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Abstract: Techniques in image similarity can be used to imerthe classification of
breast cancer images. Breast cancer images in #mammgram modality have an
abundance of non-cancerous structures that ar&astmicancer, which make classification
of images as containing cancer especially diffitmivork with. Only the cancerous part of
the image is relevant, so the techniques must lgéarmrecognize cancer in noisy
mammograms and extract features from that cancappoopriately classify images. There
are also many types or classes of cancer with rdiftecharacteristics over which the
system must work. Mammograms come in sets of fiowr,images of each breast, which
enables comparison of the left and right breasgasao help determine relevant features
and remove irrelevant features. In this work, iméeggure clustering is done to reduce the
noise and the feature space, and the results aek insa distance function that uses a
learned threshold in order to produce a classiinatThe threshold parameter of the
distance function is learned simultaneously witle thnderlying clustering and then
integrated to produce an agglomeration that isvagieto the images. This technique can
diagnose breast cancer more accurately than conahesystems and other
published results.
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1. Introduction

A technique that radiologists use to diagnose bresscer involves first finding suspicious sites in
the mammograms and then comparing the left and bigtasts to reduce the number of false positives.
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The symmetry of the human body is utilized to iase the accuracy of the diagnosis through visual
registration of the mammograms. This techniquemslated by combining both computer vision and
learning techniques, attempting to capture the rdiaig of the radiologist. Therefore this work is
motivated not only by computer science theory authiique, but also by domain-specific knowledge
and theory. These ideas were verified through gmaaeh that has been completed with surprisingly
good results at diagnosing breast cancer. It igtidpat this work will improve techniques in image
similarity and classification, as well as providesights into medical imaging and especially inte th
imaging, diagnosis, and classification of breastcea.

Breast cancer remains a leading cause of cancérsdaaong women in many parts of the world.
In the United States alone, over forty thousand e of the disease each year [1]. Mammography
is currently the most effective method for earlytedéion of breast cancer [2], and example
mammograms are shown in Figure 1. Computer-aideéectien (CAD) of mammograms could be
used to avoid these missed diagnoses, and hassheem to increase the number of cancers detected
by more than nineteen percent [3], so there is hitby¢ improving techniques in computerized
detection of breast cancer could significantly ioya the lives of women across the globe. Studies
have shown that CAD can improve the search and cti@te of cancer associated with
micro-calcification clusters [4,5], but cancersasated with masses are often considered to be fals
positives in the clinical environment [6,7]. Poarformance is caused by high false-positive regs [
and the use of only one view [9]. The benefit ahgsCAD systems are still being tested [10,11], and
new CAD schemes are being developed [12-26]. Asytnyn@hich consists of a comparison of the
left and right breast images [27], is a technicha tould be used to significantly improve the lessu
An automated prescreening system only classifisa@mogram as either normal or suspicious, while
CAD picks out specific points as cancerous [28].eQsf the most challenging problems with
prescreening is the lack of sensitive algorithmstli@ detection of asymmetry [29]. Image similarity
methods can capture the asymmetry properties, lag improve both CAD and prescreening of
breast cancer.

Contextual and spatial comparisons can be comhimedtermine image similarity, which has been
often utilized in image databases [30-33]. Medioahge databases have also used image similarity,
ranging from rule-based systems for chest radidggdp4] to anatomical structure matching for 3-D
MR images [35] to learning techniques [36]. Thisrkvapplies image similarity concepts to the
problem of detecting breast cancer for CAD in mamgrams.

Detecting breast cancer in mammograms is challgng&tause the cancerous structures have many
features in common with normal breast tissue. Teans that a high number of false positives oefals
negatives are possible. Asymmetry can be usedipar&@uce the number of false positives so that tru
positives are more obvious. Previous work utilizagymmetry has used wavelets or structural clues to
detect asymmetry with correct results as often78s @f the time [27,37]. Additional work has focused
on bilateral or temporal subtraction, which is #tempt to subtract one breast image from the
other [38,39]. This approach is hampered by theessmty of exact registration and the natural
asymmetry of the breasts. Bilateral subtractiossttpd utilize the multiple images taken with thenea
machine by the same technician and analyzed usiagséame process in an effort to reduce the
systematic differences that can be introduced. Dewsgy ways to better utilize asymmetry is
consistent with a philosophy of trying to use meththat can capture measures deemed important by
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doctors thereby building upon their knowledge basetead of trying to supplant it. However,
measuring asymmetry involves registration and comgamultiple images, and thus it is a more
complicated process.

Figure 1. The typical set of four images that make up a magram, the side view of the
left breast in (a), the side view of the right lsteim (b), the top view of the left breast in
(c), the top view of the right breast in (d). Thencerous areas are outlined in red. Since
the images come in sets, the non-cancerous casesamnples of similar images, while the
cancerous cases are examples of dissimilar imagebk these examples can be used to
determine image similarity. Note that the textuoéghe cancer are very similar to non-
cancerous areas, which is why image comparisons@rignportant in the analysis of
mammograms. Also note that the cancer is apparebbih images of the same breast,
which provides additional information for the arg$y This image set was correctly
classified by the method described in Section 3.

(b) (©) (d)

Registration is the matching of points, pixels, structures in one image to another image.
Registration of mammograms is difficult because mmagrams are projections of compressed
three-dimensional structures. Primary sources gist@tion errors are differences in positioningl an
compression, which manifests itself in visuallyfeliént images. The problem is more complex
because the breast is elastic and subject to casipre Additional sources of difficulty include the
lack of clearly defined landmarks and the normaiateons between breasts. Strictly speaking, pescis
mammogram registration is intractable. Howeverapproximate solution is possible [40]. Warping
techniques have been used [41], as well as stalistiodels [42] or mutual information as a basrs fo
registration [43]. The technique advanced in tlapgy learns image comparison models based upon a
clustering that encapsulates an approximate ragstr and uses them to compare the mammograms
of the left and right breasts. This also avoidsdiregistration when measuring the image simylarit

The rest of this paper is organized as followstiSe@ describes mammogram images and feature
extraction from mammograms. Section 3 details fhgr@ach taken as an initial data exploration and
classification approach, and the development ofistamce function. Section 4 describes the
improvement to CAD approaches through the inclusiosimilarity. The conclusion is in Section 5.
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2. Mammogram I mage Description and Feature Extraction

A mammogram is an x-ray exam of the breast. Isiduto detect and diagnose breast disease, both
in women who have no breast complaints or symptams$ in women who have breast cancer
symptoms (such as a lump). The special type ofyx¥rachine used for the breasts is different than fo
other parts of the body. This type of machine poedux-rays that do not penetrate tissue as easily a
that used for routine chest films or x-rays of émms or legs, and gives a better image of variation
tissue density. For a mammogram, the breast isezgdebetween two plastic plates attached to the
mammogram machine unit in order to spread thedisgart. This squeezing or compression ensures
that the calibration will be accurate, that therk e very little movement so the image is shaypad
that the exam can be done with a lower x-ray dblesvever, it also makes 3-D reconstruction of the
breast structure much more difficult.

Mammography produces a black and white image obthast tissue on a large sheet of film which
is interpreted by a radiologist. The appearandhd®fbreast on a mammogram varies a great deal from
woman to woman. Some breast cancers produce chamgee mammogram that are difficult to
notice. Breast cancer takes years to develop. Hathe disease, most breast cancers have nohe of t
obvious symptoms like lumps. When breast cancdeiscted in a localized stage and when it has not
spread to the lymph nodes, the five year survie# iis 98% [1]. If the cancer has spread to the
auxiliary lymph nodes, the rate drops to 80% [jhe cancer has metastasized to distant orgars suc
as the lungs, bone marrow, liver, or brain, thefyear survival rate is only 26% [1]. A screening
mammogram is an x-ray exam of the breast in a wowtam has no symptoms and usually takes two
x-ray images of each breast, as is shown in FigufEhe goal of a screening mammogram is to find
cancer when it is still too small to be felt by aman or her doctor. Finding small breast canceiy ea
by a screening mammogram greatly improves a won@radace for successful treatment and survival.

Breasts vary in density, which affects the appesgaf the breast in mammograms. Examples of
the variations are shown in Figure 2. The Ameri€ollege of Radiology (ACR) Breast Imaging
Reporting and Data System (BIRADS) characterizesdlas ranging from 1-4, with 4 being the most
dense. A dense breast presents more non-cancdrogties on a mammogram that can obscure
a mass.

The majority of work on feature analysis of mamnamgs has been through CAD efforts, focusing
on determining the contextual similarity to canaed finding abnormalities in a local area of a kng
image [44,45]. The primary methods used range fiiiers to wavelets to learning methods. In this
context, filters are equivalent to shapes thatsa@ched for in an image. Wavelets are the re$ult o
applying a transform to the image, and learninghoes try to apply prior knowledge to combine a set
of low-level image features like pixel intensitieso an accurate classification. Problems arisasing
filter methods [44] because of the range of siza$ morphologies for breast cancer, as well as the
difficulty in differentiating cancerous from nonfgaerous structures. The size range problem has been
addressed by using multi-scale models [45]. Mudtipypes of filters must be used to handle the
variation in the morphology of various cancers. igEimssues affect wavelet methods, although their
use has led to reported good results [46] withsthe range issue being improved through the use of
wavelet pyramid [47]. Learning techniques have uded support vector machines [48] and neural
networks [46].
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Figure 2. The variations in density a mammogram, the leasiseéein (a) being
characterized as mostly fat to the very dense briea¢d). The American College of
Radiology (ACR) Breast Imaging Reporting and Datst&n (BIRADS) characterizes
these as ranging from 1-4, with 4 being the mossee

(@) (b) (€) (d)

Our analysis starts with CAD prompts to find thetextually similar suspicious points that could
be cancers in the mammograms. The CAD techniqudigids the areas of the image that have bright
cores, a characteristic of spiculated lesions asvshn Figure 3a. The filter calculates the percaint
the pixels in the outer ring that are less bridfant the least bright of the pixels in the innekdis
produce a suspiciousness value, and an examplevaa g0 Figure 3b. This suspiciousness value
represents the degree to which the surroundingmegfi a point radially decreases in intensity, &nd
done over several sizes. This results in focusimghe bright central core of the cancer and igmgprin
the radiating lines of spiculation. A second filben be used to detect the radiating lines of iicun,
as shown in Figure 3c, but a combined filter shawirigure 3d that detects both the cores and the
spiculation could improve the performance, espiciaithe relative weighting of the measurements is
learned on an appropriate data set.

Figure 3. (a) Mammographic image of a spiculated lesion.ABYM filter. (c) Cosine

Gabor filter. (d) Combined filter.
oLy

(@) (b) (€) (d)

The CAD suspiciousness calculation is performedaah pixel locatior{x,y) in the images. The
minimum intensityl i, within ry is found, and then the fraction of pixels betweerandr, with
intensities less thaly,, is calculated. This yields the fraction under tmiaimum (FUM) for one set of
r. andr,. Keepingr; —ro = b constant and averaging the FUM over a range; afetermines the
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average fraction under the minimum (AFUM) [31]. TW&UM is then considered to be a
suspiciousness value, and represents the extamhitdh the surrounding region of a point radially
decreases in intensity. The CAD prompt output setof these suspicious points that are above a
certain threshold. Since this is done over a rafgazes, it can respond to cancers of differergsi
This focuses on the bright central core of the eaaad ignores the radiating lines of spiculatibine
distribution of these features on a mammogramasvshin Figure 4.

Figure 4. The distribution of the AFUM features on a mammagrare shown as small
circles, while the larger oval shapes are hand-dramnotations by a radiologist of the
cancer. Note that the feature does find a cancéthlere are many false positives.

Features with a high suspiciousness value havghehtchance of corresponding to an occurrence
of cancer. The centroid of each local maxima infthered image is initially marked as a candidate
feature site with its suspiciousness value. Thikction of sites is then sorted in decreasing ouafe
suspicion. All suspicious sites that are closentBamm from a more suspicious site are removed to
prevent multiple reporting of the same site. Thislds a set of potential feature sites that can
be analyzed.

A further improvement might be possible by firsrtsforming the data before filtering, such as
applying wavelet analysis to the images before Bintiresholding or applying the filter. This has
been successfully attempted previously [27] witlhdjoesults. However, an optimal solution would
first combine all of the various filtering and tsdlorm methods which create meaningful suspicious
points, and then learn an effective analysis froemt. This is similar to the effective combinatidn o
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weak classifiers into a single strong classifieotiyh ensemble learning methods like boosting, whic
has been successfully used before in tumor claasivn [49]. Many of the images like mammograms
come in pairs, so they form a set that should lvg sinilar. If one of the pair contains cancer dnel
other does not, then that pair should be differ@htus, the mammogram image set provides both
positive and negative examples to build on for ienaignilarity classification.

Figure 5. Mammograms of left and right breasts with cancerausa outlined. The
similarity of texture between cancerous and nortisgslie makes asymmetry an important
tool in cancer detection.

3. Breast Cancer Image Classification

An effort was made to provide image classificatiansd to develop a distance function for CAD of
medical images as well as to explore the propeofi¢ise dataset. This initial approach utilizetefiing
followed by spatial symmetry analysis using a variaf supervised clustering to determine an overall
measure of similarity by combining the contextualikrity of the filtering with the spatial similay
of the analysis. This can be a useful measureifmndsing mammograms (or for pre-screening) since
only an overall determination of cancer or no canseequired. A secondary goal of our work is to
determine the importance of similarity or asymmaeirythe computer analysis of mammograms.
Figure 5 shows why spatial asymmetry is importantinding cancers in mammograms since we see
that the texture and appearance of cancer arevieogtsimilar to the texture and appearance of nbrma
tissue in the breast. Our analysis starts witleriitty to find the contextually similar suspiciousinis
that could be cancers in the mammograms. The AFlist fvas used, which highlights the areas of
the image that have bright cores, a charactews$tgpiculated lesions, and is shown in Figure 3te T
filter results are used to rank the output and dgméytop thirty-two are kept. Although it may net the
optimal choice of filtering, the spatial analysigancbe applied to any technique that can rank the
suspiciousness of areas. The number of pointsnediuny the filtering step is one of the variablest t
were learned in optimizing the analysis. Alternalyy a threshold on the suspiciousness value could
have been used instead of taking the top few. Hewskie top few were chosen in order to try to be
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insensitive to image processing choices. The filémults varied significantly from image to image,
which might have biased the analysis if thresheldse used.

Several techniques were developed to aid in theldpment of an improved distance function for
the classification of medical images. We used elirsg) as a basis for determining image similarity,
but there were several changes that had to be toate technique to adapt it to the applicationstEi
instead of utilizing cluster centers as the maiscdptor of the clustering, we used both linear
separators in the original feature space as wetlyper-volumes to describe the clusters. Second, we
adapted the clustering method to use superviseditggpinstead of minimizing an objective function.
Third, we incorporated the clusters into severatatice functions, the parameters of which were
learned simultaneously with the cluster definitioims produce an image similarity classification
technique. Fourth, since the importance of corcéassification of the cancerous cases is much more
important than the non-cancerous cases, the assbaeigighting of the cancerous cases was varied,
and we evaluated the performance of various weighti The algorithm is composed of the
following steps:

1. Extract K points from both of the images using dflM filter.

. Assign each point to the appropriate cluster defimgthe parameters P.
. Apply the distance function over the clusters.

. Determine the error function from the superviseskesa

. Adjust the cluster and distance function parame®ers

. Repeat Steps 2 through 5 until the error is minatiz

O O WN

This produces a clustering in the feature spaceishadependent of the classification and can be
used to learn about the image properties. It alsmyres a threshold for the distance function
simultaneously with the cluster parameters. Thailsebn step 1 were given in Section 2, while the
details on the clustering are in Section 3.1, tiRits on the supervised learning in Section id,the
distance function in Section 3.3.

3.1. Separators and Hyper-Volumes

The adaptation of clustering to use separatorshgper-volumes instead of cluster centers was
motivated by a desire to minimize the number ofapseters required in order to maximize the
generalizability of the technique from the trainidgta to the actual test data and thus to real
applications. Creating two clusters requires twdirdensional cluster centers, or 2d parameters like
P = (X1, V1, Z1, %, Y2, Z2), While using a separator plane requires a maxinofird parameters like
P = (a, b, ¢) and can be described in as few as one parametpecial cases like = (@). Four clusters
can be described using as few as two separatoegqlamneatly reducing the number of parameters
required to describe the clustering. However, elating parameters can change the final clustering.
There is a tradeoff between the number of parameited the flexibility of the technique for breaking
up the feature space. The use of overlapping separainimizes the parameters, but the use of
hierarchical separators enables greater flexidiitthe definition of the clusters.

The use of separators or cluster centers both thevdisadvantage of being space-filling so that no
part of the feature space can be eliminated framatialysis at the cluster level as well as notafig
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overlapping of clusters. However, using hyper-vadgminstead of separators does allow both
overlapping of clusters and eliminating space atdbst of including additional parameters. A simple
hyper-volume is the hyper-sphere which requires ol parameters for a cluster center point and a
radius where d is the dimensionality of the feaspace. An example of hyper-volumes compressed
into 2D space and overlaid on the original imagghiswn in Figure 6.

Figure 6. Example Comparison. The AFUM features are the smoaitles. The
automatically created hyper-volumes in this exangpéethe large boxy shapes containing
the points, but the same effect can be createdtwibhseparators. This case was correctly
diagnosed by both the space-based and data-bagedquees. Note the red hyper-cluster,
which was found to be a significant area in theedwination of cancer. In noisy,
cancer-free images this area would pick up a $taly equal number of features.

These alternate definitions of clustering focusirmreasing the flexibility of the clustering or on
decreasing the required number of parameters. #&nnake clustering is shown in Figure 7 where the
cluster is designed to avoid a noisy area on thages. The focus on decreasing the number of
parameters is required to improve the generalizglof the technique when using supervised learning
which is another adaptation we did to the clustenrethod.
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Figure 7. The automatically created hyper-volumes in thisca® non-space-filling and
attempt to avoid a noisy area at the chest walidiyincluding those features.

3.2. Supervised Clustering

The second adaptation of the clustering methodtheasise of supervised learning to maximize the
performance on a training set instead of minimizmgobjective function. The error function that we
minimize is e=x,;w;|r(g;.k;:P) - ¢;| whereW; is the normalized weight of that particular cageand k;

are the unregistered three-dimensional input featysorted by one particular feature value for
convenience)7(g;.k;;P) is the classification functior} are the parameters of the classification, gnd
is the correct classification of the image jséMote that this technique is being used on image $ut
can be used to compare arbitrary images. The p&easrie are learned in order to reduce the error
function and includes the parameters of the climjeNarying the weights of the cancerous and non-
cancerous cases allows tuning the performance hie\ae fewer false negatives at the expense of
higher false positives. The learning was done usixitaustive search in order to guarantee that the
result was not caught in a local minimum.

Though the learning was finally done using exhaessiearch, we did experiment with hierarchical
learning. This is where the first separator isfedr and then the subsequent separators are learned
while only changing the parent separator by somedfipercentage and not affecting the grandparent.
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We also experimented with true hierarchical leagnimhere the parent is not allowed to vary, bug thi
was found to be ineffective. This has the effecteafucing the number of degrees of freedom to learn
by breaking the learning up into multiple levelfieTlearning of one level is reduced to learning the
two child separators and the minimized range ofpdwent separator, instead of learning the enéite s
of separators. The inclusion of more separatosglislimiting if the separators are allowed to ling
with the parent, thus not breaking up the spaceiadidating that the hierarchy should end at the
parent for that volume of feature space. The apftio did not require a large number of levelsha t
hierarchy, allowing the use of exhaustive searoretdy the results of the hierarchical learning.

3.3. Image Comparison Distance Functions Using tehss

The analysis for image comparison that we usedoped a comparison of clusters of features in
order to maintain both a contextual and spatial mamson while avoiding an exact registration. We
experimented with two different models where theistdrs are defined using separators and
hyper-volumes. We also experimented with a modai dompares small clusters of AFUM features
between images. The hyper-volume image compariaarbe seen in Figure 6, where the points are
assigned to clusters that are defined by large metu of feature space and have a set spatial
relationship between each other. The feature-spgper-volumes have a pre-set registration with the
corresponding volumes in the other image. For soip| the volumes are assumed to be
non-overlapping and space-filling, but this is nequired. Additionally, the volumes are assumed to
contain the same hyper-volumes in the images ofldfieand right breasts out of symmetry. This
reduces the number of parameters and increasexbility of the model to be generalized to a larger
data set, based on the assumption that there airapwotant anatomical differences between the left
and right breasts and that breast cancer is eqaallikely to be in the left or right breast. Howev
when there is a large natural asymmetry to thestgehis assumption may no longer be valid.

In a hyper-volume image comparison, a hyper-volisrassigned all of the suspicious points in the
spacedA that the hyper-volume spans. The parameters ohyiper-volumes are learned through
parametric learning, and any model can be usedaoacterize the hyper-volumes in feature space.
Exact registration of the suspicious points is dediby using the volumes for the comparisons as the
are registered with the corresponding volume inatier image. The feature space is broken up into
hyper-volumes as shown in Figure 6. The agglomérditanceD shown in Equation 1 is defined for
the comparison of the two point feature sets, dred @bsolute value of the differences compared
against an optimized threshold. Since the featarespoint features, they are represented using the
delta functiond and there is no weighting function yet introduced:

D=3|(Jjdf £S(f -ai)-3(f —bi))| (1)
dA dA i

The point sets for the images are representedhafd {b;} for imagesa andb respectively. The
summation ovedA is done over all of the clusters which are represe by their hyper-volumdA
The integration is done over the actual hyper-va@uwi# of the cluster. The summation oves done
over all of the features. The multi-dimensionakgrial over feature space provides the agglomeration
aspect of the distance metric. The hyper-voluth®grovide the agglomeration and are learned along
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with a threshold in order to optimize the performamf the distance measure at classification. This
allows the distance metric to be easily adaptedifferent image types and imaging techniques, as
well as providing a method for incorporating feedb@to the distance metric. This distance metric

compares the distributions of spatially distributgoint sets, and is sensitive to variations in the

distribution for image comparison. This is usef &pplications such as determining the presence of
cancer. There are several other variations tadistance metric that have been explored.

A variation on this distance metric is shown in Bgon 2 that learns a threshold for each cluster
dA, which has the advantage of being able to emphdkz importance of some areas in the feature
space over others. This can be used to distinquosdy areas where many spurious suspicious points
are found from important areas where even smalatrans are indicative of a lack of similarity. Bhi
technique of learning important areas in imagesbeathought of as an image discovery technique:

DdA:'[ﬂdfiZﬂf—a)—J(f—b) (2)

A more generalized form of the similarity distanoetric is given by equation 3, where the delta
function is not the required function and the numidfefeatures in each image is not required tohee t
same. A natural choice for the functigns the probability density function; however, thuaction g
can be determined to try to optimize the retri@rathe particular application:

D=X|([fdf X g(f-a)-X> o( f-h))| (3)
dA  dA i j

We tested several variations of the image comparideas. The simplest model utilizes only one
seperator to create two hyper-volumes and thustamyparameters P ={X| y || z, t): one parameter
for a separator, one parameter t for a threshold,Esquation 1 for the distance function. This o
called the “two-cluster” analysis. The first pardereq || v || z chooses the best dimension and best
position to break up the feature space into voluamesthe value in that dimension. The second model
used the same parameters and Equation 1, but wdighe learning to give greater weight to the
performance on the cancerous cases over the penficaron the non-cancerous cases, and this will be
called the “two-cluster weighted towards cancerdlgsis. The third model used the parameters of the
first, but also included an additional parametext {ermits selection, so that cases that do na hav
minimum number of features in each cluster areamatlyzed. This approach used the parameter set
P=0]| Wl z t s) where s is a required minimum occupancgaxh cluster. This approach is
called the *“two-cluster with selection” approachheT fourth model used three parameters
P=0a|lWllz x|l 2 t): two parameters for two separators and ona fbreshold and is shown
in Figure 6. This model will be called “three cleistEquation 1” and Equation 1 is used. The fifth
model used three clusters and Equation 2 with @aneesthreshold for each cluster comparison and will
be called “three cluster Equation 2.” These modeadse motivated by the observation that the cancer
would change the distribution of the suspiciousnimi leading to an indication of cancer. An
improvement to the method would be to adaptivelgheine the optimal number of volumes through
a split-and-merge type methodology [50].

A different approach explored the importance of thstribution of AFUM feature points, as
explored with approaches one through five, versastumping of AFUM features together. This sixth
approach does not set the number of clusters aribytrbut instead learns the number of clustepsnfr
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the data and learns the best parameterizationeotltisters. This image comparisons search for small
clumps of AFUM features and then assign a cludteret as shown in Figure 8, and is called the
“small cluster analysis.” The maximum distance hesw feature points and the minimum features
needed to define a cluster are learned on thdangpset. The clusters were also defined to be cedte
on a suspicious point because we believed thatl sshahps of suspicious points tended to form
around the central cancer. This assumption mayd@iiect, and freeing the cluster centers from that
constraint may improve the performance. Exact teggisn is avoided again by registering the cluster
instead of the image or the suspicious points. Going the number of clusters in the right image
versus the number of clusters in the left imagevipies a first cut at registering the clusters siace
difference in the numbers of clusters implies thamne clusters cannot be registered. Improving the
cluster registration may improve the performancetld method. This image comparison was
motivated by the data, where we observed a smhlhwo of suspicious points at a cancer sites.

Many other approaches were attempted on this dat@se unsuccessful approach compared the
variances of the distribution of suspicious poimtkjle another used a Naive Bayes analysis, argkthe
are compared along with wavelet methods and comatéechniques.

Figure 8. Small Cluster Analysis, a different modeling apmtoalhe AFUM features are
the small circles, with the circles on the left coghfrom the image of the left breast and
the circles on the right coming from the imageh#f tight breast. The small clusters are the
larger blue circles. This method searches for selathps of suspicious points and then
assigns a cluster there, comparing the numberustars in the two images, which is a
significantly different approach than the one shawrrigure 6 or 7. This method learns
the best size for a cluster on the training dakee performance of this approach relative to
the other methods showed that AFUM feature clumpuag too hindered by the false
positive clusters near the breast boundary. Thipraggch may be improved by
automatically removing clusters too near the brbashdary.
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3.4. Evaluation

The image comparisons were applied to the medmalatblique (MLO) mammogram views of
both the left and right breast of patients thatewvdragnosed with cancer and patients that were
diagnosed as normal, or free from cancer. The aisalyas performed over test and training data sets,
with cases that were roughly split between normahmograms and mammograms with malignant
spiculated lesions from the Digital Database fareBning Mammography [51]. The focus was on one
type of breast cancer which creates spiculatedriesin the breasts. Spiculated lesions are defased
breast cancers with central areas that are usuadbyular and with ill-defined borders. Their sizaesy
from a few millimeters to several centimeters imrdeter and they are very difficult cancers to
detect [47].

The training set had 39 non-cancerous cases anthidderous cases, while the test set had 38
non-cancerous cases and 40 cancerous cases. Ehé daughly spread across the density of the
breasts and the subtlety of the cancer. The bissdity and subtlety were specified by an expert
radiologist. The subtlety of the cancer shows hdfficdlt it is to determine that there is cancehel
training data set was used to determine optimahmaters the volumedA The inputs are the
extracted AFUM features for each image in the secrgemammogram set, as shown in Figure 3. The
output is a classification as either cancerousoorcancerous. We used exhaustive search because we
could, and require only a single stage. These dasésated that a difference in the clusters of one
more AFUM features indicated cancer in both the &nd three cluster experiments.

Figure 9. Comparison Data. The maxima in learning the twatelumethod with respect
to one of the parameters, the y value parametassi® (a) and the method is shown to
generalize well from training to test data. The samformation for the three-cluster
method is shown in (b). The performance relativeheonumber of suspicious points used
in the two-cluster technique is in (c). The perfamoe of the three-cluster method on
normals, or non-cancerous cases, is shown in (d).
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3.5. Results

Our results are good on all cases of the testcsetectly classifying 80% for the tw-cluster as
shown in Figure 8, and 85% of the time for the th-cluster as shown iRigure ¢. The data-defined
cluster model results as shownFigure ¢ were not as good, but have the potential for aw@ment
The results are summarized in Table 1. Howevas, ihuch more impdant to correctly classify tr
cancerous cases, and by heavily weighting the itapoe of the cancerous cases, we corrt
classified 97% of the cancerous cases with the-cluster model.

Neither the subtlety nor the density of the carnzet an effecon the result However, because we
have only a limited number of cancerous imagesretie some possibility that the imperfi
distribution could affect the results of the ana

The comparison with a commercial system showsth®atesults are sprisingly good Our method
showed an improvement of 26% on the -cancerous cases while matching the performanc
cancerous cases Wwithe R2 ImageChecker system]. The inclusion of additional factors other tt
asymmetry in the method should impr the results. However, the data sets used are @iffeas tht
R2 ImageChecker data contains all cancer typesaamdmethod has only the difficult to det:
spiculated lesionslhe R2 ImageChecker data set also had a much hpgbportion of no-cancerous
mammograms to cancerous casast performance is shown in Figure 10.

One of the parameters that was learned was thenalptiumber olAFUM feature: to use in the
analysis, and the results were always at or neatoih of the range that we used, varying from 232
featuresdepending on the model and weightings as shovwFigure @. This was surprising becat
the cancer was usually in the topteen if not the top eight points. However, the stieps points dc
tend to cluster around a cancer, so including nsaspicious points may create a greater distortfc
the underlying distribution than fewer points. Taarning algorithm does not ghe number of points
directly, only the cluster differences, so the usdbn of more points should not skew this anal

Figure 10. ROC curve demonstrating the effectiveness of thitadce metric &
diagnosing mammograms.
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Table 1. The accuracy ahe technique The * indicates different but similar data s¢

Method Cancerous Non-Cancer ous
ThreeCluster Equation 90% 7%
Two-ClusterWeighted

Toward Cance Equation 1 9% 42%
Two Cluster Equation 87% 720
R2 Image Checker[29] 96% 33%
Wavelet* [27 77% T7%
Naive Bayes 51% 49%
Three-ClusteEquation 2 95% %
Variance Analysi 60% 6006
Two-QIuster\Mth 9206 73
Selection Equation

Small-Cluster Analysi 51% 56%

An interesting result from the thi-cluster analysis showed that thesethods could discover are
in images that are important for the classificat@md tlis is demonstrated in Fice 9b,c. The analysis
found a region of interest for diagnosing a mamraog@as no-cancerousThese techniques can
used as a method forgling feature space for important ar

Our methods make use of a spatial analysis of tlspisious points, and its success is
encouraging sign for the investigation and utii@at of more complicated n-local analysis
techniques in medical imagirand analysi:

Analysis of the misdiagnosed caseFigure 11demonstrates a potential flaw in the met When
there is too much structure in one area that dthwselatively simple features that we are usirtg it
on just a small number of casese method can misclassify therA. potential improvement is 1
incorporate a second level of classifiers that warlalyze the missed diagno:

Figure 11. The left and right MLO views of three cases thateveisdiagnose by the
three cluster approaciThe cancerous areas are outlined in ré&tere are significar
variations in the size and morphology of spiculdésions Note that cases (b) and (c)th
have significanhatural asymmet of the breasts from left to right.




Algorithms2009, 2 1519
4. Improvement to CAD

Having developed the distance function for mediozges described in Section 3, we used the
results to help improve the computer-aided detectd breast cancer. Computer-aided detection
(CAD) of mammograms could be used to avoid missagnbses, and has been shown to increase the
number of cancers detected by more than ninetememte[4]. Improving the effectiveness of CAD
could improve the detection of breast cancer, amddcimprove the survival rate by detecting the
cancer earlier.

The typical CAD system takes in a mammogram setdisylays it for the radiologist. The system
also provides markers on potential cancerous agdsund by the system. The determination of these
markers and the evaluation of their effectiven@skalping radiologists are the main thrust of CAD
research. The hope for CAD is that the cancersediby the radiologist are marked by the computer
and brought to the attention of the radiologist.

Most computer-aided detection (CAD) systems asteteon images which contain cancer on the
assumption that images without cancer would prodlieesame number of false positives. However, a
pre-screening system is designed to remove thealarases from consideration, and so the inclusion
of a pre-screening system into CAD dramaticallyuces$ the number of false positives reported by the
CAD system. We define three methods for the inolusif pre-screening into CAD.

4.1. Incorporation into CAD

There are three basic methods for including preestng into CAD analysis. The first is the strict
method, where the pre-screening removes the noteoauns cases entirely from the consideration of
the CAD software. The second is the probabilistethnd, where the probability of the case being
cancerous or non-cancerous is determined by thegoeening system and then incorporated into the
CAD analysis. The third is an optimal method, whiges learning to try to determine the optimal
factors for the inclusion of the pre-screening ltssinto the CAD analysis. These methods will be
defined and compared below.

The strict method is the simplest to define. Imatled are screened as normal are removed from
consideration by the CAD analysis. Since thererardalse positives drawn from these cases, the
number of false positives per image decreases. ihilse most effective technique at reducing the
number of false positives, but it is also the mietgerous as mistakes by the pre-screening system
cannot be rectified by the CAD system.

The probabilistic method relies on the statistitthe pre-screening method to adjust the output of
the CAD system. To incorporate pre-screening in@A®d system, we made use of Bayes Theorem,
P(CancerSite | Pre-screen) = {P(Pre-screen | CanegiP(CancerSite) / P(Pre-screen)}. The sites
where pre-screening indicates cancer are thus gimancreased probability of being cancerous, while
sites where pre-screening does not indicate careegiven a reduced probability of being cancerous.
Since the pre-screening measurement is appliedh tentire case, all of the sites in those cases are
affected similarly.

The optimal approach is a variant of the probatixliapproach, but instead of deriving the change
from the underlying probabilities, the change iarteed on a training set of cases. In theory, this
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approach can optimize the incorporation of pre-eurgy into CAD, but can be difficult in practice. |
this case, P(CancerSite | Pre-screen) = A(PretscR{€ancerSite), where A(Pre-screen) is the lehrne
adjustment factor. This approach has more flexijbilhan the probabilistic approach, but is much
harder to implement. The choice of what to optimizealso a concern. There are two main options,
optimizing the area under the ROC curve or optingzihe accuracy of the CAD results in a certain
range of specificity. Both approaches were attechpted will be discussed.

4.2. Results of Incorporation into CAD

The analysis was performed with the same casesvérat used for the analysis in Section 3. The
training data set was used to determine the paemmd€Pre-screen) for the optimal approach. The
other approaches were tested against the sameetastorder to be unbiased. An AFUM-based CAD
system [44] was used as the CAD basis.

The results were good at low numbers of false pesitin all three techniques, and it is at high and
medium numbers of false positives where techniglistsnguish themselves. Using the probabilistic
approach to incorporate pre-screening into CADhews to work well at low numbers of false
positives per image and can improve the performagagver 70%, but at high levels of false positives
per image, this technique has minimal effect. Tiiexpected since using Bayes Theorem merely
reduces the probability of the false positives dods not eliminate them.

The results of the strict approach are identicatht results of the probabilistic approach at low
levels of false positives, but diverge at highetels of false positives. Since this approach elates
the false positives instead of just diminishingnthehe results at high levels of false positives pe
image are worse than the probabilistic approacladmee true positives are eliminated. However, in
medium levels of false positives, the performansesignificantly better than the probabilistic
approach.

The optimal approach was tuned to determine thé pe&$ormance at both low levels of false
positives and the overall area under the ROC curhe. performance under both converged to the
strict approach; however, this may be due to tleespreening technique that was chosen.

The overall performance is still strongly dependentthe effectiveness of the CAD system. The
accuracy of the pre-screening is essential in otdeprevent true positives from having their
probabilities diminished, and the specificity ispiomtant for improving the effectiveness of the
CAD system.

The incorporation of the classification resultslbato the original CAD system does significantly
improve the original CAD system, as shown in Figur2. The results of incorporating our
classification into CAD were good, increasing tleewaacy by up to 71% at a set level of false
positives per image. The improvement is most appaaelow levels of false positives. Incorporating
asymmetry into CAD can improve the effectiveness$oat levels of false positives per image. We
incorporated it as an afterthought, while it wobkel more effective as a feature used at the begjnnin
of the CAD prompt calculation process. However, dig determine that asymmetry is a powerful
technique by itself or incorporated into CAD. Timslicates that further research into techniques tha
can compare images and thus measure asymmetry mmmgrams may significantly improve the
effectiveness of CAD algorithms.
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Figure 12. ROC curve comparing the CAD system before and affierinclusion of the
Three-Cluster approach to measuring asymmetry. ifitlesion of asymmetry improves
the CAD system by up to 77%. The asymmetry meakasea very low level of false
positives per image because it does not try torote the position of the cancer; it
merely determines the presence of cancer. This @Adone on the same images as
mentioned in Section 3.4.
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5. Conclusions

This work touched on many of the problems facirgydlassification and retrieval of cancer images
and data. We developed a method for differencirthcaassifying images, which we then incorporated
into CAD. Our results are strong on all cases ef tibst set for classifying breast cancer images,
correctly classifying with 85% accuracy and ourht@que outperforms both the best academic and
commercial approaches, suggesting that this is mnapoitant technique in the classification of
mammograms. We have also shown that using the ic@gearisons to determine the classification is
insensitive to the parameters of the approach.

We created and compared multiple models, demomsgiremproved results over both academic and
commercial approaches. We also defined a new distareasure for the comparison of point sets and
demonstrate its effectiveness in this applicatibhe coupling of this distance measure with the
parametric learning of clusters led to a highlyefive classification technique.

The clusters also discovered an area of interestammogram comparisons which improved the
diagnosis of mammograms that did not have cancereMlusters might improve the technique, or,
more importantly, they might lead to the discovefymore areas of interest. The separation of the
clusters from direct classification allowed a geeaxploration of the feature space by the algorith
We suggested several ways that might improve on rttethods that we used to compare
mammograms.
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The incorporation of the classification resultslato the original CAD system does significantly
improve the original CAD system. The results oforporating our classification into CAD were good,
increasing the accuracy by up to 71% at a set lefvéise positives per image. The improvement is
most apparent at low levels of false positivesofporating asymmetry into CAD can improve the
effectiveness at low levels of false positives peage. We also determined that asymmetry is a
powerful technique by itself or incorporated intAlZ This indicates that further research into
techniques that can compare images and thus measymenetry in mammograms may significantly
improve the effectiveness of CAD algorithms.
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