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Abstract: This paper presents a survey describing recent developments in the area of mathe-
matical programming techniques for various types of sensor network applications. We discuss
mathematical programming formulations associated with these applications, as well as meth-
ods for solving the corresponding problems. We also address some of the challenges arising
in this area, including both conceptual and computational aspects.

Keywords: Sensor Networks; Localization; Optimization; Scheduling; Interdiction

1. Introduction

The area of sensor networks research has recently gained a great deal of attention [1, 2, 3, 4, 5, 6, 7,
8, 9, 10]. Various sensors are used in both civilian and military tasks. Sensing devices can be deployed
in either static or dynamic settings, where the positions of each sensor can be permanent or dynami-
cally changing (such as in the case of sensors installed on air vehicles). Multiple sensor systems are
commonly represented as networks, since besides collecting important information, sensing devices can
transmit and exchange information via wireless communication between sensor nodes. Therefore, net-
work (graph) structures are convenient and informative in terms of efficient representation of the struc-
ture and properties thereof. To analyze and optimize the performance of sensor networks, mathematical
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programming techniques are extensively used.
The purpose of this paper is to give a brief review of some of the recent developments in mathematical

programming as applied to sensor network research. Various types of optimization problems can be for-
mulated and solved in this context [9, 11, 12]. Moreover, the pursued tasks can vary from optimizing the
network performance to network interdiction, where the goal is to disrupt enemy networks by interfering
with communication network integrity. We will outline the formulations and briefly describe the solution
methods used to tackle these problems.

In many cases, the identified optimization problems are challenging from the computational view-
point. In particular, the theoretical computational complexity of many of these problems was proven to
be NP-hard. Therefore, efficient algorithms need to be developed to ensure that the near-optimal solu-
tions are found quickly. This is essential to ensure that the decisions regarding efficient operations of
sensor networks could be made in a real-time mode, which can be crucial in many applications. More-
over, the uncertain factors that commonly arise in real-world situations also need to be incorporated in
the mathematical programming problems, which makes them even more challenging to formulate and
solve. In this paper, we will address some of the challenges arising in this area.

In particular, we will describe several important classes of problems that have recently been addressed
in the literature. We will start the discussion with the description of recent promising developments in
the area of sensor network localization, which allow identifying global positions of all the nodes in a
network using limited and sometimes noisy information. It turns out that semidefinite programming
techniques can be efficiently used to tackle these problems. Next, we will discuss the problems of single
and multiple sensor scheduling for area surveillance, including the setups under uncertainty. We will
also address the issues of wireless communication network connectivity and integrity, as well as network
interdiction problems.

2. Sensor Network Localization

The wide range of sensors applications reveal different requirements to the network topology identifi-
cation [13, 14, 15, 16]. For example network parameters can be influenced by land surface, transmission
characteristics, energy consumption policy, etc. Ad hoc and dynamic networks also require identifica-
tion of node coordinates. Such problems are intensively studied in the literature. Utilizing mathematical
programming techniques often allows to find efficient solutions.

2.1. Positioning Using Angle of Arrival

In many cases, practical situations require one to be aware of a sensor’s physical coordinates. In-
stalling GPS receivers in every sensor is not always optimal from the cost-related and other perspectives.
Typically, only a few nodes (seed nodes, landmarks, etc) of the network are equipped with GPS and
know their physical location. The rest of the nodes can only communicate with other nodes and deter-
mine relative location characteristics such as distance, angles, etc. Various localization techniques are
used to obtain location of all the sensors in the network. The following method assumes that the network
consists of two types of nodes: usual and more capable nodes - which knows its position. Niculescu and
Nath propose a method by which nodes in an ad hoc network collaborate in finding their position and



Algorithms 2009, 2 567

orientation, assuming that a small part of the network has a position capability. Also, every node in the
network has a capability to determine the angle of the arriving signal (AOA).

Each node in the network has one fixed main axis (which may not be the same for different nodes)
and the node is able to measure all angles against this axis (Figure 1).

Figure 1. Nodes with AOA capability.

Every node in an ad hoc network can only communicate with its immediate neighbors within the radio
range, and its neighbors may not always be landmarks, i.e., the nodes that know their position. Niculescu
Nath propose in [17] a method to forward orientation in such way, that the nodes which are not in direct
contact with landmarks can determine its orientation with respect to the landmarks. Orientation means
bearing, radial, or both. Bearing is an angle measurement with respect to another object. A radial is the
angle under which the object is seen from another point. The authors examine two algorithms: Distance
Vector Bearing (DV-Bearing), which allows each node to get a bearing to landmark, and DV-Radial,
which allows a node to get a bearing and radial to a landmark. The propagation in both algorithms works
the following way: nodes adjacent to landmarks determine their bearing/radial directly from landmark
and send to the network the information about their position. The method of computing node’s bearing
and radial at each step is shown in Figure 2.

DV-Bearing algorithm works the following way. Nodes A, B, and C are neighbors and they can
communicate with each other. Suppose that the node A needs to find its bearing to node L, which is not
within radio range of node A but within radio range of nodes B and C. Since A, B, and C can locate
each other than the node A can determine all the angles in triangles ABC and BCL. But that would
allow to calculate the angle LAC and consequently the bearing of A to L, which is equal to c + LAC.
Once node A knows three bearings to landmarks, which are not at the same line, then it can calculate its
own location by triangulation.

The DV-Radial algorithm works the same way but with only one difference that node A needs to know
not only bearings of nodes B and C to node L, but also the radials of B and C from L. The knowledge
of radials improves accuracy of the algorithm. When all angles are measured against the same direction
(for example, when compass is available) then these two methods become identical.
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Figure 2. Node A computes its bearing to L using information from B and C

2.2. Semidefinite Programming (SDP) for Sensor Network Localization

The section considers localization problem when information on distances for anchor nodes and un-
known sensors nodes are given. Suppose we consider localization problem on the plane. We have m

known points ak ∈ IR2, k = 1, ...,m and n unknown nodes xj ∈ IR2, j = 1, ..., n. Let us consider three
sets of node pairs Ne, Nl, Nu. For pairs in Ne we know exact distances dkj between ak and xj and d̂ij

between xi and xj . Nl is a set of pairs with known lower bounds rkj and rij . Finally, Nu is a set of upper
bounds rkj and rij . Naturally our goal is to minimize estimation error which immediately lead us to the
following non-convex optimization problem

min
∑

(i,j)∈Ne, i<j

|‖xi − xj‖2 − d̂2
ij|

+
∑

(k,j)∈Ne

|‖ak − xj‖2 − d2
kj|

+
∑

(i,j)∈Nl, i<j

(‖xi − xj‖2 − r2
ij)−

+
∑

(k,j)∈Nl

(‖ak − xj‖2 − r2
kj)−

+
∑

(i,j)∈Nu, i<j

(‖xi − xj‖2 − r2
ij)+

+
∑

(k,j)∈Nu

(‖ak − xj‖2 − r2
kj)+,

(1)

where (u)− and (u)+ are defined as

(u)− = max{0,−u}
(u)+ = max{0, u}.

The norm of vector x is defined as ‖x‖ =
√

xT x. In [18, 19] the authors study semidefinite relaxations
of the problem.
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The formulated problem can be rewritten by introducing matrix notation and slack variables as

min
∑

(i,j)∈Ne, i<j

(α+
ij + α−

ij) +
∑

(k,j)∈Ne,

(α+
kj + α−

kj)

+
∑

(i,j)∈Nl, i<j

β−
ij +

∑
(k,j)∈Nl

β−
kj

+
∑

(i,j)∈Nu, i<j

β+
ij +

∑
(k,j)∈Nu

β+
ij

s.t.

sT
ijY eij − dij2 = α+

ij − α−
ij, ∀i, j ∈ Ne, i < j,

(ak; ej)
T

(
I X

XT Y

)
(ak; ej) − (d̂kj)

2 = α+
kj − α−

kj,

∀k, j ∈ Ne,

eT
ijY eij − (dij)

2 ≥ −β−
ij , ∀i, j ∈ Nl, i < j

(ak; ej)
T

(
I X

XT Y

)
(ak; ej) − (rkj)

2 ≥ −β−
kj,

∀k, j ∈ Nl,

eT
ijY eij − (dij)

2 ≤ β−
ij , ∀i, j ∈ Nl, i < j

(ak; ej)
T

(
I X

XT Y

)
(ak; ej) − (rkj)

2 ≤ β−
kj,

∀k, j ∈ Nl,

α+
ij, α

−
ij, α

+
kj, α

−
kj, β

+
ij , β

−
ij , β

+
kj, β

−
kj ≤ 0,

Y = XT X.

Here X = [x1, x2, . . . , xn] is a 2 × n matrix. In order to cope with nonconvexity equality, Y = XT X is
replaced with Y º XT X or equivalently

Z :=

(
I X

XT I

)
º 0.
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The last relation leads to a standard SDP formulation:

min
∑

(i,j)∈Ne, i<j

(α+
ij + α−

ij) +
∑

(k,j)∈Ne,

(α+
kj + α−

kj)

+
∑

(i,j)∈Nl, i<j

β−
ij +

∑
(k,j)∈Nl

β−
kj

+
∑

(i,j)∈Nu, i<j

β+
ij +

∑
(k,j)∈Nu

β+
ij

s.t.

(1; 0; 0)T Z(1; 0; 0) = 1,

(0; 1; 0)T Z(0; 1; 0) = 1,

(1; 1; 0)T Z(1; 1; 0) = 2,

(0; eij)
T Z(0; eij) − α+

ij + α−
ij = (d̂ij)

2,∀i, j ∈ Ne, i < j,

(ak; ej)
T Z(ak; ej) − α+

kj + α−
kj = (d̂kj)

2,∀k, j ∈ Ne,

(0; eij)
T Z(0; eij) + β−ij ≥ (rij)

2,∀i, j ∈ Nl, i < j,

(ak; ej)
T Z(ak ej) + β−

kj ≥ (rkj)
2,∀k, j ∈ Nl,

(0; eij)
T Z(0; eij) − β+ij ≤ (rij)

2,∀i, j ∈ Nu, i < j,

(ak; ej)
T Z(ak ej) − β+

kj ≤ (rkj)
2,∀k, j ∈ Nu,

α+
ij, α

−
ij, α

+
kj, α

−
kj, β

+
ij , β

−
ij , β

+
kj, β

−
kj ≤ 0,

Z º 0.

Papers [18, 19] provide a criterion of solution existence and uniqueness, as well as statistical inter-
pretation of the formulation in case when distance values are random values with normally distributed
measurement errors. The SDP problems are solved using interior point algorithms. The numerical ex-
periments results demonstrate the efficiency of the proposed approach.

3. Sensor Scheduling

Surveillance is an important task that can be effectively performed by an intelligent network of sen-
sors. For example, satellites can be equipped with cameras to monitor Earth surface for different events,
such as forest fire, border crossing or enemy hostile activity. Another example is traffic monitoring at
the roads and intersections. Many scientific publications have recently appeared in the literature due to
increasing interest to the problem of finding optimal schedule for sensors [20, 21, 22, 23, 24, 25]. Most
common technological and budget constraint is a low number of sensors to monitor all the objects of
interest simultaneously. Thus, finding the schedule that reduces potential loss of limited observations
is a task of high importance. This section provides a review of recently developed optimization based
methods for building optimal schedule of sensor surveillance.

3.1. Single Sensor Scheduling

The simplest case is to model one sensor that observes a group of sites at discrete time points. Some
physical systems require virtually zero time for changing a site being observed. For example, the time
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of a camera refocusing, which is installed on a satellite, is negligibly small. This assumption leads to the
model proposed by Yavuz and Jeffcoat in [26].

Assume that we need to observe n sites during T time periods. During every period a sensor is
allowed to watch only at one of n sites. The scheduling decision can be modeled using binary variables
xi,t

xi,t =

{
1, if i-th site is observed at time t,

0, otherwise,
(2)

t is a discrete variable and t = 1, 2, ..., T . If a site i is not observed for some period of time, it leads to
the penalty that is proportional to the time of not observing this site. This penalty can be modeled using
another group of decision variables. Let yi,t denotes the time of last visiting site i before time moment t.
Let us note that variables xi,t completely determine values of yi,t. Fixed penalty ai and variable penalty
bit are associated with site i at time moment t. Thus, the penalty at time t associated with site i is

ai(1 − xi,t) + bi,t(t − yi,t). (3)

[26] suggests minimizing maximum loss over all sites and time intervals. Thus the objective function
is defined as maxi,t{ai + bi,t(t − yi,t)}. This objective function can be linearized and consequently the
problem looks as following

min C (4)

s.t. C ≥ ai(1 − xi,t) + bi,t(t − yi,t), ∀i = 1, . . . , n, ∀t = 1, . . . , T, (5)
n∑

i=1

xi,t ≤ 1, ∀t = 1, . . . , T, (6)

0 ≤ yi,t − yi,t−1 ≤ txi,t, ∀i = 1, . . . , n, ∀t = 1, . . . , T, (7)

txi,t ≤ yi,t ≤ t, ∀i = 1, . . . , n, ∀t = 1, . . . , T, (8)

yi,0 = 0, ∀i = 1, . . . , n, (9)

xi,t ∈ {0, 1}, ∀i = 1, . . . , n, ∀t = 1, . . . , T, (10)

yi,t ∈ IR,∀i = 1, . . . , n, ∀t = 0, . . . , T. (11)

Constraints (6) ensure that the sensor visits only one site at a time. Constraints (7) -(8 ) set the
dependence yi,t on xi,t. That is yi,t is set to t if and only if the sensor is observing site i at time t

otherwise yi,t = yi,t−1.
Single Sensor Scheduling problem is NP-hard [27] therefore various greedy heuristics have been

proposed. The idea behind greedy algorithm is simple. At time t = 1 we find the site with the smallest
penalty then at next time period we find another site with the smallest penalty. This sequence is repeated
for all T time intervals. Thus the complexity of suggested approach is O(nT ). Yavuz and Jeffcoat has
also suggested the “look ahead” modification of greedy heuristic which takes more computational time
but computational experiment demonstrate that the solution is improved compared to the initial simple
greedy optimization.
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3.2. Stochastic approach

The stochastic nature of scheduling surveillance reduces the predictability of sensors behavior and
therefore plays an important role for military tasks. Here we assume that sites are chosen randomly
based on probability pij of transition from i-th to j-th site . Then sensor scheduling can be considered as
a Markov chain stochastic process and characterized by steady state probabilities πi.

The goal of stochastic approach is finding such steady state probabilities that minimize maximum
loss. Let ri be the visit period of site i. Then the penalty of information loss at site i is ai + (ri − 1)bi,t

at time t. Let us consider a sufficiently small planning horizon with time-invariant site dynamics, this
allows us to reduce bi,t to bi and denote this approach as static. Visiting site i for every ri > 0 periods
is equal to spending πi = 1/ri of the sensor’s time at the site i. The optimal schedule is achieved when∑

i πi = 1; i.e., all the available time is utilized. Also, sensor never stays at any site for two consecutive
periods of time. Thus ri ≥ 2 (or πi ≤ 0.5) should be satisfied for each site. Then the non-linear model
for obtaining optimal stationary probabilities is formulated as

min max
i

{ai +

(
1

πi

− 1

)
bi} (12)

s.t.
n∑

i=1

πi = 1, (13)

πi ≤ 0.5,∀i = 1, . . . , n (14)

πi ∈ R, ∀i = 1, . . . , n (15)

(16)

A heuristic is proposed to solve this nonlinear continuous problem. Utilizing constraints (14), the
authors define a lower bound on the objective function value with

CL = max
i

{ai + bi}.

Then, we set

C = max
i

{ai +

(
1

π
− 1

)
bi} = CL

and calculate
ri = (C − ai)/bi + 1

and
πi = 1/ri

for all i. Note that πi = 0.5 for the sites with ai+bi = C and πi < 0.5 for the remaining constraints. If the
determined probabilities add up to one then the optimal solution is found, and the procedure terminates.
If the sum of probabilities is less than one, then one can shift some π-s up to make

∑
i πi = 1. In the

case when
∑

i πi > 1 the found C is infeasible and we can apply iterative procedures (such as bisection)
to find C such that

∑
i πi = 1.

The static approach minimizes average penalty that is determined by steady probabilities and, thus,
does not address the cases of long lasting absence at a site. Taking into account the fact that some random
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outcomes may result in extremely long penalties it is reasonable to increase the probabilities of visiting
the sites that were visited long time ago. On the other hand, the probability of observing the sites, which
were recently visited, should be decreased. Recall that yi,t represents the last time when the site i was
visited by the time t. The probability of visiting a site must depend on the difference t− yi,t, thus it will
increase probability of visiting overdue sites.

To create a preference for visiting site i at time t the following adjustment factors are proposed

qi,t = πi ·
(

t − yi,t

ri

)k

It is bigger than one for overdue sites and less than one for the sites that have been visited within their
expected visiting periods. The parameter k is a user-defined parameter, which determines the weight of
the adjustment factor. The probabilities of visiting each site at specific time point t are based on previous
history and can be computed as pi = qi/Q, where Q =

∑n
i=1 qi.

Finally, a hybrid method was proposed based on a combination of greedy algorithm and the stochastic
method, discussed above. The first step calculates the penalty of not visiting site i: ci = ai +bi,t(t−yi,t).

Next step calculates preference values to visit each site: qi =
(

ci

cmax

)k

, where cmax = maxi{ci}. And
then the probabilities of visit are equal to: pi = qi/Q, where Q =

∑n
i=1 qi.

3.3. Multiple Sensors Scheduling Using Percentile Type Constraints

Boyko et al have proposed to reformulate problem (4) -(11) for the case of m sensors [28].

min max
i,t

{ai + bi,t(t − yi,t)} (17)

s.t.
n∑

i=1

xi,t ≤ m, ∀t = 1, . . . , T, (18)

0 ≤ yi,t − yi,t−1 ≤ txi,t, ∀i = 1, . . . , n, ∀t = 1, . . . , T, (19)

txi,t ≤ yi,t ≤ t, ∀i = 1, . . . , n, ∀t = 1, . . . , T, (20)

yi,0 = 0, ∀i = 1, . . . , n, (21)

xi,t ∈ {0, 1}, ∀i = 1, . . . , n, ∀t = 1, . . . , T, (22)

yi,t ∈ IR,∀i = 1, . . . , n, ∀t = 0, . . . , T. (23)

For every site i and every time point t we can calculate penalty associated with the last time a sensor
visited this site ai + bi,t(t − yi,t). Let us pick (1 − α) % of worst cases among these n × T penalty
values. Then, instead of minimizing maximum loss we can minimize the the average taken over this
(1 − α) % percent of worst penalty values. Despite the fact that this formulation is deterministic it is
equivalent to computing (1−α) Conditional Value-at Risk (CVaR) for a set of random outcomes having
equal probabilities pi,t = 1

nT
.

CVaR [29, 30] is closely related to a well-known quantitative risk measure referred to as Value-at-Risk
(VaR). By definition with respect to a specified probability level (1− α) (in many applications the value
of (1 − α) is set rather high, e.g. 95%), the α-VaR is the lowest amount ζ such that with probability
(1 − α), the loss will not exceed ζ , whereas for continuous distributin the α-CVaR is the conditional
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expectation of losses above that amount ζ . As it can be seen, CVaR is a more conservative risk measure
than VaR, which means that minimizing or restricting CVaR in optimization problems provides more
robust solutions with respect to the risk of high losses (see figure 3).

Figure 3. Graphical representation of VaR and CVaR.
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 -VaR 

 -CVaR 

The reader can find the formal definition of CVaR for various distribution cases in [29, 30]. Rockafel-
lar and Uryasev [31, 32] showed that minimizing CVaR-type objective function of linear argument can
be reduced to LP. In the sensors scheduling problem the loss function is introduced as

L(x, y, i, t) = ai + bi,t(t − yi,t). (24)

Thus the initial multiple sensors scheduling problem can be considered as the CVaR-based formulation

min
x,y

CVaRα [L(x, y, i, t))] (25)

s.t.

constraints (18)-(23),

ζ ∈ IR. (26)

Even though the parameters i and t of the loss function (24) are deterministic by nature, the stochastic
framework was applied to this model in order to compute a percentile-type measure.

The parameters that quantify fixed and variable information losses are in many cases uncertain by na-
ture. The following mathematical programming formulations allow quantifying and restricting the risks
of worst-case losses associated with the aforementioned uncertain parameters. It is made by utilizing
quantitative risk measures that allow one to control the robustness of the optimal solutions. Assuming
that ai and bi,t are random values we can formulate stochastic program utilizing the notion of CVaR.

min
x,y,ζ

CVaRαas
i (1 − xi,t) + bs

i,t(t − yi,t) (27)

s.t.

constraints (18)-(23).
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Here we use S scenarios (as
i and bs

i,t, s = 1, . . . , S) sampled from the distribution of penalty coeffi-
cients.

The mixed integer linear formulation was solved by ILOG CPLEX. The problems were also refor-
mulated in terms of cardinality constraints and solved by AOrDa Portfolio Safeguard software package.
Both solver find a good quality approximate solutions for large size problems.

4. Communication Network Interdiction

An important issue in military applications is to neutralize the communication in the sensors network
of the enemy. This problem is known as jamming or eavesdropping a wireless communication network.
This section introduces optimization formulations that allow to place jamming devices delivering max-
imal harm to the adverse sensors network. We start from a deterministic case when node locations are
known.

The goal of jamming is to find a set of locations for placing jamming devices that suppresses the
functionality of the network. Assume that n jamming devices are used to jam m communicating sensors.
The assumption is made that the sensors and jammers can be located on a fixed set of locations V . The
jamming effectiveness of device j is calculated as

d : (V × V ) 7→ IR,

where d is a decreasing function of the distance from the jamming device to the node being jammed.
The cumulative level of jamming energy received at node i is defined as

Qi :=
n∑

j=1

dij,

where n is the number of jamming devices. Then, jamming problem can be formulated as the minimiza-
tion of the number of jamming devices placed, subject to a set of covering constraints:

min n

s.t.Qi ≥ Ci, i = 1, 2, . . . ,m.

Seeking the optimal placement coordinates (xj, yj), j = 1, 2, . . . , n for jamming devices given the
coordinates (Xi, Yi), i = 1, 2, . . . ,m leads to non-convex formulations for most functions d. Thus,
integer programming models for the problem are proposed.

A fixed set N = {1, 2, . . . , n} of possible locations for the jamming devices and the set of communi-
cation nodes are introduced by Commander et al in [33]. Define the decision variable xj as

xj =

1, if a jamming device is installed at location j,

0, otherwise.
(28)
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Then we have the optimal network covering formulation given as

min
n∑

j=1

cjxj (29)

s.t. (30)
n∑

j=1

dijxj ≥ Ci, i = 1, 2, . . . ,m, (31)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (32)

Here the objective is to minimize the cost of jamming devices used while achieving some minimum level
of coverage at each node. If cj = 1 then the number of jammers is minimized.

If the goal is to suppress sensors communications we can minimize jamming cost with respect to the
required level of connectivity index. Communication between nodes i and j is assumed to be destroyed
if at least one of the nodes is jammed. Further, let yij := 1 if there exists a path from node i to node j in
the jammed network and let zi = 1 be an indicator that i-th node is jammed. This can be formulated as

min
n∑

j=1

cjxj (33)

s.t.
m∑

j=1
j 6=i

yij ≤ L, ∀ i ∈ M, (34)

M(1 − zi) > Si − Ci ≥ −Mzi, ∀ i ∈ M, (35)

yij is consistent with the network and zi (36)

xj ∈ {0, 1}, ∀ j ∈ N , (37)

zi ∈ {0, 1}, ∀ i ∈ M, (38)

yij ∈ {0, 1}, ∀ i, j ∈ M, (39)

where Si :=
∑n

j=1 dijxj denote the cumulative level of jamming at node i, M ∈ IR is some large
constant. This problem can be formulated as a mixed integer linear problem and justification is provided
in [33].

Finally, Commander et al provide percentile-based formulation for deterministic jamming problems.
Suppose it is determined that jamming some fraction α ∈ (0, 1) of the nodes is sufficient for effectively
dismantling the network. This can be accomplished by the inclusion of α-VaR constraints in the original
model. Let y : M 7→ {0, 1} be an indicator whether node i is jammed (yi = 1).

Then to find the minimum number of jamming devices that will allow covering α · 100% of the
network nodes with prescribed levels of jamming Ci, we must solve the following integer program
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min
n∑

j=1

cjxj (40)

s.t.
m∑

i=1

yi ≥ αm, (41)

n∑
j=1

dijxj ≥ Ciyi, i = 1, 2, . . . ,m, (42)

xj ∈ {0, 1}, j = 1, 2, . . . , n, (43)

yi ∈ {0, 1}, i = 1, 2, . . . ,m. (44)

The α-CVaR optimization model for network covering can be formulated as a mixed integer linear
program using a standard linearization framework:

min
n∑

j=1

cjxj (45)

s.t.

ζ +
1

(1 − α)m

m∑
i=1

max

{
Cmin −

n∑
j=1

xjdij − ζ, 0

}
≤ 0, (46)

ζ ∈ R, (47)

xj ∈ {0, 1}. (48)

The VaR and CVaR models can also be written for connectivity suppression models in the similar
fashion. We refer the reader to [33] for details.

The deterministic formulations of the wireless network jamming problem are extended in [34] to
tackle the stochastic jamming problem formulations using percentile type constraints. These formula-
tions consider the case when the exact topology of the network to be jammed is not known, but we know
the distribution of network parameters.

Since the exact locations of the network nodes are unknown, it is assumed that a set of intelligence data
has been collected and from that a set S of the most likely scenarios have been compiled. Scenario s ∈ S
contains both the node locations {(ξs

1, η
s
1), (ξ

s
2, η

s
2), . . . , (ξ

s
m, ηs

m)} and the set of jamming thresholds
{Cs

1 , C
s
2 , . . . , C

s
m}. For each scenario s ∈ S, the set Ms = {1, 2, . . . ,ms} needs to be jammed. Taking

into account all the scenarios we can write a mathematical program for node covering problem:

min
n∑

k=1

ckxk, (49)

s.t.
n∑

k=1

ds
ikxk ≥ Cs

i , i = 1, 2, . . . ,ms, s = 1, 2, . . . , S, (50)

xk ∈ {0, 1}, k = 1, 2, . . . , n, (51)

It is unlikely to find the solution that can provide effective jamming strategy for all scenarios. There-
fore, the notion of percentile-based risk measures can be utilized to develop formulations of the robust
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jamming problems incorporating these risk constraints. The robust node covering problem with Value-
at-Risk constraints can be formulated as

min
n∑

k=1

ckxk, (52)

s.t.
n∑

k=1

ds
ikxk ≥ Cs

i ρ
s
i , ∀ s ∈ S,∀ i ∈ Ms, (53)

ms∑
i=1

ρs
i ≥ αms, ∀ s ∈ S, (54)

xk ∈ {0, 1}, ∀ k ∈ N , (55)

ρs
i ∈ {0, 1}, ∀ s ∈ S,∀ i ∈ Ms, (56)

The loss function can be considered as the difference between the energy required to jam network
node i, namely Cs

i , and the cumulative amount of energy received at node i due to x over each scenario.
With this the robust node covering problem with CVaR constraints is formulated as follows.

min
n∑

k=1

ckxk, (57)

s.t.

ζs +
1

(1 − α)ms

(58)

ms∑
i=1

max

{
Cs

min −
n∑

k=1

ds
ikxk − ζs, 0

}
≤ 0, ∀ s ∈ S, (59)

xk ∈ {0, 1}, ∀ k ∈ N , (60)

ζs ∈ R, ∀ s ∈ S. (61)

The CVaR constraint (59) implies that for the (1 − α) · 100% of the worst (least) covered nodes, the
average value of f(x) is less than or equal to 0.

Numerical experiments demonstrate that problems of moderate size can be solved by ILOG CPLEX.
Finding effective heuristics and approximations for sensors network jamming problems of large dimen-
sions is an interesting and important research direction.

5. Conclusion

In this paper, we presented a brief outline of problems and challenges arising in the important and
exciting area of mathematical programming techniques for sensor network applications. Clearly, the
research in this area is far from complete, and a lot of extensions and generalizations of the presented
models can be developed. Overall, the main challenges arising in this area are associated with effi-
ciently incorporating the uncertainties in the mathematical programming formulations and dealing with
the computational intractability of the corresponding stochastic and robust optimization problems. How-
ever, there are promising developments in this field, including computationally efficient heuristic algo-
rithms and software packages for solving these problems. Therefore, the area of sensor networks and
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mathematical programming techniques associated with it has a clear potential from both theoretical and
practical perspectives.
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3. Kuorilehto, M.; Hännikäinen, M.; Hämäläinen, T. D. A survey of application distribution in wireless
sensor networks. EURASIP J. Wirel. Commun. Netw. 2005, 5(5), 774–788.

4. Abbasi, A. A.; Younis, M. A survey on clustering algorithms for wireless sensor networks. Comput.
Commun. 2007, 30(14-15), 2826–2841.

5. Akyildiz, I. F.; Melodia, T.; Chowdhury, K. R. A survey on wireless multimedia sensor networks.
Comput. Netw. 2007, 51(4), 921–960.

6. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008,
52(12), 2292–2330.

7. Li, Y.; Thai, M. T.; .; (eds), W. W. Wireless Sensor Networks and Applications. Springer, 2007.
8. Pardalos, P.; Ye, Y.; V. Boginski, C. C. e. Sensors: Theory, Algorithms, and Applications. Springer,

to appear in 2009.
9. Yan, T.; Gu, Y.; He, T.; Stankovic, J. A. Design and optimization of distributed sensing coverage in

wireless sensor networks. Trans. on Embedded Computing Sys. 2008, 7(3), 1–40.
10. Ferentinos, K. P.; Tsiligiridis, T. A. Adaptive design optimization of wireless sensor networks using

genetic algorithms. Comput. Netw. 2007, 51(4), 1031–1051.
11. Buczak, A. L.; Wang, H. H.; Darabi, H.; Jafari, M. A. Genetic algorithm convergence study for

sensor network optimization. Inf. Sci. Inf. Comput. Sci. 2001, 133(3-4), 267–282.
12. Venkatesh, S.; Buehrer, R. M. A linear programming approach to nlos error mitigation in sensor

networks. In IPSN ’06: Proceedings of the 5th international conference on Information processing
in sensor networks, pages 301–308, New York, NY, USA, 2006, ACM.

13. Wu, K.; Liu, C.; Pan, J.; Huang, D. Robust range-free localization in wireless sensor networks.
Mob. Netw. Appl. 2007, 12(5), 392–405.

14. Wang, C.; Xiao, L. Sensor localization in concave environments. ACM Trans. Sen. Netw. 2008,
4(1), 1–31.

15. Koutsonikolas, D.; Das, S. M.; Hu, Y. C. Path planning of mobile landmarks for localization in
wireless sensor networks. Comput. Commun. 2007, 30(13), 2577–2592.

16. Rudafshani, M.; Datta, S. Localization in wireless sensor networks. In IPSN ’07: Proceedings of
the 6th international conference on Information processing in sensor networks, pages 51–60, New
York, NY, USA, 2007, ACM.

17. Niculescu, D.; Nath, B. Ad hoc positioning system (aps) using aoa. In The 28th Conference on
Computer Communications, pages 1734–1743. IEEE, 2003.

18. Biswas, P.; Ye, Y. Semidefinite programming for ad hoc wireless sensor network localization. In



Algorithms 2009, 2 580

IPSN ’04: Proceedings of the 3rd international symposium on Information processing in sensor
networks, pages 46–54, New York, NY, USA, 2004, ACM.

19. So, A. M.-C.; Ye, Y. Theory of semidefinite programming for sensor network localization. Math.
Program. 2007, 109(2), 367–384.

20. Pemberton, J. C.; Flavius Galiber, I. A constraint-based approach to satellite scheduling. In
DIMACS workshop on on Constraint programming and large scale discrete optimization, pages
101–114, Boston, MA, USA, 2001, American Mathematical Society.

21. Chhetri, A. S.; Morrell, D.; Papandreou-Suppappola, A. Nonmyopic sensor scheduling and its
efficient implementation for target tracking applications. EURASIP J. Appl. Signal Process. 2006,
2006, 9–9.

22. Jeong, J.; Sharafkandi, S.; Du, D. H. C. Energy-aware scheduling with quality of surveillance
guarantee in wireless sensor networks. In DIWANS ’06: Proceedings of the 2006 workshop on
Dependability issues in wireless ad hoc networks and sensor networks, pages 55–64, New York,
NY, USA, 2006, ACM.

23. Wu, K.; Gao, Y.; Li, F.; Xiao, Y. Lightweight deployment-aware scheduling for wireless sensor
networks. Mob. Netw. Appl. 2005, 10(6), 837–852.

24. Singh, S. S.; Kantas, N.; Vo, B.-N.; Doucet, A.; Evans, R. J. Simulation-based optimal sensor
scheduling with application to observer trajectory planning. Automatica 2007, 43(5), 817–830.

25. Klappenecker, A.; Lee, H.; Welch, J. L. Scheduling sensors by tilinglattices. In PODC ’08:
Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing, pages
437–437, New York, NY, USA, 2008, ACM.

26. Yavuz, M.; Jeffcoat, D. Single sensor scheduling for multi-site surveillance. Technical report, Air
Force Research Laboratory, 2007.

27. Yavuz, M.; Jeffcoat, D. An analysis and solution of the sensor scheduling problem. In Advances in
Cooperative Control and Optimization, volume 369, pages 167–177. Springer, 2007.

28. Boyko, N.; Turko, T.; Boginski, V.; Jeffcoat, D.; Uryasev, S.; Pardalos, P.; Zrazhevsky, G. Ro-
bust multi-sensor scheduling for multi-site surveillance. Journal of Combinatorial Optimization,
submitted.

29. Rockafellar, R.; Uryasev, S. Conditional value-at-risk for general loss distributions. Journal of
Banking and Finance 2002, 26, 1443–1471.

30. Sarykalin, S.; Serraino, G.; Uryasev, S. Var vs cvar in risk management and optimization. IN-
FORMS Tutorial 2008.

31. Rockafellar, R.; Uryasev, S. Optimization of conditional value-at-risk. Journal of Risk 2000,
2, 21–42.

32. Uryasev, S. Conditional value-at-risk: Optimization algorithms and applications. Financial Engi-
neering News 2000, 14, 1–5.

33. Commander, C.; Pardalos, P.; Ryabchenko, V.; Uryasev, S. The wireless network jamming problem.
Journal of Combinatorial Optimization 2007, 14:4, 481–498.

34. Commander, C.; Pardalos, P.; Ryabchenko, V.; Sarykalin, S.; Turko, T.; Uryasev, S. Robust wireless
network jamming problems. In Lecture Notes in Control and Information Sciences; Commander,
C., Hirsch, M., Murphey, R., Pardalos, P., Eds.; Springer, 2008.



Algorithms 2009, 2 581

c© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Sensor Network Localization
	Positioning Using Angle of Arrival
	Semidefinite Programming (SDP) for Sensor Network Localization

	Sensor Scheduling
	Single Sensor Scheduling
	Stochastic approach
	Multiple Sensors Scheduling Using Percentile Type Constraints

	Communication Network Interdiction
	Conclusion

