
Citation: Silva, H.; Duque, V.;

Macedo, M.; Mendes, M. Aiding

ICD-10 Encoding of Clinical Health

Records Using Improved Text Cosine

Similarity and PLM-ICD. Algorithms

2024, 17, 144. https://doi.org/

10.3390/a17040144

Academic Editor: Frank Werner

Received: 17 February 2024

Revised: 15 March 2024

Accepted: 26 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Aiding ICD-10 Encoding of Clinical Health Records Using
Improved Text Cosine Similarity and PLM-ICD
Hugo Silva 1,* , Vítor Duque 2, Mário Macedo 3 and Mateus Mendes 1,*

1 Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes–Quinta da Nora,
3030-199 Coimbra, Portugal

2 Department of Infectious Diseases, Coimbra Hospital and University Centre, 3000-075 Coimbra, Portugal;
duque.vitor@chuc.min-saude.pt

3 RCM2+ Research Centre for Asset Management and Systems Engineering, ISEC/IPC , Rua Pedro Nunes,
3030-199 Coimbra, Portugal; mmacedo@rcm2.pt

* Correspondence: a21190495@isec.pt (H.S.); mmendes@isec.pt (M.M.)

Abstract: The International Classification of Diseases, 10th edition (ICD-10), has been widely used
for the classification of patient diagnostic information. This classification is usually performed by
dedicated physicians with specific coding training, and it is a laborious task. Automatic classification
is a challenging task for the domain of natural language processing. Therefore, automatic methods
have been proposed to aid the classification process. This paper proposes a method where Cosine text
similarity is combined with a pretrained language model, PLM-ICD, in order to increase the number
of probably useful suggestions of ICD-10 codes, based on the Medical Information Mart for Intensive
Care (MIMIC)-IV dataset. The results show that a strategy of using multiple runs, and bucket category
search, in the Cosine method, improves the results, providing more useful suggestions. Also, the use
of a strategy composed by the Cosine method and PLM-ICD, which was called PLM-ICD-C, provides
better results than just the PLM-ICD.

Keywords: automatic EHR encoding; natural language processing; Cosine similarity; PLM-ICD-C;
ICD-10

1. Introduction

Clinical episodes are normally registered by physicians or other health professionals
using natural language. For every clinical episode, an electronic health record (EHR) is
registered and stored in the patient’s clinical history. Since the clinical descriptions are
recorded in natural language, there may be ambiguities, different denominations for the
same pathology, symptoms, or therapies. Additionally, natural text is non-structured, so
information is more difficult to retrieve than in structured databases. In order to facilitate
procedures of text mining and information retrieval in electronic health records, an interna-
tional encoding system was developed, where each pathology and symptom is assigned a
unique code. The International Classification of Diseases (ICD) is a medical diagnostic and
procedure coding system that was developed by the World Health Organization (WHO)
in the 1970s. ICD has undergone several major revisions along the years, incorporating
new scientific knowledge, expanding its scope and content, and improving its structure and
format. In 2009, the U.S. Department of Health and Human Services (HHS) released a final
ruling for the U.S. to adopt the ICD-10 code set. In 2014, HHS issued a final rule formally
establishing 1 October 2015 as the ICD-10 compliance date and requiring the continued use
of ICD-9 through 30 September 2015. The latest version of the ICD is ICD-11. It was adopted
in 2019 by the 72nd World Health Assembly, and came into effect on 1 January 2022 [1].

The dataset used in the present work, MIMIC-IV, does not provide ICD-11 codes,
providing only ICD-9 and ICD-10 codes for the diagnosis and procedures of the patients.
ICD-10 is still widely used to describe patient diagnostic information. Codification of

Algorithms 2024, 17, 144. https://doi.org/10.3390/a17040144 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17040144
https://doi.org/10.3390/a17040144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1184-2433
https://orcid.org/0000-0002-4145-7301
https://orcid.org/0000-0003-4313-7966
https://doi.org/10.3390/a17040144
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17040144?type=check_update&version=2

Algorithms 2024, 17, 144 2 of 17

EHR into ICD-10 codes is normally performed and audited by medical doctors with
proper training in the process. The doctors read the clinical texts and assign the EHR the
corresponding ICD-10 codes, so that retrieval procedures are facilitated in the future. This
process of manually assigning the codes is very time consuming and prone to errors. For
each illness mentioned in the EHR, the coders need to find the corresponding ICD-10 code
and assign it to the episode. Totally automatic encoding could save time, improve efficiency
and the quality of the work. Nonetheless, despite this being an area of heavy research, total
automation is not expected to be feasible in the coming years, due to the complexity of the
process and the rigour that is demanded in the task, where errors can have unexpected
catastrophic consequences. Therefore, a more realistic and safer goal is to produce co-pilots
that can help in the encoding process, leading the coders to the right codes with minimal
errors and omissions.

Despite that many approaches were introduced to help the encoding process, only
a few have been applied in practice, due to the difficulty and low precision. The present
paper proposes a method where the Cosine text similarity method is used to improve the
output of a pretrained language model (PLM).

The main contributions of this paper are:

1. Implementation of a strategy of multiple runs of the Cosine method, so that frequent words
are eliminated in the latter runs, in order to let other words trigger additional codes;

2. Implementation of a strategy called “bucket category” selection, that considers all the
ICD-10 codes in a given category;

3. Proposal of a method where the Cosine text similarity algorithm, with the contribu-
tions referred above, is used to improve the results of a PLM.

The remainder of this paper is organized as follows. Section 2 presents related work
on quality in clinical coding, natural language processing (NLP) in healthcare, PLMs, and
the application of deep learning models in biomedical settings. Section 3 presents the used
datasets and Section 4 the methodology. Section 5 describes the experimental evaluation
and Section 6 discusses the main findings. Finally, Section 7 presents the main conclusions
and future work.

2. Related Work

This section describes a literature review of related works, namely the quality in clinical
coding, application of NLP in the area of healthcare, PLMs, and use of deep learning models
in biomedical applications.

2.1. Quality in Clinical Coding

Alonso, et al. (2020) [2] explored the perception of medical coders regarding possible
problems with clinical records that can impact the quality of coded data. The authors show
that there are several problems in clinical records that influence the quality of coded data,
namely the incomplete or lack of clearly documented information, the variability of the
diagnosis description, “copy and paste”, lack of clarity in records, lack of readability, use of
synonyms and abbreviations, lack of communication between the stakeholders, and the
lack of solutions to solve these problems.

Lucyk, et al. (2017) [3] explored the potential barriers that exist to quality coding. They
elucidated the high mapping quota of codification by the medical doctors that originates
additional pressure on coding, compromising its quality.

2.2. NLP in Healthcare

Kormilitzin, et al. (2021) [4] used a NER model for NLP in the healthcare area. It was
trained to classify seven categories, namely drug name, route of administration, frequency,
dosage, robustness, form and duration. The process is composed by an initial pretrain of
the model using MIMIC-III, followed by fine-tuning of the NER task. MIMIC is a popular
EHR dataset in medical informatics.

Algorithms 2024, 17, 144 3 of 17

Li, et al. (2022) [5] described NLP methods in the healthcare area, emphasizing tasks
like classification, prediction, word embedding and extraction. Architectures used in NLP,
like autoencoders, convolutional neural networks (CNN), recurrent neural networks (RNN),
and sequence-to-sequence models, were described.

2.3. Pretrained Language Models

Devlin, et al. (2018) [6] presented a language representation model, BERT (Bidirectional
Encoder Representations from Transformers), that is designed to pretrain deep bidirectional
representations from unlabeled text. This model can be fine-tuned with just one additional
output layer.

Lee, et al. (2020) [7] introduced BioBERT (Bidirectional Encoder Representations
from Transformers for Biomedical Text Mining), a domain-specific language representation
model that is pretrained on large-scale biomedical corpora. In the same way Alsentzer, et al.
(2019) [8] presented ClinicalBERT, Gu, et al. (2021) [9] the PubMed-BERT, and Lewis, et al.
(2020) [10] the RoBERTa-PM. These models are pretrained on domain-specific, crawled
and processed for improvement of the downstream performance. These PLMs improved
performance on tasks like text mining, named entity recognition, relation extraction, and
question answering.

Zhang, et al. (2020) [11] proposed an extension of BERT for ICD coding, BERT-XML. It
was pretrained on a large corpora of EHRs with specific vocabulary. This model handles
long input text by splitting into chunks and perform predictions for each chunk with a
label attention mechanism.

Huang, et al. (2022) [12] proposed a PLM to predict ICD codes (PLM-ICD) that
tackles the challenges of previous pretrained models, namely the use of domain-specific
pretraining, segment pooling for the long input sequence problem, and level attention for
the large label set problem. Experiments were conducted over MIMIC-II and MIMIC-III
datasets. PLM-ICD is the first transformer-based PLM that has a competitive performance
on these MIMIC datasets.

Edin, et al. (2023) [13] reproduced, compared, and analysed state-of-the-art machine
learning models for automatic medical encoding, including PLM-ICD. The authors show
that many models underperform due to poor configurations, poor train-test splits, and
insufficient evaluation. The analysis shows that all models have difficulties with rare codes,
while long documents have a negligible impact. They presented the first results on the
newly released MIMIC-IV dataset.

2.4. Use of Deep Learning Models in Biomedical Applications

Falter, et al. (2024) [14] used NLP algorithms, namely rule-based search, logistic regres-
sion, term frequency-inverse document frequency (TF-IDF), Extreme Gradient Boosting
(XGBoost), and BioBERT, to automate the search for the diagnoses “atrial fibrillation (AF)”
and “heart failure (HF)”. The algorithms were used on MIMIC-III dataset, but the best
performing one was applied to a Belgian dataset. XGBoost on TF-IDF matrix resulted in
an accuracy of 0.94 and 0.92 for AF and HF, respectively. The mismatches were due to
a difference in data availability, differing definitions, incorrect labelling and erroneous
ICD coding.

Silva, et al. (2023) [15] presented a transformer-based ranking solution to the problem
of the sequence of the main or primary diagnosed, and the order in which the secondary di-
agnoses are presented. The results show that using the TFR-BERT framework and adapting
to the biomedical context using PTM, namely BioBERT, demonstrate superior performance.

Chen, et al. (2022) [16] used BioBERT, clinical generalized autoregressive pretraining
for language understanding (Clinical XLNet), label tree-based attention-aware deep model
for high-performance extreme multilabel text classification (AttentionXLM), and word-to-
vector (Word2Vec) to predict ICD-10-CM (clinical modification). Different preprocessing
methods were introduced, namely the inclusion of discharge diagnoses (DD), medical

Algorithms 2024, 17, 144 4 of 17

history, and comorbidity and complication. The results show that BioBERT outperformed
other models such as Clinical XLNet, AttentionXLM, and Word2Vec.

Silvestri, et al. (2020) [17] presented a preliminary evaluation of the Cross-lingual
Language Model (XLM) architecture, a multilingual transformer-based model, tested in
ICD-10 multilabel classification. The XLM model was fine-tuned on English training data,
and tested for ICD-10 codes prediction in an Italian test set, showing very promising results,
and could be very useful for cases of low-resource languages.

Yu, et al. (2019) [18] used the BioBERT model for automatic annotation of clinical
problems. This method is initially pretrained on the corpus of medical related fields, by
converting the text into a numerical vector. Afterwards, the BiLSTM-CRF model trains the
processed vectors and finally complete the entity tagging. The results show that, for the
I2B2 2010 challenge dataset, the method can improve the performance of the named entity
recognition (NER) task.

Chen, et al. (2021) [19] used a deep learning model for ICD-10 coding, to find the
diagnosis and corresponding procedure codes on medical text. The process is composed by
data processing, feature extraction and model training.

Choi, et al. (2016) [20] developed a generic predictive model using RNN, called Doctor
AI, to predict the diagnosis and medication categories for a patient’s visit. It assesses the
history of patients to make multilabel predictions.

Li, et al. (2020) [21] proposed a Multi-Filter Residual Convolutional Neural Network
(MultiResCNN) for ICD automatic encoding, that uses a multi-filter convolutional layer to
capture various text patterns with different lengths and a residual convolutional layer to
enlarge the receptive field.

Mullenbach, et al. (2018) [22] presented an attentional convolutional network that
does the encoding of medical codes through the clinical text. It uses a convolutional neural
network to aggregate information, and an attention mechanism to select segments that are
more relevant among the possible codes.

Shi, et al. (2017) [23] proposed a deep learning model with an attention mechanism
for automatic codification of ICD codes for a diagnosis. The authors used character-
aware models to generate hidden representations for the diagnosis records and ICD codes.
An attention mechanism was also used to address the mismatch between numbers of
descriptions and codes.

3. Datasets Used

ICD-10 ontology was used in the present research. The EHR used were a subset
of MIMIC-IV.

3.1. ICD-10

ICD is a medical coding system, also known as medical ontology, that is popular
and used worldwide [24]. It follows a tree hierarchical structure, where the chapters are
represented at the top, followed by categories, sub-categories and codes. The 10th revision
of ICD was used in this work, but the latest version is the 11th revision. As an example, ref.
[19] used diagnosis records of the Taiwan University Hospital, applying NLP techniques on
the deep neural network architecture, using the attention mechanism to extract keywords
from diagnoses, for ICD-10 encoding.

3.2. MIMIC-IV

MIMIC-IV was the source of EHR used in the present work. This dataset contains
data of patients that were admitted to the Beth Israel Deaconess Medical Center emergency
department or ICU between 2008 and 2019, annotated with ICD-9 or ICD-10 codes [25].
MIMIC-IV was released on 6 January 2023, and it is increasingly more popular for training
and testing applications for automatic medical encoding.

Algorithms 2024, 17, 144 5 of 17

MIMIC-IV contains information for each patient (257,000 distinct patients), namely
the hospital stay, laboratory measurements, medication, and vital signs. It is composed by
524,000 admission records [26].

In this dataset, subject ID identifies a patient, while hadm ID identifies an admission
of a patient to the hospital. For example, the following text is part of a MIMIC-IV EHR,
with subject ID “1000017” and hadm ID “22927623”: “She describes feeling as though food
gets stuck in her neck when she eats. She put herself on a pureed diet to address this over
the last 10 days. When she has food stuck in the throat, she almost feels as though she
cannot breath, but she denies trouble breathing at any other time. She does not have any
history of food allergies or skin rashes”. This excerpt shows an example of a text that is
text somehow vague concerning the diagnosis and negated terms (no food allergies or skin
rashes). Those are common difficulties when coding.

For the present work, the MIMIC-IV dataset was split into a training set composed by
73,381 discharge summaries (60%), a validation set consisting of 24,461 records (20%), and a
test set consisting of 24,461 records (20%), following the partition method proposed in [22].

For the sake of time, only a fraction of 1
6 of the test set (4077 out of the 24,462) samples

were used in the experiments described below.

4. Methodology

The Cosine text similarity method was used, in order to slightly improve PLM-ICD
model results as an ICD-10 encoding aid.

4.1. Software and Hardware

The algorithms were developed in a Python programming environment , using SciPy
libraries as needed.

Training and tests were performed on a cluster, made available by the INCD
(https://www.incd.pt/, accessed on 3 December 2023). The computer used was Stra-
tus cloud computing service, which is an IaaS cloud infrastructure based on Openstack,
which enables control of large pools of computing, storage, and networking resources.

4.2. Performance Metrics

The evaluation metrics used were micro-average Precision (P) (Equation (1)), micro-
average Recall (R) (Equation (2)), and micro-average F1-score (F1) (Equation (3)).

The equations are given for an example of a problem with two classes, class 1 and class 2.
TP, FP and FN stand for True Positive, False Positive and False Negative, respectively.

The use of these metrics is justified when having an imbalanced dataset, where no
class is more important than the others [27].

P =
TP1 + TP2

TP1 + TP2 + FP1 + FP2
(1)

R =
TP1 + TP2

TP1 + TP2 + FN1 + FN2
(2)

F1 =
2 × R × P

R + P
(3)

4.3. Cosine Text Similarity Method

The Cosine similarity method measures the similarity between two vectors of an inner
product space. It is measured by the Cosine of the angle between these two vectors, as
given by Equation (4), where a and b are two vectors and θ the angle they form.

cos(θ) =
a.b

||a||.||b|| (4)

https://www.incd.pt/

Algorithms 2024, 17, 144 6 of 17

The method can be used to compare documents, as long as the documents are repre-
sented as vectors. A result of 0 means the two vectors are at 90 degrees and the documents
they represent have no match. A result of 1 means the vectors representing the texts totally
overlap, so the cosine is 1 and the documents are very similar. The closer to 1, the greater
the overlap of the vectors and the greater the match between texts.

In order to encode the texts as vectors, one method that is popular and was used in
the present work is the TF-IDF. TF-IDF representation tells how unique a word is across
multiple text. It is computed by summing the TF-IDF for each query term and is given by
the Equations (5)–(7).

TF =
NW
TW

(5)

IDF = log
(

TD
ND

)
(6)

TF − IDF = TF × IDF (7)

In the equations, NW is the number of times the word appears in the document. TW is
the total number of words in the document. TD is the number of documents in the corpus,
and ND is the number of documents in the corpus that contain the term.

4.4. Text Pre-Processing for Cosine Method

For the Cosine method, preprocessing each EHR includes the removal of extra white
spaces, leading spaces, stop words, punctuation, conversion to the base form and lower-case.

A blacklist of words, such as “patient” and “hospital”, was also created, because
some words have high prevalence in some texts and they are irrelevant for the codification
process. This is because some ICD-10 codes have for example the word “patient”, such
as “Y92230–Patient room in hospital as the place of occurrence of the external cause”, or
“Z911–Patient’s noncompliance with medical treatment and regimen”. Given the fact that
those words are very prevalent in the EHRs, the Cosine method encodes them and they
interfere with classification, despite the absence of meaning for the task.

A NER model “en_ner_bc5cdr_md”, from scispaCy (https://allenai.github.io/scispacy/,
accessed on 10 October 2023), a library of clinical and biomedical specific components that
integrate with spaCy, was also used to identify disease entities and exclude tokens that are not
disease entities.

The detection of clinical acronyms, using a regular expression and a dictionary con-
taining its definitions, and replacement by its long form, was also used. Taking the example
of EHR with subject ID “10002443” and hadm ID “21329021”, the short form word “afib”
is present in the text, but not in any ICD-10 code description. After the long form re-
placement of “afib” by “atrial fibrillation”, the Cosine method could find the ICD-10 code
“I480-Paroxysmal atrial fibrillation”. The acronym dictionary built contains 256 pairs of
acronyms and their long form.

EHRs could contain recognized entities that are not present in ICD-10 code description.
But some of those entities have synonyms, for example, “dyslipidemia” is an EHR disease
entity that is not present in ICD-10 code description, but the synonym “hyperlipidemia”
is. Hence, a dictionary was manually built in Python with entities and synonyms of
those entities.

The manual dictionary was created as a proof of concept, based on the observation
that sometimes the keywords in the ICD-10 code description do not match the equivalent
keywords in the EHR text, because synonyms are used. For example, in the EHR with
subject ID “1000017” and hadm ID “22927623”, the ICD-10 code “K31819—Angiodysplasia
of stomach and duodenum without bleeding”, the disease entity “angiodysplasia” was not
present in the EHR text. The synonym “angioectasia” is present instead. For this reason, the
Cosine method could not properly detect the code. After implementation of the dictionary
of disease synonyms, containing the pair “angiodysplasia/angioectasia”, the method was

https://allenai.github.io/scispacy/

Algorithms 2024, 17, 144 7 of 17

able to correctly detect the “K31819” ICD-10 code. The dictionary of synonyms, as a proof
of concept, contains only four pairs of entities and their synonyms, and expansion is left for
future work.

4.5. Improved Cosine Text Similarity Implementation

This section describes the implementation of the multiple runs algorithm as well as
the bucket category concept, used to achieve an improved Cosine similarity (ICS) method.

4.5.1. Multiple Runs Algorithm

The algorithm of multiple runs was implemented to allow the elimination of words
that are frequent in the text and superimpose to other important words. Between runs,
the most common encoded words (i.e., words with frequency ≥ 2 occurrences in the top-5
ICD-10 codes, based on their similarity to a given EHR text) are included in the blacklist,
thus allowing the encoding of other disease entities present in the EHR.

As an example, let us consider the case where for a single run, the top-5 similar-
ity, between the ICD-10 codes and a given EHR text, is “J17—Pneumonia in diseases
classified elsewhere” (0.63 similarity), “R0602—Shortness of breath” (0.62 similarity),
“P23—Congenital pneumonia” (0.58), “P239—Congenital pneumonia, unspecified” (0.54)
and “J1289—Other viral pneumonia” (0.49). The word “pneumonia” has frequency ≥ 2
occurrences among the top-5, so it will be included in the blacklist, and in the next run it will
not be used for similarity calculation. If it was not removed, then the word “pneumonia”
would superimpose, making it difficult to encode other ICD-10 codes which are still present
but have lower similarity scores because of the influence of the word pneumonia. In the
second run, after the removal of “pneumonia”, the encoded top-5 is “R0602—Shortness of
breath”, “J44—Other chronic obstructive pulmonary disease”, “J81—Pulmonary edema”,
“J449—Chronic obstructive pulmonary disease, unspecified” and “J811—Chronic pul-
monary edema”. The next run may add the word “pulmonary” to the blacklist, thus
providing a way to possibly find other ICD-10 codes.

Also, if the disease entity does not appear with frequency ≥ 2 occurrences in the
top-5, but appears in the top-5 of two consecutive runs, it is also included in a temporary
blacklist. To exemplify this fact, consider the previous example, where “R0602—Shortness
of breath” appears in both runs. Its words are also included in the temporary blacklist, since
it was already encoded. From the previous example, after the removal of “shortness of
breath”, the third run does not find this ICD-10 code, thus allowing other codes to surface:
“R11—Nausea and vomiting”, “R112—Nausea with vomiting, unspecified”, “R0603—Acute
respiratory distress”, “R110—Nausea”, “R1111—Vomiting without nausea”.

4.5.2. Bucket Category Concept

A new strategy was also designed, named bucket category selection, that extends and
improves the multiple runs algorithm. In each run of the multiple runs algorithm, for each
one of the top-5 ICD-10 codes retrieved, the parent ICD-10 category is also retrieved (one
level above the ICD-10 code). Afterwards, the similarity is calculated between the EHR
and all the ICD-10 codes that are under the ICD-10 code’s parent category, forming what
we call a bucket of codes. The codes in the bucket are then sorted by similarity and up to
40 of them are considered positive candidates. Hence, the bucket selection works as a way
of lowering the similarity threshold to codes of a given category, based on the observation
that neighbouring codes are often found in EHR. Figure 1 shows the flowchart of the
algorithm, with the bucket category concept.

For clarification of how the bucket category concept works, let us consider the follow-
ing case, where the ICD-10 codes source of truth are, “S72012A”, “W010XXA”, “Y93K1”,
“Y92480”, “K219”, “E7800”, “I341”, “G43909”, “Z87891”, “Z87442”, “F419”, “M810”, “Z7901”.

When calculating the Cosine similarity between preprocessed text and ICD-10 code
descriptions, “K21”, “I341”, “M2535” and “M21259”, were identified with the highest
similarity. The ICD-10 categories where these codes belong to, namely “K20-K31”, “I30-I52”

Algorithms 2024, 17, 144 8 of 17

and “M20-25”, are retrieved, and form buckets with all the ICD-10 codes that belong to
each category. With the codes that form each bucket, the Cosine similarity between the
bucket codes description and the preprocessed text is calculated. After this, for the category
“K20-K31”, it is found that “K219”, is included in the top-40 bucket similarity. And for cate-
gory “I30-I52”, code “I341” is also retrieved. In this case there are two extra true positives.

Figure 1. Flowchart of the algorithm developed, showing the bucket category concept of ICS.

4.6. PLM-ICD

PLM-ICD [12] is a deep-learning based model for automatic encoding of clinical texts
that contain biomedical terms into ICD-10 codes.

General PLMs are pretrained on large texts that may or may not contain biomedical text.
PLM-ICD uses BioBERT [7], PubMedBERT [9], and RoBERTA-PM [10] databases. This model
uses these domain-specific PLMs and fine-tunes them on the automatic ICD coding.

PLM-ICD also tackles the long input text problem, proposing segment pooling by
splitting the whole document into segments shorter than the maximum length, and encodes
them into segment representations. These segments are inputted into PLMs separately to
compute hidden representations, and after concatenated to obtain the hidden representa-
tions of all tokens.

This model also tries to solve the problem of large datasets with the label-aware
attention mechanism proposed by [28] to capture the important text fragments relevant to
certain labels.

The PLM-ICD code and documentation are available at https://github.com/MiuLab/
PLM-ICD/tree/master (accessed on 3 December 2023), only for the MIMIC datasets pre-
vious to MIMIC-IV. In order to train to this specific dataset, adaptations were performed.
Preprocessing of the MIMIC-IV dataset was performed following the setting from [22],
available at the link https://github.com/jamesmullenbach/caml-mimic (accessed on

https://github.com/MiuLab/PLM-ICD/tree/master
https://github.com/MiuLab/PLM-ICD/tree/master
https://github.com/jamesmullenbach/caml-mimic

Algorithms 2024, 17, 144 9 of 17

3 December 2023). The PLM used was the BioLM RoBERTa-base-PM-M3-Voc-distill-align-hf,
available at https://github.com/facebookresearch/bio-lm (accessed on 3 December 2023).

4.7. PLM-ICD-C

In the present project, a model named PLM-ICD-C was used, in order to improve
PLM-ICD results based on the Cosine similarity method. Combining these two methods, it
is possible to discover some more useful ICD-10 codes to suggest to the medical doctors
that perform the classification. The results show that PLM-ICD-C performs better than just
PLM-ICD or Cosine similarity alone.

4.7.1. PLM-ICD-C Rules

Three rules were defined for PLM-ICD-C. SP stands for similarity of PLM-ICD, SC
stands for similarity of the improved Cosine algorithm. PC is a code determined as probable
candidate to positive, and NC stands for candidate to negative. T1, T2 and T3 are similarity
thresholds to be defined on each experiment. T1 and T2 are thresholds used for the PLM-
ICD similarity levels and T1 > T2. T3 is a threshold used for the ICS similarity level. The
rules are as follows.

1. IF SP ≥ T1 −→ PC
2. IF T2 ≤ SP < T1 AND SC ≥ T3 −→ PC
3. IF SP < T2 −→ NC

Rule number 1 states that when PLM-ICD finds a code with high probability of being
a positive, it is accepted as a positive candidate without further screening by the improved
Cosine method.

Rule number 2 brings ICS into play when PLM-ICD retrieves a code with just average
confidence. That happens when the similarity is normally about 0.5, which means there is
almost the same chance of a code being positive as it is of being negative. Hence, when SP
is between T2 and T1, then SC is calculated for that code and if it is above T3 then the code
is proposed as PC, otherwise it is proposed as NC.

Rule number 3 states that when PLM-ICD assigns very low probability to a code, it is
also not screened by ICS, because chances of it being a true positive are very low, so it is
immediately accepted as a negative candidate.

4.7.2. Architecture

Figure 2 contains a diagram showing the flow of data and components of the PLM-
ICD-C. The EHR is fed to the PLM-ICD, whose output is then fed to the improved Cosine
similarity module, where it is further processed and an improved prediction is output.

The ICS module applies the rules described in Section 4.7.1. Therefore, if needed it
will calculate the Cosine similarity between the input EHR and all ICD codes, performing
multiple runs and bucket category selection if applicable, in order to optimise the prediction
that is output.

Figure 2. PLM-ICD-C architecture.

4.7.3. Implementation of Rules

Table 1 clarifies how the truth values are determined for each code, according to the
results of the PLM-ICD and ICS modules. Label is the desired result.

https://github.com/facebookresearch/bio-lm

Algorithms 2024, 17, 144 10 of 17

For the condition SP ≥ T1, only the similarity of PLM-ICD, SP, is considered—the
prediction output is positive, based on PLM-ICD only. For the condition SP < T2, the
prediction is also just based on SP, but in this case it is assumed as negative.

When SP is in the interval T2 ≤ SP < T1, then ICS is activated and SC is also considered
to determine the prediction. When SC ≥ T3, a positive is predicted, otherwise a negative
is predicted.

Table 1. Summary of the truth values resulting from applying the PLM-ICD-C rules.

SP SC Prediction Label Result

≥ T1 - Positive Positive TP
Negative FP

< T1 ≥ T2

≥ T3 Positive Positive TP
Negative FP

< T3 Negative Positive FN
Negative TN

< T2 - Negative Positive FN
Negative TN

5. Experimental Evaluation

In this section, the results are described for the Cosine similarity method, PLM-ICD,
and PLM-ICD-C composed by the combination of the previous two.

5.1. Cosine Similarity Method

This section describes the results obtained for the Cosine similarity method, using the
multiple runs algorithm and the bucket category concept, thus proving the usefulness of
those improvements to reach the improved Cosine method used.

5.1.1. Multiple Runs Algorithm

Table 2 shows a summary of the main results, obtained using the multiple runs
algorithm, but without the strategy of bucket category. Three different approaches were
tried. In the first approach, a maximum of 11 runs was defined. Stop conditions were
also defined, namely the algorithm would stop if 60% of the top-5 codes have a similarity
below 0.197. If achieved a state in the run where it has a number of detected ICD-10 codes
less than 12% of the total encoded so far, and the maximum number of 11 runs is not
yet reached, the run is also stopped. This is performed to let prevail the codes found in
the initial runs, which have a bigger similarity, thus a bigger probability of being correct,
compared to codes in latter runs that are in less number. These values of percentages were
defined empirically. More true positives may be found at a lower value of similarity, but
at the same time, more possible false positives may be detected. On the other hand, if the
value of the percentage is higher, it is likely that less true positives may be detected, but less
false positives would be found. At the end it is a compromise between precision and recall.

Table 2. Metric (micro-average) results for the Cosine method, without bucket category concept.

Micro-Avg Precision Recall F1-Score

Approach 1 (11 runs) 0.045 0.111 0.064
Approach 2 (five runs) 0.055 0.087 0.068

Approach 3 (11 runs, similarity threshold 0.2) 0.047 0.104 0.065

The second approach used the same configuration as the first approach, but instead of
using up to 11 runs, it uses just five runs.

The third approach uses the same configuration, but with up to 11 runs, and excludes
any ICD-10 codes that have a similarity below 0.2.

Algorithms 2024, 17, 144 11 of 17

As the table shows, the values of precision, recall and F1 are very modest, showing that
the Cosine similarity with just these aids is insufficient to provide useful coding suggestions.

5.1.2. Bucket Category

In order to improve the algorithm, a new strategy was designed, that was named the
bucket category, as explained in Section 4.5.2.

Table 3 shows a summary of the main results with the Cosine similarity method
using the multiple runs algorithm and the bucket category concept, obtained using the
three different approaches too. The first, second and third approaches consider the bucket
category concept for five, seven, and 11 runs, respectively.

Table 3. Metric (micro-average) results, for the Cosine method with bucket category concept.

Micro-Avg Precision Recall F1-Score

Approach 1 (5 runs) 0.291 0.206 0.241
Approach 2 (7 runs) 0.271 0.239 0.254
Approach 3 (11 runs) 0.247 0.265 0.256

Table 3 shows improvements on the previous results. Precision had a 5-fold improve-
ment, while there are 2–3 fold improvements in recall and 4-fold improvements in F1, using
the concept of bucket category. Therefore, this combination of multiple runs and bucked
category search was adopted in the remainder of the project and is called ICS method.

5.2. PLM-ICD

Table 4 shows a summary of the results for PLM-ICD, obtained for test with threshold
of 0.5, 0.4 and 0.2, and 1

6 of the test dataset, the same as used for the Cosine method.

Table 4. Metric (micro-average) results, for PLM-ICD test.

Micro-Avg Precision Recall F1-Score

Test (threshold 0.5) 0.65614 0.34544 0.45260
Test (threshold 0.4) 0.60596 0.38264 0.46907
Test (threshold 0.2) 0.46282 0.47680 0.46970

As the table shows, PLM-ICD performs better than the Cosine method using the
approaches described before. However, there is still room for improvement, especially
considering the difficult trade-off between precision and recall. As the threshold decreases,
PLM-ICD finds more codes, but many of them are false positives. So recall increases but
precision is dramatically affected.

Edin, et al. (2023) [13] reported a better F1-score on the test set (58.5% compared to
46.9% in the present work), using PLM-ICD on MIMIC-IV with ICD-10 labels. They used a
bigger test set consisting of 24,461 records, following the partition method proposed in [22].
In the present work, because of the lack of computational resources, the volume of data
was smaller and that may justify the different results.

5.3. PLM-ICD-C

PLM-ICD-C is a proposal to enhance the PLM-ICD model using the ICS method,
with the multiple runs and bucket category algorithms. So the results are presented and
compared below.

5.3.1. Results with Different Thresholds

Tables 5 and 6 show a summary of the results for PLM-ICD-C, with the values of
T1 = 0.5, T2 = 0.4, T3 = 0.002, which we call PLM-ICD-C (1), and T1 = 0.4, T2 = 0.2, T3 = 0.002,
which we call PLM-ICD-C (2), respectively. The threshold values T1, T2 and T3 were

Algorithms 2024, 17, 144 12 of 17

determined empirically. Therefore, they may be subject to optimisation in future work,
even though, according to the experiments, they may be close to optimal.

Table 5. Summary of the correct and incorrect results for PLM-ICD-C (1).

SP SC Result PLM-ICD PLM-ICD-C

≥ 0.5
≥ 0.002 TP 20,280 16,969

FP 10,628 7741

< 0.002 FN - 3311
TN - 2887

< 0.5 ≥ 0.4
≥ 0.002 TP 2184 1659

FP 3980 2801

< 0.002 FN - 525
TN - 1179

< 0.4 - FN 36,244 -
TN 396,337,471 -

Table 6. Summary of the correct and incorrect results for PLM-ICD-C (2).

SP SC Result PLM-ICD PLM-ICD-C

≥ 0.4

≥ 0.002
TP 22,464 18,628

FP 14,608 10,542

< 0.002
FN - 3836

TN - 4066

< 0.4 ≥ 0.2

≥ 0.002
TP 5528 4140

FP 17,882 11,987

< 0.002
FN - 1388

TN - 5895

< 0.2 -
FN 30,716 -

TN 396,319,589 -

Tables 7 and 8 show the comparison of results using PLM-ICD threshold 0.4 and
PLM-ICD-C (1) with T1 ≥ 0.5 and T3 ≥ 0.002, and using PLM-ICD threshold 0.2 and
PLM-ICD-C (2) with T1 ≥ 0.4 and T3 ≥ 0.002, respectively.

The results shown in Tables 7 and 8 show that PLM-ICD-C (2) performs better than
PLM-ICD-C (1), because it filters more FPs than loses TPs.

Table 7. Comparison of results while using PLM-ICD threshold 0.4, and PLM-ICD-C (1) with
T1 ≥ 0.5 and T3 ≥ 0.002.

Result PLM-ICD PLM-ICD-C Difference

TP 20,280 16,969 Lost 3311

FP 10,628 7741 Filtered 2887

Table 8. Comparison of results while using PLM-ICD threshold 0.2, PLM-ICD-C (2) with T1 ≥ 0.4
and T3 ≥ 0.002.

Result PLM-ICD PLM-ICD-C Difference

TP 22,464 18,628 Lost 3836

FP 14,608 10,542 Filtered 4066

Algorithms 2024, 17, 144 13 of 17

Tables 9 and 10 show the comparison of results using PLM-ICD threshold 0.4 and
PLM-ICD (1) with T1 <0.5, T2 ≥ 0.4, T3 ≥ 0.002, and using PLM-ICD threshold 0.2 and
PLM-ICD (2) with T1 <0.4, T2 ≥ 0.2, and T3 ≥ 0.002, respectively.

Again, the results show that PLM-ICD-C (2) in Table 10 has a better performance that
PLM-ICD-C (1) in Table 9, because it filters more FPs than loses TPs.

Table 9. Comparison of results while using PLM-ICD threshold 0.4 and PLM-ICD (1) with T1 <0.5,
T2 ≥ 0.4 and T3 ≥ 0.002.

Result PLM-ICD PLM-ICD-C Difference

TP 2184 1659 Lost 525

FP 3980 2801 Filtered 1179

Table 10. Comparison of results while using PLM-ICD threshold 0.2 and PLM-ICD (2) with T1 < 0.4,
T2 ≥ 0.2 and T3 ≥ 0.002.

Result PLM-ICD PLM-ICD-C Difference

TP 5528 4140 Lost 1388

FP 17,882 11,987 Filtered 5895

Figure 3 shows the dynamics of lost TP and filtered FP for samples with similarity SP
above T1. The results were calculated for values of T1 above 0.7, 0.5, 0.45 and 0.4.

Figure 4 also shows the dynamics of lost TP and filtered out FP, but now the samples
where T2 < SP < T1. Results are shown for different intervals between T2 and T1, namely
0.4 and 0.7, 0.4 and 0.5, 0.4 and 0.45, and 0.2 and 0.4.

Figure 3 shows that the number of filtered FP decreases slightly faster than the
loss of TP. The use of PLM-ICD-C is more advantageous for the interval where having
T2 < SP ≤ T1, i.e., where PLM-ICD’s confidence is lower, as can be seen in Figure 4. PLM-
ICD-C can still let through some TP, while filtering out false positives that PLM-ICD would
be unable to filter out.

Figure 3. Dynamics of lost TP and filtered FP for PLM-ICD-C for samples with SP ≥ T1, for different
values of T1.

Algorithms 2024, 17, 144 14 of 17

Figure 4. Dynamics of lost TP and filtered FP for PLM-ICD-C for samples with similarity in the range
T2 < SP < T1, for different values of T2 and T1.

5.3.2. Performance Metrics

Table 11 shows the performance metrics for PLM-ICD and PLM-ICD-C.

Table 11. Micro-average results, for PLM-ICD thresholds of 0.4 and 0.2, and for PLM-ICD-C (1) and (2).

Micro-Avg Precision Recall F1-Score

PLM-ICD (threshold 0.4) 0.60596 0.38264 0.46907
PLM-ICD (threshold 0.2) 0.46282 0.47680 0.46970

PLM-ICD-C (1) 0.62031 0.37370 0.46641
PLM-ICD-C (2) 0.50008 0.45316 0.47547

For PLM-ICD, the threshold of 0.2 has a lower precision (0.46282) than the threshold
of 0.4 (0.60596), but a much better recall (from 0.38264 to 0.47680), which translates into a
slightly better F1-score.

For PLM-ICD-C, model (1) has a better precision (0.62031) than (2) (0.50008), but
(2) has a much better recall (from 0.37370 to 0.45316), which translates into a better F1 for
(2) (from 0.46641 to 0.47547).

In general, PLM-ICD-C (2) has the best F1-score (0.47547), in which it is slightly better
than PLM-ICD threshold 0.2 (0.46970), but a much better precision (from 0.46282 to 0.50008),
which may improve the code suggestions.

It is shown that the three rules defined for PLM-ICD-C improve the results. In the case
of rule number 1, if PLM-ICD finds a code with high probability of being a positive, there
is no need to screen it again, being immediately accepted as a positive. In the case of rule
number 2, ICS is called to disambiguate, because PLM-ICD’s confidence is just borderline
between positive or negative. Finally, rule number 3 determines that when PLM-ICD gives
a very low probability of being positive to a code, it is not screened by ICS, being accepted
as a negative candidate.

6. Discussion

In this section, a discussion of the results, regarding the use of the improved Cosine
method and PLM-ICD-C, is presented.

6.1. Data Limitations

MIMIC-IV contains data from the emergency department and ICU of a single hospi-
tal [13], which may also introduce bias in data. Additionally, it is easier to code shorter
summaries from outpatient than for inpatient. Medical coding is prone to errors, and

Algorithms 2024, 17, 144 15 of 17

often there is also a degree of subjectivity in the matter. Ref. [29] found an overall median
accuracy of 83.2%, and [30] concluded that 35% of the common codes in MIMIC-III, were
under-coded.

6.2. Cosine Method

The Cosine method is penalized when there are few or no biomedical words in the
text. This happens for the MIMIC-IV dataset, where it is found that many codes and
their biomedical words do not appear in the EHR, making it hard to reach high similarity
with the Cosine method. It is also very sensitive to words, such as “patient”, which are
semantically empty for the purpose. These drawbacks were mitigated using strategies such
as a blacklist of words, multiple runs and bucket category selection, leading to a novel
algorithm called the Improved Cosine method.

6.3. PLM-ICD-C

While analysing Tables 5 and 6 it can be seen that for samples where SP ≥ T1, with
values of T1 0.7, 0.5, 0.45, the use of PLM-ICD-C results in a loss of TPs greater than the
FPs filtered out, compared to the use of PLM-ICD alone, except for T1 = 0.4, which is
exemplified in detail in Figure 3.

On the other hand, in the interval between T2 and T1, with values of 0.7, 0.5, 0.45 for
T1, and 0.4 for T2, the balance is positive, as it can be seen in Figure 4, where for the use of
PLM-ICD-C, there is a loss of TPs inferior to filtered FPs. For T1 value of 0.4 and T2 value
of 0.2, the balance is positive with a bigger margin.

The use of ICS along with PLM-ICD for T2 ≤ SP < T1, translates into better perfor-
mance metrics, because it can filter more false positives than using PLM-ICD alone in that
interval. In general, it was demonstrated that the use of PLM-ICD-C is more advantageous
than using the PLM-ICD alone, due to the greatly improved precision.

6.4. Advantages and Limitations

As discussed above, with the optimised values for the thresholds T1 and T2, the use of
the improved Cosine method coupled to PLM-ICD can be advantageous, allowing to reach
more TP while filtering out some possible FP that would slip through PLM-ICD alone and
therefore affect precision.

The Cosine method has one important characteristic, that it does not require training
to specific data, for it is a deterministic model, so there is no learning bias. The multiple
runs and bucket category methods are also deterministic, even though specific parameters
can be adjusted for better performance.

In future work, it will be useful to use not only the NER model for diseases and
chemicals, as was performed, but for other biomedical terms too. The NER model used,
“en_ner_bc5cdr_md” (https://allenai.github.io/scispacy/, accessed on 10 October 2023),
only recognizes entities of diseases and chemicals. For example, the entity “pregnancy” is
neither a disease nor a chemical. Nonetheless, it is present in some ICD-10 code descriptions
and may be important for accurate code retrieval. It is not recognized by this NER model,
thus not contributing to retrieve important ICD-10 codes when calculating the similarity
between the EHR text and ICD-10 descriptions.

In the Cosine method implementation, a few synonyms for diseases were considered,
namely “angioectasia” as “angiodysplasia”, “dyslipidemia” as “hyperlipidemia”, “tobacco”
as “nicotine”, and “smoking” as “nicotine”, making it limited in the vocabulary and
consequently in the results. A more comprehensive list of synonyms will most probably
lead to better results, but it was out of the scope of the current project.

Overall, PLM-ICD-C can be useful to provide code suggestions to the medical coders,
and suggest more of the codes that the clinical record contains than PLM-ICD alone.

The computation required to perform experiments with MIMIC-IV makes it difficult
to optimise the values of the thresholds used. Additionally, the experiments described were

https://allenai.github.io/scispacy/

Algorithms 2024, 17, 144 16 of 17

just performed with one part of the whole MIMIC-IV dataset. Therefore, there may still be
room for improvement.

7. Conclusions

The classification of EHRs from text into diagnostic codes has been challenging to the
NLP community. The proposed methodology relies on a method based on Cosine similarity
between the clinical record and the ICD-10 code description, using a strategy of using the
conceived multiple runs algorithm along with the concept of the bucket category.

Comparing the F1-score obtained with PLM-ICD for the test set used, it is inferior to
the best obtained in the state-of-the-art (46.9% to 58.5%). Since no training or architectural
changes were made to PLM-ICD in the current project, the only reasonable explanation
for the different results is the difference in the test set used, because Edin et al. used a
bigger test set consisting of 24,461 records [13], in comparison to the 4077 used in this work
because of limited computational resources.

The results show that the use of PLM-ICD-C, consisting of the improved Cosine
method and PLM-ICD, improved the results, increasing the F1-score by 0.5%, but most
important, by increasing the precision from 46.3% to 50%, which means a significant
improvement on the code suggestions given to the medical doctors performing encod-
ing functions.

The use of ICS is not advantageous for values of SP above T1 or below T2, where it is
more reliable to use only the PLM-ICD. For values of SP between T2 and T1 values, then
PLM-ICD-C, with the use of ICS, is a better choice.

In future work, the improved Cosine method can be applied to other datasets that
overcome the limitations that MIMIC-IV may have. The dictionary of synonyms, where only
four pairs were used, just as a proof of concept, shall also be expanded. A more complete
NER model can also be used, to detect other biomedical terms, and not only diseases.

Author Contributions: Conceptualization, M.M. (Mateus Mendes); Methodology, V.D. and M.M.
(Mário Macedo); Software, H.S.; Validation, V.D.; Investigation, H.S.; Resources, M.M. (Mário
Macedo); Data curation, H.S. and V.D.; Writing—original draft, H.S.; Writing—review & editing,
M.M. (Mateus Mendes); Supervision, M.M. (Mário Macedo) and M.M. (Mateus Mendes). All authors
have read and agreed to the published version of the manuscript.

Funding: This work was produced with the support of INCD funded by FCT and FEDER under the
project 01/SAICT/2016 nº 022153. This work received financial support from the Polytechnic Institute
of Coimbra within the scope of Regulamento de Apoio à Publicação Científica dos Estudantes do
Instituto Politécnico de Coimbra (Despacho n.º 5545/2020).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. International Classification of Diseases 11th Revision. Available online: https://www.who.int/standards/classifications/

classification-of-diseases (accessed on 10 March 2024).
2. Alonso, V.; Santos, J.V.; Pinto, M.; Ferreira, J.; Lema, I.; Lopes, F.; Freitas, A. Health records as the basis of clinical coding: Is the

quality adequate? A qualitative study of medical coders’ perceptions. Health Inf. Manag. J. 2020, 49, 28–37. [CrossRef] [PubMed]
3. Lucyk, K.; Tang, K.; Quan, H. Barriers to data quality resulting from the process of coding health information to administrative

data: A qualitative study. BMC Health Serv. Res. 2017, 17, 766. [CrossRef]
4. Kormilitzin, A.; Vaci, N.; Liu, Q.; Nevado-Holgado, A. Med7: A transferable clinical natural language processing model for

electronic health records. Artif. Intell. Med. 2021, 118, 102086. [CrossRef]
5. Li, I.; Pan, J.; Goldwasser, J.; Verma, N.; Wong, W.P.; Nuzumlalı, M.Y.; Rosand, B.; Li, Y.; Zhang, M.; Chang, D.; et al. Neural

natural language processing for unstructured data in electronic health records: A review. Comput. Sci. Rev. 2022, 46, 100511.
[CrossRef]

6. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
http://doi.org/10.1177/1833358319826351
http://www.ncbi.nlm.nih.gov/pubmed/30744403
http://dx.doi.org/10.1186/s12913-017-2697-y
http://dx.doi.org/10.1016/j.artmed.2021.102086
http://dx.doi.org/10.1016/j.cosrev.2022.100511

Algorithms 2024, 17, 144 17 of 17

7. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model
for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [CrossRef]

8. Alsentzer, E.; Murphy, J.R.; Boag, W.; Weng, W.H.; Jin, D.; Naumann, T.; McDermott, M. Publicly available clinical BERT
embeddings. arXiv 2019, arXiv:1904.03323.

9. Gu, Y.; Tinn, R.; Cheng, H.; Lucas, M.; Usuyama, N.; Liu, X.; Naumann, T.; Gao, J.; Poon, H. Domain-specific language model
pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. (HEALTH) 2021, 3, 1–23. [CrossRef]

10. Lewis, P.; Ott, M.; Du, J.; Stoyanov, V. Pretrained language models for biomedical and clinical tasks: understanding and extending the
state-of-the-art. In Proceedings of the 3rd Clinical Natural Language Processing Workshop, Online, 19 November 2020; pp. 146–157.

11. Zhang, Z.; Liu, J.; Razavian, N. BERT-XML: Large scale automated ICD coding using BERT pretraining. arXiv 2020,
arXiv:2006.03685.

12. Huang, C.W.; Tsai, S.C.; Chen, Y.N. PLM-ICD: Automatic ICD coding with pretrained language models. arXiv 2022,
arXiv:2207.05289.

13. Edin, J.; Junge, A.; Havtorn, J.D.; Borgholt, L.; Maistro, M.; Ruotsalo, T.; Maaløe, L. Automated Medical Coding on MIMIC-III and
MIMIC-IV: A Critical Review and Replicability Study. arXiv 2023, arXiv:2304.10909.

14. Falter, M.; Godderis, D.; Scherrenberg, M.; Kizilkilic, S.E.; Xu, L.; Mertens, M.; Jansen, J.; Legroux, P.; Kindermans, H.; Sinnaeve, P.
Using Natural Language Processing for Automated Classification of Disease and to Identify Misclassified ICD Codes in Cardiac
Disease. Eur. Heart J. Digit. Health 2024, ztae008. [CrossRef]

15. Silva, A.; Chaves, P.; Rijo, S.; Bone, J.; Oliveira, T.; Novais, P. Leveraging TFR-BERT for ICD Diagnoses Ranking. In Proceedings
of the EPIA Conference on Artificial Intelligence, Horta, Portugal, 31 August–2 September 2023.

16. Falter, M.; Godderis, D.; Scherrenberg, M.; Kizilkilic, S.E.; Xu, L.; Mertens, M.; Dendale, P. Automatic International Classification of
Diseases Coding System: Deep Contextualized Language Model with Rule-Based Approaches; JMIR Publications Inc.: Toronto, ON,
Canada, 2022.

17. Silvestri, S.; Gargiulo, F.; Ciampi, M.; De Pietro, G. Exploit multilingual language model at scale for ICD-10 clinical text classification.
In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020.

18. Yu, X.; Hu, W.; Lu, S.; Sun, X.; Yuan, Z. BioBERT based named entity recognition in electronic medical record. In Proceedings
of the 2019 10th International Conference on Information Technology in Medicine and Education (ITME), Qingdao, China,
23–25 August 2019.

19. Chen, P.F.; Wang, S.M.; Liao, W.C.; Kuo, L.C.; Chen, K.C.; Lin, Y.C.; Yang, C.Y.; Chiu, C.H.; Chang, S.C.; Lai, F.; et al. Automatic
ICD-10 coding and training system: Deep neural network based on supervised learning. JMIR Med. Inform. 2021, 9, e23230.
[CrossRef] [PubMed]

20. Choi, E.; Bahadori, M.T.; Schuetz, A.; Stewart, W.F.; Sun, J. Doctor ai: Predicting clinical events via recurrent neural networks. In
Proceedings of the Machine Learning for Healthcare Conference (PMLR), Los Angeles, CA, USA, 19–20 August 2016 ; pp. 301–318.

21. Li, F.; Yu, H. ICD coding from clinical text using multi-filter residual convolutional neural network. In Proceedings of the AAAI
Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 8180–8187.

22. Mullenbach, J.; Wiegreffe, S.; Duke, J.; Sun, J.; Eisenstein, J. Explainable prediction of medical codes from clinical text. arXiv 2018,
arXiv:1802.05695.

23. Shi, H.; Xie, P.; Hu, Z.; Zhang, M.; Xing, E.P. Towards automated ICD coding using deep learning. arXiv 2017, arXiv:1711.04075.
24. Teng, F.; Liu, Y.; Li, T.; Zhang, Y.; Li, S.; Zhao, Y. A review on deep neural networks for ICD coding. IEEE Trans. Knowl. Data Eng.

2022, 35, 4357–4375. [CrossRef]
25. Johnson, A.E.; Bulgarelli, L.; Shen, L.; Gayles, A.; Shammout, A.; Horng, S.; Pollard, T.J.; Hao, S.; Moody, B.; Gow, B.; et al.

MIMIC-IV, a freely accessible electronic health record dataset. Sci. Data 2023, 10, 1. [CrossRef]
26. Gupta, M.; Gallamoza, B.; Cutrona, N.; Dhakal, P.; Poulain, R.; Beheshti, R. An extensive data processing pipeline for mimic-iv.

In Proceedings of the Machine Learning for Health (PMLR), New Orleans, LA, USA, 28 November 2022; pp. 311–325.
27. Guide to Classification on Imbalanced Datasets. Available online: https://resources.experfy.com/ai-ml/imbalanced-datasets-

guide-classification/ (accessed on 10 March 2024).
28. Vu, T.; Nguyen, D.Q.; Nguyen, A. A label attention model for icd coding from clinical text. arXiv 2020, arXiv:2007.06351.
29. Burns, E.M.; Rigby, E.; Mamidanna, R.; Bottle, A.; Aylin, P.; Ziprin, P.; Faiz, O. Systematic review of discharge coding accuracy.

J. Public Health 2012, 34, 138–148. [CrossRef]
30. Searle, T.; Ibrahim, Z.; Dobson, R.J. Experimental evaluation and development of a silver-standard for the MIMIC-III clinical

coding dataset. arXiv 2020, arXiv:2006.07332.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/bioinformatics/btz682
http://dx.doi.org/10.1145/3458754
http://dx.doi.org/10.1093/ehjdh/ztae008
http://dx.doi.org/10.2196/23230
http://www.ncbi.nlm.nih.gov/pubmed/34463639
http://dx.doi.org/10.1109/TKDE.2022.3148267
http://dx.doi.org/10.1038/s41597-022-01899-x
https://resources.experfy.com/ai-ml/imbalanced-datasets-guide-classification/
https://resources.experfy.com/ai-ml/imbalanced-datasets-guide-classification/
http://dx.doi.org/10.1093/pubmed/fdr054

	Introduction
	Related Work
	Quality in Clinical Coding
	NLP in Healthcare
	Pretrained Language Models
	Use of Deep Learning Models in Biomedical Applications

	Datasets Used
	ICD-10
	MIMIC-IV

	Methodology
	Software and Hardware
	Performance Metrics
	Cosine Text Similarity Method
	Text Pre-Processing for Cosine Method
	Improved Cosine Text Similarity Implementation
	Multiple Runs Algorithm
	Bucket Category Concept

	PLM-ICD
	PLM-ICD-C
	PLM-ICD-C Rules
	Architecture
	Implementation of Rules

	Experimental Evaluation
	Cosine Similarity Method
	Multiple Runs Algorithm
	Bucket Category

	PLM-ICD
	PLM-ICD-C
	Results with Different Thresholds
	Performance Metrics

	Discussion
	Data Limitations
	Cosine Method
	PLM-ICD-C
	Advantages and Limitations

	Conclusions
	References

