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Abstract: The early diagnosis of diabetic retinopathy (DR) can effectively prevent irreversible vision
loss and assist ophthalmologists in providing timely and accurate treatment plans. However, the
existing methods based on deep learning have a weak perception ability of different scale information
in retinal fundus images, and the segmentation capability of subtle lesions is also insufficient. This
paper aims to address these issues and proposes MLNet for DR lesion segmentation, which mainly
consists of the Multi-Scale Attention Block (MSAB) and the Lesion Perception Block (LPB). The MSAB
is designed to capture multi-scale lesion features in fundus images, while the LPB perceives subtle
lesions in depth. In addition, a novel loss function with tailored lesion weight is designed to reduce
the influence of imbalanced datasets on the algorithm. The performance comparison between MLNet
and other state-of-the-art methods is carried out in the DDR dataset and DIARETDB1 dataset, and
MLNet achieves the best results of 51.81% mAUPR, 49.85% mDice, and 37.19% mIoU in the DDR
dataset, and 67.16% mAUPR and 61.82% mDice in the DIARETDB1 dataset. The generalization
experiment of MLNet in the IDRiD dataset achieves 59.54% mAUPR, which is the best among other
methods. The results show that MLNet has outstanding DR lesion segmentation ability.

Keywords: diabetic retinopathy (DR); image segmentation; attention; deep learning

1. Introduction

Diabetic retinopathy (DR) has become increasingly prevalent with the rise of sugar
consumption among modern populations [1], causing permanent and irreversible blind-
ness [2]. Therefore, the early diagnosis of DR and timely medical intervention in patients
can effectively control disease progression, prevent vision impairment, and improve pa-
tients’ quality of life [3]. However, such a time-consuming and labor-intensive task would
significantly lead to an unnecessary burden on ophthalmologists and limit their abilities
to engage in more complex medical work [4]. To alleviate the redundant workload on
ophthalmologists and achieve a more efficient diagnosis, many researchers have attempted
to propose automated DR diagnosis methods including image-level and pixel-level diag-
nosis. Image-level diagnosis involves the classification of DR images [5], while pixel-level
diagnosis involves the segmentation of DR lesions [6], specifically identifying four types
of lesions with distinct DR pathological features: microaneurysms (MAs), hemorrhages
(HEs), soft exudates (SEs), and hard exudates (EXs) [7]. Among numerous automated DR
lesion segmentation methods, deep learning-based methods have been widely applied due
to their high performance and easy implementation.

Deep learning-based methods have been proven to be highly accurate and stable in DR
segmentation with their strong ability to extract tiny lesions in retinal fundus images. Many
scholars have proposed different methods to improve their segmentation performances
persistently. For example, Tavakoli et al. [8] proposed different preprocessing methods for
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DR segmentation, and Huang et al. [9] proposed a relation Transformer for segmenting
two types of diseases concurrently. Zhou et al. [10] proposed a semi-supervised method for
both segmentation and classification. Guo et al. [11] proposed a set of fully convolutional
networks with different input sizes to extract multi-scale lesions.

The aforementioned deep learning-based methods have made significant progress in
DR lesion segmentation. However, they have not fully exploited the multi-scale features
in fundus images and exhibit limited capability in segmenting small lesions, leading
to relatively inaccurate segmentation results. These limitations can be attributed to the
inability of existing methods to effectively capture and leverage multi-scale information
and accurately perceive subtle lesions. Furthermore, it is difficult to comprehensively
harness the diverse scales of features present in fundus images. To address these issues, this
paper proposes a DR lesion segmentation method, MLNet, based on multi-scale attention
and lesion perception. The major contributions of this paper can be summarized as follows:

1. By combining VGG16 [12] and the Multi-Scale Attention Block (MSAB) through
skip connections, MLNet can not only extract the characteristics of DR multi-level lesion
features but also effectively capture multi-scale lesion information.

2. The Lesion Perception Block (LPB) is designed and introduced in MLNet. After the
MSAB upsampling, decoding, and adding the retinal fundus image feature map element by
element, the LPB is used to deeply perceive the information of subtle lesions in DR images.

3. A novel loss function combining the Tversky loss function and binary cross-entropy
loss function is proposed to alleviate the negative effects of highly imbalanced DR datasets.
Additionally, different weights are assigned to different lesions within the loss function to
guide the training of the algorithm.

The experimental results show that compared with other state-of-the-art algorithms,
MLNet achieves better scores in various evaluation metrics and has the best DR lesion
segmentation performance, especially in subtle lesions.

The rest of this paper is organized as follows: In Section 2, we briefly discuss the
existing deep learning-based DR image segmentation methods. In Section 3, this paper
introduces the algorithm framework of MLNet and its two main blocks, MSAB and LPB,
and introduces the design of the loss function. Section 4 provides an overview of the
datasets, along with specific experimental details. It further presents and discusses the
obtained experimental results. In Section 5, we conclude the work and outline potential
future research directions.

2. Related Work

Since deep learning was proposed, it has been considered to be highly suitable for
various image processing tasks because of its remarkable capability to extract rich features
from images [13]. In recent years, deep learning has made great progress in medical image
processing, and DR lesion segmentation based on deep learning has become the mainstream
research direction in this field.

Early deep learning-based image segmentation methods include fully convolutional
networks (FCNs) [14], U-Net [15], SegNet [16], and U-Transformer [17], which incorporated
the Transformer framework and introduced a self-attention mechanism. The emergence
of these methods benefits from the rapid development of computer technology and AI
(Artificial Intelligence), which effectively promotes the progress of medical image analysis
technology and lays a foundation for researchers to propose new DR lesion segmentation
methods. He et al. [18] proposed an efficient hierarchical hybrid visual Transformer, named
H2Former, which combined the strengths of CNN, multi-scale channel attention, and
Transformer for DR lesion segmentation. He et al. [19] developed a Progressive Multi-scale
Consistent Network (PMCNet) to achieve improved DR lesion segmentation. This network
integrated Progressive Feature Fusion (PFF) and the Dynamic Attention Block (DAB) to
facilitate progressive learning and the dynamic fusion of multi-scale features.

Furthermore, the introduction of innovative approaches like RTNet by Huang et al. [9],
hyperbolic space-based Transformer by Wang et al. [20], SSMD-Unet by Ullah et al. [21],
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and M2MRF operator by Liu et al. [22] has contributed to further advancements in DR
lesion segmentation. These methods have leveraged self-attention, cross-attention, relation
Transformer blocks, hyperbolic embeddings, and auxiliary reconstruction tasks to enhance
segmentation accuracy and address specific challenges associated with scale discrepancy
and optimal feature representation.

However, despite the significant progress made in DR lesion segmentation using deep
learning, there are still research gaps that need to be addressed. Particularly, there is a need
to develop robust segmentation models that effectively capture multi-scale lesion features
in fundus images while perceiving subtle lesions in depth. Current approaches have shown
promising results; however, there is room for improvement in simultaneously leveraging
multi-scale information and depth perception to enhance the accuracy and completeness of
DR lesion segmentation.

Furthermore, the influence of imbalanced datasets on the algorithm’s performance
remains a challenge. Existing methods often struggle with imbalanced data, where the
number of positive lesion samples is significantly smaller than the number of negative sam-
ples. To overcome this issue, it is essential to design a novel loss function that incorporates
tailored lesion weights. Such a loss function would effectively reduce the negative impact
of imbalanced datasets on the segmentation algorithm, ensuring the accurate delineation
of both common and rare DR lesions.

3. Methods
3.1. Overview of MLNet

MLNet consists of two key blocks: the MSAB and the LPB. The MSAB plays a crucial
role in MLNet for capturing multi-scale lesion features in fundus images. It combines the
VGG16 architecture, a prevalent convolutional neural network, with the MSAB through skip
connections. This integration allows MLNet to extract the characteristics of DR multi-level
lesion features effectively. The LPB is another essential component of MLNet, designed
specifically to perceive subtle lesions in depth. After the upsampling, decoding, and
addition of the retinal fundus image feature map element by element, the LPB is utilized to
deeply perceive the information of subtle lesions in DR images. In addition to the MSAB and
LPB, MLNet also incorporates a novel loss function with tailored lesion weights to address
the influence of imbalanced datasets on the algorithm’s performance. This loss function
aims to reduce the impact of data imbalance and prioritize the accurate segmentation of
lesions, further enhancing the reliability and robustness of the segmentation results.

The specific framework of MLNet is illustrated in Figure 1. Firstly, VGG16 is employed
to extract multi-level feature maps from retinal fundus images, and these feature maps are
transmitted to multiple MSABs through skip connections. The MSAB utilizes a combination
of various types of convolutional layers and self-attention mechanisms to automatically
assign different attention weights to different spatial positions and channels based on
the content of the input feature maps, and this combination ensures the efficient capture
of multi-scale lesion features while establishing long-range dependency relationships.
Subsequently, the multiple MSABs perform upsampling, decoding, and channel-wise
concatenation on the feature maps and then transmit to the LPB. The LPB utilizes multiple
parallel convolutional layers along with the internal Lesion Attention Head (LAH) to
generate unique channel information that highlights subtle lesions within each lesion
category. This information is then element-wise multiplied with the high-level semantic
feature maps inputted into the LPB, enhancing the network’s sensitivity to subtle lesions.
Finally, the feature map containing rich lesion information is passed to the segmentation
head, which contains a convolutional layer and sigmoid function, to generate the final
accurate lesion segmentation results.
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Figure 1. MLNet.

In Figure 1, given a retinal fundus image I ∈ RH×W×3 (with height H, width W, and
3 channels) as input, the VGG16 is used as a feature encoder to extract multi-level feature
maps Fi ∈ RHi×Wi×Ci , i ∈ [1, . . . , 5]. VGG16 is selected as the backbone network in MLNet
due to its robust hierarchical feature extraction ability, pre-trained weights on ImageNet,
and convenient architecture with skip connections. These features allow MLNet to accu-
rately capture and represent the complex structures and variations present in DR lesions.
By leveraging pre-trained weights, MLNet benefits from the generalized representations
learned by VGG16, enhancing its ability to extract meaningful features from fundus images.
The skip connections enable the fusion of multi-level feature representations, combining
fine-grained local details with a broader global context for a comprehensive understanding
of the images. Then, multiple MSABs process Fi separately to obtain multi-scale feature
information and build long-range dependency relationships. Then the upsampled and
decoded feature maps FMSAB

i with the same resolution of 512 × 512 are obtained. Sub-
sequently, multiple FMSAB

i are summed channel-wise to generate the high-level semantic
feature map FM ∈ RH×W×3, which is feedforwarded into the LPB to further perceive subtle
lesions in the fundus image. The output feature map FRl , l ∈ {MA, SE, HE, EX} contains
rich lesion information. Finally, FRl is fed into a segmentation head, to generate four types
of lesion segmentation results Sl , l ∈ {MA, SE, HE, EX}.

3.2. Multi-Scale Attention Block

The MSAB structure is illustrated in Figure 2, which primarily consists of a combina-
tion of different types of convolutions and a unique self-attention head. The utilization of
different types of convolution operations enables the capturing of multi-scale lesion features
in retinal fundus images. The distinctive self-attention head replaces the linear projection
in traditional methods [23] with a 1 × 1 convolutional layer for channel contraction and
expansion. This replacement helps reduce the number of hyperparameters. Overall, this
block is designed to capture cross-channel multi-scale lesion features in the retinal fundus
image and build long-range dependency relationships.

Figure 2 shows that the output of the feature encoder Fi is passed to the MSAB. The MSAB
utilizes two convolutional layers with kernel sizes of 1 × 1 and 3 × 3 to capture multi-scale
feature information, resulting in F1

i and F2
i . Subsequently, the MSAB employs self-attention

heads to dynamically establish long-range dependency relationships within F1
i and F2

i . Each
self-attention head consists of three convolutional layers with a kernel size of 1 × 1, followed by
a spatial flattening operation, which generates Query, Key, and Value. The matrix multiplication
with Query and Key to obtain attention Atti process is as follows:

Atti = Q(Fi)⊗ K(Fi)
T , i ∈ [1, . . . , 5] (1)
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where K(.) and Q(.) denote the Key and Value generators, respectively, and ⊗ denotes
matrix multiplication. Atti further utilizes the generated Query and its corresponding
Value to generate the attention feature map Fmid

i . The process is as follows:

Fmid
i = V(Fi)⊗ ϕ(Atti), i ∈ [1, . . . , 5] (2)

where V(.) denotes the Value generator, and ϕ(.) denotes the softmax function. Then, the
matrix Fmid

i is de-flattened and multiplied element-wise with trainable scaling factor s. The
results are then added element-wise to F1

i and F2
i , yielding Fatt1

i and Fatt2
i . Subsequently,

Fatt1
i and Fatt2

i are added element-wise and undergo upsampling and decoding to generate
FMSAB

i . The entire process can be represented as follows:

FMSAB
i = U

[(
sFmid1

i ⊕ F1
i

)
⊕

(
sFmid2

i ⊕ F2
i

)]
, i ∈ [1, . . . , 5] (3)

where ⊕ denotes element-wise addition operation, s is the trainable scaling factor and is
enclosed as S in Figure 2, and U denotes upsampling and decoding.
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3.3. Lesion Perception Block

The LPB is structured as shown in Figure 3, which primarily consists of multiple paral-
lel convolutional layers with a kernel size of 1 × 1 and an LAH. The parallel convolutional
layers are capable of extracting unique feature information for different types of lesions.
The LAH utilizes different types of pooling layers to extract diverse feature information.
It also introduces two consecutive 1 × 1 convolutional layers for channel contraction and
expansion. A sigmoid activation function is inserted after the convolutional layers to
introduce non-linearity and prevent gradient vanishing. Finally, the unique skip connection
is used to enhance the perception ability of the network for subtle lesions.

Specifically, the LPB performs element-wise addition on the output FMSAB
i from the

MSAB to generate FM. FM is then passed through four parallel convolutional layers with
a kernel size of 1 × 1 to reduce the channel dimension, resulting in four types of lesion
features, FLl ∈ RH×W×3, l ∈ {MA, SE, HE, EX}. Afterwards, FLl is passed to LAH, where
specific channel attention factors CHl , l ∈ {MA, SE, HE, EX} are generated to emphasize
the unique channel information for each lesion type. The mathematical process of the LAH
can be described as follows:

CHl = σ

{
C1

(
FLavg

l

)
×2

}
+ s′σ

{
C2(FLmax

l )×2

}
, l ∈ {MA, SE, HE, EX} (4)

where σ(.) denotes the sigmoid activation function, s′ is the scaling factor, and FLavg
l and

FLmax
l represent global spatial features obtained through average pooling and max pooling.
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C1 and C2 are the 1 × 1 convolutional layer; C(.)×2 denoting the operation is performed
twice. Then, the LPB utilizes skip connections to perform element-wise multiplication
between FM and CHl , generating feature maps FRl that contain rich lesion information.
This can be represented as follows:

FRl = FM ⊗ CHl , l ∈ {MA, SE, HE, EX} (5)

At this point, the LPB completes the extraction of effective lesion information, espe-
cially subtle lesion information. Finally, FRl is feedforwarded to the segmentation head
containing a convolutional layer with a kernel size of 1 × 1 and a sigmoid function and
then generates the segmentation results S for four types of lesions.
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3.4. Loss Function

To mitigate the influence of imbalanced datasets on the algorithm’s performance,
MLNet incorporates a novel loss function with tailored lesion weights. This loss function
assigns higher weights to lesion regions and lower weights to non-lesion regions. By doing
so, MLNet can effectively handle imbalanced datasets, prioritize the accurate segmentation
of lesions, and reduce the impact of data imbalance on the final segmentation results.
Specifically, this paper employs the Tversky loss function [24] and binary cross-entropy
loss function (BCE loss) [25] to alleviate the negative impact of highly imbalanced datasets
on the network during DR lesion segmentation tasks.

The traditional Dice loss function treats FP (false positives) and FN (false negatives)
equally [26]. However, in the case of DR datasets, there is a significant class imbalance, and
the size of lesions is typically small compared to the background. This creates a challenge
where the impact of FN (missing lesions) is more critical than that of FP (incorrectly
identified non-lesion areas). To address this issue, the Tversky index is incorporated into
the Dice loss function to create the Tversky loss function. The Tversky index is a variant
of the Dice coefficient that allows for the adjustment of the relative importance of FP and
FN. Specifically, the Tversky loss function assigns a higher weight to FN compared to FP,
acknowledging the importance of correctly identifying and capturing the small lesions
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prevalent in DR images. By prioritizing the reduction in FN, the Tversky loss function
helps mitigate the risk of overlooking critical lesions, leading to more reliable and clinically
meaningful segmentation outcomes. The weights of FP and FN are coordinated using
α and β, as shown below:

LTversky = 1 − TP
TP + αFP + βFN

(6)

where, α set to 0.1 and β set to 0.9, this parameter configuration increases the network’s
sensitivity to lesions in imbalanced datasets.

The binary cross-entropy loss function utilizes the binary cross-entropy formula to
compare the predicted probabilities with the ground truth values. It utilizes the binary
cross-entropy formula to quantitatively measure the dissimilarity between the predicted
probabilities and the corresponding ground truth values. This loss function serves as a
key optimization objective in training models to accurately segment the lesion parts from
fundus images. It can be expressed as follows:

LBCE = −[y × log(p) + (1 − y)× log(1 − p)] (7)

where y is the ground truth value; p is the predicted probability.
Finally, the total loss function LS is expressed as follows:

LS = LTversky + λLBCE (8)

where λ is the balance coefficient of the loss function, which is used to balance the influence
of the two loss functions on the network’s training optimization direction and is gener-
ally set to 0.5. In addition, considering that different lesions have different segmentation
difficulties, inspired by RTNet [9], this paper assigns weights of [1, 1, 5, 10] to HEs, EXs,
SEs, and MAs to ensure the overall segmentation accuracy. Moreover, the determination
of weights was guided by comprehensive experimentation. This work conducted exten-
sive experiments to identify optimal weight assignments that would enhance the overall
segmentation accuracy.

4. Experiments and Results
4.1. Datasets

DDR [27]: This dataset consists of 13,673 color retinal fundus images with varying
sizes ranging from 1088 × 1920 to 3456 × 5184. Among these images, 757 are pixel-level
annotated with EXs, HEs, MAs, and SEs. Specifically, there are 486 images annotated with
EXs, 570 images with MAs, 239 images with SEs, and 601 images with HEs. In this paper,
based on the original partition provided by the DDR dataset, 383 images are used for
training, 149 images for validation, and the remaining 225 images for testing. This dataset
is employed for the training and validation of MLNet and other state-of-the-art methods
for the comparison of segmentation results, ablation experiments, and generalization
experiments.

DIARETDB1 [28]: This dataset consists of 89 color fundus images with a size of 1500× 1152,
and 84 fundus images were marked with lesions, and the other 5 were fundus images without
lesions. A single fundus image may contain multiple types of lesions. There are 48 images
annotated with EXs, 80 images with MAs, 36 images with SEs, and 54 images with HEs. In
this paper, we refer to reference [11] for a more accurate pixel-level labeling of this dataset and
the division of DIARETDB1; 67 images are used for training and the remaining 22 images for
testing. This dataset is used to train and test MLNet’s performance on datasets other than DDR
datasets.

IDRiD [29]: This dataset consists of 81 color retinal fundus images with a size of 4288× 2848.
Each image is pixel-level annotated with EXs, HEs, MAs, and SEs. Among these annotations,
there are 81 images annotated with EXs, 81 images with MAs, 80 images with SEs, and 40 images
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with HEs. This dataset is used for evaluating the generalization performance of MLNet in
the experiments.

4.2. Data Preprocess

Considering that the contrast between lesion areas and normal tissues in retinal
fundus images is often imperceptible, it is difficult to distinguish between them with the
naked eye and automated DR diagnosis based on deep learning [30]. Therefore, many
methods [31,32] employ various techniques to highlight the lesion areas in the images before
performing DR diagnosis, assisting the network to better process the images. Following
the above-mentioned methods, this paper applies the following preprocessing steps to
the DDR dataset, DIARETDB1 dataset, and IDRiD dataset: First, the black borders are
cropped to reduce computation time and suppress irrelevant noise information. Then,
the images are uniformly resized to 512 × 512 dimensions. Contrast Limited Adaptive
Histogram Equalization (CLAHE) [33] is applied to enhance the images, with the processing
parameters set as ClipLimit = 2 and GridSize = 8. Finally, the image pixel values are
normalized from 0~255 to 0~1 for subsequent network processing.

Figure 4 illustrates the comparison between the original retinal fundus images and the
preprocessed images. It can be observed that after preprocessing, the irrelevant information
at the edge of the images is cut, the retinal blood vessels become clearer, and the lesion
areas become more prominent. This enhancement aids MLNet in the subsequent training,
testing, and validation of the datasets.
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4.3. Experimental Setting

MLNet is implemented using the PyTorch backend and executed on two NVIDIA GeForce
RTX 4070Ti GPUs with a memory capacity of 12 GB each. During the training process, the batch
size is set to 8, the initial learning rate is set to 1 × 10−4, and the learning rate scheduler is a
power of 0.9 of the polynomial. The network is trained using the Adam optimizer [34], and a
total of 500 epochs are conducted. The weight decay rate is set to 2 × 10−2.

4.4. Evaluation Metrics

In this paper, the segmentation performance is evaluated using Area Under the
Precision–Recall Curve (AUPR), Dice coefficient (Dice), and Intersection over Union
(IoU) [35,36]. Higher scores in these three metrics indicate the better segmentation ca-
pability of the proposed method.

The AUPR reflects the ability of a method to enrich true positive samples, which is the
area accuracy under the precision–recall curve, and mAUPR is the average of the AUPR
values for all lesion types.
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The Dice coefficient is a similarity metric that measures the overlap between the seg-
mented region and the actual lesion area. The mDice is the average of the Dice coefficients
for all lesion types. The Dice coefficient is calculated using the following formula:

Dice =
2 × TP

2 × TP + FN + FP
(9)

IoU represents the ratio of the intersection to the union between the segmented region
and the actual lesion area. The mIoU is the average IoU value obtained for all types of
lesions. Specifically, the IoU is calculated using the following formula:

IoU =
TP

TP + FP + FN
(10)

In Equations (9) and (10), the following definitions are used: TP (true positives)
represents the number of pixels correctly segmented as lesion pixels. TN (true negatives)
represents the number of pixels correctly segmented as background pixels. FP represents
the number of pixels incorrectly segmented as background pixels, while they are actually
lesion pixels. FN represents the number of pixels incorrectly segmented as lesion pixels,
while they are actually background pixels.

4.5. Experimental Results and Analysis
4.5.1. Comparison of Evaluation Metrics’ Results on DDR Dataset

In this paper, MLNet is compared with seven state-of-the-art DR lesion segmenta-
tion methods, including M2MRF [22], L-Seg [37], RTNet [9], HEDNet [38], Swin Trans-
former [39], VTA [20], and Guo et al. [11]. Table 1 presents the evaluation metrics and mean
evaluation metrics’ results of MLNet and the seven advanced methods on the DDR dataset.

Table 1. Evaluation metrics of different methods on the DDR dataset.

Method
AUPR/% Dice/% IoU/%

MA SE HE EX mAUPR MA SE HE EX mDice MA SE HE EX mIoU

M2MRF [22] 28.21 53.19 54.20 64.17 49.94 27.81 48.02 45.29 61.15 45.57 16.15 31.60 29.28 44.04 30.27
L-Seg [37] 10.52 26.48 35.86 55.46 32.08 23.01 40.13 41.53 54.44 39.78 10.13 28.01 24.23 35.24 24.40
RTNet [9] 11.76 29.43 36.56 56.71 33.62 - - - - - - - - - -
HEDNet [38] 20.61 46.68 43.19 61.40 42.97 22.43 45.50 42.61 56.63 41.79 12.63 29.46 27.09 39.50 27.17
Swin-T [39] 23.67 46.21 54.39 62.71 46.75 23.31 46.77 50.53 59.79 45.10 13.19 30.62 33.82 42.64 30.07
VTA * [20] 10.66 26.94 37.78 56.07 32.86 23.30 41.08 42.77 55.57 40.68 13.44 30.01 25.47 36.94 26.47
Guo et al. [11] 11.94 32.60 36.52 60.14 35.30 15.22 38.76 33.17 54.06 34.80 - - - - -
MLNet 34.28 48.41 57.39 67.16 51.81 31.25 49.71 55.23 63.21 49.85 29.81 32.57 33.91 52.47 37.19

The addition of “*” to the method name indicates the results reproduced in this paper. The “-” indicates that
the data are not available, bold values indicate the best-performing results, and underlined values indicate the
second-best results.

According to Table 1, MLNet outperforms other advanced methods in all average
evaluation metrics, showcasing its superior segmentation performance. The improvements
achieved by MLNet compared to the second-best results are notable, with an enhancement
of 1.87% in mAUPR, 4.28% in mDice, and 6.92% in mIoU. These results highlight MLNet’s
ability to capture fine-grained lesion details and generate precise segmentations.

Furthermore, according to Table 1, a comparison with M2MRF reveals substantial
improvements achieved by MLNet in the MA segmentation results. Specifically, MLNet
shows improvements of 6.07%, 3.44%, and 13.66% in AUPR, Dice, and IoU, respectively,
emphasizing its effectiveness in accurately segmenting MA lesions. Similarly, for the EX
segmentation results, MLNet demonstrates improvements of 2.99%, 2.06%, and 8.43%
in AUPR, Dice, and IoU, respectively, further consolidating its superior performance in
capturing and delineating EX lesions. However, for the SE segmentation results, MLNet’s
AUPR is lower than M2MRF by 4.78%, but Dice and IoU show improvements of 1.69%
and 0.97%, respectively. This observation could be attributed to MLNet’s loss function,
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which considers all four lesion types simultaneously. While this may lead to a potential
decrease in the segmentation capability for a specific lesion type, the overall evaluation
metrics remain excellent, indicating MLNet’s robust performance in segmenting DR lesions.
Compared to Swin Transformer, which has the second-best evaluation metrics for the HE
segmentation results, MLNet achieves improvements of 3%, 4.7%, and 0.09% in AUPR,
Dice, and IoU, respectively. These advancements underscore MLNet’s effectiveness in
accurately segmenting HE lesions, further solidifying its superiority over other methods.
Overall, MLNet achieves the best average evaluation metrics and significant improvements
compared to the second-best results. It also achieves the best results in Dice and IoU in
non-average evaluation metrics and mostly achieves the highest scores in AUPR. These
experimental results demonstrate that MLNet exhibits superior segmentation performance
compared to the other seven advanced methods. The consistent superiority of MLNet
across various evaluation metrics and lesion types confirms its effectiveness in accurately
segmenting DR lesions.

4.5.2. Comparison of Visual Segmentation Results on DIARETDB1 Dataset

In this paper, the DIARETDB1 dataset is utilized for a complementary validation of the
performance of MLNet and compared with U-Net [15], Swin-UNet [40], and Guo et al. [11];
the data results of these algorithms are from the relevant paper. The results are shown in
Table 2.

Table 2. Evaluation metrics of different methods on the DIARETDB1 dataset.

Method
AUPR/% Dice/%

MA SE HE EX mAUPR MA SE HE EX mDice

U-Net [15] 41.72 55.53 67.11 76.47 60.21 44.53 52.26 58.01 69.18 56.99
Swin-UNet [40] 37.88 53.57 65.81 74.26 57.88 42.97 55.69 58.47 67.82 56.24
Guo et al. [11] 46.77 63.43 76.30 81.15 66.91 49.96 62.23 69.31 76.12 64.41
MLNet 53.01 65.19 73.81 76.66 67.16 51.72 64.48 61.10 69.97 61.82

Bold values indicate the best-performing results, and underlined values indicate the second-best results.

According to Table 2, MLNet achieved the highest scores on the DIARETDB1 dataset
for both MA and SE types of lesions, achieving an AUPR of 53.01% and 65.19%, respectively,
and improved by 6.42% and 1.76% relative to the suboptimal results. However, for the
segmentation results of HE and EX types of lesions, the results obtained by MLNet were
73.81% and 76.66%, which were inferior to the 76.30% and 81.15% obtained by the algorithm
proposed by reference [11]. Nevertheless, it is still more advantageous than the results of
U-Net and Swin-UNet. In addition, for the average results, the proposed algorithm can
achieve a significant improvement compared with U-Net and Swin-UNet, which are 6.95%
and 9.28%, respectively, and a slight improvement of 0.25% compared with the algorithm in
reference [11]. In addition to the analysis of AUPR values on the DIARETDB1 dataset, we
also compare Dice indicators. As can be seen from Table 2, for the segmentation results of
lesions of HE and EX types, the method proposed in this paper is inferior to that proposed
by Guo et al. [11]. In addition, for mDice, we have a decrease of 2.59% compared with
method in reference [11]. However, compared with the compared algorithms, MLNet
can still obtain suboptimal results on HE- and EX-type lesions and mDice. Regarding the
performance metrics of MA and SE types of lesions, the proposed algorithm achieved the
highest scores of 51.72% and 64.48%, respectively. While MLNet did not obtain the highest
Dice scores for certain lesion types, it still demonstrated relatively excellent results for
other lesion types. Moreover, MLNet exhibited a commendable overall performance score
when considering the average results. It is worth noting that these results highlight the
algorithm’s competence in lesion segmentation.

In general, the results of MLNet on the DIARETDB1 dataset complementarily verify
that MLNet has good segmentation performance for fundus images.
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4.5.3. Comparison of Visual Segmentation Results

To visually illustrate the effectiveness of MLNet in DR lesion segmentation, this paper
selects five representative DR images and corresponding ground truth and presents the
visual results of five different DR lesion segmentation methods, including MLNet, as shown
in Figure 5.
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According to Figure 5, a visual analysis of the segmentation results provides further
insights. In the first row, for the case with a single type of lesion cluster, MLNet, Swin-T, and
VTA accurately capture the lesion areas, but MLNet can segment EX-type subtle lesions more
precisely. In the second row, for the case with irregular distributions of lesions in multiple
sizes and types, MLNet can segment all sizes of lesions and accurately identify the lesion types
compared to other methods. This capability sets MLNet apart from other methods in accurately
representing the diverse characteristics of lesions. In the third row, for the case of lesion clusters
with a rectangular-like shape and scattered lesions, all methods except HEDNet can capture
the rough shape of the lesion cluster. However, MLNet achieves a more refined segmentation
result, accurately delineates the EX-type lesion, and better captures other subtle lesions. In
the fourth row, for the case with concentrated lesions of multiple sizes and types, MLNet
outperforms other methods in accurately capturing lesions of all sizes and types. This highlights
MLNet’s robustness in handling complex lesion distributions and accurately delineating the
diverse range of lesions. In the fifth row, for the case with sporadically distributed single-type
lesions, only MLNet correctly segments MA-type lesions without any segmentation errors.
This further demonstrates MLNet’s ability to accurately capture specific lesion types even in
challenging scenarios.

In conclusion, based on the visual comparison of the segmentation results, MLNet
demonstrates superior segmentation performance for various distributions of lesions,
particularly for subtle lesions. This is attributed to the effective combination of the MSAB,
the LPB, and the unique loss function designed in this paper. These components enable
MLNet to capture the multi-scale lesion characteristics in retinal fundus images and exhibit
a deep perception of subtle lesions, thereby enhancing its segmentation capability.
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4.5.4. Generalization Experiment

MLNet was trained using DDR’s training and validation dataset and tested on IDRiD’s
testing dataset to evaluate its generalization ability, and the results are shown in Table 3.

Table 3. Generalization results of different methods on IDRiD dataset.

Method
AUPR/%

MA SE HE EX mAUPR

M2MRF [22] 44.09 55.20 59.97 74.04 58.33
L-Seg [37] 19.86 30.59 44.05 65.01 39.88
RTNet [9] 21.14 34.01 45.04 67.99 42.05
HEDNet [38] 17.16 31.78 39.68 57.66 36.57
MLNet 49.56 61.08 60.91 66.60 59.54

Bold values indicate the best-performing results.

According to Table 3, MLNet achieves the highest score in the mAUPR. Specifically,
MLNet achieves an mAUPR of 59.44%, which is 1.11%, 19.56%, 17.39%, and 22.87% higher
than M2MRF, L-Seg, RTNet, and HEDNet, respectively. However, MLNet’s performance in
EX segmentation is slightly inferior to other methods. This discrepancy can be attributed
to the training of MLNet using the DDR dataset, where EX-type lesions have a wide
distribution and a larger number of pixels, resulting in a relatively lower weight assigned
to EX-type lesions in the loss function. On the other hand, the distribution and pixel
characteristics of EX-type lesions in the IDRiD dataset are different from those in the DDR
dataset, leading to MLNet’s relatively weaker performance in EX segmentation compared to
other advanced methods. Nevertheless, it is important to note the improvements achieved
by MLNet in other lesion types. In detail, MLNet demonstrates improvements of 5.47%,
5.88%, and 0.94% in the AUPR for MA, SE, and HE segmentation results, respectively,
compared to the second-best method, M2MRF. These results indicate that MLNet exhibits
good generalization ability for DR lesion segmentation, showcasing its effectiveness across
various lesion types.

In summary, MLNet’s impressive performance in the mAUPR highlights its superiority
in overall DR lesion segmentation. While it may exhibit slightly weaker performance in
EX segmentation due to dataset-specific characteristics, MLNet showcases its strength in
accurately segmenting other lesion types, demonstrating its robust generalization ability
for DR lesion segmentation.

4.5.5. Ablation Experimental

In this experiment, the standard VGG16 is used as a baseline, and the effectiveness
of different modules is validated by inserting them. MLNet’s AUPR scores on the DDR
dataset with different network structure settings are shown in Table 4.

Table 4. The ablation experimental results of MLNet on the DDR dataset.

Method
AUPR/%

MA SE HE EX mAUPR

(No.1) Baseline + Proposed loss 24.49 23.81 36.23 45.20 32.43
(No.2) Baseline + MSAB + Proposed loss 28.01 33.24 37.49 51.17 37.48
(No.3) Baseline + LPB + Proposed loss 29.34 35.49 38.11 53.92 39.22
(No.4) Baseline + MSAB + LPB + Dice loss 30.18 45.41 52.82 63.67 48.02
(No.5) MLNet (Baseline + MSAB + LPB + Proposed loss) 34.28 48.41 57.39 67.16 51.81

Bold values indicate the best-performing results.

According to Table 4, a comparative analysis reveals the performance improvements
achieved by different variations of the model. Compared to No.1, No.2 improves the
mAUPR from 32.43% to 37.48% and improves the segmentation results of MAs, SEs, HEs,
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and EXs by 3.52%, 9.43%, 1.26%, and 5.97%, respectively. These results highlight the
positive impact of incorporating the additional components on the overall segmentation
performance. Additionally, despite both incorporating the MSAB, compared to No.3, No.4
shows an improvement range of 4.94% to 19.82% in the AUPR, with an 11.93% increase
in the mAUPR. When the LPB is added to the baseline (No.3), the mAUPR significantly
increases from 32.43% to 39.22%. For the segmentation results of MAs, SEs, HEs, and EXs,
the AUPR improves by 4.85%, 11.68%, 1.88%, and 8.72%, respectively. No.4 also exhibits
a similar performance improvement trend compared to No.2, further demonstrating the
effective combination of the MSAB and the LPB in generating the optimal segmentation
results. The inclusion of the novel loss function with a customized lesion weight, as
proposed in this paper, is added to No.4. Consequently, these additions contribute to the
enhancement of the AUPR metric, resulting in No.5. This demonstrates the effectiveness of
the novel loss function in improving the segmentation results.

To investigate the impact of different loss functions on the algorithm’s performance
and demonstrate the effectiveness of the proposed loss function, we performed additional
ablation experiments by varying the settings of the loss functions. Based on No.4, the loss
function is replaced by different loss functions in Section 3.4, and the results are compared.
The results are shown in Table 5.

Table 5. The loss function ablation experimental results of MLNet on the DDR dataset.

Method
AUPR/%

MA SE HE EX mAUPR

(No.4) Baseline + MSAB + LPB + Dice loss 30.18 45.41 52.82 63.67 48.02
(No.6) Baseline + MSAB + LPB + Tversky loss 33.74 43.91 53.45 64.95 49.01
(No.7) Baseline + MSAB + LPB + BCE loss 27.12 39.64 44.38 54.13 41.32
(No.8) Baseline + MSAB + LPB + Dice loss and BCE loss 30.02 41.85 50.39 57.42 44.92
(No.5) MLNet (Baseline + MSAB + LPB + Proposed loss) 34.28 48.41 57.39 67.16 51.81

Bold values indicate the best-performing results.

According to Table 5, replacing the loss function in the No.4 model with other loss
functions, similar to No.6 utilizing the Tversky loss and No.7 employing BCE loss, did
not lead to effective improvements. Although, No.6 exhibited a slight improvement in the
mAUPR compared with No.4, and the segmentation results for SE lesion types decreased
from 45.41% to 43.91%. Furthermore, No.7 experienced a 6.7% decrease in the mAUPR
compared to No.4. In addition, by changing the loss function to a combination of Dice
loss and BCE loss (No.8), there was a significant drop in performance. However, if the
loss function is set as the proposed method (No.5), both the AUPR and mAUPR showed
significant improvements compared with other loss function configurations. In summary,
the loss function designed in this paper exhibits better compatibility with MLNet for
segment fundus images.

In conclusion, the comparative analysis of different model variations in Table 4 and dif-
ferent loss function settings in Table 5 highlights the performance improvements achieved
by incorporating additional components and the novel loss function. These enhancements
lead to significant improvements in mAUPR and AUPR scores, as well as more accurate seg-
mentation results for specific lesion types. The findings underscore the effectiveness of the
proposed components and the novel loss function in enhancing the overall segmentation
performance of the algorithm.

5. Conclusions

This paper presents MLNet, a DR lesion segmentation method based on multi-scale
attention and lesion perception. MLNet mainly consists of the MSAB and the LPB, which
effectively capture multi-scale DR lesion features and deeply perceive subtle lesions in
retinal fundus images. Additionally, a novel loss function is designed to alleviate the
negative impact of data imbalance, resulting in more accurate segmentation results. MLNet
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is evaluated on the DDR dataset and compared with seven state-of-the-art methods, achiev-
ing mAUPR, mDice, and mIoU scores of 51.81%, 49.85%, and 37.19%, respectively, and
achieving 67.16% mAUPR and 61.82% mDice on the DIARETDB1 dataset. These results
show the superior performance of MLNet on the DDR dataset and good segmentation
results on the DIARETDB1 dataset. MLNet also establishes excellent generalization on the
IDRiD dataset, indicating its superior performance on the new dataset. In summary, MLNet
improves the accuracy of DR lesion segmentation and has huge potential for future clinical
practicality. It can serve as an assistive tool for ophthalmologists to accurately diagnose
and treat patients with DR. It can also be used for training primary eye care practitioners to
enhance their diagnostic abilities. Furthermore, MLNet can provide valuable insights for
other types of lesion segmentation tasks, advancing research and development in the field.

However, this work has certain limitations that can be addressed in future research.
For example, this study does not employ any adaptive methods to address the issue of data
imbalance in lesion segmentation. This means that researchers need to manually adjust
weights and repeat experiments to obtain the optimal network parameters. While this
approach allowed for some degree of optimization, it resulted in a longer training time and
limited the network’s compatibility with different datasets. To overcome this limitation,
future research can focus on exploring adaptive methods specifically designed to handle
imbalanced sample distributions in lesion segmentation. By developing techniques that
automatically adjust for data imbalance, researchers can streamline the training process
and improve the network’s performance on diverse datasets. This would enhance the prac-
ticality and applicability of new DR image segmentation methods in real-world scenarios.
Additionally, after providing fine-grained DR segmentation results, MLNet can be used to
assist with DR classification tasks. By leveraging the segmentation outcomes, MLNet can
contribute to more accurate DR diagnosis, aiding in the identification of disease severity
and informing appropriate treatment strategies. Combining segmentation results with
classification tasks has the potential to enhance overall diagnostic accuracy and improve
patient management.

Finally, the presentation of these limitations offers exciting prospects for future research.
Proposing adaptive techniques to address data imbalance in lesion segmentation would shorten
training time as well as improve the compatibility of deep learning-based methods across
various datasets. Furthermore, integrating segmentation results with classification tasks can lead
to more accurate and comprehensive DR diagnosis and ultimately improve patient care. These
avenues of exploration hold the potential to enhance the practicality of deep learning-based
methods in clinical settings and further advance the field.
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