ (1 − β)F2(b) (9)

Indeed, parameter α (β) signifies the percentage by which solution b must enhance its
performance to surpass solution a in objective F1 (F2). Consequently, decreasing α percent
in the direction of F1, or β percent in the direction of F2, will render solution b no longer
dominated by solution a. Furthermore, augmenting in both directions simultaneously will
yield a stronger solution. Now, identifying the minimum pair of (α, β) that satisfies equation
Equation (9) for all solutions a ∈ A reflects the quality of the solution b. Furthermore,
extending this fact to all solutions b ∈ B and choosing the maximum α and β values among
them will represent the quality of solution set B in comparison to solution set A. Let us
denote this metric by αβ(A, B).

To utilize the Gurobi solver, we implement the ϵ-constraint methodology, as eluci-
dated in Section 4.1. We establish a range encompassing the lower and upper bounds for
the feasible values of F2, denoting the average travel distance between individuals and
their nearest open center. Subsequently, based on the desired quantity of Pareto-optimal
solutions, we evenly select various ϵ values from this specified interval. For example, for an
interval [le f t, right], if we are interested in finding at most h Pareto-optimal solutions, we
run the Gurobi solver for ϵ = le f t + i( right−le f t

h−1 ), for i = 0, 1, 2, ..., h − 1. It’s worth noting
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that for certain ϵ values, particularly those close to the lower boundary of the interval,
no feasible solutions may be attainable. Additionally, some of these ϵ values may yield
identical optimal solutions, indicating that in the bi-objective space, the solutions obtained
from larger ϵ values are dominated by those obtained from smaller ones. Consequently, we
run the Gurobi solver for all h sampled ϵ values independently and subsequently report
solely the Pareto-optimal solutions that have been ultimately obtained.

We generate random instances of varying sizes for the test center location problem and,
for each instance, employ both TCLA and Gurobi solver using the described ϵ-constraint
approach. For each run, we provide the number of non-dominated solutions obtained by
TCLA, the number of Pareto optimal solutions obtained by Gurobi, and the set coverage
metric scm(A, B), where A and B are the obtained solutions by Gurobi and TCLA, respec-
tively. In addition, we report the running time (in seconds) for both approaches. It’s worth
noting that TCLA can find a non-dominated set in a single run, whereas Gurobi executes
separately for each ϵ value, resulting in one Pareto-optimal solution per run. Therefore, for
Gurobi runs, we report two types of running times: the total running time for finding all
Pareto-optimal solutions, and the average running time to discover a single Pareto-optimal
solution, excluding runs that yield no feasible solutions.

The comparison results are presented in Table 1, and the corresponding obtained non-
dominated solutions in the objective space are depicted in Figure 6. We ran the algorithms
and asked to find at most 10 non-dominated solutions. The table represents the number of
non-dominated solutions by each of the approaches (TCLA is denoted by T and Gurobi is
denoted by G) as well as scm(., .) metric, αβ(., .) metric and the running time (in seconds) for
all 18 different instances of the problem. The first 8 instances are generated randomly in a
150 × 100 rectangular shape, while for the larger instances with 200, 500, and 1000 weighted
demand points, a bigger rectangle with a size of 1500 × 1000 is used. The weights are also
assigned randomly in the interval [10, 100]. The final two runs, pertaining to the instances
(500,100,50) and (1000,100,50), represent exceedingly large cases of the TCLP. In these scenarios,
there exists a staggering number of possible center combinations, approximately on the order
of 5.39 × 1023. To conduct TCLA runs for these instances, we configured the population
size to N = 1000 and the number of generations to T = 15,000. The computational time for
TCLA under these settings amounted to 1061 s for the (500,100,50) instance and 1937 s for the
(1000,100,50) instance. In contrast, Gurobi encounters substantial challenges when dealing
with such formidable instances. For the former case, it necessitates a staggering 12,841 s (over
3 h and 30 min), while for the latter, we were compelled to terminate the program after 6 h
due to a lack of any discernible outcome. It’s worth noting that TCLA exhibited a relatively
modest memory usage of approximately 200 MB. In contrast, when using Gurobi, the memory
consumption significantly surpassed this, exceeding 3800 MB. Moreover, the ensuing results
have been derived from the comparison between TCLA and Gurobi.

• A trade-off exists between the running times of both algorithms and the quality of
the non-dominated solutions they produce. As previously mentioned, the running
time of TCLA is directly influenced by the size of potential center locations, denoted
as m, and the number of selected centers, denoted as k. To simplify its application,
we set the population size to N = 2 cm and the number of generations to T = cN,
where c is the minimum of either k or m − k. On the other hand, in the case of Gurobi,
since the model is an integer linear program, its solution quality is influenced by
the parameter MIPGap. Smaller values of MIPGap result in higher solution quality
but longer running times. In general, increasing the number of demand points has a
noticeable impact on the running time of both Gurobi and TCLA. However, the impact
is less pronounced in the case of TCLA. For larger instances, Gurobi may take more
than 3 h to complete.

• Another important consideration is that the running time of Gurobi is closely tied
to the spatial distribution of points and the shape of the search space. In addition
to instance size, the specific locations of the points play a crucial role in Gurobi’s
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performance. However, this factor has a less significant impact on the running time
of TCLA.

• The average scm metric for scm(TCLA, Gurobi) and scm(Gurobi, TCLA) are 0.098 and
0.081, respectively. So, TCLA finds solutions slightly close to real Pareto-optimal
solutions compared to Gurobi’s solutions. However, because of the small size of the
obtained non-dominated solutions, it appears that the αβ metric provides a better
assessment of solution quality.

• According to αβ metric, aside from two instances, namely (100,40,15) and (100,40,20),
where the difference between the obtained solutions is approximately 2.23% and 3.67%,
respectively, the efficiency of both approaches is similar.

• While the Pareto-optimal queue of the TCLP is generally non-convex, the ϵ-constraint
approach demonstrates an ability to discover a diverse array of solutions.

• The reported time for the Gurobi is the total time to run the Gurobi for different ϵ
values in the ϵ-constraint approach. So, if a decision maker is interested in finding just
one single Pareto solution with a preferable level of work balance or average travel
distance, the Gurobi will run faster than TCLA on small and medium-sized instances.

Table 1. Comparison results for TCLA (denoted by T) and Gurobi (denoted by G). Columns #T and
#G show the number of obtained solutions by each method. the scm and αβ metrics are shown in the
middle columns, and finally, the running time of the algorithms is reported in the last columns. For
simplicity, αβ(., .) values are represented as percentage (×100).

(n,m,k) #T #G scm (T,G) scm (G,T) αβ (T , G) αβ (G, T) t (T) t (G)

(40,20,5) 4 4 0 0 (0,0) (0,0) 3.81 14.48
(40,20,8) 8 7 0 0 (0,0) (0,0) 13.53 15.7
(40,20,10) 10 8 0.25 0 (0,1.31) (0,0) 23.47 22.68
(40,20,12) 7 6 0 0 (0,0) (0,0) 12.47 11.38
(100,40,10) 10 8 0 0 (0,0) (0,0) 135 151
(100,40,15) 8 9 0 0.11 (0,0) (2.23,0.21) 207 105
(100,40,20) 5 5 0.2 0.2 (3.67,0.85) (0,0.35) 237 114
(100,40,25) 8 9 0.22 0.125 (0,0.12) (0,0.12) 216 88.9
(200,20,5) 5 4 0 0 (0,0) (0,0) 17.98 89.06
(200,20,8) 10 6 0 0 (0,0) (0,0) 64.68 101.9
(200,20,10) 9 7 0 0 (0,0) (0,0) 96.29 109.5
(200,20,12) 9 7 0.43 0.11 (0,0.77) (0,0.24) 95.76 123.5
(500,40,10) 7 6 0 0 (0,0) (0,0) 277.4 1494
(500,40,15) 6 5 0.2 0.17 (0,0.35) (0,0.27) 576 1086
(500,40,20) 6 5 0.2 0.17 (0.71,0.29) (1.39,0.03) 727 1884
(500,40,25) 7 6 0.17 0.26 (0,0.14) (0.78,0.32) 637 1452

(500,100,50) 8 8 0 0.25 (0,0) (1.50,0.14) 1061 12,841
(1000,100,50) 9 – – – – – 1737 –

Generally, the comparison results indicate that both TCLA and the Gurobi-based ϵ-
constraint approach show significant promise in effectively tackling the test center location
problem. The choice between these approaches may depend on various factors such as problem
size and computational resources (time and space), with each approach demonstrating its
advantages. TCLA excels in providing swift and reasonably high-quality solution sets, making
it particularly suitable for scenarios where quick decision-making is essential. On the other
hand, the ϵ-constraint approach with the Gurobi solver offers a quicker solution for small and
medium-sized instances of the TCLP, especially when the objective is to identify a single optimal
solution. This advantage stems from Gurobi’s proficiency in handling integer linear program-
ming models, while TCLA proves its adaptability in situations where linearity is not a critical
constraint. As a result, TCLA holds the potential for broader applicability and extension to
various problem variations, especially those demanding nonlinear modeling, such as scenarios
where distance calculations, such as Euclidean distance, should be integrated directly into the
model. Finally, it becomes evident that Gurobi struggles to handle large-size instances of the
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TCLP within a reasonable time frame, whereas TCLA demonstrates competent performance
and successfully identifies acceptable non-dominated solutions. One way to tackle this issue
is by improving the formulation in Equation (5). For example, Marín [13] added some valid
inequalities that help efficient branching and pruning in the branch-and-bound algorithms.
Unfortunately, such improved formulation works only for unweighted demand points and it is
not straightforward to extend this approach to the TCLP presented in this paper.

instance (40,20,5) instance (40,20,8) instance (40,20,10) instance (40,20,12)

instance (100,40,10) instance (100,40,15) instance (100,40,20) instance (100,40,25)

instance (200,20,5) instance (200,20,8) instance (200,20,10) instance (200,20,12)

instance (500,40,10) instance (500,40,15) instance (500,40,20) instance (500,40,25)

instance (500,100,50) instance (1000,100,50)

Figure 6. Obtained set by TCLA (blue-color diagram) and Gurobi (black-color diagram) in objective
space for small instances. There is no outcome for Gurobi for the last instance.
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6. Conclusions

In this paper, we have tackled a critical concern related to the establishment of diag-
nostic test centers for infectious diseases, drawing inspiration from the testing capacity
limitations repeatedly exposed during the COVID-19 pandemic. Our primary objectives
were to reduce workload disparities among centers while concurrently minimizing the
average travel distance for individuals seeking testing. This posed a multifaceted challenge
with significant real-world implications. To address this complex problem, we introduced
an integer linear programming model. Additionally, we proposed two distinct approaches
for its solution. The first is a local search algorithm, named TCLA, which leverages Voronoi
diagrams to efficiently uncover a set of non-dominated solutions in a single execution. The
second approach employs the ϵ-constraint method, solved using the Gurobi solver. We
conducted comprehensive testing across a range of problem instances, rigorously assessing
the performance of these approaches in terms of computational time and the quality of the
resultant non-dominated solutions. Here, quality is gauged by the proximity of the obtained
solutions to the Pareto-optimal solutions. In light of the trade-off between computational
time and solution quality, our comparative analysis demonstrates that TCLA emerges as an
efficient algorithm for identifying Pareto-optimal solutions within a reasonable timeframe.
This efficiency is particularly evident in the context of larger problem instances, where
TCLA outperforms Gurobi. This suggests its practical utility in real-world scenarios where
time constraints are critical.

The models and approaches presented in this paper hold practical significance across a
spectrum of real-world applications extending beyond healthcare systems. These principles
can be applied to a wider range of facility location challenges where achieving workload
equilibrium among centers is of utmost importance. Furthermore, by integrating elements
such as uncertainties related to demand fluctuations or variations in travel times, as well
as leveraging geographic information system data and spatial analysis, it is possible to
create more realistic models that better align with real-world scenarios. Furthermore, in
certain scenarios, the feasible facility center locations can be continuous, allowing for the
possibility of opening centers in various positions throughout the city. For instance, during
the COVID-19 pandemic, small kiosks offered antigen tests, illustrating this flexibility. In
such cases, the model presented in this study may not be applicable, necessitating the
development of a new formulation.
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Nomenclature
n Number of demand points
P = {(p1, w1), (p2, w2), Set of weighted demand points
..., (pn, wn)}
pi = (xi, yi) i-th demand point with coordination of (xi, yi) in the plane

wi
Weight of i-th demand point, that is, number of individuals located in
location pi

m Number of potential test center locations
Q = {q1, q2, ..., qm} Set of potential test center locations
qj = (xj, yj) j-th potential test center which is located in coordinate (xj, yj)

dij Traveling distance (or any type of cost in general) between pi and qj
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k Number of test centers which must be chosen (or say to be opened)
C = {c1, c2, ..., ck)} Set of opened centers. C ⊆ Q, C is a (feasible) solution
δ(pi) Closest opened center to pi, ∀i ∈ {1, 2, ..., n}, δ(pi) ∈ C

∆(cj)
All demand points whose closest opened center is
cj, (∆(cj) = {pi ∈ P : cj = δ(pi)})

u
Maximum number of (weighted) demand points allocated to any
opened center, u = max

c∈C
∑

pi∈∆(c)
wi

l
Minimum number of (weighted) demand points allocated to any
opened center l = min

c∈C
∑

pi∈∆(c)
wi
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