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Abstract: Predicting vehicle mobility is crucial in domains such as ride-hailing, where the balance
between offer and demand is paramount. Since city road networks can be easily represented as
graphs, recent works have exploited graph neural networks (GNNs) to produce more accurate
predictions on real traffic data. However, a better understanding of the characteristics and limitations
of this approach is needed. In this work, we compare several GNN aggregated mobility prediction
schemes to a selection of other approaches in a very restricted and controlled simulation scenario. The
city graph employed represents roads as directed edges and road intersections as nodes. Individual
vehicle mobility is modeled as transitions between nodes in the graph. A time series of aggregated
mobility is computed by counting vehicles in each node at any given time. Three main approaches
are employed to construct the aggregated mobility predictors. First, the behavior of the moving
individuals is assumed to follow a Markov chain (MC) model whose transition matrix is inferred via
a least squares estimation procedure; the recurrent application of this MC provides the aggregated
mobility prediction values. Second, a multilayer perceptron (MLP) is trained so that—given the
node occupation at a given time—it can recursively provide predictions for the next values of the
time series. Third, we train a GNN (according to the city graph) with the time series data via a
supervised learning formulation that computes—through an embedding construction for each node
in the graph—the aggregated mobility predictions. Some mobility patterns are simulated in the
city to generate different time series for testing purposes. The proposed schemes are comparatively
assessed compared to different baseline prediction procedures. The comparison illustrates several
limitations of the GNN approaches in the selected scenario and uncovers future lines of investigation.

Keywords: mobility in graphs; Markov chain; graph neural network (GNN)

1. Introduction

Predicting the mobility of vehicles can be of great help to smart city management
(e.g., location-based services, sensing, etc.) and smart vehicle applications (e.g., transporta-
tion systems, communications, etc.) [1–6].

Depending on the application and domain, the prediction can be done based on the
data of each element (disaggregated data) or using aggregated values for a given region or
way. Although disaggregated data can potentially lead to more accurate results, personal
mobility data may not always be available Storing this type of information long-term or
sharing it with third parties may lead to privacy and legal issues. Thus, this work focuses
on directly applicable and privacy-preserving models on aggregated data.
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In recent years, many real-world datasets have been published, and they have become
the norm in GNN-based and broader ML-based traffic forecasting studies [7]. Evaluat-
ing with real data eliminates any potential questions about the validity of the data and
the applicability of the model in real scenarios. However, traffic simulations have two
potential benefits. Firstly, simulations have the ability of modeling unseen graphs, such
as a planned road topology [7]. Secondly, evaluating predictive models on synthetic and
extreme scenarios can help to better understand them and discover their limitations [8].

Taking into account that asset (vehicle) mobility in a city can be formalized using
the graph that defines the streets (edges), intersections (nodes), and directions (associated
with edges), in this work we address the prediction of aggregated asset distribution along
the nodes of this graph, based only on past aggregated distribution history. Aggregated
patterns are a result of individual asset behavior, which in real-life scenarios can be very
complex. This in turn hinders the ability to reason about the emergent behavior or to con-
struct extreme scenarios that test the limits of a given model. Hence, this paper focuses on a
very simple mobility model based on Markov Chains (MC). This model is parameterized by
a transition matrix, which can be easily tuned. Then, we propose three prediction schemes:
a method based on a Markov Chain (MC) model [9], and two methods based on Multilayer
Perceptrons (MLP) [10] and graph neural networks (GNNs) [11].

The rest of this paper is organized as follows. Section 2 presents relevant works in
the areas of mobility models, mobility prediction, and graph neural networks (GNNs).
In Section 3, we formalize the problem as a time series prediction task. A first prediction
scheme based on a Markov Chain model is developed in Section 4. In Section 5 two alterna-
tive neural network prediction schemes are designed: one based on a multilayer perceptron
(MLP) and the other on graph neural networks (GNNs). Simulations performed to illustrate
the applicability of the proposed schemes are presented in Section 6. Concluding remarks
and future lines of work to be addressed are stated in Section 7.

2. State-of-the-Art Literature Review

As mentioned above, existing works are framed in the context of available individual
(i.e., disaggregated) mobility data. In [1], to develop a communication infrastructure for
connected and automated vehicles (CAVs), a clustering algorithm is proposed, whose
evaluation is carried out via simulations that make use of a Gauss–Markov mobility (GMM)
model [12,13] as a complementary tool for estimating future locations of single vehicles.
In [2], the mobility prediction for individual vehicles is addressed within a grid partition of
the city’s geographical space, and a second-order Markov model is assumed to characterize
each driver’s mobility preferences within the grid. The employed hybrid architecture that
combines a convolutional neural network (CNN) and a recurrent neural network (RNN)
makes use of disaggregated historical grid occupation values, which are available for each
individual vehicle; the resulting scheme improves the quality of vehicle mobility prediction,
especially for those vehicles that have a strong individual mobility preference. In [3],
the same authors consider a similar scenario to address individual mobility prediction to
support intelligent vehicle applications; they propose a deep RNN-based algorithm whose
results match the theoretical analysis and improve state-of-the-art previous results. In [5], a
deep RNN making use of a long short-term memory (LSTM) architecture is proposed to
predict individual vehicle mobility on a grid, based on individual sensor data; the prediction
step is followed by a vehicle recruiting algorithm to optimize crowdsensing; the results
improve the quantity of collected sensing data versus existing algorithms. In [4], a model
based on a general-purpose sequence prediction model, named the compact prediction tree
(CPT), is proposed for driver route prediction; the results show an efficient noise tolerance
of the proposed algorithm. The prediction of individual vehicle trajectories, based on
consecutive previous GPS locations combined with a statistical inference module for online
mobility prediction, is proposed in [6]. This inference module is based on a hidden Markov
model (HMM), and the prediction stage employs an improved version of the Viterbi
algorithm. Such improvements reduce computational costs. In [14], the authors present
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a hierarchical trajectory prediction structure using a capsule neural network (CapsNet)
that embeds local temporal and global spatial correlations through hierarchical capsules
represented on a grid map. This procedure outperforms state-of-the-art methods.

So far, all the existing proposals address individual vehicle prediction making use of
disaggregated available data. The restriction of only having access to aggregate data is one
of the novel contributions of the work presented here.

3. Problem Statement

This paper addresses the comparative assessment of different schemes for the predic-
tion of the aggregated mobility of a fleet of vehicles that move along a graph describing
a city. In this type of graph, the nodes represent crossroads in the city, and the directed
edges represent the roads (and their directions) between the crossings. Simple simulation-
controlled scenarios will be considered for focusing on the main objective of the comparative
assessment.

The aggregated mobility will be defined by the distribution of the assets along the
graph nodes represented by a vector yt ∈ (N ∪ {0})N for a set of discrete time stamps
t = 0, 1, . . . Assuming available a sequence of occupation values yt, t = 0, 1, . . . , T − 1, the
objective is to predict the next value yT.

Three approaches are considered to perform such predictions. On the one hand,
motivated by the underlying graph structure, a Markov chain (MC) model, defined by a
transition matrix Π, is assumed to model the mobility of each vehicle; then, such a matrix
(denoted as Π̂) is estimated using past mobility data yt, t = 0, 1, . . . , T − 1. Ultimately, the
prediction is performed using Π̂:

yp
T = Π̂ · yT−1. (1)

The second approach considers an MLP architecture trained in a supervised manner
using the past mobility data yt, t = 0, 1, . . . , T − 1, so that:

yp
T = MLPΘ(yT−1, . . . , yT−d) (2)

where Θ is the set of adjustable parameters and d ≥ 1 defines the size of the time window
of previously selected values as predictors.

Finally, the third approach proposes a GNN that takes advantage of both the under-
lying graph structure and the proven effectiveness of graph neural networks (GNNs) for
time series prediction [15]. Such GNN is also trained in a supervised manner with the past
mobility data yt, t = 0, 1, . . . , T − 1, so that in general:

yp
T = GNN(y0, . . . , yT−1). (3)

The details of the MLP and GNN implementations and the use of the available data
are provided in Section 5.2.

The three proposed approaches are comparatively assessed together with other simpler
prediction schemes employed as baselines.

4. A Markov Chain Model

This aggregate model assumes that the mobility of each individual vehicle in the graph
can be modeled via a Markov chain, defined by the transition probabilities between the
connected nodes. We formalize this assumption in the remainder of this section.
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4.1. Markov Chains and Transition Matrices

Let {Xt}t=0,1,...,T be a Markov Chain (MC) [9,16], which represents a discrete-time
stochastic process with finite state space Xt ∈ S = {s1, . . . , sN}, whose associated probabil-
ity distribution satisfies the Markov property:

P(Xt+1=sj | Xt=si, Xt−1=sk, . . . , X0=sl) = P(Xt+1=sj | Xt=si). (4)

Let Π be the Markov chain transition matrix so that given two states si, sj, the term
(j, i) of such matrix is denoted as Πji = Π(sj ← si) = P(Xt+1=sj | Xt=si) and represents the
transition probability from state i to state j. Defined this way, the columns of Π are stochastic
vectors so that ∀i = 1, . . . , N we have Π·i = [Π1i, . . . , ΠNi] satisfies Πji ≥ 0, ∀j ∈ {1, . . . , N}
and ∑N

j=1 Πji = 1.
For each t, let us denote Pt as the (discrete) probability distribution corresponding to

Xt. Pt is defined as a stochastic vector Pt = [p(1)t , . . . , p(N)
t ] with p(i)t ≥ 0, ∀i ∈ {1, . . . , N}

and ∑N
i=1 p(i)t = 1. Note that P0 corresponds to the distribution of the initial condition or

initial state X0; in case such an initial state is known to take a deterministic value X0 = sj,
for some j ∈ {1, . . . , N}, then we have that P0 = δj = [δ1,j, . . . , δj,j, . . . , δN,j] meaning that

p(j)
0 = 1 and p(i)0 = 0, ∀i ̸= j.

According to (4), the distributions Pt, t = 0, . . . , T − 1 for T ∈ N, T > 1 satisfy
the condition

Pt+1 = Π · Pt, t = 0, . . . , T − 1. (5)

Note that (5) defines a dynamical system that—starting from P0—allows to recursively
compute for each time, t, the probability distribution, Pt, corresponding to Xt.

According to (4), {Xt}, t ∈ {0, . . . , T} are not independent variables, but their joint
distribution can be characterized stepwise making use of the corresponding conditional
distributions. Hence, we can take a sample of the Markov chain by relying on such
conditional distributions, which are completely defined with P0 and matrix Π.

4.2. Binary Vector Codification of States

Let us code any state sj via column vector δj = [δj1, . . . , δjj, . . . , δjN ]
⊤ ∈ {0, 1}N (where

⊤ denotes the transpose of a vector/matrix) whose elements are all zero but the j-th one.
Then, considering this codification, we have that Xt ∈ {0, 1}N so that (with some abuse
of notation) E[Xt] = Pt, the distribution of Xt (when considering Xt ∈ S). Furthermore,
the distribution of Xt+1|Xt=sj, can be computed as E[Xt+1|Xt=sj] = Π · δj = Π·j, the j-th
column of Π = [Π·1| . . . |Π·n].

4.3. Model for Aggregated Data

Let us consider that the data derived from M realizations of the Markov chain
{x(m)

t }
m=1,...,M
t=0,...,T is only available in an aggregated form so that for each t = 0, . . . , T only a

sample of the random variable (using the binary vector notation):

Yt =
M

∑
m=1

X(m)
t ∈ (N∪ {0})N (6)

is available. Note that

E[Yt] =
M

∑
m=1

E[X(m)
t ] =

M

∑
m=1

Pt = M · Pt, (7)

which will allow to design of some model estimation procedures.
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4.4. Estimation of Transition Matrix with Aggregated Data

Let us consider that we only have available a sample yt = ∑M
m=1 x(m)

t of Yt defined
in (6). Then, following (7) we can construct the following:

P̂t =
1
M

yt, t = 0, . . . , T, (8)

an estimate of Pt using only yt, the single sample of Yt. Hence, according to (5), we can
expect Π to satisfy

yt+1 ≈ Π · yt, t = 0, . . . , T − 1, (9)

which leads to the following least squares estimation (LSE) scheme [17] for estimating Π:

Π̂ = arg min
Π

T−1

∑
t=0
∥yt+1 −Π · yt∥2, subject to 1N ·Π = 1N , and Π ≥ 0, (10)

where 1N = [1, 1, . . . , 1, 1] is the N-dimensional vector of all ones. Note that if the data
could be broken down or disaggregated by each individual vehicle m, all such available
time series x(m)

t could be consecutively stacked into a single one z = [x(1)t | . . . |x(M)
t ]; then

the application of this LSE estimator given by (10) to z as a new time series, would lead to
the known MLE estimator of Π for disaggregated data (see Appendix A.)

Concerning the size of the parameter space of this MC model, the parameters to be
estimated (i.e., learned) are the coefficients of the corresponding transition matrix Π, whose
size amounts to N2.

Problem (10) is a quadratic optimization problem with positivity and linear constraints.
This type of problem is denoted as Quadratic programming or more specifically as a Con-
strained least squares problem. The canonical quadratic form for (10) and the corresponding
Karush–Kuhn–Tucker’s necessary conditions are derived in Appendix B.

Remark 1. The LSE estimate of Π proposed in (10) has been selected among other possible estimates
(based on alternative distance measures between vectors), because the quadratic cost in (10) results
in an efficiently solvable optimization problem. For instance, alternative costs could have been
defined by making use of other norms ∥yt+1 −Π · yt∥q; furthermore, considering that yt+1 and
Π · yt can be normalized according to (8) to become a discrete distribution, some cost involving the
Kullback-Leibler divergences KL( yt+1

M , Π·yt
M ) and KL(Π·yt

M , yt+1
M ) could also be a reasonable option.

5. Two Approaches Using Neural Networks

In this section, two schemes that make use of Neural Network (NN) architectures
are presented. Neural network approaches have proven to be a very efficient solution in
supervised learning scenarios with high uncertainty. The first approach directly employs
an MLP-based recurrent formulation that provides a natural nonlinear learning approach
to improve standard time series prediction schemes; the second approach makes use of a
GNN that the capabilities of an NN while making use of the available knowledge, in the
form of a network structure, of the city mobility paths.

5.1. Recursive Application of a Multilayer Perceptron

This standard approach considers an MLP structure that generalizes the nonlinear
formulations of the usual recurrent schemes for time series prediction. The fundamen-
tal formulation would take the form of (2) where the set of adjustable parameters Θ is
determined via a training scheme. In general, such training of the MLP (i.e., estimation
of Θ) should be appropriately performed to control bias and overfitting of the resulting
model; in any case, it is interesting to note the parallelism between the following basic
training scheme
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Θ̂ = arg min
Θ

T−1

∑
t=d−1

∥yt+1 −MLPΘ(yt, . . . , yt−d+1)∥2, (11)

and the procedure for estimating Π via (10). Note that a priori the computation of Θ via (11)
would not exploit the available knowledge about the city graph structure as (10) does. Our
evaluation has focused on an MLP with a configurable number of layers (l), where the
first layer contains an input per pair of nodes (N) and feature (d), and the next layers are
fully connected and of size N. The learnable parameters in this model are all the weights
and biases in the network, which in this case is O(N2 × l). The specific number can be
calculated as (d× N)× N + (l − 1)× (N2) + (l − 1)× N.

5.2. Application of Graph Neural Networks

In this section, we assess the use of graph neural networks (GNNs) for the prediction
problem defined in Section 3. GNNs are specially designed to process and learn from
graph-structured data, the main applications being node classification, link prediction, and
graph classification.

To address the prediction of the number of assets associated with each node, a node
representation or embedding is constructed by the GNN. To perform this task, the GNN
gathers and aggregates information from each node’s neighbors, based on the connections
within the graph. Such information is passed and updated between nodes and their
neighbors through several layers of computation. Each layer typically involves two main
steps: message passing, where information from neighboring nodes is aggregated, and
node update, where the aggregated information is used to update the node representation.

The application of GNNs in this paper is grounded on the assumption that the learned
representation can capture complex relationships and dependencies inherent in the graph
that may help for the prediction of the number of assets in each node.

The main GNN architecture used in this paper is based on graph convolutional
networks (GCNs) [18,19], which is formalized as follows. Let us denote f(i) the feature
vector that gathers the employed information associated with the i-th node of the network.
Specifically, f(i) will be composed by a concatenation of the following elements:

f(i) =
(

yi
F ∥ iid ∥ T

)
, (12)

where F = {T−W, . . . , T− 1} ⊂ {0, . . . , T− 1} and yi
F =

(
yi

T−W , . . . , yi
T−1
)

is the vector
of previous asset-occupation values at node i that are provided to the GNN, iid is a (one-hot)
encoding of the node i identification, and T is the time instant where the prediction is
carried out. Note that W, the number of samples used as node features, is a parameter of
the model. Hence, if we accordingly denote (yp

T )
i to represent the i-th component of yp

T

(i.e., the predicted occupation of such i-th node at time T), the node-wise input–output
formulation of the GNN for our problem is as follows:

hi = AFΘ1

 ∑
j∈N (i)∪{i}

ej,i√
d̂jd̂i

f(j)

 (13)

(yp
T )

i = MLPΘ2

(
hi ∥ f(i)

)
(14)

where AF defines a tunable affine transformation and MLP is a Multilayer Perceptron,
their adjustable parameters being denoted by Θ1 and Θ2, respectively. The two sets
of parameters are characterized by two hyper-parameters: the number of hidden lay-
ers and the number of neurons in each layer. N (i) is the neighborhood of node i and
d̂i = 1 + ∑j∈N (i) ej,i, where ei,j denotes the edge weight between nodes i and j. In our basic
formulation, all edge weights are set to 1.
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The first step carries out a weighted feature aggregation of node i neighborhood
nodes according to the topology and weights of the network. Then, the AFΘ1 processes,
via a tunable affine transformation, the aggregated feature vector gathering the previous
asset-occupation values, node id and instant of time, in order to provide the embedding
hi. Then, the MLPΘ2 processes a concatenation of the AF output hi with the node feature
vector fi, to provide the prediction value (yp

T )
i.

The weights in the model described are trained through a stochastic gradient descent
strategy on the whole set of nodes on a sufficiently large time series dataset (Ttrain).

The error in each epoch is computed by averaging the mean squared error over a
randomly selected set Ti ⊂ Ttrain.

To complement this approach, we have also included an alternative that replaces the
computation of h for each node with a Graph Attention Network (GAT) [20]. In this type of
model, the weight for each neighbor is not fixed and will be learned in the training process.

In contrast with the previous model, the number of learnable parameters in the
network does not depend on the number of nodes in the graph but on the dimension of the
MLP, determined by Θ1 and Θ2. The number of parameters for Θ1 is (| f |+ 1)×|h|, where
| f | is the number of input features and |h| is the dimensionality of hi, which has been set
to 8 in our experiments. The number of parameters for Θ2 is (| f |+|h|)× (M2)× (l − 1) +
M + (l − 1)×M + 1, where M is the number of neurons at every hidden layer, and l is the
number of hidden layers. In this paper, we have chosen to limit our model to two hidden
layers, of the same dimensionality as the h vector. Time complexity at prediction time is
thus O(E + V × ((|h|+| f |)l × (M2))). In addition to the learned parameters, the model
needs to have access to the graph to generate predictions. Using a sparse representation for
the adjacency matrix, the memory requirement is O(|E|) [18]

6. Evaluation

In order to evaluate the proposed approaches, a set of baseline prediction models was
constructed for comparison purposes. The comparative evaluation was carried out on a set
of synthetic time series of aggregated asset mobility. In the following section, we describe
the baseline prediction models, the construction of the testing time series, and the metrics
used for the evaluation.

6.1. Estimation Schemes

The following two simple prediction procedures are employed as the reference
baselines:

1. A stationary predictor using the previous value in the time series:

yp
T = yT-1 (15)

which is equivalent to assuming an MC model with Π = IN (i.e., to assign probability
1 to the self-links in the graph).

2. An MC predictor assuming a transition matrix Π, whose random column vectors
follow a uniform distribution over the non-zero elements of the adjacency matrix of
the graph:

yp
T = Π · yT-1 (16)

3. A predictor that is based only on the second step of the GNN approach (Equation (14))
without calculating h. This has been labeled NoGNN in the evaluation. The motivation
for this predictor is to evaluate the effect of message passing in the prediction error
for the selected architecture.

Alternatively, the three more elaborated approaches proposed in this paper are as follows:

4. A more elaborated MC predictor according to (1) where Π̂ is obtained from (10).
Considering the model used in the generation of the evaluation datasets detailed in
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Section 6.2, this predictor should achieve very high accuracy given enough training
data, as its underlying Markovian model is the same as that used for generating the
datasets in Section 6.2.

5. A set of predictors using an MLP architecture to be trained in the spirit of (11) (with a
proper use of training and validation sets as explained below), and to be employed
according to (2).

6. A set of predictors based on a GNN according to (3), where several parameters
can be adjusted. First, different number of characteristics W, whether the one-hot
representation of the node id has been used (using the Id suffix in the model name)
and whether the number of time steps is included in the feature vector (using the
T suffix in the model name). For the sake of simplicity, our evaluation uses the
same hyperparameters for both MLPΘ1 and MLPΘ2 : two hidden layers to allow for
more expressiveness and two possible configurations for the number of neurons in
each layer (64 and N) to evaluate the effect of dimensionality in both training and
prediction error.

Note that predictors 1, 2 and 4 rely on models based on homogeneous (i.e., time-
invariant) MCs. Alternatively, predictors 5 and 6 allow modeling time-varying behaviors
in some of its configurations.

6.2. Evaluation Datasets

In general, aggregated mobility data can be generated by simulating individual assets,
each with its own individual mobility patterns, and calculating the aggregated occupation
of each node at the desired time interval. This enables quite sophisticated behaviors that
might take into account specific objectives (and the corresponding trajectories) for each
driver. In this paper, we assume a common behavior on all the assets, defined by an MC.
Note that this mobility behavior fits precisely the assumption of the scheme described in (1).
This deliberate choice facilitates a more rigorous assessment of all other prediction schemes.
Furthermore, this mobility model allows the application of a Monte Carlo simulation
procedure that ends up providing an aggregated mobility behavior that suits our goal of
aggregate mobility prediction. The graph used in the simulations corresponds to the center
of the city of Madrid, which is characterized by a graph with N = 2000 nodes. The result
of each simulation is a time series of aggregated occupations in each node.

Therefore, each time series is fully determined by the shared mobility model of the
assets and the number of assets (M). For each of these two factors, multiple time series of
sufficiently large size (TD = 1000) were constructed, where each time series represents the
aggregation of M samples generated following the corresponding model.

The different employed (possibly non-homogeneous) MC models are characterized
by the corresponding transition probability matrices, which must be compatible with the
adjacency matrix of the city graph. In particular, the designed models were:

(a) The column-wise uniform transition matrix Π (which favors the performance of
predictor (16)).

(b) A randomly generated stochastic transition matrix Πr.

6.3. Training and Testing Strategies

Among the predictors proposed in Section 6.1, predictor 4 based on computing Π̂ (an
estimator of the transition matrix Π), predictor 5 employing an MLP, and predictor 6 using a
GNN make use of T previously available values of the time series to construct a cost function.
Predictor 4 uses the values of the time series to compute Π̂ according to (10), whereas the other
two use them (as Ttrain) to train the weights of either the MLP or the GNN.

Hence, for every time series available of size TD, S different sub-series of size T were
constructed by randomly selecting S possible sliding windows from within the full interval
of size TD. These sub-series can be characterized as follows: Ti = Tai ,bi

= {tai , . . . , tbi
},

i = 1, . . . , S, where ai + T − 1 = bi < TD. Each of these sub-series is used to train each
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model (Ttrain = Tai ,bi
), and the results are evaluated by producing predictions of type yp

tbj
+1

based on Ttest = Taj ,bj
, for any j ̸= i, which are then compared to the true value ytest = ytbj+1 .

After extensive experimentation, the values S = 10 and TD = 300 were selected for the
final evaluation.

6.4. Evaluation Metrics

As far as the definition of errors is concerned, different measures can be defined in
line with the comments included in the Remark at the end of Section 4.4. On the one hand,
the ∥ · ∥2 norm was considered following the quadratic cost imposed in the estimation and
training procedures; on the other hand, alternative measures not aligned with the quadratic
cost, such as the ∥ · ∥1 norm, were also considered.

Alternatively, we can bypass the stochasticity inherent in the Markov model (reflected
in each different Monte Carlo implementation), by comparing the performance of the
predictors with the optimal prediction (as an expected value) that could be calculated
assuming available the true transition matrix Π at T − 1. This ideal predictor serves to
define a performance upper bound (i.e., a prediction error lower bound). Such unavoidable
lower bound error, which comes from the intrinsic randomness of vehicle mobility (inherent
in any Markovian model), can be removed for comparative purposes.

6.5. Results

The results of the evaluation are summarized in Table 1. A more illustrative represen-
tation is included in Figure 1, where the distribution of the predictive error for each model
and each set of evaluation parameters can be seen. Baseline predictor 1, denoted as IN ,
and baseline predictor 2, denoted Π, are defined, respectively, in Equations (15) and (16).
Each column corresponds to a different type of model employed to generate the evalua-
tion time series; as explained above, each one of those time series is constructed using a
corresponding transition matrix: generator (a) with Π and generator (a) with Πr.

It is important to note that the time series generation schemes (a) and (b) proposed in
Section 6.2 make use of an MC-type formulation. Hence, predictor 4 in Section 6.1, based on
an MC assumption, performs especially well in such favorable scenarios. The MLP-based
predictor 5, even though it can capture Markovian behaviors, cannot compete with the MC
optimal predictor in these scenarios since it does not exploit the available graph knowledge.
The GNN-based predictor 6, when incorporating the node id and an attention mechanism,
performs better than the proposed baseline schemes 1 and 2, and its performance is very
close to that of the MC-assumption-based predictor 4.

In all scenarios, GNN models outperform their NoGNN counterparts, which demonstrates
the effectiveness of the GNN approach. The simpler MLP variants show higher prediction errors
than any of the GNN models. This is especially true of the MLP with more hidden neurons.
These results can be explained because MLP models do not incorporate any a priori knowledge
about graph structure. Although nodes that are not connected in the graph should not affect
each other, the layers in the MLP are fully connected. All weights, including those that are zero,
need to be learned from training data However, the chosen values for TS may not be enough,
especially when the number of tunable weights is very high.

As for other factors to take into account, it is worth mentioning that low asset counts,
which imply low node occupancy (i.e., the average occupancy of each node close to zero),
lead to higher errors in general; therefore, in that scenario, all predictors behave almost in-
distinguishably, due to the stochasticity of time series generative models. More specifically,
it is worth noting the relatively high error of the uniform predictor in datasets generated
using a column-wise uniform transition matrix (Π). This is due to the stochastic nature of
the generative models explained above (see Section 6.2).



Algorithms 2024, 17, 166 10 of 16

Table 1. Table of mean errors and their standard deviation for each evaluation dataset. Baseline models are included first. The lowest error (up to the second decimal
place) for each row is highlighted.

#assets Trans. Model IN Π MC NoGNN NoGNNId GNN1 GNN3 GNN5 GNNId1 GNNIdT1 GATId1 MLP1x2_64 MLP1x2_len

error

102
Π

mean 11.1 8.1 8.2 10.6 9.3 8.0 10.6 10.6 8.0 8.0 8.0 10.4 10.6
std 0.7 0.2 0.3 0.3 0.4 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3

Πr
mean 10.4 8.2 7.5 11.0 8.9 8.0 11.0 11.0 7.6 7.6 7.5 10.4 11.0

std 0.6 0.3 0.4 0.5 0.4 0.3 0.4 0.4 0.3 0.3 0.3 0.3 0.4

103
Π

mean 35.2 26.9 25.0 47.5 29.5 26.1 26.1 26.0 25.2 25.1 25.2 33.7 47.3
std 1.2 0.9 0.8 1.9 0.8 0.7 0.8 0.7 0.7 0.7 0.7 1.2 2.1

Πr
mean 33.3 31.0 23.1 56.1 28.3 27.4 26.2 25.6 24.1 24.0 23.6 34.5 56.1

std 1.2 1.6 0.8 4.8 1.0 1.2 1.0 0.9 1.0 0.9 0.9 2.5 5.3

104
Π

mean 111.4 118.9 79.1 112.3 94.6 92.2 87.1 85.3 80.1 79.9 79.9 148.3 366.6
std 3.3 6.0 2.2 5.1 2.7 3.0 2.6 2.5 2.1 2.1 2.1 16.4 24.7

Πr
mean 105.0 201.4 73.0 120.1 91.3 108.9 90.0 86.9 76.7 81.1 76.2 131.5 474.6

std 3.8 18.6 2.7 13.5 3.7 9.4 6.1 5.3 2.9 6.9 3.3 18.5 60.3

optimal
prediction

error

102
Π

mean 7.9 2.0 2.3 7.1 5.0 1.7 7.1 7.1 1.7 1.7 1.8 6.7 7.0
std 0.3 0.1 0.3 0.2 0.2 0.1 0.3 0.3 0.1 0.1 0.1 0.2 0.3

Πr
mean 7.5 3.9 2.1 8.2 5.1 3.5 8.2 8.2 2.3 2.2 2.1 7.4 8.2

std 0.4 0.3 0.3 0.5 0.3 0.3 0.5 0.4 0.2 0.2 0.2 0.3 0.5

103
Π

mean 24.9 10.4 3.1 40.4 16.0 8.0 7.5 7.1 4.4 4.1 4.1 22.8 40.3
std 0.8 0.7 0.1 2.1 0.6 0.5 0.4 0.4 0.3 0.3 0.4 1.4 2.4

Πr
mean 24.0 20.9 2.8 51.2 16.6 14.7 12.4 11.5 7.3 7.0 5.8 25.6 51.1

std 1.1 1.8 0.2 5.1 0.8 1.0 0.7 0.7 1.4 1.4 1.2 3.0 5.8

104
Π

mean 78.6 88.9 7.3 80.0 52.5 48.1 37.7 33.2 15.4 14.4 14.3 125.3 357.9
std 2.5 6.8 0.3 6.1 2.2 2.8 1.6 1.5 1.3 1.3 1.4 18.8 25.3

Πr
mean 75.6 187.5 6.7 94.4 54.3 79.9 53.1 47.0 23.5 33.6 21.5 109.4 468.8

std 3.0 19.6 0.4 16.8 3.7 11.8 8.5 7.2 2.8 12.4 4.9 21.3 61.1
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Figure 1. Errors for each model and type of dataset.

7. Concluding Remarks and Future Work

The motivation behind this paper is to study the capabilities and limitations of GNN
models in the prediction of aggregate mobility of a vehicle fleet in a city using only historical
aggregate mobility information. An evaluation scenario is proposed, where asset mobility
is governed by a Markovian model that is formalized and described in detail. Three
schemes are proposed and evaluated. Two of these approaches exploit the underlying
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graph structure used to define vehicle mobility in a city. One of them further exploits the
assumption of an underlying Markov model.

The first method is based on the estimation of the transition probability matrix of a
Markov model that is supposed to characterize the mobility behavior of each individual.
This estimation-based method shows good performance in scenarios where the mobility
time series are generated using MC models, such as the ones used in the paper; in these
cases, the Markov-estimation-based method outperforms other prediction schemes.

The second proposed method employs an MLP in a recurrent formulation to generate
predictions for the next node occupation as a function of previous time series values. Even
though this approach can capture Markovian behaviors, its performance is not competitive
since it does not exploit the available graph knowledge.

The third proposed prediction method is based on a graph neural network trained in
a supervised manner. In general, this method performs much better than the proposed
baseline prediction schemes, and in some configurations outperforms or competes with
the first proposed method (GNN). To do so, the GNN model needs enough representation
power to discriminate between different nodes and neighbors. Our results show that, in the
types of scenarios proposed, this can be achieved by using a higher value of characteristics
W, or by including node identifiers in the feature vector. It should be noted that for the GNN
models to achieve competitive performance, node identifiers need to be provided as part of
the node feature vector. This is true even in scenarios with a uniform transition matrix.

Our study highlights the effectiveness of the Markov model, partly due to our reliance
on Markov processes for synthetic data generation. However, the current synthetic data
approach may not reflect some of the intricate time series patterns inherent in complex
traffic data. Urban traffic dynamics inherently exhibit repetitive patterns and deviations,
since humans very often tend to follow pre-established routes, and/or variations of these.
GNNs may excel at modeling complex time series patterns, but the absence of such nuances
in our synthetic data generation suggests untapped potential in our GNN approach. Future
research should incorporate synthetic models tuned with real-world traffic data. By captur-
ing the complexities of urban movement patterns, we can fully leverage GNNs in traffic
analysis. In addition, more information could be incorporated into both Markov-based
and GNN models to address the problem of aggregate prediction in these new scenarios.
Specifically, the GNN architecture presented in this paper could be improved in three
different ways: by using different neighbor sampling strategies, by using a more nuanced
aggregation function that better discriminates both temporally and by node, and by using
more expressive node identification features.
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Abbreviations
The following abbreviations are used in this manuscript:

MC Markov chain
MLP multi-layer perceptron
GNN graph neural network
GCN graph convolutional network
GAT graph attention network

Appendix A. Relationship with the Estimator of the Transition Matrix Assuming
Vehicle Disaggregated Data

Many scenarios in the literature involve making individual predictions using the
dataset {x(m)

t }
m=1,...,M
t=0,...,T , which consists of M finite samples (up to time T) in disaggregated

form. In this case, one can construct Π̂, an estimate of matrix Π, following several well-
known procedures.

Appendix A.1. MLE Estimator of the Transition Matrix

Let us denote Mi = #{x(m)
t , t = 0, . . . , T − 1; m = 1, . . . , M, such that x(m)

t = δi} and

Mji = #{x(m)
t , t = 0, . . . , T − 1; m = 1, . . . , M, such that x(m)

t = δi and x(m)
t+1 = δj}. So, we

have that Mi = ∑N
i=1 Mji and ∑N

i=1 Mi = M · T.
Let us consider that Mi ̸= 0, i = 1, . . . , N. Then, Π̂, and the MLE estimator of Π is

given by the following:

Π̂jiMLE
=

Mji

Mi
, ∀i, j = 1, . . . , N. (A1)

Appendix A.2. Proposed Estimator of the Transition Matrix Particularized to Disaggregated Data

Note that if we apply the results from Section 4.4 to the case where M = 1 (which is
equivalent to considering that the data have been disaggregated and then concatenated),
we have that yt = xt = δj for some j ∈ {1, . . . , n}. In this case, (10) becomes the following:

Π̂ = arg min
Π

T−1

∑
t=0
∥xt+1 −Π · xt∥2 = arg min

Π

N

∑
i=1

N

∑
j=1

Mji∥δj −Π · δi∥2

= arg min
Π

N

∑
i=1

N

∑
j=1

Mji∥δj −Πi∥2,

subject to Π ≥ 0, and 1N ·Π = 1N

(A2)

so that the overall optimization problem can be disclosed in the following separate problems:

Π̂i = arg min
Πi

N

∑
j=1

Mji∥δj −Πi∥2 = arg min
Πi

N

∑
j=1

Mji

(
(1−Πji)

2 + ∑
k ̸=j

Π2
ki

)
,

subject to Πi ≥ 0, and 1N ·Πi = 1.

(A3)
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Applying the Karush–Kuhn–Tucker conditions, we have that Π̂i is the solution of the
following set of equations:

∂

∂Πpi

[
N

∑
j=1

Mji

(
(1−Πji)

2 +
N

∑
k ̸=j

Π2
ki

)
+ λi(

N

∑
l=1

Πji − 1)

]
+ λi − µpi

= 2Mpi(Πpi − 1) +
N

∑
j ̸=p

2MjiΠpi + λi − µpi

= 2
[

Mpi(Πpi − 1) + (Mi −Mpi)Πpi

]
+ λi − µpi

= 2
[

MiΠpi −Mpi

]
+ λi − µpi = 0, p = 1, . . . , N

(A4)

together with the following conditions:

Π̂ ≥ 0, (A5)

1N · Π̂ = 1N (A6)

µij ≥ 0, i, j ∈ {1, . . . , N} (A7)

µijπ̂ij = 0, i, j ∈ {1, . . . , N} (A8)

The solutions of these equations are given by the following:

Π̂pi =
Mpi

Mi
, λi = 0, µpi = 0, ∀i, p = 1, . . . , N (A9)

which correspond with the MLE estimator presented in (A1). Since the solution of (A4) is
obtained for λi = 0, µpi = 0, and satisfies the restrictions, this suggests that each Π̂i can be
obtained by solving the unconstrained version of (A3).

Appendix B. Quadratic Canonical form and the Karush–Kuhn–Tucker Conditions for
the Estimation Scheme of the Transition Matrix

Appendix B.1. Canonical Form

Denoting Πi·, the i-th row of Π, problem (10) can be formulated in a canonical
quadratic form, where Π can be rewritten in vector form as Πv = [Π1·, . . . , ΠN·]

⊤, as
follows:

Π̂v = arg min
Πv

d + c⊤ ·Πv + Π⊤v ·QN ·Πv,

subject to E ·Πv = 1⊤N , and − IN2×N2 Πv ≤ 0N2 ,
(A10)

where

d =
N

∑
i=1

T−1

∑
t=0

(y(i)t+1)
2, c⊤ = [c⊤1 . . . . , c⊤N ] with c⊤i = −2

T−1

∑
t=0

y(i)t+1y⊤t ,

QN = diag(Q, . . . , Q) with Q =
T−1

∑
t=0

yty⊤t , and E =

 δ⊤1 · · · δ⊤1
· · · · · · · · ·
δ⊤N · · · δ⊤N

 ∈ RN×N2

(A11)

Such a canonical formulation of the cost function is derived as follows:
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T−1

∑
t=0
∥yt+1 −Π · yt∥2 =

T−1

∑
t=0

N

∑
i=1

(y(i)t+1 −Πi· · yt)
2 =

N

∑
i=1

T−1

∑
t=0

[
(y(i)t+1)

2 − 2y(i)t+1Πi· · yt + (Πi· · yt)
2
]

=
N

∑
i=1

[
T−1

∑
t=0

(y(i)t+1)
2 − 2

(
T−1

∑
t=0

y(i)t+1y⊤t

)
·Π⊤i· + Πi· ·

(
T−1

∑
t=0

yty⊤t

)
·Π⊤i·

]

=
N

∑
i=1

[
di + c⊤i ·Π

⊤
i· + Πi· ·Q ·Π⊤i·

]
= d + c⊤ ·Πv + Π⊤v ·QN ·Πv,

(A12)

This can be rewritten to only use the inequality form for the restrictions, as follows:

E ·Πv ≤ 1N , −E ·Πv ≤ 1N , −IN2×N2 ·Πv ≤ 0, (A13)

so that using standard notation, such restrictions can be formulated as follows:

A ·Πv ≤ b, with A =

 E
−E

−IN2×N2

, and b =

 1N
1N
0N2

. (A14)

Appendix B.2. Karush–Kuhn–Tucker Conditions

In order to apply the Karush–Kuhn–Tucker conditions to problem (10), we define the
Lagrangian as follows:

T−1

∑
t=0
∥yt+1 −Π · yt∥2 +

N

∑
j=1

λj · [1NΠ·j − 1]−
N

∑
i=1

N

∑
j=1

µijπij, with µij ≥ 0. (A15)

Now, denoting Πi· as the i-th row of Π, λ = (λ1, . . . , λN)
⊤ and µi· = (µi1, . . . , µiN)

⊤,
we have to solve for Π̂, which satisfies the following:

∂

∂Πi·

T−1

∑
t=0
∥yt+1 −Π · yt∥2 + λ− µi·

∣∣∣∣∣
Π=Π̂

=
T−1

∑
t=0

(y⊤t · Π̂⊤i· − yi
t+1)yt + λ− µi·

=

(
T−1

∑
t=0

yty⊤t

)
· Π̂⊤i· −

T−1

∑
t=0

yi
t+1yt + λ− µi· = 0, i = 1, . . . N,

(A16)

together with the following conditions:

Π̂ ≥ 0, (A17)

1N · Π̂ = 1N , (A18)

µij ≥ 0, i, j ∈ {1, . . . , N}, (A19)

µijπ̂ij = 0, i, j ∈ {1, . . . , N}. (A20)

Note that all the systems (A16) for i = 1, . . . , N share the same Gramian matrix,
G = ∑T−1

t=0 yty⊤t , obtained as the sum of matrices Gt = yty⊤t , and constructed via the outer
product of vectors yt and y⊤t .

Considering condition (A18), the solutions Π̂i·, i = 1, . . . , N must satisfy ∑N
i=1 Πi· = 1N ,

so that by adding all the equations in (A16), we obtain the following:
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(
T−1

∑
t=0

yty⊤t

)
· 1⊤N −

T−1

∑
t=0

yt

N

∑
i=1

yi
t+1 + M · λ−

N

∑
i=1

µi·

= M ·
T−1

∑
t=0

yt −
T−1

∑
t=0

yt ·M−M · λ−
N

∑
i=1

µi· = 0.

(A21)

which defines a simple relationship between the constraint constants.
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